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Abstract

KTH Royal Institute of Technology
School of Engineering Sciences
Department of Mathematics

Degree Programme in Engineering Physics

Master of Science in Applied Mathematics
with Specialisation in Financial Mathematics

Hedging Foreign Exchange Exposure in
Private Equity Using Financial Derivatives

by Carl Åkerlind and Filip Kwetczer

This thesis sets out to examine if and how private equity funds should hedge
foreign exchange exposure. To our knowledge the field of foreign exchange
hedging within private equity, from the private equity firms’ point of view,
is vastly unexplored scientifically. The subject is important since foreign ex-
change risk has a larger impact on private equity returns now than historically
due to increased competition, cross-boarder investments and foreign exchange
volatility. In order to answer the research question a simulation model is con-
structed and implemented under different scenarios. Foreign exchange rates
are simulated and theoretical private equity funds are investigated and com-
pared under different performance measures. The underlying mathematical
theory originates from the work of Black and Scholes.

The main result of this thesis is that private equity funds cannot achieve a
higher internal rate of return on average through hedging of foreign exchange
exposure independent of the slope of the foreign exchange forward curve.
However, hedging strategies yielding the same mean internal rate of return but
performing better in terms of performance measures accounting for volatility
of returns have been found. Furthermore, we found that the conclusions are
independent of whether the current or forward foreign exchange rate is a
better approximation for the future foreign exchange rate.

Keywords: Private Equity, Foreign Exchange Exposure, Hedging, Black-
Scholes Model, Financial Derivatives





Sammanfattning

Kungliga Tekniska Högskolan
Skolan för Teknikvetenskap
Institutionen för Matematik

Civilingenjör i Teknisk Fysik

Masterprogrammet i Tillämpad Matematik
med Specialisering i Finansiell Matematik

Hedging av Valutaexponering inom
Private Equity med Finansiella Derivat

av Carl Åkerlind och Filip Kwetczer

Uppsatsens syfte är att undersöka om och i sådana fall hur private equity
fonder ska hedgea valutaexponering. Ämnet är såvitt vi vet ej tidigare under-
sökt inom vetenskaplig forskning ur private equity företagens synvinkel. Äm-
net är viktigt eftersom valutarisk har fått en större påverkan på private equity
företagens avkastning jämfört med hur det har sett ut historiskt på grund av
högre konkurrens, mer internationella investeringar samt ökad volatilitet i va-
lutakurser. En simuleringsmodell har konstruerats och implementerats under
olika scenarier för att besvara forskningsfrågan. Valutakurser simuleras och
teoretiska private equity fonder undersöks samt jämförs utefter olika nyck-
eltal. Den underliggande matematiska modelleringen härstammar från Black
och Scholes forskning.

Uppsatsens viktigaste resultat är att private equity fonder inte kan uppnå
en högre avkastning genom att hedgea valutaexponering oavsett lutningen av
den förväntade valutautvecklingskurvan. Vi har dock funnit att det existerar
hedgingstrategier som ger samma avkastning med lägre volatilitet. Vidare är
slutsatserna oberoende av om nuvarande eller förväntad framtida valutakurs
är den bästa approximationen av den framtida valutakursen.

Nyckelord: Private Equity, Valutaexponering, Hedging, Black-Scholes Mod-
ell, Finansiella Derivat
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1 INTRODUCTION

Part I

Preliminaries
1 Introduction
Investments in private equity have increased over time since the start of the indus-
try in the 1950s. As the industry is growing and the world is getting more and
more globalised an increased amount of cross-border investments are taking place.
This has led to private equity firms being more exposed to foreign exchange risk
now than before. Moreover, due to increased competition and lower global growth
the returns of the private equity firms have decreased making buffers for foreign
exchange fluctuations smaller. At the same time foreign exchange volatility has in-
creased as a result of higher political risk and more foreign exchange interventions
from central banks. Therefore, hedging foreign exchange exposure within private
equity might be more important than ever before. Historically, Nordic based pri-
vate equity firms have not hedged foreign exchange risk, a strategy that might need
to be reconsidered.

This thesis sets out to examine if and how private equity funds should hedge their
foreign exchange exposure. To our knowledge the field of foreign exchange hedging
within private equity, from the private equity firms’ point of view, is vastly unex-
plored scientifically. In order to answer the research question a simulation model
is constructed and implemented under different scenarios. Foreign exchange rates
are simulated and theoretical private equity funds are investigated and compared
under different performance measures. The underlying mathematical theory origi-
nates from the Black-Scholes framework. We hope that this work contributes to the
reader’s enhanced understanding and other research through defining, structuring
and modelling a private equity foreign exchange hedging universe.

The main result of this thesis is that private equity funds cannot achieve a higher
mean internal rate of return through hedging of foreign exchange exposure indepen-
dent of which currency the fund is denominated in. This result is expected since it
is in line with no arbitrage theory stating that higher risk should be rewarded with
higher mean return. However, hedging strategies yielding the same mean internal
rate of return but performing better in terms of performance measures accounting
for volatility of returns have been found. Furthermore, we found that the conclu-
sions are independent of whether the current or forward foreign exchange rate is a
better approximation for the future foreign exchange rate.

The thesis is divided into five parts. Part I presents the preliminaries and sets the
foundation, including previous research, background on private equity and basics of
financial derivatives. Part II consists of the base model assuming constant risk free
interest rates. First the mathematical framework is presented and applied. Then
the methodology is described and finally the results are presented and discussed.
Part III extends the model by challenging the assumption of constant risk free
interest rates and follows the same structure as Part II. Part IV extends the model
further by investigating differences arising from the slope of the foreign exchange
forward curve. Finally, Part V concludes the findings and the thesis.
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2 PREVIOUS LITERATURE

2 Previous Literature

To our knowledge there is no previous scientific research investigating the field
of foreign exchange (FX) hedging within private equity (PE), from the PE firms’
point of view. This section starts with describing related previous literature. First,
previous research from a financial perspective is presented. Second, mathematical
research is presented. Finally, related previous research is applied to a PE setting.

2.1 Financial Perspective

There is literature both in favour of and opposed to hedging in general. According
to the famous view of Modigliani and Miller, which is part of the foundation of
modern finance, hedging is simply a financial transaction and does not affect the
value of the operating assets of a company (Modigliani and Miller (1958) [21]). For
that reason, hedging does not affect the value of a firm.

Black (1990) [3] reaches the same conclusion as Modigliani and Miller, and argues
that investors do not want to fully hedge their FX risk, because Siegel’s paradox
makes them want a positive amount of FX risk. Furthermore, Black explains that
every investor will hold the same mixture of market risk and FX risk, under the
assumption that the average risk tolerance is the same across countries.

In line with Modigliani and Miller, as well as Black (1990) [3], Morey and Simpson
(2001) [22] is in favour of an unhedged strategy of FX risk. The authors find that an
unhedged strategy of FX risk outperforms a hedged strategy, for every sample and
time horizon they have investigated. In total, five different hedging strategies were
used: (i) to always hedge, (ii) to never hedge, (iii) to hedge when the forward rate
is at a premium, (iv) to hedge only when the premium is large, and (v) a strategy
based upon relative purchasing power parity. A data set from five different countries
was used.

Despite that there is evidence that unhedged strategies are beneficial, Perold and
Schulman (1988) [23] argues that investors, when formulating long run investment
policies, should hedge the FX risk of their portfolios. The authors find that, on
average, FX hedging gives the investors a substantial risk reduction without any
loss in expected return. Moreover, the key to their argument is that FX hedg-
ing yields zero expected return, in the long run. Glen and Jorion (1993) [14] also
find that hedging of FX risk could be beneficial. The authors find that an uncon-
ditional strategy including FX hedging could be beneficial, and that conditional
hedging strategies, both in sample and out of sample, significantly improve the
risk-return trade-off of global portfolios as well as outperform the unconditional
hedging strategies.

Worthwhile to note is that both the articles in favour of FX hedging, Perold and
Schulman (1988) [23] as well as Glen and Jorion (1993) [14], have assumed no
currency risk premium. However, De Santis and Gérard (1998) [7] finds that the
premium of bearing FX risk often represents a significant fraction of the total
premium.
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2 PREVIOUS LITERATURE

An article discussing if the investors in the company or the company itself should
manage the risk is Froot, Scharfstein and Stein (1994) [10]. The authors conclude
that the investors should manage the risk on their own.

Froot, Scharfstein and Stein (1993) [9] explores different strategies to FX hedging
involving both linear and nonlinear instruments. They show that if the indexed
sensitivity of foreign revenues to the FX rate and the indexed sensitivity of foreign
investment costs to the FX rate are equal then futures contracts alone can provide
value maximizing hedges. In all other cases, options might be required to obtain the
value maximizing hedge. In other words, when there are state dependent financing
opportunities nonlinear instruments will be needed in order to obtain the value
maximizing hedges.

2.2 Mathematical Perspective and Foundation

Øksendal (1998) [25] covers the introduction to stochastic calculus and its applica-
tions, which is needed as a mathematical starting point in this thesis. For example,
Itô’s famous lemma discovered in the 1940s (Itô (1944) [18]) and Girsanov’s theorem
which Girsanov proved in 1960 (Girsanov (1960) [13]) are included. For the famous
Black-Scholes model for arbitrage pricing in continuous time we take inspiration
from Merton (1973) [20] as well as Black and Scholes (1973) [5].

When defining the FX market and deriving a framework for pricing derivatives
written on the FX rate as well as generalizing the model to allow for several foreign
markets with correlated FX rates we are inspired by Garman and Kohlhagen (1983)
[11] as well as Björk (2009) [2].

Inspiration about how to conduct a general historical simulation, the theory con-
cerning copulas as well as the theory about Value-at-Risk and Expected shortfall
is gathered from Hult, Lindskog, Hammarlid and Rehn (2012) [17].

The foundation of stochastic short rates is described in Björk (2009) [2]. The
martingale model for short rates used in this thesis is the Hull-White (extended
Vasiček) model, which is introduced in Hull and White (1990) [16]. Calibration of
the Hull-White model is in line with Gurrieri, Nakabayashi and Wong (2009) [15].
Inspiration is also gathered from Brigo and Mercurio (2006) [4] as well as Clark
(2011) [6]. Having stochastic short rates has a lot of implications, some of which
are problematic. By using the technique of changing the numeraire, described in
Geman, El Karoui and Rochet (1995) [12], some of these problems can be tackled.
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2.3 Applying Previous Literature

Despite that there is no previous literature regarding FX hedging for PE, from the
PE firms’ perspective, previous literature can still be applied to this topic. Previous
research concludes different strategies regarding the hedging of FX risk. Some are
in favour of hedged strategies and other support unhedged strategies. Applying the
view of Glen and Jorion (1993) [14] as well as Perold and Schulman (1988) [23],
PE firms should hedge FX risk. On the other hand, if accepting the view of Black
(1990) [3] as well as Morey and Simpson (2001) [22], PE firms should not hedge
their FX risk.

If applying the view of Froot et al. (1994) [10], the choice of hedging the FX risk
should be left to the limited partners investing in PE funds. Furthermore, applying
the view of Froot et al. (1993) [9] both linear and nonlinear hedging derivatives
ought to be considered.
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3 Background on Private Equity

Information to this section is gathered from Berk and DeMarzo (2011) [1], Swensen
(2009) [24] as well as interviews with private equity professionals and experts. A PE
firm is a limited partnership that specializes in raising money to invest in the equity
of existing privately held firms. PE firms use debt when investing in companies,
e.g. to take publicly traded companies private through so called leveraged buyouts.
It is common that PE firms use debt as well as equity to finance their investments
which make them risky since the debt leverages the equity yielding higher expected
return on equity.

The investors constitutes mainly of limited partners. Among investors PE together
with hedge funds and real assets are considered alternative asset classes in compar-
ison to fixed income, public equity and currencies that are considered traditional
asset classes or traditional marketable securities. The alternative asset classes allow
the investors to create portfolios with higher returns for a given level of risk. Well
selected private holdings have the potential to make huge contribution to portfolio
returns. The reason for this is that these kinds of holdings have little correlation
with domestic marketable securities, so the investors will achieve a diversification
effect. Another way investors can achieve diversification to domestic marketable
securities involves adding foreign equities to their portfolios.

PE includes both venture capital and leveraged buyout. Leveraged buyout firms
will be in focus in this thesis. From now on, when mentioning PE firms throughout
the thesis, the actual meaning is leveraged buyout firms.

Investments in alternative asset classes and particularly in PE have increased over
recent years. This, in combination with more cross-border investments, increased
competition and lower global growth has led to lower returns which in turn makes
buffers for FX fluctuations smaller.1,2 As a result, the topic FX hedging of PE
investments is becoming increasingly interesting.

The remained of this section is organised as follows. First, the PE structure is
explained in more detail. Second, the investment cycle of a PE fund is described.
Third, the portfolio companies within a PE fund are studied. As a fourth part in
this section, PE FX exposure is discussed thoroughly. The section ends with the
historical view of FX hedging within the PE universe.

3.1 Private Equity Structure

PE firms are organized in a fund structure. Typically the firms constitutes of several
funds of different sizes and in different stages of their life cycles. Common types
of funds are equity funds, infrastructure funds and credit funds. Hereinafter, main
focus will be in equity and infrastructure funds and these will be referred to as PE
funds. In turn, the funds consist of different amounts of portfolio companies (PCs),

1Preqin, ’The 2016 Preqin Alternative Assets Performance Monitor’, 2016
2RR Donnelley, Venue Market Spotlight, ’Cross-Border Private Equity Activity’, 2015
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i.e. companies that are owned by the private equity fund. As a PE fund is set up
limited partners commit money to the specific fund.

Figure 3.1: Conceptual figure of the structure of a PE firm

3.2 Investment Cycle

The typical life period of a PE fund is ten years. Before the fund starts being active,
it is marked in order to attract investors to commit capital to that specific fund.
Within the early years of the fund, when the fund invests in portfolio companies,
investors pay in their capital commitments to the fund. In the latter years of the
fund, exits of the portfolio companies take place. Hence, the PE fund realises the
return and the investors receive capital from the exits. If the timing of an exit
is unfavourable the fund’s life can sometimes be extended by typically two more
years, if the investors agree to such a decision.

Figure 3.2: Timeline of a typical PE fund

Each investment the fund makes in a portfolio company starts with signing of the
deal. After that follows some time to closing of the transaction, typically a few
months to an entire year, depending on the size and complexity of the transac-
tion. Within the signing to closing period of the transaction the PE firm will start
negotiating with the management of the company regarding their equity roll-over
commitment and their incentive option pool. Also, in the period between signing
and closing the PE firm needs to assure the debt financing of the deal. Marketing
material are presented to proposed debt investors. When all the necessary docu-
mentation is completed, the PE firm can close the deal, making sure that all the
relevant parties in the transaction receive their capital on time. After closing the
deal the company is part of the fund as a portfolio company until it is decided that
the company should be exited. This can happen as early as after some months but
usually it stays in the fund for several years.
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Figure 3.3: Conceptual investment timeline of a PE fund

3.3 Portfolio Companies

The value of a portfolio company is measured by its enterprise value which is defined
as the sum of its equity and net debt. Net debt equals debt less cash.

Enterprise V alue = Equity +Net Debt (3.1)

The enterprise value can be determined through discounting the future expected
cash flows of the company. Simplified, it can also be estimated through a multiple
of the company’s EBITDA3. Hence, by observing a portfolio company’s net cash
flows in different currencies the part of the EV corresponding to each currency can
be determined. There are many other ways to determine the enterprise value of a
company. However, this is beyond the scope of this thesis.

Figure 3.4: Components of the enterprise value of a portfolio company

A commonly used term for the equity value is the net asset value (NAV). The
performance of a PE fund is based on the evolvement of the NAVs of each portfolio
company. After rearranging the terms in Eq. 3.1, the expression for NAV is found.
From now on, the NAV will be in focus.

NAV = Enterprise V alue−Net Debt (3.2)

3.4 Private Equity Foreign Exchange Exposure

Private equity FX exposure is different from usual corporate FX exposure. This
can be understood from studying the PE structure and the PE investment cycle
illustrated in Figures 3.1, 3.2 and 3.3.

First, there is FX exposure within each of the portfolio companies of a PE fund.
They could e.g. have revenues is several currencies and costs in other currencies.

3Earnings before interest, taxes, depreciation and amortisation
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If the company is large it might be present in a lot of different countries. Second,
on a PE fund level, all the FX exposures of each portfolio company are present.
That is, if not any of the portfolio companies fully or to some extent hedge its
currency exposure. Third, the PE fund will add new portfolio companies to the
fund and also exit some other portfolio companies, implying a substantial change in
the aggregated FX exposure of the fund. It is very hard to determine when the exit
actually will happen at the time of acquiring a new portfolio company. A fourth
FX exposure that is included in the PE setting is the exposure to FX fluctuations
in the meantime between signing and closing of each transaction.

Even though the different FX exposures within PE appear complex there is more
to take into consideration. There are two possibilities to define the FX exposure of
each portfolio company in the fund. Either, the net cash flows should be considered
or the NAVs. Both could be measured at an aggregated level for the fund and
constitute the fund’s total FX exposure.

The rationale for defining the FX exposure based to the fund’s net cash flows in
different currencies is that the enterprise value and hence the NAV can be calculated
from the cash flows in the portfolio companies, either through a multiple or through
discounting all expected future free cash flows. Another rationale for defining the
FX exposure as the net cash flows in different currencies is that the PE fund that
hedges this exposure hedge its indirect profit and loss accounts.

The aggregated FX exposure in the PE fund can also be defined as the net NAV
exposures in different currencies. The rationale for this definition is that the per-
formance measures of a PE fund are calculated through the NAV evolvement of
the portfolio companies. Since the topic of this thesis concerns hedging of FX risk
in PE, and not how to determine the link between cash flows and NAV, the NAVs
of the portfolio companies will be considered as given. Thus, the FX exposure of
in this thesis is defined from the NAVs of the portfolio companies. By defining
the FX exposure as the NAVs in different currencies, and hedging this exposure,
the PE fund hedge its balance sheet exposure, i.e. its NAV. Hence, it hedges its
performance in terms of IRR. Worth to mention is that the net cash flows, which
are part of the profit and loss accounts, will not be hedged. As mentioned earlier,
these cash flows will affect both enterprise value as well as net debt of each portfolio
company, and hence the NAV of each portfolio company. However, it would be too
technical to take all these aspects into account in this thesis.

The NAV of each portfolio company in a PE fund can be regarded as a sum of
the NAVs in different currencies which adds up to the total NAV of the portfolio
company. This is illustrated in Figure 3.5. Note that the NAV in a specific currency
could be negative.
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Figure 3.5: Conceptual NAV of a PC regarded as a sum of the parts from different cur-
rencies

3.5 Historical Evidence

Historically, Nordic based PE firms have not hedged FX risk in their equity funds.
The rationale has been that PE is risky business as it is. Hence, FX risk is only
one of several risks each PE fund is facing. Historical returns within PE have been
astonishingly high. However, with an increased competition, lower global growth
and the usage of lower debt levels in financing transactions, returns have become
lower. At the same time, fluctuations in FX rates have increased and cross-border
investments have increased.4 As a consequence, the buffers for FX fluctuations
are smaller nowadays for PE firms. For that reason, this topic is interesting and
relevant for Nordic based PE firms.

Some PE firms might have more than solely equity funds. For example, they might
have credit and infrastructure funds. Credit funds include fixed income instruments
with much lower risk compared to equity funds. Therefore, credit funds have hedged
their FX exposure historically. Infrastructure funds include more local companies
than equity funds and have less volatile cash flows. Furthermore, infrastructure
companies usually have contracts with a determined duration. For these reasons,
infrastructure funds have a lower NAV volatility and have sometimes hedged their
FX risk.

Some American PE funds hedge their FX exposure in their equity funds. Large PE
firms have their own Treasury departments that handle the FX risk. Later in the
thesis we will analyse why this is the case.

4Preqin, ’The 2016 Preqin Alternative Assets Performance Monitor’, 2016
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4 Foreign Exchange Effect on PE Returns

This section sets out to exemplify the theoretical impact an FX rate can have on
the returns of a PE fund. First, some recent examples of large FX movements are
discussed. Then a theoretical example of the FX effect is considered.

FX effects can theoretically affect the performance of a PE fund dramatically. The
annualised return of the PE fund, the internal rate of return (IRR), is calculated
from the NAV in the fund currency, at entry and at exit of a particular investment.

IRR(t, T ) =

(
NAVT

NAVt

) 1
T−t

− 1, (4.1)

where t is the time of entry, T is the time of exit and T − t is the duration of the
investment in years.

Two examples of substantial FX movements are when Brexit happened and when
the Swiss National Bank withdrew its management of the value of the Swiss Franc
(CHF) against the Euro (EUR), until then it had prevented the value of the CHF
from strengthening beyond 1.2 to the EUR. After Brexit was a fact, the UK Sterling
(GBP) dropped 12% to the US Dollar (USD) in a single day. After the Swiss
National Bank suddenly allowed the CHF to freely appreciate against the EUR,
which came as a shock to the market due to Swiss being a conservative country
with a predictable central bank, the CHF strengthened by 30% in a matter of
minutes.5

In order to understand the FX effects on PE returns, let us consider the following
simplified example. Take as given a PE fund denominated in EUR. The PE fund
makes a fully equity financed investment January 1, 2018, in a company that is
denominated in Swedish Krona (SEK). At the investment time the company’s value
is SEK 100 million, equivalent to EUR 10 million since the SEK/EUR rate is 0.10
at that date, as seen in Figure 4.1. Let us assume that the investment grows 20%
during 2018 and that the PE fund exits the company at December 31, 2018. Hence,
the IRR in SEK is 20%. Furthermore, let us assume that the PE fund does not
hedge its FX exposure.

5HiFX, HiFM, ’The three major Foreign Exchange risks faced by Private Equity firms’, 2016
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Jan 2018 Mar 2018 May 2018 Jul 2018 Sep 2018 Nov 2018 Jan 2019
0.085

0.09

0.095

0.1

0.105

0.11

0.115

SEK/EUR, Base Case
SEK/EUR, +10%
SEK/EUR, -10%

Figure 4.1: Foreign exchange effect on private equity returns, conceptual evolvement of
SEK/EUR rate over one year

At the end of 2018, the NAV of the company is SEK 120 million. In the base case,
SEK/EUR is unchanged at 0.10 in the end of 2018. Hence, the NAV at exit in
EUR is 12.0 million. The resulting IRR, calculated from the entry and exit NAV
in EUR, is 20%.

In the case where the SEK/EUR rate ends up in a 10% higher state than the base
case, i.e. at 0.11, the NAV at exit in EUR is approximately 13.2 million. Hence,
the IRR in this case is 32%.

In the last case, the SEK/EUR rate ends up 10% lower than the base case, i.e. at
0.09. This implies an exiting NAV of EUR 10.8 million and a resulting IRR of 8%.

The results are summarised in Table 4.1. It is evident that, in this simplified
example, the FX effects can have a large impact on the performance of a PE fund.
In practice, the FX effects on PE returns might be lower, due to diversification
effects since PE funds in general have several portfolio companies with different
FX exposures, that in turn are invested in at different times. Also, each portfolio
company might have several or a lot of different FX exposures. Furthermore, PE
investments are rarely fully equity financed. However, the FX effects will still affect
the performance of the PE funds. Therefore, this matter is worthwhile to study in
greater detail. It might be beneficial for PE funds to hedge their FX exposure.

FX Scenarios Base Case +10% -10%
IRR 20% 32% 8%

SEK/EUR at Exit 0.10 0.11 0.09

Table 4.1: Foreign exchange effect on private equity returns
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5 Hypothesis

The research question this thesis sets out to answer is if and how PE funds should
hedge their FX exposure. As seen in Section 4, FX effects can dramatically affect
the performance of PE funds. Previous scientific research is contradictory regard-
ing hedging of FX risk. Some researchers argue that it could be beneficial to hedge
FX risk while others argue that this is not the case. However, there is no specific
scientific previous literature regarding the topic of hedging FX risk for PE funds.
Applying the research that is opposed to FX hedging, e.g. Black (1990) [3] as well
as Morey and Simpson (2001) [22], the null hypothesis of the thesis is

H0:PE firms should not hedge FX exposure, regardless of the definition of FX risk,
in order to obtain the best performance

There are several ways to define the FX exposure of a PE fund. As argued in Sec-
tion 3.4, the FX exposure of a PE fund should be defined as the net FX exposure
of the portfolio companies within that fund. Defining the FX exposure in this way,
and applying the previous literature claiming that FX hedging could be beneficial,
e.g. Perold and Schulman (1988) [23] as well as Glen and Jorion (1993) [14], the
alternative hypothesis of this thesis is

H1:PE firms should define their FX exposure as the underlying net FX exposure of
the portfolio companies, and hedge accordingly, in order to obtain the best perfor-
mance

As part of evaluating different hedging strategies for PE funds, several financial
derivatives will be considered. In line with Froot et al. (1993) [9] both linear and
nonlinear hedging derivatives ought to be considered.

Furthermore, since not all investors necessarily want to hedge the FX risk, it might
be wise to let them decide whether to hedge the FX exposure or not. This is in
line with the conclusion of Froot et al. (1994) [10]. If not giving them the decision,
some PE funds that decide to hedge their FX exposure might lose some potential
investors that do not want to hedge FX risk. Also, if giving the investors the
decision, they might be able to let FX exposures from different PE funds offset
each other. In such way, they might be able to reduce the overall transaction costs
related to hedging. The result of this would be a better overall return for the
investors.
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6 Financial Derivatives

This section sets out to introduce the financial derivatives that will be used to
hedge the FX exposure. First we recall the definition of a financial derivative.
In the proceeding sections the linear forward contracts and the non-linear option
contracts are introduced.

A financial derivative is a financial asset whose value depends on the value of
another asset. The underlying asset can for example be a stock, an ounce of gold
or an FX rate. In other words, financial derivatives are contracts that give their
owners certain rights and obligations depending on what kind of derivative it is.
As mentioned above, the two types of derivatives that will be used in this thesis
are forwards and options.

6.1 Forward Contracts

Forward contracts are binding contracts both for the buyer and the seller. The two
parties agree on a future exchange which neither of the parties can back out from
in case it would appear non-beneficial to complete. Below follows the definition.

Definition 6.1 Forward contract
A forward contract between two parties, a seller and a buyer, is a binding agreement
in which the seller agrees to sell a predefined asset to the buyer at a future time T
to the, at time t, predetermined price K.

The forward price, K, is determined in such a way that the forward contract is
worthless at time t when it is being entered. This means that no money transaction
takes place until the delivery time, T , i.e. it does not cost anything to enter a
forward contract. For the buyer of a forward contract, the payoff of its long position
can be expressed as

Π = ST −K, (6.1)

where ST is the price of the underlying asset at time T and K is the, at time t,
predetermined price. Similarly, the payoff of the seller’s short position is given by

Π = K − ST . (6.2)

An example of the payoff function for a long forward (upper) and short forward
(lower) is illustrated in Figure 6.1. Naturally, as seen in the figure, the payoff at
time T can be both positive and negative.
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Figure 6.1: Payoff of a forward as a function of the price of the underlying asset

6.1.1 Rolling Forwards

Rolling forwards are not a new financial derivative per se but rather a series of
consequent forward contracts over a time period. The concept of rolling forwards
is most easily illustrated with an example.

Imagine that you want to buy one dollar in one year from now. If you want to lock
in today’s price you can buy a forward contract for buying the one dollar in twelve
months. In this case one financial derivative will be entered and one payoff will be
received in one year, be it positive or negative.

However, rolling forwards could have been used instead of the twelve months for-
ward contract. Instead of fixing the price for twelve months in the future we could
have fixed the price for just one month in the future. And in one months time, as
the first contract expires, entered a new one month forward contract for the next
month and so on. This would have resulted in entering twelve different forward
contracts which each would have given some payoff. By this procedure we denote
a rolling forward.

An important difference between rolling forwards and forwards is that a rolling
forward depends on the price path of the underlying asset whereas a forward only
depends on the prices at the entry and maturity times. Another important differ-
ence is that the rolling forwards give much more flexibility since the time frame in
which the contract is being active is much shorter than in the forward case.
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6.2 Option Contracts

In contrast to forward contracts option contracts are not binding for the buyer.
The buyer of the contract purchases it at some price at time t. If the payoff of
the contract at the exercise time T is non-beneficial the owner of the contract can
simply choose not to exercise the option. If however the payoff is beneficial then
the holder will of course exercise the option.

Definition 6.2 Option contract
An option contract between two parties, a seller and a buyer, is a right for the buyer
of the contract to buy or sell a predefined asset at a specified future time T to the,
at time t, predetermined strike price K.

The crucial thing with options is that the holder of the contract gets the right to
buy or sell the underlying asset, rather than being obliged to do it. Since the buyer
only gets this right and no obligation option contracts make for excellent hedging
instruments in times of volatile prices of the underlying assets. If the price of the
underlying asset falls significantly and one owns an option giving the right to sell
the underlying asset at a predefined price one can exercise the option to avoid a
substantial loss. The same argument is applicable for the case that the price of the
underlying asset would increase and one owns an option giving the right to buy the
asset at a predetermined price.

Potentially there are two transactions involved in an option contract. As the buyer
buys the contract the price of the option is paid to the seller. At the maturity time,
if the holder of the option chooses to exercise it, an interchange transaction takes
place and the asset changes owner for the predefined strike price. The pricing of
options requires stochastic calculus and will be investigated in later sections.

Finally, there are two types of options, call options and put options. These are
closer investigated in the two below proceeding sections. Furthermore, there are
two common types of call options and two common types of put options, namely
European call and put options as well as American call and put options. European
means that the option only can be exercised at exactly the date of expiration and
American means that the option holder has the right to exercise the option at any
time before the expiration date as well as on the expiration date. Only European
options will be investigated in this thesis.

6.2.1 Calls

An option that gives its holder the right to buy the underlying asset is called a call
option. The holder’s payoff of a call option is given by

ΠCT
= max(ST −K, 0). (6.3)

Worth noting from the payoff formula is that the buyer has a potential infinite
upside whereas the seller has a potential infinite downside. This makes calls rather
risky.
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An example of the payoff function for a long call (holder) and short call (seller)
is illustrated in Figure 6.2. As seen in the figure, the payoff of the holder at time
T will be greater or equal to zero whereas for the seller it will be less or equal to
zero. However, since the buyer has paid some amount to the seller at time t the
buyer will have lost money if the option is not exercised whereas the seller will have
gained money if it is not exercised.
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Figure 6.2: Payoff of a call as a function of the price of the underlying asset

6.2.2 Puts

An option that gives its holder the right to sell the underlying asset is called a put
option. The holder’s payoff of a put option is given by

ΠPT
= max(K − ST , 0). (6.4)

In contrast to calls the payoff of a put is limited, i.e. the buyer has a capped upside
and the seller has a capped downside since the price of the underlying asset can
not decrease below zero.

An example of the payoff function for a long put (holder) and short put (seller) is
illustrated in Figure 6.3. As seen in the figure, the payoff of the holder at time T
will be greater or equal to zero whereas for the seller it will be less or equal to zero.
However, as in the call case, since the buyer has paid some amount to the seller
at time t the buyer will have lost money if the option is not exercised whereas the
seller will have gained money if it is not exercised.
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Figure 6.3: Payoff of a put as a function of the price of the underlying asset

6.2.3 Strangles

A strangle is not a financial derivative per se but rather a combination of a call
option and a put option with the same expiry date T . The two options do not
need to have the same strike prices K. An example of the payoff function for a
long strangle (holder) and short strangle (seller), where the call option and the put
option have the same strike prices, is illustrated in Figure 6.4.
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Figure 6.4: Payoff of a strangle as a function of the price of the underlying asset
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7 THE BLACK-SCHOLES MODEL

Part II

Base Model: Constant Interest Rates

7 The Black-Scholes Model

This chapter sets out to present the Black-Scholes model for arbitrage pricing in
continuous time. Furthermore, we define a market for the FX rate between the cur-
rencies of the regular domestic market and a foreign market and derive a framework
for pricing derivatives written on the FX rate. After that we generalize the model
to allow for several foreign markets with correlated FX rates. Inspiration is to a
large extent gathered from Björk (2009) [2]. In Section 7.1 we follow the arguments
of Merton (1973) [20] as well as Black and Scholes (1973) [5]. In Sections 7.2 and
7.3 we follow the arguments of Garman and Kohlhagen (1983) [11]. The underlying
mathematical foundation is found in Appendix F.

7.1 Model Definition and Derivative Pricing

In the Black-Scholes model there are two assets, a risk free asset and a risky asset.
The risk free asset can be though of as a bond and the risky asset can be though of
as a stock. The risk free asset has a deterministic rate of return whereas the risky
asset has a stochastic rate of return. The dynamics of the two assets are given in
the following definition.

Definition 7.1 Black-Scholes model
The risk free asset and the risky asset have the following dynamics respectively

dBt = rBtdt, (7.1)

dSt = αStdt+ σStdW t, (7.2)

where r, α, and σ are deterministic constants.

We begin by noting that the dynamics of the risky asset is modelled as a Geometric
Brownian motion. The two constants r and α can be though of as the mean rates
of returns of the two assets respectively, and the constant σ can be thought of as
the volatility of the risky asset’s return. r denotes the short rate of interest which
we sometimes will refer to as the risk free interest rate.

As the market has been set up we are now ready to define the claims which are
going to be priced. Let us refer to these claims as contingent claims or derivatives
since they will depend on the price of the underlying asset S.

Definition 7.2 Contingent claim
The stochastic variable X is a contingent claim with time to maturity T if X ∈ FS

T .
If furthermore X = Φ(ST ) then X is called a simple claim.

II Base Model: Constant Interest Rates 18



7 THE BLACK-SCHOLES MODEL

Having defined the model and a contingent claim we are ready to price the con-
tingent claim under the given model. The price of a contingent claim X at time t
will be denoted Π(t;X ) and the relation Π(T ;X ) = X holds. Moreover, we recall
that under the Black-Scholes model, assuming absence of arbitrage results in con-
tingent claims having unique prices at all times t. To mark the importance of this
assumption we formulate it more formally.

Assumption 7.1 Absence of arbitrage
The price process of X , Π(t;X ), is assumed to be such that there are no arbitrage
possibilities on the market. An arbitrage possibility can be though of as a self-
financed portfolio h with corresponding value process V h

t such that

V h
0 = 0,

P (V h
T ≥ 0) = 1,

P (V h
T > 0) > 0.

Assuming that the market is free of arbitrage only two more minor assumptions are
required in order to fully be able to derive the pricing equation for a simple claim
X = Φ(ST ). The first of these is that the contingent claim X can be bought and
sold on the market. The second one is that the price process for contingent claims
is on the form

Π(t;X ) = F (t, St). (7.3)

Having stated all necessary assumptions, let us now derive the pricing equation.

First we will try to express the dynamics of a self-financed portfolio consisting of
the contingent claim and the underlying asset. Applying Itô’s formula to Eq. 7.3
and using Eq. 7.2 one obtains

dΠt =
∂F

∂t
dt+

∂F

∂s
dSt +

1

2

∂2F

∂s2
d〈S〉t

=
∂F

∂t
dt+

∂F

∂s

(
αStdt+ σStdW t

)
+

1

2
σ2S2

t

∂2F

∂s2
dt

=

(
∂F

∂t
+ αSt

∂F

∂s
+

1

2
σ2S2

t

∂2F

∂s2

)
dt+ σSt

∂F

∂s
dW t. (7.4)

Defining

αΠ(t) =
∂F
∂t

+ αSt
∂F
∂s

+ 1
2
σ2S2

t
∂2F
∂s2

F
, (7.5)

σΠ(t) =
σSt

∂F
∂s

F
, (7.6)

and using Eq. 7.4 we get

dΠt = αΠ(t)Πtdt+ σΠ(t)ΠtdW t. (7.7)

The value process of a portfolio containing hS of the underlying asset and hΠ of the
derivative is given by

V h
t = hSSt + hΠΠt. (7.8)
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Applying Itô’s formula and recalling that for a self-financed portfolio Stdht +
d〈h, S〉t = 0 the dynamics of our portfolio is found to be

dV h
t = hSdSt + hΠdΠt. (7.9)

Defining the relative portfolio weights ωS = hSSt

V h
t

and ωΠ = hΠΠt

V h
t

the above expres-
sion can be written as

dV h
t = V h

t

(
ωS

(
αdt+ σdW t

)
+ ωΠ

(
αΠ(t)dt+ σΠ(t)dW t

))
= V h

t

((
αωS + αΠ(t)ωΠ

)
dt+

(
σωs + σΠ(t)ωΠ

)
dW t

)
.

(7.10)

Choosing the formed portfolio to be locally risk less the second term in the expres-
sion is set to zero, σωs + σΠ(t)ωΠ = 0. This together with the fact that ωS and ωΠ

are weights of a relative portfolio give us two conditions for our portfolio

σωs + σΠ(t)ωΠ = 0, (7.11)
ωS + ωΠ = 1. (7.12)

Solving the system of linear equations the relative portfolio weights are obtained as

ωS =
σΠ(t)

σΠ(t)− σ
, (7.13)

ωΠ =
−σ

σΠ(t)− σ
. (7.14)

Next we recall that if the portfolio is locally risk less then its mean rate of return
must equal the return of the risk free asset in order for the model to be free of
arbitrage. Thus it must hold that

r = αωS + αΠ(t)ωΠ

=
ασΠ(t)− σαΠ(t)

σΠ(t)− σ

(7.15)

By inserting the values of αΠ(t) and σΠ(t) given in Eqs. 7.5 and 7.6 in the absence
of arbitrage condition, Eq. 7.4, and rearranging the following equation is obtained

∂F

∂t
+ rSt

∂F

∂s
+

1

2
σ2S2

t

∂2F

∂s2
− rF = 0. (7.16)

Finally, remembering that the price of a contingent claim at time T is given by
Π(T ) = Φ(ST ) we get the condition

F (T, ST ) = Φ(ST ). (7.17)

The final two equations have to hold with probability 1 for each fixed t. This implies
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that F has to satisfy the following partial differential equation.

∂F

∂t
(t, s) + rs

∂F

∂s
(t, s) +

1

2
σ2s2

∂2F

∂s2
(t, s)− rF (t, s) = 0, (7.18)

F (T, s) = Φ(s). (7.19)

Let us formulate the above findings as a theorem.

Theorem 7.1 Black-Scholes equation
Given the Black-Scholes model and a contingent claim, the price function F that is
consistent with absence of arbitrage is the solution to the following boundary value
problem on [0, T ]×R+.

∂F

∂t
(t, s) + rs

∂F

∂s
(t, s) +

1

2
σ2s2

∂2F

∂s2
(t, s)− rF (t, s) = 0, (7.20)

F (T, s) = Φ(s). (7.21)

Noting that the Black-Scholes equation is exactly on the form Eqs. F.29-F.30 in
Appendix F the analysis of partial differential equations will come in handy as we
seek the solution to the system. Using Feynman-Kač’s theorem, Proposition F.4 in
Appendix F, the solution to the Black-Scholes equation is immediately obtained.

Theorem 7.2 Risk neutral valuation
The arbitrage free price of the simple contingent claim X = Φ(ST ) is given by
Π(t;X ) = F (t, St) where F is given by

F (t, s) = e−r(T−t)EQ
t,s

[
Φ(ST )

]
, (7.22)

and the Q-dynamics of S are given by

dSu = rSudu+ σSudWu, (7.23)
St = s. (7.24)

We close this section by seeking the pricing function in the special case of the
contingent claim being a European call option, presented in Section 6. The quite
tedious computations will result in the famous Black-Scholes formula. Recalling
that the contract function for a European call is given by

X = max(ST −K, 0) (7.25)

and using the risk neutral valuation formula it must hold that the price at time t
is given by

Πt(X ) = e−r(T−t)EQ
[
max(ST −K, 0)

]
, (7.26)

where
ST = St exp

((
r − 1

2
σ2
)
(T − t) + σ2

(
WT −Wt

))
. (7.27)
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Rewriting ST as
ST = Ste

Z ,

where Z ∼ N

((
r − 1

2
σ2
)
(T − t), σ2(T − t)

)
, and denoting the density function of

Z by ϕ,
(
r − 1

2
σ2
)
(T − t) by m and σ2(T − t) by s2 we have

EQ
[
max(ST −K, 0)

]
= EQ

[
max(Ste

Z −K, 0)
]

= 0 ·Q
(
Ste

Z ≤ K
)
+

∫ ∞

ln
(

K
St

) (Ste
z −K

)
ϕ(z)dz

= St

∫ ∞

ln
(

K
St

) ez 1√
2πs2

e−
(z−m)2

2s2 dz −KQ

(
Z > ln

(
K

St

))
.

Completing the square in the exponent the first term can be written as

St

∫ ∞

ln
(

K
St

) ez 1√
2πs2

e−
(z−m)2

2s2 dz

=Ste
s2

2
+m

∫ ∞

ln
(

K
St

) 1√
2πs2

e−
(z−(m+s2))2

2s2 dz

=Ste
s2

2
+mQ

(
Y > ln

(
K

St

))
,

where Y ∼ N
(
m+ s2, s2

)
. Reinserting this expression back and substituting in the

definitions of m and s we have

EQ
[
max(ST −K, 0)

]
= Ste

s2

2
+mQ

(
Y > ln

(
K

St

))
−KQ

(
Z > ln

(
K

St

))
= Ste

r(T−t)Q

(
Y > ln

(
K

St

))
−KQ

(
Z > ln

(
K

St

))
.

Finally, using the following characteristics of stochastic random variables and the
normal distribution

Q(X > x) = 1−Q(X ≤ x), (7.28)

X ∼ N(µ, σ2) =⇒ Q(X ≤ x) = N

(
x− µ

σ

)
, (7.29)

1−N(x) = N(−x), (7.30)
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we get

EQ
[
max(ST −K, 0)

]
= Ste

r(T−t)

(
1−Q

(
Y ≤ ln

(
K

St

)))
−K

(
1−Q

(
Z ≤ ln

(
K

St

)))
= Ste

r(T−t)

(
1−N

(
ln
(
K
St

)
−
(
r + 1

2
σ2
)
(T − t)

σ
√
T − t

))
−K

(
1−N

(
ln
(
K
St

)
−

(
r − 1

2
σ2
)
(T − t)

σ
√
T − t

))
= Ste

r(T−t)N

(
ln
(
St

K

)
+
(
r + 1

2
σ2
)
(T − t)

σ
√
T − t

)
−KN

(
ln
(
St

K

)
+
(
r − 1

2
σ2
)
(T − t)

σ
√
T − t

)
= Ste

r(T−t)N [d1(t, St)]−KN [d2(t, St)],

where

d1(t, St) =
ln
(
St

K

)
+
(
r + 1

2
σ2
)
(T − t)

σ
√
T − t

,

d2(t, St) = d1(t, St)− σ
√
T − t.

So the price at time t of a European call is given by

Πt(X) = StN [d1(t, St)]− e−r(T−t)KN [d2(t, St)]. (7.31)

Above computations can be nicely summarized as a proposition.

Proposition 7.1 Black-Scholes formula
The price at time t of a European call option with strike price K and expiry date
T is given by Πt = F (t, St) where

F (t, St) = StN [d1(t, St)]− e−r(T−t)KN [d2(t, St)]. (7.32)

N is the standard cumulative distribution function and d1 and d2 are given by

d1(t, St) =
ln
(
St

K

)
+
(
r + 1

2
σ2
)
(T − t)

σ
√
T − t

, (7.33)

d2(t, St) = d1(t, St)− σ
√
T − t. (7.34)

Drawing the payoff functions it can be seen that a put option is replicated by a
portfolio consisting of long positions in a zero coupon T -bond with face value K
and a European call option as well as a short position in the underlying asset X.

Proposition 7.2 Put-call parity
Consider a European call option and a European put option, both having strike price
K and time of maturity T . Denoting the corresponding pricing functions by c(t, x)
and p(t, x), the so called put-call parity holds

p(t, x) = e−r(T−t)K + c(t, x)− x. (7.35)

II Base Model: Constant Interest Rates 23



7 THE BLACK-SCHOLES MODEL

7.2 The One Dimensional Foreign Exchange Model

In this section the model presented in the previous section is extended to a setting
including two different markets, a domestic market and a foreign market. In the
domestic market assets are priced in the domestic currency whereas in the foreign
market assets are priced in the foreign currency. Since we will only be interested
in pure currency derivatives in this thesis we omit the domestic and foreign risky
assets. Let us begin by defining the FX rate between the two currencies, state the
model assumptions and then state the dynamics of the assets being present on the
market.

Definition 7.3 Foreign exchange rate
The FX rate at time t is defined as

Xt =
units of domestic currency
unit of foreign currency

. (7.36)

The assumptions from the previous section will carry over to this setting as well,
for the sake of clarity we restate them together with some additions below.

Assumption 7.2 Model assumptions

(i) The price process, Π(t;Z), of a contingent claim, Z = Φ(XT ), is assumed to
be such that there are no arbitrage possibilities on the market.

(ii) The contingent claim Z can be bought and sold on a market and the price
process for contingent claims is on the form Π(t;Z) = F (t,Xt).

(iii) The domestic and foreign risk free interest rates, rd and rf , as well as the drift
and the volatility of the FX rate, αX and σX , are deterministic constants.

(iv) The domestic and foreign markets are frictionless, i.e. there are no transac-
tion costs or taxes.

Definition 7.4. Foreign exchange model
The domestic risk free asset, the foreign risk free asset and the FX rate have the
following dynamics under P

dBd
t = rdB

d
t dt, (7.37)

dBf
t = rfB

f
t dt, (7.38)

dXt = αXXtdt+ σXXtdW t, (7.39)

where rd, rf , αX and σX are deterministic constants and W is a scalar Wiener
process.

From this, under the observable measure P , a domestic and a foreign savings ac-
count can be expressed as

Bd
t = Bd

0e
rdt, (7.40)

Bf
t = Bf

0 e
rf t, (7.41)
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respectively. The FX rate process is modelled as a Geometric Brownian motion.
Thus using Proposition F.3 in Appendix F the FX rate at time t is given by

Xt = X0 exp

((
αX − 1

2
σ2
X

)
t+ σXW t

)
. (7.42)

Moreover, applying the theory developed in the previous section to the current
setting the risk neutral valuation formula will take the form

Π(t;Z) = e−rd(T−t)EQ
t,x

[
Φ(XT )

]
. (7.43)

In order to be able to use the risk neutral valuation formula the equivalent martin-
gale measure Q has to be defined. The measure Q needs to be a measure such that
there are no arbitrage opportunities between the domestic and foreign markets.
Since we are interested in prices on the domestic market Q will be a martingale
measure for the domestic market, observe that an equivalent martingale measure
for the foreign market would have been different.

Recalling that the discounted value of all risky assets are martingales under the do-
mestic martingale measure when the domestic savings account is used as numeraire
and noting that Bf

t Xt can be viewed as a risky asset on the domestic market it
must hold that

X̃t :=
Bf

t Xt

Bd
t

= e(rf−rd)tXt (7.44)

is a martingale under Q. Inserting the expression for Xt into the above expression
X̃t is given by

X̃t = X0 exp

((
αX + (rf − rd)−

1

2
σ2
X

)
t+ σXW t

)
, (7.45)

or similarly, on differential form

dX̃t =
(
αX + (rf − rd)

)
X̃tdt+ σXX̃tdW t. (7.46)

Recalling Girsanov’s theorem let us now define the measure Q by

dQ = LTdP on FT , (7.47)

where the dynamics of the likelihood process L are given by

dLt = ϕtLtdW t, (7.48)
L0 = 1, (7.49)

for the so far unknown function ϕt. Assuming that ϕt satisfies the Novikov condi-
tion, Eq. F.18 in Appendix F, by Girsanov’s theorem

dWt = dW t − ϕtdt, (7.50)
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is a Q-Brownian motion. Inserting Eq. 7.50 into the expression for dX̃t yields

dX̃t =
(
αX + (rf − rd) + σXϕt

)
X̃tdt+ σXX̃tdWt. (7.51)

Now, since X̃t is supposed to be a martingale under Q its drift term necessarily has
to be equal to zero. Hence, we get the following condition for ϕt

αX + (rf − rd) + σXϕt = 0. (7.52)

Rearranging, ϕt is obtained as

ϕt =
(rd − rf )− αX

σX

, (7.53)

and we see that our assumption that ϕt fulfils the Novikov condition is valid. This
marks the completion of fully defining the equivalent martingale measure Q.

Having defined the measure Q we are now ready to state the dynamics of the FX
rate under the risk neutral measure. Under Q, Xt has the dynamics

dXt = αXXtdt+ σXXt

(
dWt + ϕtdt

)
=

(
αX + σX

(rd − rf )− αX

σX

)
Xtdt+ σXXtdWt

=
(
rd − rf

)
Xtdt+ σXXtdWt.

(7.54)

Moreover,

Xt = X0 exp

((
rd − rf −

1

2
σ2
X

)
t+ σXWt

)
. (7.55)

Let us summarize above exploration as a proposition.

Proposition 7.3 Pricing formulas
In the model consisting of a domestic and foreign risk free asset and an FX rate
the arbitrage free price Π(t,Z) for the simple T -claim Z = Φ(XT ) is given by
Π(t;Z) = F (t,Xt), where

F (t, x) = e−rd(T−t)EQ
t,x

[
Φ(XT )

]
, (7.56)

and the Q-dynamics of X are given by

dXt =
(
rd − rf

)
Xtdt+ σXXtdWt. (7.57)

Furthermore, the pricing equation is given by


∂F

∂t
(t, x) + (rd − rf )x

∂F

∂x
(t, x) +

1

2
σ2
Xx

2∂
2F

∂x2
(t, x)− rdF (t, x) = 0,

F (T, x) = Φ(x).
(7.58)
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The option pricing formula derived in the previous section has an immediate coun-
terpart in our model for two markets. Since the derivation is similar we only give
the result.

Proposition 7.4 Option pricing formula
The price of a European call with strike price K and expiry date T written on the
FX rate, i.e. Z = max(Xt −K, 0), is given by the following Black-Scholes formula

F (t, x) = xe−rf (T−t)N [d1]− e−rd(T−t)KN [d2], (7.59)

where,

d1(t, x) =
1

σX

√
T − t

(
ln

(
x

K

)
+

(
rd − rf +

1

2
σ2
X

)
(T − t)

)
(7.60)

d2(t, x) = d1(t, x)− σX

√
T − t. (7.61)

7.3 The Multidimensional Foreign Exchange Model

Having derived the Black-Scholes model for a domestic and foreign market and an
FX rate we are only one step away from a model satisfying the needs of this thesis.
Our model needs to be able to account for several foreign markets and FX rates at
the same time. These FX rates will naturally be dependent on each other. We will
see that by the small addition of correlated Wiener processes for the different FX
rates the theory from the previous section will still be valid.

For a model consisting of a domestic market and n foreign markets there will be
n FX rates including the domestic currency. These n FX rates will be correlated
according to some correlation matrix ρ. Recalling the concept of correlated Wiener
processes and using Eq. F.5 in Appendix F the dynamics of the FX rate between
the domestic market and the ith foreign market under the measure Q is given by

dX i
t = (rd − rif )X

i
tdt+ σXiX i

tdW
i
t , (7.62)

for i = 1, ..., n. Here W are correlated Wiener processes according to W = δW̃ ,
where W̃ are independent Wiener processes and ρ = δδT . Moreover,

X i
t = X i

0 exp

((
rd − rif −

1

2
σ2
Xi

)
t+ σXiW i

t

)
. (7.63)

Updating Definition 7.4 and Proposition 7.3 and 7.4 to general multidimensional
versions our final framework takes the following form.
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Definition 7.5. Multidimensional foreign exchange model
The domestic risk free asset, the foreign risk free assets and the FX rates have the
following dynamics under P respectively

dBd
t = rdB

d
t dt (7.64)

dBf,i
t = rifB

f,i
t dt (7.65)

dX i
t = αXiX i

tdt+ σXiX i
tdW

i

t, (7.66)

where rd, rif , αXi and σXi are deterministic constants and W
i is a scalar Wiener

process, i = 1, ..., n.

Proposition 7.5 Pricing formulas (multidimensional model)
In the model consisting of a domestic risk free asset, n foreign risk free assets and
n FX rates the arbitrage free price Π(t,Z) for the simple T -claim Z = Φ(X i

T ) is
given by Π(t;Z) = F (t,X i

t), where

F (t, x) = e−rd(T−t)EQ
t,x

[
Φ(X i

T )
]
. (7.67)

The Q-dynamics of X i are given by

dX i
t =

(
rd − rif

)
X i

tdt+ σXiX i
tdW

i
t , (7.68)

where W are correlated Wiener processes according to W = δW̃ and ρ = δδT is the
correlation matrix between the different FX rates.

Proposition 7.6 Option pricing formula (multidimensional model)
The price of a European call with strike price K and expiry date T written on the ith

FX rate, i.e. Z = max(X i
t −K, 0), is given by the following Black-Scholes formula

F (t, x) = xe−rif (T−t)N [di1]− e−rd(T−t)KN [di2], (7.69)

where,

di1(t, x) =
1

σXi

√
T − t

(
ln

(
x

K

)
+

(
rd − rif +

1

2
σ2
Xi

)
(T − t)

)
, (7.70)

di2(t, x) = d1(t, x)− σXi

√
T − t. (7.71)
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8 Simulation of Foreign Exchange Rates

This section presents the historical dataset and describes the different methodolo-
gies that have been used in order to simulate future FX rates. For the sake of
brevity the main text includes figures and results concerning the interrelation be-
tween the European and the Swedish markets. Figures and results for the other
three FX rates are found in Appendix B.

8.1 Historical Dataset

The Thomson Reuters Eikon database has been used to collect weekly historical FX
rates. Weekly risk free interest rates have been obtained from the Swedish central
bank, Riksbanken.

The dataset consists of interest rates and FX rates quoted weekly from January
7, 2011 to December 29, 2017. The time period was chosen in order to exclude
the effects of extremely volatile FX rates that persisted during the financial crisis.
Weekly rates were found to give the best trade-off between precision and time
consumption in the simulations. The yields of 10 year government bonds have been
used as proxies for risk free interest rates.

The currencies used throughout the thesis are Euro (EUR), Swedish Krona (SEK),
Norwegian Krone (NOK), Pound Sterling (GBP) and US Dollar (USD). Since the
PE funds are denominated in EUR in this thesis the EUR market will be consid-
ered the domestic market and the four other currencies will be considered foreign
markets. Therefore, the currencies are quoted as EUR per 1 of the other currencies,
e.g. SEK/EUR denotes EUR per 1 SEK.

CHF was initially included in the dataset but at a later point discarded since it
was found to have been pegged to the EUR until January 15, 2015. As the Swiss
National Bank unpegged the CHF it depreciated a lot. Not removing the CHF/EUR
rate would have given rise to unnatural correlations. Since all other FX rate data
is from the beginning of 2011 to the end of 2017, the CHF was chosen to not be
included.

Figure 8.1 shows the historical risk free interest rates. As can be seen in the figure
both the Swedish and the EU rate have decreased over time. However, the EU rate
has decreased more than the Swedish. Moreover, Figure 8.2 shows the evolution
of the SEK/EUR rate and Table 8.1 shows the observable correlation between the
FX rates. It does not come as a surprise that the Swedish and Norwegian FX rates
are heavily correlated. Similar plots for the other markets are shown in Figures
B.1-B.2 in Appendix B.
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Figure 8.1: Historic development of the European and Swedish risk free interest rates
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Figure 8.2: Historic development of the SEK/EUR rate

SEK/EUR NOK/EUR GBP/EUR USD/EUR
SEK/EUR 1 0.86 -0.04 -0.66
NOK/EUR 0.86 1 -0.18 -0.75
GBP/EUR -0.04 -0.18 1 0.41
USD/EUR -0.66 -0.75 0.41 1

Table 8.1: Correlation between the different FX rates
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8.2 The Random Walk Method

We denote by the random walk method the method for simulating FX rates de-
rived in the multidimensional FX Black-Scholes model. The European market is
considered to be the domestic market and the four other markets are considered to
be foreign markets 1 to 4. The following formula describes how the FX rates are
modelled,

X i
t = X i

0 exp

((
rd − rif −

1

2
σ2
Xi

)
t+ σXiW i

t

)
, (8.1)

where i = 1, ..., 4 corresponds to the four cases SEK, NOK, GBP and USD respec-
tively. Moreover, the start date, t = 0, is the last date of the historical data, i.e.
December 29, 2017. The time, t, is measured in weeks, hence the other present
constants, rd, rif and σXi must be transformed into effective weekly interest rates
and volatilities.

Noting that the most recent values of rd and rif are the most relevant ones in terms
of them being the ones that fiscal policies finds suitable at the moment we chose to
set rd and rif as their last known quoted values, i.e. there values upon December 29,
2017. One could possibly have argued for taking an average over time or making
an own choice for their values but we do not find that a relevant focus of this thesis
to explore any further. The values that are being used are obtained according to
rweekly =

r
52

and are summarized below,

rd = 0.79 · 10−4,

r1f = 1.45 · 10−4, r2f = 3.05 · 10−4, r3f = 2.28 · 10−4, r4f = 4.66 · 10−4.

Having computed the risk free interest rates the only constants left to determine are
the volatilities of the FX rates, σXi . The following two sections discuss alternative
methods for assigning their values.

8.2.1 Historical Volatility

The historical volatility is defined as the volatility of the historical data sample
and is obtained through estimating σX from historical observations of X. Using
maximum likelihood estimation to estimate σX the likelihood function is maximized
and therefore also the probability of observing the historical data. Note that since
observations are used we must work under the observable probability measure P .
Below follows the computations.

Since Xt is log-normally distributed, Xt ∼ LN(αX , σ
2
X), its log-returns, Yti =

ln

(
Xti

Xti−1

)
, are normally distributed according to

Yti ∼ N

(
(αX − 1

2
σX)∆t, σ2

X∆t

)
, (8.2)

where ∆t = 1 and therefore can be omitted. Furthermore, the probability density
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function of Yti is thus given by

ϕY (ti)(yi) =
1√

2πσ2
X

exp

(
−

(yi − (αX − 1
2
σ2
X))

2

2σ2
X

)
. (8.3)

The likelihood function can now be written as

L(y1, ..., yn;αX , σ
2
X) =

n∏
i=1

ϕY (ti)(yi)

=
1

(2πσ2
X)

n
2

exp

(
−

∑n
i=1(yi − (αX − 1

2
σ2
X))

2

2σ2
X

)
,

and consequently, the log-likelihood function is obtained as

l(y1, ..., yn;αX , σ
2
X) = ln

(
L(y1, ..., yn;αX , σ

2
X)

)
= ln

(
1

(2πσ2
X)

n
2

)
−

∑n
i=1(yi − (αX − 1

2
σ2
X))

2

2σ2
X

= −n

2
ln (2πσ2

X)−
∑n

i=1(yi − (αX − 1
2
σ2
X))

2

2σ2
X

.

Next we seek to find the values of αX and σ2
X that maximize the likelihood func-

tion and hence also the log-likelihood function. Differentiating the log-likelihood
function with respect to αX and σ2

X and simplifying yields

∂

∂(αX)
l(y1, ..., yn;αX , σ

2
X) =

1

σ2
X

(
− n(αX − 1

2
σ2
X) +

n∑
i=1

yi

)
(8.4)

∂

∂σ2
X

l(y1, ..., yn;αX , σ
2
X) =

−nσ2
X −

∑n
i=1(yi − (αX − 1

2
σ2
X))σ

2
X

2σ4
X

+

∑n
i=1(yi − (αX − 1

2
σ2
X))

2

2σ4
X

. (8.5)

In order to have a maximum the obtained expressions need to satisfy

∂

∂(αX)
l(y1, ..., yn;αX , σ

2
X) = 0 (8.6)

∂

∂σ2
X

l(y1, ..., yn;αX , σ
2
X) = 0. (8.7)

Rearranging these two equations gives an equation system for αX and σ2
X according

to

α̂X =
1

2
σ̂2
X +

1

n

n∑
i=1

yi (8.8)

σ̂2
X = 2 ·

(
− 1±

√√√√1 +
1

n

n∑
i=1

(yi − (α̂X))2
)
. (8.9)
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Using MATLAB to solve the above system for the n = 364 computed log-return
values of the SEK/EUR rate, yi, the maximum likelihood estimates are obtained
as

α̂X = −2.59 · 10−4 and σ̂X = 0.86 · 10−2.

As motivated in the previous section we will use the last observed values of rd
and rf when simulating FX rates, hence we will discard α̂X . However, it was still
essential for finding a value of σ̂X . The historical volatilities for the four FX rates
are given by

σ̂X1 = 0.86·10−2, σ̂X2 = 1.04·10−2, σ̂X3 = 1.12·10−2, σ̂X4 = 1.27·10−2.

8.2.2 Implied Volatility

The implied volatility is obtained through estimating σX from observations of cur-
rent option prices on the market using Black-Scholes formula. After observing
present option prices Black-Scholes formula, Eq. 7.69, can be used to back out the
volatility that gives rise to the observed option price.

Implied volatility is a reaction to historical volatility’s use of historic data, since
in reality volatility is not constant over time historical volatility may prove to be
suboptimal. Thus an estimate of the volatility for the upcoming period, rather
than the past, is desirable and therefore the market’s expectation of the volatility
should be used.

Denoting the price of European calls by

p = c(x, t, T, rd, rf , σX , K), (8.10)

σ̂X is obtained as the value that best fulfils the above equality given the observed
values of p. Choosing arbitrary values for T and K option prices p were observed.
After that Black-Scholes formula was used to back out the implied volatilities. The
obtained implied volatilities for the four FX rates are given by

σ̂X1 = 1.15·10−2, σ̂X2 = 1.25·10−2, σ̂X3 = 1.28·10−2, σ̂X4 = 1.28·10−2.

Comparing the obtained values for the implied volatilities we find them to be larger
than the historic volatilities for the SEK/EUR and NOK/EUR cases and similar
in size for the GBP/EUR and USD/EUR cases. Overall, the implied volatilities
are similar to the historic volatilities in size which is satisfactory. Thus, following
the above arguments and the fact that the discrepancies between the results of
two methods are minor, from hereinafter the implied volatilities will be used as
estimates for the true volatilities.
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8.2.3 Simulated Foreign Exchange Rates

Using the random walk method with the implied volatilities the development of the
FX rates can now be simulated. We then recalculate the obtained weekly values to
quarterly values assuming that each quarter is exactly 13 weeks. MATLAB is used
to simulate correlated Wiener processes as discussed in Section 7.3. Note that even
though the historical correlations given in Table 8.1 are observed under P they are
invariant under the Girsanov transformation from P to Q and therefore the same
correlations are valid under Q. The general motivation follows below and leads to
the same result that can be found in Karatzas and Shreve (1998) [19].

Under P , using the same notation as in Definition F.3 in Appendix F, it holds that

dW
i

t =
d∑

k=1

δikdW̃
k

t . (8.11)

Under Q, according to Girsanov’s theorem

dW̃
k

t = ϕk(t)dt+ dW̃ k
t , (8.12)

and therefore it also holds that

dW i
t =

d∑
k=1

δikdW̃
k
t =

d∑
k=1

δik
(
dW̃

k

t − ϕk(t)dt
)
. (8.13)

Thus it can be deduced that

d〈W i
t ,W

j
t 〉 =

d∑
k=1

δikδjkdt = ρijdt, (8.14)

and hence the correlation coefficients are invariant under Girsanov transformations.

The upper plot of Figure 8.3 shows the expected development of the SEK/EUR
rate together with three simulated example paths over a 40 quarter period. Since
the expectation of the log-normally distributed FX rate Xt is given by E[Xt] =
X0e

(rd−rf )t and rd − rf < 0 it comes as no surprise that the SEK/EUR rate is
expected to depreciate over time.

The lower plot of Figure 8.3 shows the probability distribution function of n =
10, 000 simulations of the SEK/EUR rate, X1, at the end of the fund period, i.e.
after 40 quarters. We observe that the majority of the simulations end up close
to the expected value but that there however are cases in which the FX rate both
halved and doubled compared to today’s value. These are however very rare.
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Figure 8.3: Expected future development (upper) and empirical distribution function of the
10y SEK/EUR rate (lower)

Similar results are obtained for the three other FX rates as well. Since rd − rif < 0
holds for i = 1, ..., 4 all FX rates are expected to depreciate over time. Expected
development and example paths for all FX rates are found in Figure B.3 in Appendix
B. Probability distribution functions of n = 10, 000 simulations after 40 quarters
for all FX rates are found in Figure B.4 in Appendix B.

8.2.4 The Zero Drift Case

In this section we discuss our first alternative way of simulating FX rates. Namely
a random walk model with zero drift, i.e. we set rif = rd for i = 1, ..., 4. Hence
rd − rif = 0 which implies that E[Xt] = X0e

(rd−rf )t = X0. Put in words, we force
the future expected values of the FX rates to be equal to today’s values.

A motivation for this alternative model is that the Black-Scholes model’s assump-
tion of interest rates being constant is quite unreasonable. It is not probable that
the observed interest rates today will remain constant for a 10 year period to come,
on the contrary, it is utterly unlikely. Therefore, one can motivate that by letting
rif = rd we do not take today’s view of what is going to happen with the FX rates
in the future, but rather choose to not include any drift and instead let the diffusion
decide the entire path.

Expected development and example paths for all FX rates are found in Figure B.5
in Appendix B. Probability distribution functions of n = 10, 000 simulations after
40 quarters for all FX rates are found in Figure B.6 in Appendix B.

II Base Model: Constant Interest Rates 35



8 SIMULATION OF FOREIGN EXCHANGE RATES

8.3 The Historical Simulation Method

The historical simulation method, described in Hult et al. (2012) [17], is an alterna-
tive way of simulating FX rates. The method models future returns from observed
historical returns. Having observed n historical values, X−n+1, ..., X0, n− 1 histor-
ical returns can be computed according to

yk =
Xk

Xk−1

, k = −n+ 2, ..., 0. (8.15)

Assuming that the historical returns are independent the future returns can be
simulated by drawing uniformly with replacement from the set of historical returns
y = {y−n+2, ..., y0}.

Moreover, the correlation between the four different FX rates is taken into account
by drawing all four FX rates from the same date, i.e. we draw a random number
from the index set of y and then we chose all four yi from the same date.

Expected development and example paths for all FX rates are found in Figure B.7
in Appendix B. Probability distribution functions of n = 10, 000 simulations after
40 quarters for all FX rates are found in Figure B.8 in Appendix B.

Comparing the results of the current simulation method to the random walk simu-
lation method it is possible to make some interesting observations. The returns of
the FX rates have on average been negative historically except for the USD/EUR
rate. This results in the expected value of the SEK/EUR and GBP/EUR rates hav-
ing approximately the same development now as under the random walk method.
Though, the expected development of the NOK/EUR rate depreciates faster than
before and the USD/EUR rate actually appreciates. This implies that the overall
results of the fund simulations might depend on which simulation method is used.

8.4 The Copula Simulation Method

Inspiration about the theory of copulas is to a large extent gathered from Hult et al.
(2012) [17]. Copulas are used to construct a multivariate distribution for a random
vector X = (X1, ..., Xd) with specified univariate marginal distribution functions
F1, ..., Fd but unspecified multivariate distribution. Using the quantile transform
the desired dependence can be introduced by setting X = (F−1

1 (U1), ..., F
−1
d (Ud))

where U has the desired multivariate distribution and its components satisfy Uk ∼
U(0, 1). The vector X then inherits the dependence from U among its components.
The distribution function C of the random vector U , i.e. C(u1, ..., ud) = P (U1 ≤
u1, ..., Ud ≤ ud), is called the copula of X.

If X1, ..., Xd have the multivariate distribution function F (x1, ..., xd) and the uni-
variate marginal distributions, Fk(x), are continuous then the fallowing relation
holds

C(F1(x1), ..., Fd(xd)) = P (U1 ≤ F1(x1), ..., Ud ≤ Fd(xd)) =

= P (F−1
1 (U1) ≤ x1, ..., F

−1
d (Ud) ≤ xd) = F (x1, ..., xd),
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showing that the joint distribution function F can be expressed entirely by the
marginal distributions, F1, ..., Fd, and the copula, C.

Our goal is to model the four FX rates’ comovements using a copula. In order to
do this we need to know their univariate marginal distributions as well as deciding
on the form of their multivariate distribution. Two alternative copulas will be used
to model the multivariate distribution, a Gaussian copula and a Student’s t copula.
First we begin by assigning suitable marginal distributions.

8.4.1 Fitting of Marginal Distributions

In our particular case the univariate distributions of the four FX rates are not
known. However, by the use of Quantile-Quantile plots (Q-Q plots) and least
square estimation (LSE) we can find what distribution that best suits the observed
data and hence approximate the unknown distributions by these best fitting distri-
butions.

Given a set of observations, we recall that a Q-Q plot is a plot of the observa-
tions’ empirical quantiles against the quantiles of a reference distribution F . Q-Q
plots can thus be used to graphically test whether the observations from a sample
come from a specified reference distribution F . If the observations come from a
probability distribution similar to the reference distribution the Q-Q plot will be
approximately linear with intercept 0 and slope 1. If the empirical distribution of
the observations has a heavier right tail than F the Q-Q plot will curve up for large
values on the x-axis. If the empirical distribution of the observations has a heavier
left tail than F the Q-Q plot will curve down for small values on the x-axis. Finally,
if the empirical tails of the observations are lighter than the tails of F the Q-Q plot
will show the opposite behavior as previously described.

The least square estimates, are defined as the parameter values that minimize the
sum of the squared deviations between the empirical quantiles of the observations
and the quantiles of the parametric reference distribution. Given n observations
ordered from the largest to the smallest, z1,n ≥ z2,n ≥ ... ≥ zn,n, and a reference
distribution F the LSE parameters are given by

θ̂ = arg min
θ

n∑
i=1

(
zi,n − F−1

θ

(
n− i+ 1

n+ 1

))2

. (8.16)

In particular, the least square estimate for a Student’s t distribution is the param-
eter triplet (ν̂, µ̂, σ̂) that minimizes the sum of the squared deviations between the
empirical and Student’s t quantiles

(ν̂, µ̂, σ̂) = arg min
ν,µ,σ

n∑
i=1

(
zi,n − µ− σ · t−1

ν

(
n− i+ 1

n+ 1

))2

, (8.17)

where σ > 0 and ν > 0 by definition.

Figure 8.4 shows the observed quantiles of the log-returns of the SEK/EUR rate
against standard normal tails (upper) and the least square fitted Student’s t tails
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(lower.) Similar plots for the other FX rates are to be found in Figure B.9 in
Appendix B. For all FX rates it is found that a Student’s t distribution is the best
fit. The lower the degrees of freedom, ν, the heavier the tails are. As seen in Table
8.2 the log-returns of the NOK/EUR rate is found to have the heaviest tails whereas
the tails of the log-returns of the SEK/EUR rate are the lightest and therefore the
SEK/EUR rate resembles a normal distribution the most.

For the other fitted parameters both µ̂ and σ̂ are of similar sizes as found in the
maximum likelihood estimation of Section 8.2. However, as previously motivated,
currently prevailing values of rd and rif as well as implied volatility will be used to
price derivatives.
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Figure 8.4: Q-Q plots of the log-returns of the SEK/EUR rate against normal and Stu-
dent’s t tails

ν̂ µ̂ σ̂
SEK/EUR 19.92 −0.68 · 10−4 0.83 · 10−2

NOK/EUR 5.95 −4.09 · 10−4 0.90 · 10−2

GBP/EUR 10.28 2.79 · 10−4 1.04 · 10−2

USD/EUR 9.97 −0.32 · 10−4 1.15 · 10−2

Table 8.2: Least square fitted parameters for a Student’s t location-scale family

8.4.2 Gaussian Copula

The third alternative way of simulating FX rates is through the use of a Gaussian
copula. The FX rates are assumed to have the univariate marginal distributions
found in the previous section and a Gaussian multivariate distribution. Below
follows the algorithm for simulating future FX rates with a Gaussian copula.

Random variate generation from the Gaussian copula is done as follows. First
the Cholesky decomposition of the correlation matrix ρ is computed according to
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ρ = δδT . Then d independent random variates Z1, ..., Zd are simulated from a
standard normal distribution. Setting X = δZ and Uk = Ψ(Xk) for k = 1, ..., d
the vector U = (U1, ..., Ud) has the distribution function CGa

ρ .

Expected development and example paths for all FX rates are found in Figure B.10
in Appendix B. Cumulative distribution functions of n = 10, 000 simulations after
40 quarters for all FX rates are found in Figure B.11 in Appendix B. Comparing the
results of the current simulation method to the random walk simulation method
it is possible to make some interesting observations. The fitted marginal distri-
butions assign negative expected values for the log-returns of all FX rates except
for the GBP/EUR rate. From the expected development plot it is found that the
SEK/EUR rate is expected to have the same development as in the random walk
simulation, the NOK/EUR rate depreciates more whereas the USD/EUR rate de-
preciates less. Finally, the GBP/EUR rate is found to appreciate. This implies that
the overall results of the PE fund simulations might depend on which simulation
method is used.

8.4.3 Student’s t Copula

The fourth alternative way of simulating FX rates is through the use of a Student’s
t4 copula. As before the FX rates are assumed to have the univariate marginal
distributions found in Section 8.4.1 and a Student’s t4 multivariate distribution.
The difference between a Gaussian copula and a Student’s t copula is that the
Student’s t copula will have heavier tails. This implies that extreme values in one
FX rate to a larger degree will infer extreme values in the other FX rates. The lower
the degrees of freedom the heavier the tails. Having ν = 4 degrees of freedom is
considered relatively heavy tails. Below follows the algorithm for simulating future
FX rates with a Student’s t copula.

Random variates from a tν distribution is generated by computing the Cholesky
decomposition of the correlation matrix ρ according to ρ = δδT and simulating d
independent random variates Z1, ..., Zd from a standard N(0, 1) distribution. Then
a random variate, S, is simulated from a χ2

ν distribution independent of Z1, ..., Zd.
Proceeding by setting X =

√
ν√
S
δZ and Uk = tν(Xk) for k = 1, ..., d the vector

U = (U1, ..., Ud) has the distribution function Ctν
ρ .

Expected development and example paths for all FX rates are found in Figure B.12
in Appendix B. Cumulative distribution functions of n = 10, 000 simulations after
40 quarters for all FX rates are found in Figure B.13 in Appendix B. Compar-
ing the results of the current simulation method to the random walk simulation
method it is possible to do some interesting observations. The fitted marginal dis-
tributions assign negative expected values for the log-returns of all FX rates except
for the GBP/EUR rate. From the expected development plot it is found that the
SEK/EUR rate is expected to have the same development as in the random walk
simulation, the NOK/EUR rate depreciates more whereas the USD/EUR rate de-
preciates less. Finally, the GBP/EUR rate is found to appreciate. However, these
are the exact same behaviours shown in the Gaussian copula case. Though, the
tails of the Student’s t copula simulation are heavier as seen when comparing Figure
B.13 to Figure B.11 in Appendix B.
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9 Performance Measures

This section sets out to present a handful of performance measures that will be
taken into consideration when analysing whether it would be beneficial or not for a
PE fund to hedge its FX exposure. First the main measure, the IRR, is formalized.
After that the concepts Value-at-Risk, Expected shortfall and Sharpe ratio are
defined. The theory of IRR and Sharpe ratio is covered in Berk and DeMarzo
(2011) [1] whereas the theory regarding Value-at-Risk and Expected shortfall is
covered in Hult et al. (2012) [17].

9.1 Internal Rate of Return

The IRR is the discount rate that makes the net present value (NPV) of all cash
flows from a specific project equal to zero. That means that the IRR is obtained
through solving the following equation

NPV =
T∑
t=0

Ct

(1 + r)t
= 0, (9.1)

where Ct is the cash flow at time t. Due to the form of the equation it has to be
solved numerically.

In the setting of this thesis the IRR will be calculated for an entire PE fund. This
means that all acquisitions of portfolio companies in the beginning of the fund life
cycle, divestment of portfolio companies in the end of the fund life cycle as well
as cash flows from hedging derivatives will be included as cash flows in the above
formula and therefore affect the IRR. Moreover, the IRR will depend on the growth
rates of the portfolio companies as well as the developments of the FX rates and
what hedging instruments are used since all these parameters affect the cash flows.

9.2 Value-at-Risk

We begin by stating the classic definition of Value-at-Risk (VaR). However, in this
thesis’ setting an alternative definition is preferable and is introduced afterwards.

The VaR at level p ∈ (0, 1) of a position with value X at time t = 1 is the smallest
amount of money that if added to the position by investing it in the risk free interest
rate at time t = 0 ensures that the probability of a strictly negative value of the
position at time t = 1 is less than or equal to p. Thus, V aRp is given by

V aRp(X) = min(c : P (cr0 +X < 0) ≤ p), (9.2)

where r0 denotes the risk free interest rate. The value X can be thought of as
X = V1 − V0r0, where V1 is the value of the position at time t = 1 and V0 is the
value of the position at time t = 0, i.e. the original money invested was borrowed.
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V aRp(X) may be interpreted as the smallest value c such that the probability of
the discounted portfolio loss, L = −X

r0
, being at most c is at least 1− p. This can

be seen through

V aRp(X) = min(c : P (cr0 +X < 0) ≤ p)

= min(c : P
(
− X

r0
> c

)
≤ p)

= min(c : 1− P
(
− X

r0
≤ c

)
≤ p)

= min(c : P
(
− X

r0
≤ c

)
≥ 1− p)

= min(c : P (L ≤ c) ≥ 1− p)

= min(c : FL(c) ≥ 1− p).

Recalling that the u-quantile of a random variable L with distribution function FL

is given by
F−1
L (u) = min(c : FL(c) ≥ u), (9.3)

we reach the conclusion that V aRp(X) is nothing else than the (1− p)-quantile of
L. Thus it can be expressed as

V aRp(X) = F−1
L (1− p). (9.4)

In the setting of this thesis using the above definition the VaR will always be smaller
than zero, since the returns of the PE funds are extremely high. Thus the measure
becomes somewhat pointless. Therefore, instead of looking at monetary values we
chose to look directly at the quantile values of the IRR instead. Hence, by V aRp

we denote the IRR value corresponding to the p-quantile. So for example, if we are
interested in the VaR at the p = 5% level and n = 100 simulations are performed
the V aR0.05 is the fifth lowest IRR value obtained since np = 5. We are aware of
that denoting this measure VaR is somewhat misguiding since it is not a monetary
value per se. But through the obvious resemblance to the classic definition of VaR
we think it is the neatest notation to use.

VaR
0.05

mean IRR

Figure 9.1: Illustration of VaR, note that the average of the shaded area is ES0.05
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9.3 Expected Shortfall

Classically the expected shortfall (ES) is defined as the average VaR value below
the level p, i.e.

ESp(X) =
1

p

∫ p

0

V aRu(X)du. (9.5)

The advantage of ES over VaR is that instead of only considering a quantile value
it takes all the most extreme cases beyond level p into consideration. This means
that highly unlikely scenarios but with catastrophic effects in the case they were to
come through also are taken into consideration.

Since we use a modified VaR the ES will also indirectly become modified. In the
same way as VaR will be expressed as a percentage value ES is also going to be
expressed as a percentage value, namely the average IRR of the np worst outcomes
in terms of IRR, as seen in Figure 9.1.

9.4 Sharpe Ratio

The Sharpe ratio (SR) is a measure of risk-adjusted return. It is defined as the
average return in excess of the risk free rate per unit of volatility,

SR =
rfund − rd
σfund

, (9.6)

where rd is the domestic risk free interest rate. The measure is thus high if the
returns of an asset are stable and low if they vary a lot.

The relevance of the Sharpe ratio measure for a PE fund can be discussed since the
returns in their nature are very risky. However, in terms of hedging, it would come
as no surprise if the Sharpe ratio of the hedged funds were larger than the Sharpe
ratio of the unhedged funds.
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10 Methodology

This section sets out to describe the approach used to obtain the results of the
thesis. First, PE FX exposure is defined. Second, we describe how the PE funds
under consideration are constructed. Third, the structure of the simulation model
is described. Fourth, we highlight the assumptions and limitations of our model.

Our study of the topic began by the conduction of four interviews. Two of the
interviews were with experienced private equity professionals. Another interview
was with a banking professional specialised in hedging within PE. The last interview
was with a Stockholm School of Economics PE professor. These interviews partly
laid the foundation of our work.

10.1 Private Equity Foreign Exchange Exposure

As argued and concluded in Section 3.4, the FX exposure of each portfolio company
in a PE fund is regarded to be its NAV exposures in each different currency. The
most beneficial way of defining PE FX exposure is as the total net NAV exposure
of all the portfolio companies in each currency within a fund. This definition yields
a fully hedged position while minimizing transaction costs since the least amount
of positions is taken.

Alternatively, the PE FX exposure could have been defined as the net exposure of
each portfolio company within a specific PE fund separately. This definition also
yields fully hedged positions, though more positions need to be taken. Hereinafter
the PE fund’s FX exposure in each currency will be defined as the total net NAV
exposure of all the fund’s portfolio companies in that currency.

10.2 Fund Construction

In order to make the characteristics of the funds as realistic as possible, the data
of the PE funds has been composed by the authors together with a private equity
professional. However, note that the PE funds are hypothetical and not examples
of real funds.

In total twelve different hypothetical PE funds of size EUR 3 billion are considered.
There are three different dimensions in which the funds differ. A fund can be either
local, meaning that each portfolio company have all its business in one currency, or
global, meaning that each portfolio company may have business in several currencies.
Moreover, both equity and infrastructure funds are considered. Equity funds are
modelled to have an expected IRR of 20% whereas infrastructure funds are modelled
to have an expected IRR of 12%. Finally, three different FX exposure scenarios,
A,B and C, are considered. In all scenarios 50% of the equity is in EUR. In scenario
A the FX exposure is equal between the foreign currencies, in scenario B there is
an over exposure in SEK and in scenario C there is an over exposure in USD.
Table 10.1 summarizes the FX exposures of the funds. Taking all possible different
combinations of the three dimensions a total of twelve funds are obtained.
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In turn, all funds contain twelve portfolio companies. The investments in the port-
folio companies take place in the beginning of the first, the second and the third
year of the fund’s lifetime, which is assumed to be ten years. For all funds, the
expected duration of each investment is assumed to be five years, i.e. the expected
holding time of each portfolio company is five years. Moreover, a quarterly cumula-
tive average growth rate is assigned to each portfolio company’s NAV. The assigned
growth rates are semi-randomized in the sense that they are set by the authors to
realistic scenarios under the constraint of the given expected IRR of the funds. The
expected growth rate of each portfolio company is set to the expected growth rate
of the fund, i.e. 20% for equity funds and 12% for infrastructure funds. For a
complete summary of the twelve funds, see Figures A.1-A.6 and Tables A.1-A.6 in
Appendix A. Note that in the Tables A.1-A.6 there is a high and a low quarterly
growth rate, corresponding to equity funds and infrastructure funds respectively.

Fraction of Exposure EUR SEK NOK GBP USD
Global PE Fund A 50% 12.5% 12.5% 12.5% 12.5%
Global PE Fund B 50% 35% 5% 5% 5%
Global PE Fund C 50% 5% 5% 5% 35%
Local PE Fund A 50% 12.5% 12.5% 12.5% 12.5%
Local PE Fund B 50% 35% 5% 5% 5%
Local PE Fund C 50% 5% 5% 5% 35%

Table 10.1: Foreign exchange exposure of the PE funds upon entering the portfolio com-
panies

The above FX exposures are realistic for large Swedish Euro denominated PE funds.
The three different FX exposure setups, A, B and C, are chosen in order to inves-
tigate if there are any differences between balanced funds, SEK heavy funds and
USD heavy funds in terms the efficiency of hedging. Since SEK and USD might
have different relations with EUR having a larger fraction of SEK might imply a
greater or lower FX risk than having the same fraction in USD. Other overweights
are not investigated since SEK and USD are the most likely overweights a Swedish
EUR denominated PE fund would have.

10.3 Simulation Model

This section describes the construction of the simulation model in MATLAB. The
simulation model builds on the theory developed in the previous sections and is
based on quarterly data. It can of course be built for any time steps. However,
quarterly data was found to be a good trade-off between speed of iteration and
quality of iteration since the main simulation can be run over a night.
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10.3.1 Private Equity Funds

The simulation model begins by reading in the information of the specific PE fund
under consideration. Information of the PE fund includes all the portfolio com-
panies, their NAVs in different currencies and when the entry in each portfolio
company takes place. Furthermore, information regarding quarterly growth as well
as expected quarterly growth and expected holding time is included for each port-
folio company. For full information of the PE funds used see Section 10.2 as well
as Appendix A.

The expected quarterly growth rates for the portfolio companies are set to 4.66% for
the equity funds and 2.87% for the infrastructure funds, which means annualised
growth rates of 20% and 12%, respectively. The expected growth rates and the
expected holding times are needed later in the model when applying the hedging
strategies.

10.3.2 Lifetime of the PE Fund and Adding Uncertainty

Next, the lifetime of the PE funds is considered. As described in Section 3, a
normal lifetime of a PE fund is ten years, this is also chosen. In order to make the
model realistic, stochastic holding times for each portfolio company are included
in the model. The rational for this is that fund managers do not know when the
portfolio companies will be spun off when investing in them. In more detail, random
normally distributed numbers, with zero mean are drawn. These numbers, which
represents quarters, are added to the expected holding times to obtain the actual
holding times. This procedure is done for each portfolio company separately.

We have determined that the minimum holding time cannot be less than eight
quarters and the maximum holding time cannot exceed 32 quarters. This is because
symmetry around the expected holding time of 20 quarters is wanted and because
a portfolio company should be exited within the lifetime of the PE fund.

Figure 10.1: Illustration of the stochastic holding times, note that each portfolio company
has an individual stochastic holding time
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10.3.3 Foreign Exchange Rates

The second input argument to the model is simulated quarterly FX rates. FX rates
are simulated separately, as described in Section 8, and then stored in order for the
exact same rates to be used across all different fund simulations. These FX rates
are used to calculate the NAVs of the portfolio companies in different currencies at
different times and value the hedging derivatives.

10.3.4 Cash Flows from the Portfolio Companies

At this stage, all required information to perform the fund simulation and compute
the cash flows of the portfolio companies exist. Next a cash flow matrix which
keeps track of the cash flows of the PE fund and at which quarter they occur is
created. Investments are represented by negative cash flows and divestments by
positive cash flows.

10.3.5 FX Exposure and Hedging Strategies

Next the different hedging strategies are incorporated. The hedging strategies used
in this thesis are

(i) An unhedged strategy

(ii) A hedging strategy using forward contracts

(iii) A hedging strategy using rolling forward contracts on a quarterly basis

(iv) Three hedging strategies using call options, each with a different strike prices

(v) Three hedging strategies using put options, each with a different strike prices

(vi) Three hedging strategies using strangles, each with a different strike prices

Note that the unhedged strategy and the call strategies are not hedging strategies
per se since they do not decrease volatility in returns. The unhedged strategy
is simply not to hedge the FX exposure and serves as a benchmark. The call
strategies serve to enhance overall understanding. It is essential to keep track of
the FX exposure at every time period when a hedging transaction is initiated when
applying the different hedging strategies. Therefore, an exposure vector is created.
The FX exposure is defined as the expected value of the portfolio companies at
expected exit. It is this value that is hedged. Hence, the expected growth rate and
expected holding time are taken into account for this calculation.

For the forward and rolling forward hedging strategies, a payoff vector is created
which keeps track of the cash flows from the contracts and when they occur. For
the hedging strategies including options, both a price vector and a payoff vector
is created. Since these hedging strategies include solely long positions in options,
the price vector will include negative cash flows. It will also keep track of when
the long positions in the options are initiated. The payoff vector will include the
payoffs of the options as well as at which quarter these occurs.
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10.3.6 Aggregating the Cash Flows

After having applied different hedging strategies, the cash flows of the PE funds
have changed. A new cash flow vector is created which includes the net cash flows
of the portfolio companies and the hedging strategies and their respective timing.
From this cash flow vector, the IRR of of the fund under each hedging strategy can
be calculated, according to Section 9.1.

10.3.7 Performing the Simulations

After having completed the steps in Sections 10.3.1-10.3.6, the model is imple-
mented and ready to be used. Using the model n = 10, 000 simulations for each
of the twelve PE funds, for each of the five different FX simulation methods and
for each of the twelve different hedging strategies are performed. That means that
a total of n = 10, 000 simulations are made for 720 different scenarios. Hence, 7.2
million simulations are made in total.

10.3.8 Performance of the Hedging Strategies

After each n = 10, 000 simulations, the result is 10,000 simulated IRR values. These
IRRs are further analysed according to Section 9.2-9.4, mean IRR, VaR, ES as well
as Sharpe ratio are computed, stored and then presented as output in this thesis.

10.4 Model Assumptions and Limitations

In order to build a model replicating an actual fund setting some assumptions
have been required. It is important to remember that the results of this thesis are
obtained under these assumptions. Therefore, let us restate them again. First,
we have assumed some fundamental characteristics of the funds and their portfolio
companies; (i) each fund consists of twelve portfolio companies, (ii) each fund has
an expected IRR of 20%, given no FX movements, (iii) each fund has a specific
initial FX exposure, (iv) the expected holding time of each portfolio company is
five years, (v) the lifetime of a fund is ten years and (vi) each fund has an initial
NAV of EUR 3 billion.

Second, some additional assumptions have been made in order to create a realistic
fund setting and fulfil the first assumptions; (i) the fund invests in four portfolio
companies in the beginning of the first three years, (ii) each portfolio company is
given a constant quarterly growth rate, (iii) each portfolio company has a specific
currency mix and (iv) the holding times are stochastic.

We have assumed that the hedging derivatives can be bought on a market and used
by the funds. This might not be the case. Forward contracts might be practically
infeasible for funds to implement since regulation requires the fund to provide col-
lateral for the hedge. Moreover, rolling forwards give rise to periodic cash flows
which are undesired by the fund. However, these facts have been disregarded in
the thesis.
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11 Results and Discussion

This section sets out to present and discuss the results obtained. The performance
of the hedging strategies are measured in terms of mean IRR, VaR, ES and Sharpe
ratio for n = 10, 000 simulations. For the sake of brevity solely results for the
best, in terms of mean IRR, performing option strategies have been included in
this section. Although three different strike prices, K1 = 5%, K2 = 10% and
K3 = 20%, have been investigated it makes no sense to discuss the suboptimal
ones in the main text. The optimal strike prices were found to be the highest ones
investigated namely 20% out of the money options, i.e. the strike price for the call
option, KC

3 , is 20% higher than the FX rate at initiation and the strike price of
the put option, KP

3 , is 20% lower than the FX rate at initiation. A more profound
analysis of the performance of all hedging strategies including options is included
in Section 11.4.

The remainder of the section is structured as follows. First, we discuss the simulated
FX rates. Second, the performances of the hedging strategies under the random
walk method are considered. Third, the hedging strategies’ performances under
the random walk method with zero drift are considered. Last, a comparison of the
hedging strategies including options is presented.

11.1 Foreign Exchange Rate Results

Section 8 described and presented the results of five different methods to simulate
FX rates. As the FX simulation methods produced largely similar results two of the
methods are chosen to be included in the main analysis of the results of the hedging
strategies, the results of the other three methods are available in Appendix C. Only
minor marginal value would stem from including them all in this section whereas it
would hurt the readability of the text severely. The chosen FX simulation methods
are the random walk method of FX rates with and without drift.

The random walk simulation method with drift is chosen to be the main simulation
method since it is the method aligned with the Black-Scholes theory. The random
walk simulation method thus represents a theoretically correct scenario of FX rate
evolvement.

Since there on average is a negative drift in the interest rates, a downward trend
is noticed for the simulated FX rates, as can be seen in Figure B.3 in Appendix B.
Thus, there will be a systematic FX effect on the values of the portfolio companies.
Since the US risk free rate is larger than the Swedish risk free rate, the downward
drift will be more negative for the USD/EUR FX rate. For that reason the portfolio
companies will lose more value on average in Fund C, which has a higher exposure
to USD than the other funds. The effect is illustrated by the following example.

Consider a PE fund that invests in a portfolio company with NAV EUR 10 million
in SEK, and makes an exit of this portfolio company in one year. The transaction
is all-equity financed. Also, assume that the SEK/EUR FX rate is 0.1 now and
0.09 in one year, i.e. the FX rate has decreased with 10% over the year. Hence, the
portfolio company is bought for SEK 100 (= 10

0.1
) million. After one year, at exit, the
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NAV of the company is still worth SEK 100 million but only EUR 9 (= 100 · 0.09)
million. Now, instead assume the portfolio company is denoted in USD, and that
the USD/EUR FX rate today is 0.8 and in one year is 0.64, i.e. it has decreased
with 20% since the drift in FX rate is more negative. Then the company value at
entry, and at exit is USD, is USD 12.5 (= 10

0.8
) million and the company value at

exit is EUR 8 (= 12.5 · 0.64) million. Thus, in the first case the fund lost EUR 1
million whereas it lost EUR 2 million in the second case. The conclusion is that
the more negative the drift in the FX rate is, the more money is lost.

There are different views on whether the forward FX rate or the current FX rate is
the best approximation for the future FX rate. Therefore, a random walk simulation
method with zero drift is an interesting scenario to analyse further as well.

11.2 Performance of Foreign Exchange Hedging Strategies
under the Random Walk Simulation Method

This section presents the results obtained for the funds under the random walk
simulation method for FX rates. First the results for the global equity funds are
presented and discussed. Then results are shown and analysed for the local equity
funds, global infrastructure funds and local infrastructure funds. Finally, compar-
isons between the global and local equity and infrastructure funds are done.

11.2.1 Global Equity Funds

The performances of all hedging strategies for the three different global equity funds
are found in Tables C.1-C.4 in Appendix C. First, performance in terms of IRR is
presented and discussed. Second, VaR and ES are considered. Third, the Sharpe
ratios are shown and analysed. Finally, a comparison of the different hedging
strategies is included.

We begin by noting that the systematic FX effect affects the value of the portfolio
companies negatively, hence the mean IRRs of the unhedged case are lower than
the expected IRR of 20%. Furthermore, in the unhedged case the SEK heavy fund,
Fund B, outperforms the equally weighted fund, Fund A, which in turn outperforms
the USD heavy fund, Fund C, in terms of mean IRR. This is due to the USD/EUR
rate having the most negative drift whereas the SEK/EUR rate has the least nega-
tive drift as explained in Section 11.1. Moreover, in terms of VaR, ES and Sharpe
ratio, i.e. measures accounting for volatility in returns, the most diversified fund,
Fund A, outperforms the other two. Thus the effect of diversification has a larger
impact than the FX drift effect on these measures.

11.2.1.1 Internal Rate of Return

The mean IRRs of the different hedging strategies are shown in Table 11.1. Com-
paring the hedging strategies’ performances within each fund, the mean IRRs of
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the unhedged strategy, the forward hedging strategy and the rolling forward hedg-
ing strategy are the highest and almost of exact same size. The option strategies
are found to give significantly lower mean IRRs, the put and call option strategies
performs better than the strangle strategy.

Comparing the hedging strategies’ performances between the different funds minor
differences are observed. For example, in Fund C the forward and rolling forward
strategies may appear to perform relatively better than they do in the other funds.
This is however not the case but rather a consequence of the outcome of the n =
10, 000 FX rate simulations. Since it is not possible to make an infinite number of
simulations the obtained average FX evolution of our simulations will ever so slightly
deviate from the theoretical expected value, i.e. the forward curve. Therefore these
kind of small deviations will occur. Moreover, due to the fact that the USD/EUR
rate has the highest volatility, the call option strategy performs relatively less bad
in Fund C than it does in the other funds.

Fund Un-
hedged

Forward Rolling
forward

CallKC
3

PutKP
3

StrangleKS
3

GE A 19.43% 19.45% 19.45% 19.17% 19.24% 18.99%
GE B 19.69% 19.72% 19.71% 19.41% 19.54% 19.27%
GE C 18.99% 19.05% 19.05% 18.79% 18.78% 18.59%

Table 11.1: IRR for random walk simulation of FX rates for the equity funds as a function
of hedging derivative. Note that the hedging strategies including the call option, the put
option and the strangle include 20% out of the money options

11.2.1.2 Value-at-Risk and Expected Shortfall

The VaR and ES of the different hedging strategies are shown in Tables 11.2-11.3.
Comparing the hedging strategies’ performances within each fund, the VaR of the
rolling forward strategy is the highest followed by the forward strategy. The put
option strategy outperforms the unhedged strategy except for in Fund A. Finally,
the call and strangle strategies are the worst except for in Fund C in which the
strangle strategy outperforms the unhedged strategy. Largely similar results applies
to the ES, as can be seen in Table 11.3.

Comparing the hedging strategies’ performances between the different funds, in
terms of VaR and ES, an important difference is observed. For the hedging strate-
gies protecting against the downside of the FX effect, i.e. forwards, rolling forwards
and put options, a relatively better performance is observed for Fund B and Fund C
than Fund A. This is explained by the diversification effect. Since Fund B and C are
overweighted in a particular currency bad outcomes in these respective currencies
will affect the over all result of Fund B and C more than Fund A. Therefore, from
a VaR and ES perspective, hedging will offer greater benefits in the less diversified
funds.
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Fund Un-
hedged

Forward Rolling
forward

CallKC
3

PutKP
3

StrangleKS
3

GE A 17.37% 18.08% 18.21% 17.02% 17.35% 16.99%
GE B 17.02% 18.35% 18.47% 16.65% 17.28% 16.91%
GE C 16.44% 17.70% 17.86% 16.21% 16.89% 16.63%

Table 11.2: VaR for random walk simulation of FX rates for the equity funds. Note that
the hedging strategies including the call option, the put option and the strangle include
20% out of the money options

Fund Un-
hedged

Forward Rolling
forward

CallKC
3

PutKP
3

StrangleKS
3

GE A 16.90% 17.72% 17.90% 16.55% 16.90% 16.54%
GE B 16.45% 17.95% 18.16% 16.09% 16.87% 16.49%
GE C 15.90% 17.33% 17.58% 15.69% 16.48% 16.21%

Table 11.3: ES for random walk simulation of FX rates for the equity funds. Note that the
hedging strategies including the call option, the put option and the strangle include 20%
out of the money options

11.2.1.3 Sharpe Ratio

The Sharpe ratios of the different hedging strategies are shown in Table 11.4. Com-
paring the hedging strategies’ performances within each fund, the Sharpe ratio is
highest for the rolling forward strategy followed by the forward strategy and then
the put option strategy. The differences between the strategies including forward
contracts and the other strategies are large. Furthermore, the differences between
the unhedged strategy and the strangle strategy are minor. The call option strategy
is always the worst performer.

Comparing the hedging strategies’ performances between the different funds the
same difference as in the VaR and ES case is observed. For the hedging strategies
protecting against the downside of the FX effect, i.e. forwards, rolling forwards and
put options, a relatively better performance is observed for Fund B and Fund C than
Fund A. As discussed in the previous section, this is a result of the diversification
effect taking place in Fund A.
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Fund Un-
hedged

Forward Rolling
forward

CallKC
3

PutKP
3

StrangleKS
3

GE A 14.97 22.86 25.76 13.78 15.51 14.06
GE B 11.39 22.65 25.93 10.40 12.36 11.12
GE C 11.51 22.54 26.65 10.87 13.68 12.56

Table 11.4: SR for random walk simulation of FX rates for the Equity funds. Note that
the hedging strategies including the call option, the put option and the strangle include
20% out of the money options

11.2.1.4 Comparison of the Hedging Strategies

The performances of the different hedging strategies for the global equity funds are
summarised in Table 11.5 where ranking 1 represents the best performing strategy.
If only minor differences are present several hedging strategies are awarded the
same rank. The first rank is connected to Fund A, the second to Fund B and the
third to Fund C.

Metric Un-
hedged

Forward Rolling
forward

CallKC
3

PutKP
3

StrangleKS
3

IRR 1,1,1 1,1,1 1,1,1 4,4,4 4,4,4 6,6,6
VaR 3,4,5 2,2,2 1,1,1 5,6,6 3,3,3 5,5,4
ES 3,4,5 2,2,2 1,1,1 5,6,6 3,3,3 5,5,4
SR 4,4,5 2,2,2 1,1,1 6,6,6 3,3,3 5,5,4

Table 11.5: Ranking of the hedging strategies’ performances for the global equity PE funds
(A,B,C) under the random walk simulation of FX rates

The differences between the unhedged strategy, the forward hedging strategy and
the rolling forward hedging strategy, in terms of IRR, are insignificant since the
forward strategies lock in the forward rate which also is the average of the simulated
FX rates. Therefore, all of these hedging strategies receive the highest rank. The
performances of the options are similar due to the fact that they have similar price-
payoff trade-off. The reason as to why the options perform worse than the unhedged
and forward strategies is that the option strategies cost more to implement. Since
the strangle strategy consists of two long positions its implementing cost is the
highest implying the most negative impact on the mean IRR and consequently the
worst hedging strategy in terms of mean IRR.

In terms of the measures accounting for volatility in returns, VaR, ES and Sharpe
ratio, the rolling forward strategy performs best followed by the forward strategy.
Having the same mean IRRs as the unhedged strategy but lower volatilities imply
better performing strategies. The reason for the rolling forward hedging strategy
performing better than the forward strategy is that it is updated each quarter
without cost. Since the strategy is updated quarterly, it does not have to make
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assumptions about when the portfolio companies in the PE fund will be exited. The
forward hedging strategy have to make that assumption, which implies a mismatch
of the cash flows of the portfolio companies and the cash flows from the forward
contracts, both in terms of absolute amount and FX effect.

The put option strategy performs better than the call option strategy, in terms of
VaR, ES and Sharpe ratio, since the two have similar mean IRR but the put option
strategy decreases volatility whereas the call option strategy increases volatility.
The strangle strategy performs in between the put and call strategies. This is
explained by the fact that it has a lower mean IRR than the other option strategies
and reduces volatility more than the call option strategy but less than the put option
strategy. Moreover, whether the unhedged strategy or the option strategies perform
better depends on the degree of diversification of the fund. In a diversified fund the
unhedged strategy is equally good as the option strategies, except for Sharpe ratio,
whereas in single currency overweighted funds the put option strategy outperforms
the unhedged strategy.

11.2.2 Local Equity Funds

The hedging strategies’ performances, in terms of mean IRR, VaR, ES and Sharpe
ratio, for the local equity funds are shown in Tables C.1-C.4 in Appendix C. A
summary of the results is shown in Table 11.6. Largely similar results as obtained
for the global equity funds are obtained for the local equity funds as well. This
is somewhat expected since the only difference between the global and local funds
is how the different currencies are distributed between the different portfolio com-
panies. This fact decreases the diversification but there are still other parameters,
e.g. stochastic holding time of the portfolio companies, mitigating the total effect.
Though, by construction of the simulation model, which currency ending up in
portfolio companies with higher assigned growth will affect the results slightly.

To conclude, in terms of mean IRR the same results as in the global equity funds
are obtained, both in terms of size and relative order of the strategies. In terms of
VaR, ES and Sharpe ratio the same results as in the global equity fund are obtained
except for the unhedged strategy now being comparable to the put option strategy
in terms of VaR and ES. Having a lower degree of diversification the opposite
results were expected. The results must therefore be accountable to the particular
construction of the portfolio companies and is thus not a general result for local
equity funds.
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Metric Un-
hedged

Forward Rolling
forward

CallKC
3

PutKP
3

StrangleKS
3

IRR 1,1,1 1,1,1 1,1,1 4,4,4 4,4,4 6,6,6
VaR 3,3,3 2,2,2 1,1,1 5,5,5 3,3,3 5,5,5
ES 3,4,3 2,2,2 1,1,1 5,5,5 3,3,3 5,5,5
SR 4,4,4 2,2,2 1,1,1 5,6,6 3,3,3 5,5,5

Table 11.6: Ranking of the hedging strategies’ performances for the local equity PE funds
(A,B,C) under the random walk simulation of FX rates

11.2.3 Global Infrastructure Funds

The hedging strategies’ performances, in terms of IRR, VaR, ES and Sharpe ratio,
for the global infrastructure funds are shown in Tables C.5-C.8 in Appendix C. A
summary of the results is shown in Table 11.7. Again, largely similar results as for
the global equity funds are obtained, except for the fact that the overall IRR levels
are lower due to the lower growth of the infrastructure funds. This is expected
since the only difference between the global equity and infrastructure funds is the
assigned growth rate of the funds.

To conclude, disregarding the size of the results, in terms of mean IRR the same
results as in the global equity funds are obtained. In terms of VaR, ES and Sharpe
ratio, disregarding the size of the results, the same results as in the global equity
funds are obtained. It should however be noted that the put option performs slightly
better relative the unhedged case boosting the performance of the strangle option
strategy. This is probably due to the construction of the model since there are no
logical arguments in favour of put options performing better for lower exposure in
a currency.

Metric Un-
hedged

Forward Rolling
forward

CallKC
3

PutKP
3

StrangleKS
3

IRR 1,1,1 1,1,1 1,1,1 4,4,4 4,4,4 6,6,6
VaR 3,5,5 2,2,2 1,1,1 6,6,6 3,3,3 4,4,4
ES 3,5,5 2,2,2 1,1,1 6,6,6 3,3,3 4,4,4
SR 4,4,5 2,2,2 1,1,1 5,6,6 3,3,3 5,5,4

Table 11.7: Ranking of the hedging strategies’ performances for the global infrastructure
PE funds (A,B,C) under the random walk simulation of FX rates

11.2.4 Local Infrastructure Funds

The hedging strategies’ performances, in terms of IRR, VaR, ES and Sharpe ratio,
for the local infrastructure funds are shown in Tables C.5-C.8 in Appendix C. A
summary of the results is shown in Table 11.8. Largely similar results as obtained
for the global infrastructure funds are obtained.
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To conclude, in terms of mean IRR the same results as in the global infrastructure
funds are obtained. In terms of VaR, ES and Sharpe ratio very similar results as in
the global infrastructure funds are obtained. The only small difference is that the
unhedged strategy and the strangle strategy have similar performances in terms
of VaR and ES whereas there was a difference attributable to the construction of
the funds in the global case. The reason why this is not observable in the local
infrastructure fund is probably explained by the choices of other parameters, e.g.
entry time and growth of the local portfolio companies.

Metric Un-
hedged

Forward Rolling
forward

CallKC
3

PutKP
3

StrangleKS
3

IRR 1,1,1 1,1,1 1,1,1 4,4,4 4,4,4 6,6,6
VaR 3,4,4 2,2,2 1,1,1 6,6,6 3,3,3 5,4,4
ES 3,4,4 2,2,2 1,1,1 6,6,6 3,3,3 5,4,4
SR 4,4,5 2,2,2 1,1,1 5,6,6 3,3,3 5,5,4

Table 11.8: Ranking of the hedging strategies’ performances for the local infrastructure PE
funds (A,B,C) under the random walk simulation of FX rates

11.2.5 Comparison of All Funds

Similar results have been found for the four different types of funds, global equity
funds, local equity funds, global infrastructure funds and local infrastructure funds.
Comparing the equity funds to the infrastructure funds no major differences are
observed. Comparing the global funds to the local funds we expected the diversi-
fication effect to be smaller in the local funds. This was however not observed in
the results which is believed to be attributable to construction differences.

In terms of mean IRR, the hedging strategies receive the same rank independent
of overall fund type. When comparing the measures accounting for volatility in
returns the rolling forward strategy is optimal followed by the forward strategy.
The put option strategy is always number three and the call option strategy is
always the worst. The unhedged strategy and the strangle strategy vary in rank
depending on overall fund type as well as fund, due to diversification effects and
construction differences.
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11.3 Performance of FX Hedging Strategies under the Ran-
dom Walk Simulation Method with Zero Drift

Recalling that there are different views on whether the forward FX rate or the
current FX rate is the best approximation for the future FX rate a random walk
simulation method with zero drift is analysed below.

A summary of the results in Tables C.9-C.16 is shown in Tables 11.9 and 11.10. We
begin by noting that since no drift in FX rates is present no systematic FX effect
affects the value of the portfolio companies and hence all performance measures
are in general higher than in the drift case. The mean IRRs of the unhedged case
are close to 20% for the equity funds and 12% for the infrastructure funds, which
are the expected IRRs of the funds. The performance of the different funds, the
SEK heavy fund, Fund B, the equally weighted fund, Fund A, and the USD heavy
fund, Fund C, is very similar in terms of mean IRR. Moreover, in terms of VaR,
ES and Sharpe ratio, the most diversified fund, Fund A, outperforms the other two
since the effect of diversification is still present whereas the FX drift effect is now
removed.

Comparing the hedging strategies’ performances within each fund and between the
funds we observe very similar results leading to the same conclusions as in the
random walk simulation with drift. Hence decisions regarding if and how to hedge
ought to be independent on one’s view of whether the current FX rate or the forward
FX rate is the better approximation for the future FX rate.

Metric Un-
hedged

Forward Rolling
forward

CallKC
3

PutKP
3

StrangleKS
3

IRR 1,1,1 1,1,1 1,1,1 5,5,5 4,4,4 6,6,6
VaR 3,4,4 2,2,2 1,1,1 5,6,6 3,3,3 5,5,5
ES 3,4,4 2,2,2 1,1,1 5,6,6 3,3,3 5,5,5
SR 4,4,4 2,2,2 1,1,1 5,6,6 3,3,3 5,5,5

Table 11.9: Ranking of the hedging strategies’ performances for the equity funds (A,B,C)
under the random walk simulation of FX rates with zero drift

Metric Un-
hedged

Forward Rolling
forward

CallKC
3

PutKP
3

StrangleKS
3

IRR 1,1,1 1,1,1 1,1,1 5,5,5 4,4,4 6,6,6
VaR 4,4,4 2,2,2 1,1,1 6,6,6 3,3,3 5,5,5
ES 4,4,4 2,2,2 1,1,1 6,6,6 3,3,3 5,5,5
SR 4,4,4 2,2,2 1,1,1 6,6,6 3,3,3 5,5,5

Table 11.10: Ranking of the hedging strategies’ performances for the infrastructure funds
(A,B,C) under the random walk simulation of FX rates with zero drift
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11.4 Comparison of the Option Hedging Strategies

In Sections 11.2 and 11.3, the hedging strategies that performed best in terms of
mean IRR, among the option strategies with various strike prices, were presented.
These strategies were 20% out of the money options. However, other strategies
including 5% and 10% out of the money options were also applied but proved to
be suboptimal for mean IRR.

In this section we extend the simulation model and investigate a wider spectrum
of strike prices in order to find the optimal strike price for the hedging strategies.
The call option strategy and the put option strategy will be compared and analysed
separately. Since the strangle is a combination of the call option and put option
strategies it will not be separately analysed. 0% to 100% out of the money options
are considered. Note that the more far out of the money the options are the less
they cost and the less payoff they give. Therefore, in the limit they tend to the
unhedged strategy. For all option strategies, performance in terms of mean IRR,
VaR, ES and Sharpe ratio is calculated from the n = 10, 000 simulations. However,
since the results point in the same direction for the different PE funds, only global
equity Fund A under the random walk simulation of FX rates is considered.

The results can be found in Figures 11.1-11.2. For the call option strategy the best
performance in terms of all performance measures is as far out of the money call
options as possible, as seen in Figure 11.1. However, for around 40% out of the
money call options and more, the mean IRR, VaR and ES seem to almost have
stagnated. The results of the put option strategy are shown in Figure 11.2. In
terms of mean IRR, the performance seems to almost have stagnated for around
45% out of the money put options and more. However, the results are different for
VaR, ES and Sharpe ratio. VaR and ES are maximised for 29% out of the money
put options. The at the money put option strategy is the best performer in terms
of Sharpe ratio.
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Figure 11.1: Call option hedging strategy performance as a function of the out of the
money strike price
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Figure 11.2: Put option hedging strategy performance as a function of the out of the money
strike price
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From the mean IRR results in Figures 11.1-11.2 the same conclusion can be drawn
for both the call and put option strategies. The cost of buying the options exceeds
the present value of their five year later payoffs. For that reason in order to perform
optimally in terms of mean IRR as far out of the money options as possible are
preferred, hence options should not be used.

In terms of VaR and ES the results of the two option strategies differ. For the
call option strategy the result is again to not use these options since they do not
protect from the downside FX effect whilst costing money to buy. For the put
option strategy the results are interesting. There is actually an optimal strike price
for the put option strategy, namely 29%. Put options with this strike price gives
the best price-payoff trade-off in terms of VaR and ES.

For our given range of IRRs and their volatilities the volatility has a greater impact
on the Sharpe ratio than the IRR by its definition. The Sharpe ratio increase with
more out of the money call options, and decrease with more out of the money put
options. The reason for this is that the payoff of the call option increases if the
portfolio companies increase in value due to FX effects whilst the opposite is true for
the put option strategy. Hence, the call option strategy will have a high volatility
for options closer to at the money, which is reflected in a low Sharpe ratio as seen
in Figure 11.1. The payoff of the put options increase as the portfolio companies
decrease in value. Thus, the put option strategy will reduce the volatility of returns,
especially for out of the money options having strike prices close to at the money.

To conclude, the call option strategy should never be applied, no matter which
performance measure is focused on. The put option hedging strategy should not be
used if focusing on mean IRR. However, if focusing on VaR and ES, the put option
hedging strategy with the optimal strike price, i.e. 29% out of the money options,
perform slightly better than the unhedged strategy. Also, a high Sharpe ratio can
be achieved with put options, even higher than an unhedged strategy, comparing
the results to Tables C.1-C.4 in Appendix C.
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Part III

Extended Model I: Stochastic
Interest Rates

12 Short Rate Models

So far constant interest rates have been assumed. In reality, this is utterly unlikely.
Monetary policy, political risk and many other factors affect FX rate evolvements.
In order to test the impact of the constant interest rate assumption a model includ-
ing stochastic interest rates will be developed. This chapter lays out the general
theory of interest rates, introduces the Hull-White model and presents formulas
for pricing derivatives under stochastic short rates. Inspiration is to a large extent
gathered from Björk (2009) [2].

12.1 Dynamics of the Short Rate of Interest

Our objective is to model an arbitrage free family of zero coupon bond price pro-
cesses {p(·, T );T ≥ 0}. The price p(t, T ) depends on the short rate of interest over
the interval [t, T ]. Therefore, as a starting point the dynamics of the short rate
of interest will be introduced. The short rate can, under the objective probability
measure P , be modelled as the solution of an SDE of the form

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dW t. (12.1)

Since we solely focus on the short rate, the only exogenously given asset is a money
account with price process B which has the dynamics

dBt = r(t)Btdt. (12.2)

This model can be interpreted as a model of a bank account with stochastic short
rate of interest r. The bank is considered as a risk free asset. Hence, the price of
the risk free asset is given by B.

We also assume that there exits a market for zero coupon T -bonds for each maturity
T . Hence, we assume a market containing infinite many assets but only the risk
free asset is exogenously given. Formulating this differently, the risk free asset is
considered as the underlying asset whilst all bonds are regarded as derivatives of
the underlying short rate of interest r. Note that the price of a particular bond
will not be completely determined by the specification Eq. 12.1 of the r-dynamics
and the requirement that the bond market is free of arbitrage. The reason for this
is that arbitrage pricing is always a case of pricing a derivative in terms of the
price of some underlying asset, and in our market we do not have sufficiently many
underlying assets.
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Intuitively, in order to avoid arbitrage on the bond market, prices of bonds with
different maturities will have to satisfy certain internal consistency relations. Taking
the price of a particular bond, a benchmark bond, as given then the prices of
all other bonds having maturities prior to the benchmark bond will be uniquely
determined in terms of the price of the benchmark bond and the r-dynamics.

12.2 The Term Structure Equation

This section formalizes the intuition in the end of the previous section and expands
the theory further. The ultimate goal is to find a pricing equation for arbitrary
interest rate derivatives. Let us begin with stating the main assumption.

Assumption 12.1
Assume that there is an arbitrage free market for T-bonds for every choice of ma-
turity T . Furthermore, assume that the price of a T-bond is given by

p(t, T ) = F (t, r(t);T ), (12.3)

for every T, where F is a smooth function of the real variables r, t and T .

One can think of F as a function of the two variables r and t, whereas T can be
considered as a parameter. For that reason, we will sometimes write F T (t, r) rather
than F (t, r;T ). We want to find out what F T looks like on a market which is absent
of arbitrage.

The boundary condition is very simple. At the time of maturity a T -bond is worth
exactly 1 unit of the denominating currency, i.e. its face value equals 1. Thus, the
following relation for the boundary condition holds

F (T, r;T ) = 1, ∀r ∈ R. (12.4)

Note that the letter r denotes both a real variable as well as the name of the
stochastic process for the short rate. However, the meaning will be clear from the
context.

We are now ready to find out what F T looks like under the given assumptions. In
order to do this we start by forming a portfolio consisting of two bonds that have
different times to maturity, namely S and T . Using Assumption 12.1 and Itô’s
formula we get the following price dynamics for the T -bond

dF T = F TαTdt+ F TσTdW, (12.5)

where

αT =
∂FT

∂t
+ µ∂FT

∂r
+ 1

2
σ2 ∂2FT

∂r2

F T
, (12.6)

σT =
σ ∂FT

∂r

F T
, (12.7)

and similarly for the S-bond. Moreover, the value dynamics of the relative portfolio
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(uS,uT ) are given by

dV = V

(
uT

dF T

F T
+ uS

dF S

F S

)
. (12.8)

Inserting the differential found in Eq. 12.5, as well as the corresponding one for the
S-bond, and rearranging terms gives

dV = V (uTαT + uSαS)dt+ V (uTσT + uSσS)dW. (12.9)

Choosing the formed portfolio to be locally risk less it must hold that uTσT+uSσS =
0. Furthermore, since (uT , uS) is a relative portfolio it must hold that the weights
uT and uS sums to one. Thus we have the two following conditions for our portfolio

uT + uS = 1, (12.10)
uTσT + uSσS = 0. (12.11)

Inserting the second condition the diffusion term in Eq. 12.9 will vanish, and the
value dynamics are reduced to

dV = V (uTαT + uSαS)dt. (12.12)

The two conditions, Eqs. 12.10-12.11, has the solution

uT = − σS

σT − σS

, (12.13)

uS = − σT

σT − σS

. (12.14)

Substituting this into Eq. 12.12 gives us the final expression for the value dynamics
of our portfolio

dV = V

(
αSσT − αTσS

σT − σS

)
dt. (12.15)

Next we recall that if the portfolio is locally risk less then its rate of return must
equal the rate of return of the risk free asset, i.e. the short rate of interest, in order
for the model to be free of arbitrage. Thus it must hold that

αSσT − αTσS

σT − σS

= r(t), ∀t, with probability 1. (12.16)

Rearranging gives
αS(t)− r(t)

σS(t)
=

αT (t)− r(t)

σT (t)
. (12.17)

Noting that the left-hand side of Eq. 12.17 is a stochastic process independent of T
and the right-hand side is a stochastic process independent of S it must hold that
the common quotient will be independent of the choice of either T and S. Let us
state this important result as a proposition.
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Proposition 12.1
Assume that the bond market is arbitrage free. Then there exists a process λ such
that the relation

αT (t)− r(t)

σT (t)
= λ(t) (12.18)

holds for all t and for every choice of maturity time T.

Let us take a closer look at the process λ. In the numerator of Eq. 12.18 we
have the term αT (t) − r(t), i.e. the risk premium of the T -bond. In other words,
αT (t)−r(t) measures the risky T -bond’s excess rate of return over the risk less rate
of return that is required by the market to avoid arbitrage opportunities. Since the
denominator of Eq. 12.18 is the local volatility, σT (t), of the T -bond the dimension
of λ is ”risk premium per unit of volatility”. This unit is known as the market price
of risk. Thus, Proposition 12.1 tells us that all bonds will, regardless of maturity
time, have the same market price of risk, in a market absent of arbitrage.

Finally, by inserting the expressions for αT and σT given by Eqs. 12.6-12.7 into Eq.
12.18, and rearranging we obtain the important term structure equation.

Proposition 12.2 Term structure equation
In an arbitrage free bond market, F T satisfies the term structure equation

∂F T

∂t
+ (µ− λσ)

∂F T

∂r
+

1

2
σ2∂

2F T

∂r2
− rF T = 0,

F T (T, r) = 1.

(12.19)

As seen from Eqs. 12.6, 12.7 and 12.18 λ is on the form λ = λ(t, r), which means
that the term structure is a standard partial differential equation. The problem
is that λ is not determined within the model. Hence, in order to solve the term
structure equation λ must be specified exogenously just as we have to specify µ and
σ. Despite this problem it is not hard to obtain a Feynman-Kač representation of
F T . We do this by fixing (t, r) and then using the process

exp
(
−

∫ s

t

r(u)du

)
F T (s, r(s)). (12.20)

Applying Itô’s formula to Eq. 12.20 and using the fact that F T satisfies the term
structure equation the following stochastic representation formula is obtained.

Proposition 12.3 Risk neutral valuation
Bond prices are given by the formula p(t, T ) = F (t, r(t);T ) where

F (t, r;T ) = EQ
t,r

[
e−

∫ T
t r(s)ds

]
. (12.21)

Furthermore, the Q-dynamics of the short rate is given by

dr(s) = (µ− λσ)ds+ σdWs, (12.22)
r(t) = r. (12.23)
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Writing Eq. 12.21 as

F (t, r;T ) = EQ
t,r

[
e−

∫ T
t r(s)ds · 1

]
. (12.24)

we observe that the value of a T -bond is the expected value of the final payoff of
1 unit of currency discounted to present value. We also note that since the model
is not complete we have different martingale measures Q for different choices of
λ. This is the main difference to the Black-Scholes model, where the martingale
measure is uniquely determined.

We end this section by studying more general contingent claims than just T -bonds.
Let us introduce a general contingent T -claim on the form

X = Φ(r(T )), (12.25)

where Φ is some real valued function. Using the same arguments as earlier in this
section the general term structure equation is obtained.

Proposition 12.4 General term structure equation
Let X be a contingent T-claim of the form X = Φ(r(T )). In an arbitrage free
market the price Π(t; Φ) will be given as

Π(t; Φ) = F (t, r(t)), (12.26)

where F solves the boundary value problem
∂F

∂t
+ (µ− λσ)

∂F

∂r
+

1

2
σ2∂

2F

∂r2
− rF = 0,

F (T, r) = Φ(r),
(12.27)

and has the stochastic representation

F (t, r;T ) = EQ
t,r

[
exp

(
−
∫ T

t

r(s)ds× Φ(r(T ))

)]
. (12.28)

Furthermore, the Q-dynamics of the short rate is given by

dr(s) = (µ− λσ)ds+ σdWs, (12.29)
r(t) = r. (12.30)

12.3 Martingale Models for the Short Rate

In the two following subsections we tackle the problem of solving the general term
structure equation obtained in the previous section. First we introduce the tech-
nique of martingale modelling. Then we explore a certain class of martingale mod-
els, possessing a so called affine term structure, suitable for calculations.
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12.3.1 Fundamentals of Martingale Modelling

In the previous section we arrived at the general term structure equation which
completely determines the price of all interest rate derivatives after the drift term,
µ, the diffusion term, σ, and the market price of risk, λ, have been specified,

∂F

∂t
+ (µ− λσ)

∂F

∂r
+

1

2
σ2∂

2F

∂r2
− rF = 0,

F (T, r) = Φ(r).
(12.31)

In order to solve this equation the procedure of martingale modelling, i.e. modelling
the short rate r directly under the martingale measure Q instead of under the
objective probability measure P , will be used. Thus, r will have the following
dynamics under Q

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dWt, (12.32)

where µ and σ are given functions. Hereinafter in this section µ will always denote
the drift term of the short rate of interest under the martingale measure Q.

There are a lot of models proposing different ways of how to specify the Q-dynamics
of r. As we model directly under Q, and not under the observable measure P , we
cannot calibrate the model to market data since the data we observe on the market
is under P . However, this is only true for the drift term and not the diffusion term
since a Girsanov transformation only affects the drift term and not the diffusion
term.

Next we proceed by determining the parameters of a martingale model. The typical
approach to determine the parameters in a martingale model is to invert the yield
curve. After having selected a martingale model for the short rate r, we introduce
the parameter vector α and express the r-dynamics under Q as

dr(t) = µ(t, r(t);α)dt+ σ(t, r(t);α)dWt, (12.33)

and solve the term structure equation, for every conceivable time of maturity T
∂F T

∂t
+ µ

∂F T

∂r
+

1

2
σ2∂

2F T

∂r2
− rF T = 0,

F T (T, r) = 1.

(12.34)

Thus, we have calculated a theoretical term structure according to

p(t, T ;α) = F T (t, r;α). (12.35)

Note that the parameter vector α yet has not been chosen. In order to do this
bond price data needs to be collected. For all values of T , it is possible to observe
p(0, T ). Denoting the observed empirical term structure by {p?(0, T );T ≥ 0} the
next step is to choose the parameter vector α in such a way that the theoretical
curve {p(0, T ;α);T ≥ 0} fits the empirical curve {p?(0, T );T ≥ 0} as good as
possible. We denote the chosen parameter vector α? and insert it into µ and σ
to obtain µ? and σ?. Following this procedure we have now determined which
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martingale measure Q we are working with.

After having specified Q we are now ready to price interest rate derivatives. De-
noting an arbitrary interest derivative by X = Γ(r(T )) the price process of X is
given by Π(t; Γ) = G(t, r(t)), where G solves the term structure equation

∂G

∂t
+ µ?∂G

∂r
+

1

2
(σ?)2

∂2G

∂r2
− rG = 0,

G(T, r) = Γ(r).
(12.36)

The difficulty of solving the above partial differential equation depends on the choice
of martingale model. This leads us to the subject affine term structures which will
be investigated in the following section.

12.3.2 Affine Term Structures

Let us begin by giving the definition of a martingale model possessing an affine
term structure.

Definition 12.1
If the term structure {p(t, T ); 0 ≤ t ≤ T, T > 0} has the form

p(t, T ) = F (t, r(t);T ), (12.37)

where F has the form
F (t, r;T ) = eA(t,T )−B(t,T )r, (12.38)

and where A and B are deterministic functions, then the model is said to possess
an affine term structure (ATS).

As seen in Eq. 12.38, A and B are both functions of the real variables t and T . We
choose to regard A and B as functions of t, while T serves as a parameter. From
both an analytical and computational point of view, the model having an ATS is
beneficial. Therefore, we now seek to understand what conditions must be fulfilled
in order for the model to have an ATS.

As before, we assume that r has the following Q-dynamics

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dWt, (12.39)

and furthermore that this model possesses an ATS. Next, we compute the partial
derivatives of F using Eq. 12.38. Since F solves the term structure equation, Eq.
12.31, we obtain

∂A

∂t
(t, T )−

(
1 +

∂B

∂t
(t, T )

)
r − µ(t, r)B(t, T ) +

1

2
σ2(t, r)B2(t, T ) = 0. (12.40)

Furthermore, the boundary value F (T, r;T ) ≡ 1 implies that{
A(T, T ) = 0,

B(T, T ) = 0.
(12.41)
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In order for an ATS to exist, the relations between A, B, µ and σ in Eq. 12.40
must hold. It turns out that if µ and σ are affine functions of r, i.e. linear plus
a constant, with possibly time dependent coefficients, then Eq. 12.40 becomes a
separable differential equation for the functions A and B. Thus, assuming that µ
and σ are on the form {

µ(t, r) = α(t)r + β(t),

σ(t, r) =
√

γ(t)r + δ(t),
(12.42)

Eq. 12.40 becomes

∂A

∂t
(t, T )− β(t)B(t, T ) +

1

2
δ(t)B2(t, T )

−
(
1 +

∂B

∂t
(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T )

)
r = 0 ∀t, T, r ∈ R.

(12.43)

Let us consider the above equation for a fixed t and T . Since the equation must
hold for all values of r the coefficient of r must equal zero,

1 +
∂B

∂t
(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T ) = 0 (12.44)

Thus, the equation reduces to

∂A

∂t
(t, T )− β(t)B(t, T ) +

1

2
δ(t)B2(t, T ) = 0. (12.45)

At this stage, we formulate the result in a proposition.

Definition 12.2 Affine term structure
Assume that µ and σ are of the form{

µ(t, r) = α(t)r + β(t),

σ(t, r) =
√

γ(t)r + δ(t).
(12.46)

Then the model admits an ATS of the form

F (t, r;T ) = eA(t,T )−B(t,T )r, (12.47)

where A and B satisfy the system 1 +
∂B

∂t
(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T ) = 0,

B(T, T ) = 0.
(12.48)


∂A

∂t
(t, T ) = β(t)B(t, T )− 1

2
δ(t)B2(t, T ),

A(T, T ) = 0.
(12.49)

We end this section by noting that Eq. 12.48 does not involve A. Hence, having
solved Eq. 12.48 we can insert the solution B into Eq. 12.49 and integrate in order
to obtain the solution A. For the reader interested in extensions and notes on the
affine term structure theory we suggest Duffie and Kan (1996) [8].
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12.4 The Hull-White Model

This section sets out to present the Hull-White model for the short rate dynamics
under Q. Furthermore, the parameters of the model are determined and the term
structure equation under the Hull-White model is presented.

The martingale model for short rates chosen in this thesis is the Hull-White (ex-
tended Vasiček) model, hereinafter referred to as the Hull-White or HW model,
which is introduced in Hull and White (1990) [16]. Under the Hull-White model
the Q-dynamics of the short rate are given by

dr = (Θ(t)− a(t)r)dt+ σ(t)dWt, (a(t) > 0). (12.50)

The Hull-White model is chosen due to its accuracy and simplicity. The model
describes the short rate r using a linear SDE. A linear SDE is easy to solve and
the corresponding short rate process is normally distributed. Furthermore, another
reason for choosing the Hull-White model is because of its time dependent coeffi-
cients, which make it possible for the model to fit data much better than a model
solely containing time independent coefficients. Moreover, the Hull-White model is
a mean reverting model under Q, which means that the model tends to revert to a
mean level.

We set r(0) = r0, i.e. the present short rate on the market. Furthermore, we choose
the coefficient a in the Hull-White model to be time independent, a(t) = a. We
also choose the coefficient σ(t) to be piecewise constant. The piecewise constant
function Θ(t) will do the job of fitting the model to market data. The remainder
of this section is devoted to finding a suitable Θ(t) given values of a and σ(t). The
process is commonly known as inverting the yield curve.

For the zero coupon yield y(t, T ) it holds that

y(t, T ) = − ln p(t, T )

T − t
. (12.51)

Choosing t = 0 we obtain the following equation for the yield curve

y(0, T ) = − ln p(0, T )

T
. (12.52)

Next, we will convert the yield curve into a piecewise constant forward rate curve
f(0, T ) for 0 ≤ T ≤ T ?, where T ? < ∞ is the longest maturity. We proceed with
the definition of the forward curve f(0, T )

f(0, T ) = − ∂

∂T
ln p(0, T ). (12.53)

Rearranging Eq. 12.52 and inserting into the above expression for the forward rate
gives the theoretical forward curve

f(0, T ) = − ∂

∂T
ln p(0, T ) =

∂

∂T
(Ty(0, T )) = y(0, T ) + T

∂

∂T
y(0, T ). (12.54)
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Similarly, the observed forward curve is given by

f ?(0, T ) = − ∂

∂T
ln p?(0, T ) =

∂

∂T
(Ty?(0, T )) = y?(0, T ) + T

∂

∂T
y?(0, T ). (12.55)

As stated in Definition 12.2, the model has an ATS if µ and σ are of the form{
µ(t, r) = α(t)r + β(t),

σ(t, r) =
√

γ(t)r + δ(t).
(12.56)

Comparing Eq. 12.50 to Eq. 12.56 and identifying coefficients we find that α(t) =
−a, β(t) = −Θ(t), γ(t) = 0 and δ(t) = σ2(t). Having an ATS, bond prices are
given by

p(t, T ) = eA(t,T )−B(t,T )r, (12.57)

where the functions A and B, after inserting the obtained values of α(t), β(t), γ(t)
and δ(t) into Eqs. 12.48-12.49, solve

∂B

∂t
(t, T ) = aB(t, T )− 1,

B(T, T ) = 0,
(12.58)


∂A

∂t
(t, T ) = Θ(t)B(t, T )− 1

2
σ2B2(t, T ),

A(T, T ) = 0.
(12.59)

The solutions to these equations are given by

B(t, T ) =
1

a

(
1− e−a(T−t)

)
, (12.60)

A(t, T ) =

∫ T

t

(
1

2
σ2(t)B2(s, T )−Θ(s)B(s, T )

)
ds. (12.61)

By using Eqs. 12.54 and 12.57 we find the following expression for f(0, T )

f(0, T ) =
∂

∂T
(Ty(0, T )) (12.62)

= − ∂

∂T
ln(p(0, T )) (12.63)

=
∂B

∂T
(0, T )r(0)− ∂A

∂T
(0, T ). (12.64)

Using Eqs. 12.58-12.59 and approximating σ(t) as constant, ∂B
∂T

(0, T ) and ∂A
∂T

(0, T )
are given by

∂B

∂T
(0, T ) = e−aT , (12.65)
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and

∂A

∂T
(0, T ) =

∫ T

0

(
σ2(t)

a
(1− e−a(T−s))e−a(T−s) −Θ(s)e−a(T−s)

)
ds (12.66)

= −
∫ T

0

Θ(s)e−a(T−s)ds+
σ2(t)

2a2

(
1− e−aT

)2

. (12.67)

Finally we obtain the anticipated expression for f(0, T ) as

f(0, T ) = e−aT r(0) +

∫ T

0

Θ(s)e−a(T−s)ds− σ2(t)

2a2

(
1− e−aT

)2

. (12.68)

Similarly, for the observed values we have

f ?(0, T ) = e−aT r(0) +

∫ T

0

Θ(s)e−a(T−s)ds− σ2(t)

2a2

(
1− e−aT

)2

(12.69)

We solve Eq. 12.69 by rewriting f ?(0, T ) as

f ?(0, T ) = x(T )− g(T ), (12.70)

where x and g are defined by
∂x

∂t
= −ax(t) + Θ(t),

x(0) = r(0),
(12.71)

g(t) =
σ2(t)

2a2
(1− e−at)2 =

σ2(t)

2
B2(0, t). (12.72)

Finally, Θ(T ) can be expressed as

Θ(T ) =
∂x

∂t
(T ) + ax(T ) (12.73)

=
∂f ?

∂T
(0, T ) +

∂g

∂T
(T ) + ax(t) (12.74)

=
∂f ?

∂T
(0, T ) +

∂g

∂T
(T ) + a(f ?(0, T ) + g(T )), (12.75)

and hence we have determined a martingale measure Q, for a given choice of a and
σ(t). Thus, if we can specify a and σ(t), we are ready to implement the Hull-White
model, given observed market data of the yield curve. More on how a and σ(t) are
specified is investigated in Section 12.6. The reason for not doing it directly is that
some of the results of Section 12.5 are required.

We finish off this section by presenting the Hull-White term structure using the
results above. Due to its importance, we state it as a proposition.
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Proposition 12.5 Hull-White term structure
Consider the Hull-White model with given a and σ(t) (approximated as constant).
Choosing Θ as

Θ(T ) =
∂f ?

∂T
(0, T ) +

∂g

∂T
(T ) + a(f ?(0, T ) + g(T )), (12.76)

where g(t) is given by

g(t) =
σ2(t)

2a2
(1− e−at)2 =

σ2(t)

2
B2(0, t), (12.77)

gives the bond prices as

p(t, T ) =
p?(0, T )

p?(0, t)
exp

(
B(t, T )f ?(0, t)− σ2(t)

4a
B2(t, T )(1− e−2at)−B(t, T )r(t)

)
,

(12.78)
where B is given by

B(t, T ) =
1

a

(
1− e−a(T−t)

)
. (12.79)

12.5 Pricing under Stochastic Interest Rates

Having time dependent stochastic short rates instead of constant short rates will
imply consequences on most parts of the Black-Scholes model. Let us explore the
immediate consequences on pricing of derivatives further in the following section.

As an introduction to the topic consider pricing of a contingent claim X under a
model with a stochastic short rate r. We want to price the claim using the standard
procedure with the risk neutral valuation formula

Π(0;X ) = EQ

[
e−

∫ T
0 r(s)ds · X

]
. (12.80)

Since there are two stochastic variables under the expectation,
∫ T

0
r(s)ds and X ,

the formula will be problematic to evaluate. In order to compute the expectation
one would have to find the joint distribution of the two stochastic variables under
Q and then perform the integration with respect to that distribution. Since this is
complicated an alternative method that tackles the problem more effectively will
be used, namely the technique of changing the numeraire, developed in Geman et
al. (1995) [12].

Let us begin by recalling what a numeraire actually is. According to the First
Fundamental Theorem the market model is free of arbitrage if and only if there
exists a martingale measure, i.e. a measure Q0 ∼ P such that the normalized price
processes

S0(t)

S0(t)
,
S1(t)

S0(t)
, ...,

SN(t)

S0(t)
(12.81)

are martingales under Q0. The processes S0(t) is referred to as numeraire process
and is assumed to be strictly positive. Usually the natural choice of numeraire is
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the money account B but sometimes computations can be facilitated by choosing
another asset as numeraire. Thus it is useful to be able to go from one numeraire-
martingale measure pair (S0, Q

0) to another numeraire-martingale measure pair
(S1, Q

1). This procedure is referred to as change of numeraire and has previously
been used indirectly when going from P to Q.

Suppose that the corresponding martingale measure Q0 for a specific numeraire S0 is
known and we want to change the numeraire from S0 to S1. Then the appropriate
Girsanov transformation taking us from Q0 to Q1, where Q1 is the martingale
measure corresponding to the numeraire S1, needs to be found.

Next, let us find the relevant Girsanov transformation. We begin by recalling that
in order to have no arbitrage possibilities X(T ) must be priced according to

Π(t;X) = S0(t)E
0

[
X

S0(T )

∣∣∣∣Ft

]
. (12.82)

Using the pricing formula above two conditions can be established,

Π(0;X) = S0(0)E
0

[
X

S0(T )

]
, (12.83)

and
Π(0;X) = S1(0)E

1

[
X

S1(T )

]
. (12.84)

Denoting the Radon-Nikodym derivative by L1
0(T ) we define

L1
0(T ) =

dQ1

dQ0
, on FT . (12.85)

Then Eq. 12.83 can be expressed as

Π(0;X) = S1(0)E
0

[
X

S1(T )
· L1

0(T )

]
, (12.86)

and thus it holds that

S0(0)E
0

[
X

S0(T )

]
= S1(0)E

0

[
X

S1(T )
· L1

0(T )

]
(12.87)

for a sufficiently integrable arbitrary X(T ). Thus it must hold that

S0(0)

S0(T )
=

S1(0)

S1(T )
· L1

0(T ). (12.88)

Reorganizing the obtained expression the induced likelihood process is found to be

L1
0(t) =

S0(0)

S1(0)
· S1(t)

S0(t)
, 0 ≤ t ≤ T. (12.89)

Let us state our exploration as a proposition.
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Proposition 12.6 Change of numeraire
Assume that Q0 is a martingale measure for the numeraire S0 on FT and as-
sume that S1 is another asset price process that is positive such that S1(t)

S0(t)
is a

Q0-martingale. Define Q1 on FT by the likelihood process

L1
0(t) =

S0(0)

S1(0)
· S1(t)

S0(t)
, 0 ≤ t ≤ T. (12.90)

Then Q1 is a martingale measure for S1.

Now returning to our original problem, pricing a contingent claim when the short
rate is time dependent and stochastic, we need to find the appropriate change of
numeraire. Since the foundation of the section on short rates builds on zero coupon
bonds, a natural choice of numeraire to try is the T -bond. The corresponding
martingale measure will be denoted QT and referred to as the T -forward measure
as specified in the following definition.

Definition 12.3 T-forward measure
For a fixed T , the T -forward measure QT is defined as the martingale measure for
the numeraire process p(t,T).

In a model using the money account B as numeraire with the corresponding risk
neutral martingale measure Q an explicit description for QT can be obtained as
presented in the following proposition.

Proposition 12.7 Change of martingale measure from Q to QT

Let Q denote the risk neutral martingale measure. The likelihood process

LT (t) =
dQT

dQ
, on Ft, 0 ≤ t ≤ T, (12.91)

is then given by

LT (t) =
p(t, T )

B(t)p(0, T )
. (12.92)

Moreover, if the Q-dynamics of the T -bond are Wiener driven, i.e. on the form

dp(t, T ) = r(t)p(t, T )dt+ v(t, T )p(t, T )dWt, (12.93)

then the dynamics of LT are given by

dLT (t) = LT (t)v(t, T )dWt. (12.94)

In other words, the Girsanov kernel for the transition from Q to QT is given by the
T -bond volatility v(t, T ).

Using the change of numeraire of Proposition 12.7 and observing that p(T, T ) = 1
the pricing formula for a contingent claim X(T ), Eq. 12.82, takes the following
form under the T -forward measure.

III Extended Model I: Stochastic Interest Rates 73



12 SHORT RATE MODELS

Proposition 12.8 Pricing under the QT measure
The price of an arbitrary T -claim X at time t is given by

Π(t;X) = p(t, T )ET [X | Ft], (12.95)

where ET denotes integration with respect to QT .

Moreover, the following lemma will be useful later on. Here we give it without a
proof.

Lemma 12.1
It holds that Q = QT if and only if r is deterministic.

Having arrived at a general pricing formula under QT we are now ready to price
options. Before we proceed with an option pricing formula we would like to quickly
investigate the so called Expectation Hypothesis. Recalling that the forward rate
process f(t, T ) can be viewed as an estimate of the future short rate r(T ) we would
like to investigate whether the market expects the short rate at T to be high implies
that the forward rate f(t, T ) is also high. For the sake of brevity we give the result
directly.

Proposition 12.9 The Expectation Hypothesis
Assume that, for all T>0, we have r(T )

B(T )
∈ L1(Q). Then, for every fixed T , the

process f(t, T ) is a QT -martingale for 0 ≤ t ≤ T , and in particular

f(t, T ) = ET [r(T ) | Ft]. (12.96)

Proof. In order to establish Proposition 12.9 the pricing equation of Proposition
12.8 with X = r(T ) is used

Π(t;X) = EQ
[
r(T )e−

∫ T
t r(s)ds

∣∣Ft

]
= p(t, T )ET

[
r(T )

∣∣Ft

]
.

Reorganizing we get

ET
[
r(T )

∣∣Ft

]
=

1

p(t, T )
EQ

[
r(T )e−

∫ T
t r(s)ds

∣∣Ft

]
= − 1

p(t, T )
EQ

[ ∂

∂T
e−

∫ T
t r(s)ds

∣∣Ft

]
= − 1

p(t, T )

∂

∂T
EQ

[
e−

∫ T
t r(s)ds

∣∣Ft

]
= −pT (t, T )

p(t, T )

= f(t, T ).

We can thus deduce that the Expectation Hypothesis is true under the QT -measure
but not generally under neither the risk neutral Q-measure nor the observable P -
measure.
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We now turn to the delicate problem of finding an option pricing formula in a
financial market with a stochastic short rate and a strictly positive asset price
process S(t). The problem is considered in Geman et al. (1995) [12]. The option
we want to price is a European call on S with strike price K and date of maturity
T ,

X = max(S(T )−K, 0). (12.97)

Using an indicator function,

I{S(T ) ≥ K} =

{
1 if S(T ) ≥ K

0 if S(T ) < K,
(12.98)

the option can be written as

X = (S(T )−K) · I{S(T ) ≥ K}. (12.99)

The price of X at time t = 0 can thus be expressed as

Π(0;X ) = EQ

[
S(T )−K

B(T )
· I{S(T ) ≥ K}

]
(12.100)

= EQ
[
e−

∫ T
0 r(s)dsS(T ) · I{S(T ) ≥ K}

]
(12.101)

−KEQ
[
e−

∫ T
0 r(s)ds · I{S(T ) ≥ K}

]
. (12.102)

We can now use the change of numeraire technique to compute the two terms
separately. For the first term we use S as numeraire and therefore the measure
QS and for the second term we use the T -forward measure QT . Applying the
two pricing formulas Eqs. 12.82 and 12.95 we arrive at the general option pricing
formula

Π(0;X ) = S(0)QS(S(T ) ≥ K)−Kp(0, T )QT (S(T ) ≥ K). (12.103)

Next we would of course like to compute the probabilities in the general option
pricing formula explicitly. In order to be able to compute the probabilities the
volatilities have to be deterministic. More precisely, we define

ZS,T (t) =
S(t)

p(t, T )
(12.104)

and assume that ZS,T has a stochastic differential on the form

dZS,T (t) = ZS,T (t)mS,T (t)dt+ ZS,T (t)σS,T (t)dWt, (12.105)

where the volatility process σS,T (t) is deterministic. We are now ready to compute
the probabilities explicitly. The probability of the second term can be written as

QT (S(T ) ≥ K) = QT

(
S(T )

p(T, T )
≥ K

)
= QT (ZS,T (T ) ≥ K). (12.106)

Noting that ZS,T is QT martingale, since it is an asset price normalized by a T -bond,

III Extended Model I: Stochastic Interest Rates 75



12 SHORT RATE MODELS

its QT -dynamics are given by

dZS,T (t) = ZS,T (t)σS,T (t)dW
T
t . (12.107)

Recalling the solution of a Geometric Brownian motion the solution to the above
equation is given by

ZS,T (T ) =
S(0)

p(0, T )
exp

(
− 1

2

∫ T

0

||σS,T ||2(t)dt+
∫ T

0

σS,T (t)dW
T
t

)
. (12.108)

Next we observe that the exponent consists of a deterministic time integral and
a stochastic integral. Furthermore the integrand of the stochastic integral is de-
terministic, thus we can deduce that the stochastic integral will have a Gaussian
distribution with zero mean and variance

Σ2
S,T (T ) =

∫ T

0

||σS,T (t)||2dt. (12.109)

Thus the entire exponent is normally distributed and therefore it holds that

QT (S(T ) ≥ K) = N [d2], (12.110)

where

d2 =
ln S(0)

Kp(0,T )
− 1

2
Σ2

S,T (T )√
Σ2

S,T (T )
. (12.111)

The probability of the first term of the general option pricing formula is a QS-
probability, we can thus write

QS(S(T ) ≥ K) = QS

(
p(T, T )

S(T )
≤ 1

K

)
= QS

(
YS,T (T ) ≤

1

K

)
, (12.112)

where YS,T (t) =
p(t,T )
S(t)

= 1
ZS,T (t)

. The QS-dynamics of YS,T are on the form

dYS,T (t) = YS,T (t)δS,T (t)dW
S
t . (12.113)

Using the fact that YS,T = Z−1
S,T and applying Itô’s formula we find that δS,T (t) =

−σS,T (t). The solution of the above equation is thus given by

YS,T (T ) =
p(0, T )

S(0)
exp

(
− 1

2

∫ T

0

||σS,T ||2(t)dt−
∫ T

0

σS,T (t)dW
S
t

)
. (12.114)

Similar to the first case we again have a normally distributed exponent and it
therefore holds after simplifications that

QS(S(T ) ≥ K) = N [d1], (12.115)

where
d1 = d2 +

√
Σ2

S,T (T ). (12.116)
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We can now summarize our exploration as a proposition.

Proposition 12.10 Geman-El Karoui-Rochet
Assuming that volatilities are deterministic, the price of the call option defined in
Eq. 12.97 is given by

Π(0,X ) = S(0)N [d1]− p(0, T )KN [d2], (12.117)

where d2 and d1 are given by

d2 =
ln S(0)

Kp(0,T )
− 1

2
Σ2

S,T (T )√
Σ2

S,T (T )
, (12.118)

d1 = d2 +
√
Σ2

S,T (T ), (12.119)

respectively and Σ2
S,T (T ) is given by

Σ2
S,T (T ) =

∫ T

0

||σS,T (t)||2dt. (12.120)

Applying the put-call parity we have the following pricing formula for a put option,
Y = max(K − S, 0),

Π(0;Y) = p(0, T )KN [−d2]− S(0)N [−d1]. (12.121)

12.6 Calibration of the Hull-White Model

In order to be able to use Proposition 12.5 to simulate short rates we need to deter-
mine a and σ(t). To do this, the values of a and σ(t) that best matches theoretical
prices of some interest rate derivatives to observed prices need to be found. Com-
mon choices of such derivatives are caps and caplets as well as swaptions. We have
chosen to use caps and caplets and will in the following subsection go through what
a cap and a caplet is and how they are priced. After that the calibration steps of
the Hull-White model are derived. We mainly follow Gurrieri et al. (2009) [15],
inspiration is also gathered from Brigo and Mercurio (2006) [4] as well as Clark
(2011) [6].

12.6.1 Caps and Caplets

Caps are among the most traded interest rate derivatives. A cap protects its owner
from having to pay more than a specific rate that is prespecified, the cap rate, even
though the owner has a floating rate loan. Hence, the cap can be seen as a financial
insurance contract. A cap is the sum of a number of caplets, which are defined
below.
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Definition 12.4 Caplet
Let the time interval for the cap be [0, T ]. Divide the time interval into equidistant
points, 0 = T0, T1, ..., Tn = T , and denote the length of each elementary interval
by δ. Furthermore, denote the cap rate by R and denote the principal amount of
money for the cap by K. Finally, denote the underlying rate of interest of the cap
by L. Hence, L(Ti−1, Ti) is the LIBOR spot rate over the interval [Ti−1, Ti]. Then
the caplet i, paid at time Ti, is defined as the following contingent claim

Xi = Kδmax(L(Ti−1, Ti)−R, 0) (12.122)

The next step is to price the caplet. Using the shorthand notation L = L(Ti−1, Ti)
and p = p(Ti−1, Ti), L can be expressed as

L =
1− p

pδ
. (12.123)

Hence, by using the notation x+ = max(x, 0) as well as without loss of generality
setting K = 1, the caplet can be priced as

X = δ(L−R)+ = δ

(
1− p

pδ
−R

)+

=

(
1

p
− (1 + δR)

)+

=
1 + δR

p

(
1

1 + δR
− p

)+

.

(12.124)
Since a payment of 1+δR

p
( 1
1+δR

− p) at time Ti is equivalent to a payment of
(1 + δR)( 1

1+δR
− p) at time Ti−1, a caplet is equivalent to 1 + δR put options on an

underlying Ti-bond, where the exercise date of the option is Ti−1 and the exercise
price is 1

1+δR
. Thus, a cap can be viewed as a portfolio of put options.

12.6.2 Determining the Coefficients a and σ(t) in the Hull-White Model

In the previous section, we showed that the price of a caplet with cap rate R is
equal to the price of 1+ δR put option on an underlying Ti zero coupon bond, also
called zero-bond put options (ZBP), with strike price 1

1+δR
, where δ is the length

of the time interval on which the caplet is active. Hence, we have the following
formula for pricing a caplet, with fixing time TF and paying time TP

ΠCaplet
t (R, TF , TP ) = (1 + δR)ΠZBP

t

(
TF , TP ,

1

1 + δR

)
. (12.125)

In order to price the caplet, we need to price the ZBP. We recall that the Q-dynamics
of r in the Hull-White model are given by

dr = (Θ(t)− ar)dt+ σ(t)dWt. (12.126)

We also recall that the HW model has an affine term structure which means that

p(t, T ) = eA(t,T )−B(t,T )r(t), (12.127)
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where A and B are deterministic functions and where B is given by

B(t, T ) =
1

a

(
1− e−a(T−t)

)
. (12.128)

We want to price a European put option with exercise date TF and strike price K,
on an underlying TP -bond, where TP > TF . Observing the process

Z(t) =
p(t, TP )

p(t, TF )
, (12.129)

we want to check if the volatility, σZ , of this process is deterministic, in line with
the assumption of Proposition 12.10. Inserting Eq. 12.127 into Eq. 12.129 gives

Z(t) = exp
(
A(t, TP )− A(t, TF )− (B(t, TP )−B(t, TF ))r(t)

)
. (12.130)

Next, applying Itô’s formula and using Eq. 12.126 gives the following Q-dynamics

dZt = Z(t)(· · · )dt+ Z(t)σZ(t)dWt, (12.131)

where σZ is given by

σZ(t) = −σ(t)(B(t, TP )−B(t, TF )) =
σ(t)

a
eat(e−aTP − e−aTF ), (12.132)

and the drift coefficient only is indicated by (· · · ) since it is not of interest. Hence,
we have shown that σZ is deterministic and can therefore apply Proposition 12.10
in order to price a ZBP under the Hull-White model.

Proposition 12.11 Hull-White bond option
The price of a European put option with strike price K and time of maturity TF ,
in the Hull-White model at t = 0, on a TP -bond, is given by

ΠZBP
0 (TF , TP , K) = p(0, TF )KN [−d2]− p(0, TP )N [−d1], (12.133)

where d1 and d2 are given by

d2 =

ln

(
p(0,TP )
Kp(0,TF )

− 1
2
Σ2

)
√
Σ2

, (12.134)

d1 = d2 +
√
Σ2, (12.135)

and where Σ2 is given by

Σ2 =
σ2(t)

2a3
(1− e−2aTF )

(
1− e−a(TP−TF )

)2

. (12.136)

Having determined a pricing formula for a ZBP the theoretical price of a caplet can
now be computed according to Eq. 12.125. Thus by using for example the LSE
approach a and σ(t) can be determined such that the theoretical prices best match
the observed market prices.
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13 Simulation of FX Rates and Pricing under the
Hull-White Model

The aim of this section is to describe how the theory of Section 12 has been imple-
mented in our particular simulation model and PE fund setting. First, we show how
the Hull-White model was calibrated and present the calibration results. Second,
we describe how short rates were simulated and the assumptions that were made.
Third, we describe how FX rates were simulated and the assumptions that were
made. Last, some aspects regarding pricing of the hedging derivatives under an FX
model with stochastic short rates are presented and our assumptions are presented
and motivated.

13.1 Calibration of the Hull-White Model to Market Data

This section sets out to present how the Hull-White model was calibrated to mar-
ket data. We begin by determining the coefficients a and σ(t) by pricing caplets
according to Eq. 12.125 and seeking the values of a and σ(t) that fit the theoretical
caplet prices to the caplet prices observed on the market best. After that, using the
obtained values of a and σ(t) and yield market data, we determine the piecewise
constant function Θ according to Proposition 12.5.

The model is calibrated for each country separately using the market price of ten
different caplets, Π∗

i , i = 1, ..., 10, for each country. Caplet prices have been col-
lected for two different maturities each year for five years. All caplets used in the
calibration have a three months tenor. Using the LSE approach we seek estimates
of a and σ(t) such that

(â, σ̂(t)) = arg min
a,σ(t)

10∑
i=1

(
Πi

Π∗
i

− 1

)2

. (13.1)

Performing the above minimization we sometimes found that global minimums were
obtained for a < 0 or a very large. Since by definition a has to be bigger than zero
the first finding is problematic. Also, when comparing to the results of Gurrieri
et al. (2009) [15] we came to the conclusion that a should be of size 0%-12%.
Therefore, instead of seeking global minimums we sought a local minimum in the
given range. Moreover, we found that the least square errors became the smallest
when we allowed σ(t) to be piecewise constant. In more detail, we allow for sigma
to change value for each caplet maturity, i.e. each half year. The results obtained
are presented in Table 13.1 below and in Figure B.14 in the Appendix. Note that
σ̂low and σ̂high are the smallest respectively largest value of the piecewise constant
σ̂(t).
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EU SE NO GB US
LS error 0.078 0.026 0.006 0.003 0.016
â 0.030 0.086 0.039 0.037 0.106
σ̂low − σ̂high 0.006-0.020 0.007-0.015 0.014-0.020 0.008-0.017 0.005-0.008

Table 13.1: Least square fitted parameters for the Hull-White model

After having determined the values of a and σ(t) that best fits the theoretical caplet
prices to the caplet prices observed on the market we proceed by determining the
piecewise constant function Θ according to Proposition 12.5. To exemplify how
the curves look we show the Swedish case below in Figure 13.1. The curves of all
markets are found in Figure B.15 in Appendix B.
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Figure 13.1: Observed and fitted Hull-White curves for Sweden

Having obtained piecewise constant functions Θ(T ) for all five countries the calibra-
tion of the Hull-White model is complete. Moreover, since the least square errors
obtained when comparing the theoretical caplet prices to the actual ones are fairly
small the calibrated model is believed to be accurate.

13.2 Simulation of Short Rates

In order to simulate future short rates we use our calibrated Hull-White model.
Since interest rates are highly correlated to one another the correlation between
the historical yields needs to be taken into account when simulating future short
rates. The historical correlations are given in Table 13.2.
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EU SE NO GB US
EU 1 0.984 0.976 0.992 0.948
SE 0.984 1 0.974 0.989 0.890
NO 0.976 0.974 1 0.980 0.944
GB 0.992 0.989 0.980 1 0.930
US 0.948 0.890 0.944 0.930 1

Table 13.2: Correlation between the historical yields

Weekly interest rates are recursively simulated according to

rit = rit−1 +
(
Θ(t)− arit−1

)
+ σi

t−1

(
W i

t −W i
t−1

)
, t = 1, ..., 520 (13.2)

ri0 = y∗,i0 , (13.3)

where i = 1, ..., 5 corresponds to the five cases EU, SE, NO, GB and US respec-
tively and correlated Wiener processes are simulated as discussed in Section F.1.
Moreover, the start date, t = 0, is the last date of the historical data, i.e. December
29, 2017. The time, t, is measured in weeks, hence the other present parameters,
a, σ(t) and y∗0, must be transformed into effective weekly values.

Figure 13.2 shows the first 1, 000 trajectories of the full simulated sample of n =
10, 000 simulated interest rates. The results are expected, since σ(t) is fairly small
and a mean reversion is present the simulated rates do not depart significantly from
their respective markets’ forward rate curves. Also, by the Expectation Hypothesis
stated in Proposition 12.9, this should be the case since f(t, T ) = ET [r(T )|Ft].
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Figure 13.2: Simulated short rates for the five different markets
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13.3 Simulation of FX rates

The simulation of FX rates using the random walk method is very similar to the
one described in Section 8.2 with some important differences. Instead of repeating
the description of the full procedure we direct the reader to that section and instead
focus on pointing out the differences.

As before the European market is considered to be the domestic market and the
four other markets are considered to be foreign markets 1 to 4. The following
formula describes how the FX rates are modelled,

X i
t = X i

0 exp

( t∑
s=1

(
rd(s)− rif (s)

)
− 1

2
σ2
Xit+ σXiW i

t

)
, (13.4)

where i = 1, ..., 4 corresponds to the four cases SEK, NOK, GBP and USD re-
spectively. In contrast to before we now use our simulated short rates instead of
constant ones, thus the drift term has to be summed over instead of just amplified
by the time t. The same implied volatilities as before are used.

It is important to point out that we have not inferred a correlation between the
Wiener processes of the short rates and the Wiener processes of the FX rates.
Existing literature, e.g. Clark (2011) [6], does not seem to cover this topic when
considering a model with several FX rates and not just one. However, there is of
course a correlation between the Wiener processes of the FX rates and the Wiener
processes of the interest rates. Though, to account for the dependence between the
FX rates and interest rates further than just through Eq. 13.4 is to be out of the
scope of this work.

Using the random walk method with implied FX volatilities and simulated short
rates the development of the FX rates can now be simulated. MATLAB is used to
simulate correlated Wiener processes driving the FX rates as discussed in Section
7.3. The results obtained are very similar to the ones obtained in the constant
interest case. Probability distribution functions of n = 10, 000 simulations after 40
quarters for all FX rates are found in Figure B.17 in Appendix B.

13.4 Derivative Pricing

In the two following subsections we show how we price the hedging derivatives and
clarify the assumptions that have been made in order to price them under the FX
model with stochastic short rates.

13.4.1 Forwards

Valuing forwards and rolling forwards requires the computation of a forward rate.
This is fairly easily done by using the Hull-White term structure given in Proposi-
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tion 12.5 and then using the relation

f(t, T ) = − ∂

∂T
ln
(
p(t, T )

)
. (13.5)

No further assumptions are required.

13.4.2 Options

In order to be able to use the pricing formula of Proposition 12.10 some assumptions
have to be made. Below we present the assumptions and their rationale.

The general option pricing formula, Eq. 12.103, for a call option on the FX rate
reads

Π(0,X ) = X(0)e−
∫ T
0 rf (s)dsQd(XT ≥ K)− p(0, T )KQT (XT ≥ K). (13.6)

In order to be able to evaluate this formula we want to transform it to the form of
Geman-El Karoui-Rochet’s formula. Noting that the simulated short rates, shown
in Figure 13.2, only slightly deviates from their mean we assume that the simulated
short rates are deterministic. Now we can use Lemma 12.1 to deduce that under
our assumption Qd = QT and Qf = QT . This fact allows us to write Eq. 13.6 as

Π(0,X ) = X(0)e−
∫ T
0 rf (s)dsN [d1]− pd(0, T )KN [d2] (13.7)

= X(0)pf (0, T )N [d1]− pd(0, T )KN [d2], (13.8)

where d2 and d1 are given by

d2 =
ln X(0)

Kpd(0,T )
− 1

2
Σ2

S,T (T )√
Σ2

S,T (T )
, (13.9)

d1 = d2 +
√

Σ2
S,T (T ). (13.10)

Furthermore, we also assume that σS,T (t) = σimplied, i.e. the same implied volatil-
ities that were used in the model with constant interest rates. This implies that
σS,T (t) not only is deterministic but also constant and hence we can write

Σ2
S,T (T ) =

∫ T

0

||σS,T (t)||2dt (13.11)

=

∫ T

0

||σimplied||2dt = σ2
implied · T. (13.12)

The bond prices used as discount factors, pf (0, T ) and pd(0, T ) are observable on the
market at time t = 0. However, as the model time evolves and new investments are
made we will be required to compute these prices at new times, then the Hull-White
terms structure equation given in Eq. 12.78 is used.
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14 Results and Discussion
This section presents the results of the hedging strategies under the random walk
simulation method with stochastic interest rates. The difference to the base model is
that short rates now also are simulated, which have many consequences as described
in Sections 12 and 13.

14.1 Foreign Exchange Rate Results

Section 13.3 described the methodology and presented the results of the random
walk simulation method of FX rates with stochastic interest rates. Since there on
average is a negative drift in the FX rates a systematic negative FX effect on the
portfolio companies is implied as in the base model.

14.2 Performance of FX Hedging Strategies under the RW
Simulation Method with Stochastic Interest Rates

A summary of the results in Tables D.1-D.8 in Appendix D is shown in Tables 14.1
and 14.2. Even though short rates are simulated the obtained results are similar
compared to the case of constant risk free interest rates, comparing the results to
Tables C.1-C.8 in Appendix C. Hence, the assumption of constant risk free interest
rates does not have a crucial impact on the performances of the hedging strategies.

Comparing the hedging strategies’ performances within each fund and between the
funds we observe very similar results leading to the same conclusions as in the
random walk simulation with drift. Hence the previous assumption of constant risk
free interest rates does not affect one’s decisions regarding if and how to hedge.

Metric Un-
hedged

Forward Rolling
forward

CallKC
3

PutKP
3

StrangleKS
3

IRR 1,1,1 1,1,1 1,1,1 4,4,4 4,4,4 6,6,4
VaR 3,4,4 2,2,2 1,1,1 5,6,6 3,3,3 5,5,4
ES 3,4,4 2,2,2 1,1,1 5,6,6 3,3,3 5,5,4
SR 4,4,4 2,2,2 1,1,1 5,6,6 3,3,3 5,5,4

Table 14.1: Ranking of the hedging strategies’ performances for the equity funds (A,B,C)
under the RW simulation of FX rates with stochastic interest rates

Metric Un-
hedged

Forward Rolling
forward

CallKC
3

PutKP
3

StrangleKS
3

IRR 1,1,1 1,1,1 1,1,1 4,4,4 4,4,4 6,6,4
VaR 4,4,5 2,2,2 1,1,1 6,6,6 3,3,3 5,5,4
ES 4,4,5 2,2,2 1,1,1 6,6,6 3,3,3 5,5,4
SR 4,4,5 2,2,2 1,1,1 6,6,6 3,3,3 5,5,4

Table 14.2: Ranking of the hedging strategies’ performances for the infrastructure funds
(A,B,C) under the RW simulation of FX rates with stochastic interest rates
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Part IV

Extended Model II: Dollar
Denominated Funds

15 Methodology, Results and Discussion

So far EUR denominated funds have been considered. Since the European risk free
interest rate is the lowest among all risk free interest rates considered in this thesis,
having EUR denominated funds will imply a systematic negative FX effect on
the non-EUR denominated portfolio companies under the random walk simulation
method, as described in detail in Section 11.1. Hence, the IRR of the unhedged
strategy for the equity funds and infrastructure funds is lower than the expected
IRR of 20% and 12% respectively, as seen in Tables C.1 and C.5 in Appendix C.

Since the American risk free interest rate is the highest among all risk free interest
rates considered in this thesis, it is of great interest to analyse the performance of
USD denominated funds under the random walk simulation method with constant
risk free interest rates. The remainder of this section is organised as follows. First
the methodology is described. Then the FX rate results and the results of the
hedging strategies are presented.

15.1 Methodology

Theoretically, there will be a positive drift in FX rates quoted to the USD because
of the interest rate difference, as seen in Eq. 8.1 which we recall as

X i
t = X i

0 exp

((
rd − rif −

1

2
σ2
Xi

)
t+ σXiW i

t

)
, (15.1)

where i = 1, ..., 4 corresponds to the four cases SEK, NOK, GBP and EUR respec-
tively, and where the American market is considered to be the domestic market and
the four other markets are considered to be foreign markets 1 to 4. There will be
a positive drift in FX rates because rd > rif for all i. We use the same simulation
technique for the random walk simulation method and the same historical data as
previously.

The USD denominated funds are built in exactly the same way as the EUR denom-
inated funds were built, i.e. as in Appendix A with the only difference that USD
and EUR have switched places. For example, global PE fund A now consists of
50% USD and 12.5% EUR, focusing on the initial values of the portfolio companies.
After these changes, the rest of the methodology is exactly the same as earlier in
the thesis.
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15.2 Foreign Exchange Rate Results

The results of the simulated FX rates quoted to the USD are presented in Figures
B.18 and B.19 in Appendix B. The simulated FX rates quoted to the USD in Figure
B.18 can be compared to the simulated FX rates quoted to the EUR in Figure B.3
in Appendix B. In Figure B.18 we see a positive drift whilst in Figure B.3 we see
a negative drift, as expected. The positive drift will have a systematic positive
FX effect on the non-USD denominated portfolio companies, which easily can be
understood by the following simplified example.

Consider a USD denominated fund that invests in a portfolio company with a NAV
of USD 10 million in SEK, and makes an exit of this portfolio company in one year.
The transaction is all-equity financed, and the value of the portfolio company in its
denominated currency does not change. Also, assume that the SEK/USD FX rate
is 0.1 now and 0.11 in one year, i.e. the FX rate has increased with 10% over the
year. Hence, the portfolio company is bought for SEK 100 (= 10

0.1
) million. After

one year, at exit, the NAV of the company is still SEK 100 million but USD 11
(= 100 · 0.11) million. Hence, the FX effect for the PE fund has been positive, as
will be the case on average for all non-USD denominated portfolio companies, due
to the positive drift.

15.3 Performance of Foreign Exchange Hedging Strategies
for US Dollar Denominated Funds under the Random
Walk Simulation Method

The results of the performances of the different hedging strategies are presented in
Tables E.5-E.8 in Appendix E and summarised in Tables 15.1 and 15.2. There are
several differences compared to the results of the EUR denominated funds.

We begin by noting that the systematic FX effect affects the value of the portfolio
companies positively, hence the mean IRRs of the unhedged case are higher than
the expected IRR of 20% for the equity funds and 12% for the infrastructure funds.
Furthermore, in the unhedged case the EUR heavy fund, Fund C, outperforms the
SEK heavy fund, Fund B, which in turn outperforms the equally weighted fund,
Fund A, in terms of mean IRR. This is due to the EUR/USD rate having the
most positive drift whereas the SEK/USD rate has the second most positive drift.
Moreover, in terms of VaR, ES and Sharpe ratio, i.e. measures accounting for
volatility in returns, the most diversified fund, Fund A, outperforms the other two
when observing the local funds. For the global funds, the funds’ performances are
equal. Thus the effect of diversification still has a larger impact than the FX drift
effect on these measures, but the relative difference has diminished compared to
the EUR denominated funds.

Comparing the hedging strategies’ performances within each fund and between the
funds we mainly observe similar results leading to the same conclusion as in the base
model part’s random walk simulation method with drift. The put option strategy
performs better in a USD denominated fund relative to a EUR denominated fund.
This is explained by the pricing of the option which accounts for the drift in FX
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rates and therefore the put option is relatively cheaper in the current setting. The
rationale for the option being cheaper is that the strike price is a fraction of the
current FX rate which is below the expected future FX rate and hence the option
will be exercised less frequently implying a lower price. Moreover, the opposite is
true for the call options, they are relatively more expensive in the current setting
implying that the call option strategy performs worse.

Metric Un-
hedged

Forward Rolling
forward

CallKC
3

PutKP
3

StrangleKS
3

IRR 1,1,1 1,1,1 1,1,1 5,5,5 1,1,1 5,5,5
VaR 4,4,4 2,2,2 1,1,1 6,6,6 3,3,3 5,5,5
ES 4,4,4 2,2,2 1,1,1 6,6,6 3,3,3 5,5,5
SR 4,4,4 2,2,2 1,1,1 6,6,6 3,3,3 5,5,5

Table 15.1: Ranking of the hedging strategies’ performances for the equity funds (A,B,C)
under the random walk simulation of FX rates for US dollar denominated funds

Metric Un-
hedged

Forward Rolling
forward

CallKC
3

PutKP
3

StrangleKS
3

IRR 1,1,1 1,1,1 1,1,1 5,5,5 1,1,1 5,5,5
VaR 4,4,4 2,2,2 1,1,1 6,6,6 3,3,3 5,5,5
ES 5,5,4 2,2,2 1,1,1 6,6,6 3,3,3 4,4,5
SR 4,4,4 2,2,2 1,1,1 6,6,6 3,3,3 5,5,5

Table 15.2: Ranking of the hedging strategies’ performances for the infrastructure funds
(A,B,C) under the random walk simulation of FX rates for US dollar denominated funds

Even though the forward strategies are not performing relatively better for USD
denominated funds than for EUR denominated funds they might still be an attrac-
tive alternative for the fund to implement. The reason is that the fund can use
them to secure a higher mean IRR than the expected NAV growth of the portfolio
companies. The argument follows below.

The forward FX rate FT0,T1 , i.e. standing in time t = T0, to time t = T1, T1 > T0,
quoted to the USD is calculated as

F i
T0,T1

= X i
T0
exp

(
(rd − rif )(T1 − T0)

)
, (15.2)

where i = 1, ..., 4 corresponds to the four cases SEK, NOK, GBP and EUR respec-
tively, X i

T0
is the FX rate quoted to the USD at time T0. The forward rate is higher

than the FX rate at time T0 since rd > rif for all i. In other words, the slope of the
forward curve is positive, which is equivalent to having a positive drift in the FX
rate. Since the forward rate is the predetermined forward price when entering for-
ward contracts, the owner of the forward contract will make money on the forward
contract in the case of a movement of the FX rate that ends below the forward
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rate. However, in this case the fund will loose money on the portfolio companies.
In a case where the FX rate becomes larger than the forward rate, the opposite is
true, the owner of the forward contract will loose money on the contract and gain
on the portfolio companies. Hence, there is no net gain arising from hedging but
the advantage rather comes from the positive slope of the forward curve, which the
fund can lock in. It is however important to understand that by doing this the fund
locks in the expected FX effect and not a higher than expected FX effect. This is
indicated by the mean IRR results since the forward strategies and the unhedged
strategy are tied.

To conclude, everything else equal it is better to denominate a fund in a currency
whose market has a higher risk free interest rate than those of the other portfolio
companies’ markets due to the favourable effects from the positive slope of the FX
forward curve. More specifically, using the data in this thesis, it is better to have
a USD denominated PE fund if investing in portfolio companies denoted in SEK,
NOK, GBP and EUR since the American risk free interest rate is higher than the
other risk free interest rates.
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Part V

Conclusion

16 Conclusion, Limitations and Future Research

16.1 Conclusion

This thesis has set out to examine if and how private equity funds should hedge
their FX exposure. In order to answer the research question at hand a simulation
model has been constructed and implemented under different scenarios. FX rates
have been simulated in five different ways and twelve theoretical funds have been
investigated. Furthermore, the underlying mathematical theory for the main FX
simulation method and pricing of the derivatives originates from the Black-Scholes
framework.

The main result of this thesis is that private equity funds cannot achieve a higher
mean IRR through hedging of FX exposure independent of which currency the fund
is denominated in. This result is expected since it is in line with no arbitrage theory
stating that higher risk should be rewarded with higher mean return. However,
hedging strategies yielding the same mean IRR but performing better in terms of
performance measures accounting for volatility of returns have been found.

The hedging strategies using forward contracts, the forward strategy and the rolling
forward strategy, have the same mean IRR as the unhedged fund but perform
better in terms of Value-at-Risk, Expected shortfall and Sharpe ratio. Having the
same mean IRR but lower volatility implies a better performing hedging strategy.
Thus, we conclude that the rolling forward strategy is the best hedging strategy
followed by the forward strategy. Therefore, the null hypothesis of this thesis can
be rejected and the alternative hypothesis can be accepted. The hedging strategies
using options all have a lower mean IRR than the unhedged fund. Though, the
put option strategy with optimal strike prices has a better Value-at-Risk, Expected
shortfall and Sharpe ratio performance than the unhedged fund.

No differences affecting the conclusion have been observed between neither the local
and global nor the equity and infrastructure funds investigated. Though, hedging
have been found to be relatively more efficient in less diversified funds, which is an
expected result. Furthermore, different FX simulation methods indicate the same
results. We found that the conclusions are independent of whether the current or
forward FX rate is a better approximation for the future FX rate. Moreover, the
extended models including stochastic interest rates and dollar denominated funds
imply the same conclusion as previously. Hence the results obtained seem to be
robust and independent of the assumptions of constant risk free interest rates as
well as underlying fund currency. Finally, due to the slope of the forward curve
we observe a positive FX effect for funds denominated in a currency with higher
risk free interest rate than those of the portfolio companies’ currencies. This FX
effect can be captured using forward contracts but is not an improvement over the
expected outcome.

V Conclusion 90



16 CONCLUSION, LIMITATIONS AND FUTURE RESEARCH

16.2 Limitations

As described throughout the thesis several assumptions have been made. Although
we expect their impact to be minor they might still affect the results to some extent.
The most important simplifications compared to reality are the assigned constant
growth rates of the portfolio companies as well as their assigned currency mixes.
These assumptions imply that each fund has a systematic NAV evolvement in each
currency due to how currencies and growth rates are paired. Thus, by construction
of the model, the FX exposure will grow more in some currencies than in other.
Ideally, both growth rate and currency assigning had been randomised. Moreover,
investment time of each portfolio company should ideally have been randomised as
well rather than assumed.

We have assumed that the hedging derivatives can be bought on a market and used
by the funds which might not be the case. Forward contracts might be practically
infeasible for funds to implement since regulation requires the fund to provide col-
lateral for the hedge. Moreover, rolling forwards give rise to periodic cash flows
which are undesired by the fund. In view of these facts the conclusion of the thesis
might not be implementable in practice. Moreover, no particular notice has been
given to transaction costs which might be problematic from a practical perspective.

Finally, a data related issue might be that historical data has been collected from a
certain time interval. During this time interval, the market might have had certain
characteristics that are not representative for other time intervals.

16.3 Contribution and Future Research

This thesis contributes to the field of research concerning FX hedging within private
equity, from the private equity firms’ point of view, since there to our knowledge
does not exist any scientific previous research within this field. We hope that this
work can contribute to the reader’s enhanced understanding and other research
through defining, structuring and modelling a private equity FX hedging universe.

There are numerous ways of extending our setting to perform a more general and
broader analysis. First, to address the issues listed as abovementioned limitations,
i.e. stochastic growth rates and randomised currency assigning of the portfolio com-
panies as well as randomised investment time of each portfolio company. Second,
other interesting aspects to investigate further include to (i) do the same analysis
for currencies within emerging markets, (ii) hedge entry NAV instead of expected
exit NAV, (iii) model FX rates with other stochastic processes than Brownian mo-
tions, e.g. Cauchy processes and (iv) update hedges during the life of the fund
depending on holding times of the portfolio companies.

Two other studies to investigate the same research question as in this thesis could be
to (i) evaluate other FX risks within private equity such as the one arising between
signing and closing an acquisition of a portfolio company and (ii) divide portfolio
companies in different industries and include correlations between industries and
FX rates, which could affect hedging decisions.

V Conclusion 91



REFERENCES

References

[1] Berk, Jonathan and Peter DeMarzo, Corporate Finance, 2nd edn., Boston, Stan-
ford University, Pearson, 2011.

[2] Björk, Tomas, Arbitrage Theory in Continuous Time, New York, Oxford Uni-
versity Press, 2009.

[3] Black, Fisher, ’Equilibrium Exchange Rate Hedging’, The Journal of Finance,
Vol. 45, No. 3, 1990, pp. 899-907.

[4] Brigo, Damiano and Fabio Mercurio, Interest Rate Models - Theory and Prac-
tice: With Smile, Inflation and Credit, 2nd edn., New York, Springer, 2006.

[5] Black, Fisher and Myron Scholes, ’The Pricing of Options and Corporate Lia-
bilities’, Journal of Political Economy, Vol. 81, No. 3, 1973, pp. 659-683.

[6] Clark, Iain J., Foreign Exchange Option Pricing - A Practitioner’s Guide,
United Kingdom, Wiley, 2011.

[7] De Santis, Giorgio and Bruno Gérard, ’How big is the premium for currency
risk?’, Journal of Financial economics, Vol. 49, No. 3, 1998, pp. 375-412.

[8] Duffie, Darrell and Rui Kan, ’A Yield-Factor Model of Interest Rates’, Mathe-
matical Finance, Vol. 6, 1996, pp. 379-406.

[9] Froot, Kenneth A., Scharfstein, David S. and Jeremy C. Stein, 1993, ’Risk
Management: Coordinating Corporate Investment and Financing Policies’, The
Journal of Finance, Vol. 48, No. 5, pp. 1629-1658.

[10] Froot, Kenneth A., Scharfstein, David S. and Jeremy C. Stein , 1994, ’A Frame-
work for Risk Management’, Journal of Applied Corporate Finance, pp. 22-32.

[11] Garman, Mark B. and Steven W. Kohlhagen, ’Foreign Currency Option Val-
ues’, Journal of International Money and Finance, Vol. 2, 1983, pp. 231-237.

[12] Geman, Hélyette, El Karoui, Nicole and Jean-Charles Rochet, ’Changes of
Numéraire, Changes of Probability Measure and Option Pricing’, Journal of
Applied Probability, Vol.32, 1995, pp. 443-458.

[13] Girsanov, Igor Vladimirovich, ’On Transforming a Certain Class of Stochas-
tic Processes by Absolutely Continuous Substitution of Measures’, Theory of
Probability and its Applications, Vol. 5, Issue 3, 1960, pp. 285-301.

[14] Glen, Jack and Phillipe Jorion, ’Currency hedging for international portfolios’,
The Journal of Finance, Vol. 48, No. 5, 1993, pp. 1865-1886.

[15] Gurrieri, Sébastien, Masaki Nakabayashi and Tony Wong, ’Calibration Meth-
ods of Hull-White Model’, Risk Management Department, Mizuho Securities,
Tokyo, 2009.

[16] Hull, John and Alan White, 1993, ’Pricing Interest-Rate-Derivative Securities’,
Review of Financial Studies, Vol. 3, No. 4, 1990, pp. 573-592.

[17] Hult, Henrik, Lindskog, Filip, Hammarlid, Ola and Carl Johan Rehn, Risk and
Portfolio Analysis: Principles and Methods, New York, Springer, 2012.

92



REFERENCES

[18] Itô, Kiyosi, ’Stochastic Integral’, Proc. Imperial Acad., Vol. 20, Tokyo, 1944,
pp. 519-524.

[19] Karatzas, Ioannis and Steven E. Shreve, Brownian Motion and Stochastic Cal-
culus, 2nd edn., New York, Springer, 1998.

[20] Merton, Robert C., ’The Theory of Rational Option Pricing’, Bell Journal of
Economics and Management Science, Vol. 4, No. 1, 1973, pp. 141-183.

[21] Modigliani, Franco and Merton H. Miller, 1958, ’The Cost of Capital, Corpo-
ration Finance and the Theory of Investment’, The American Economic Review,
Vol. 48, No. 3, 1958, pp. 261-297.

[22] Morey, Mattew R. and Marc W. Simpson, 2001, ’To hedge or not to hedge:
the performance of simple strategies for hedging foreign exchange risk’, Journal
of Multinational Financial Management, Vol. 11, No. 2, 2001, pp. 213-223.

[23] Perold, F. André and Evan C. Schulman, 1988, ’The Free Lunch in Currency
Hedging: Implications for Investment Policy and Performance Standards’, Fi-
nancial Analysts Journal, Vol. 44, No. 3, 1988, pp. 45-50.

[24] Swensen, David F., Pioneering Portfolio Management: An Unconventional Ap-
proach to Institutional Investment, Fully revised and updated edn., New York,
Free Press, 2009, pp. 63, 112, 181.

[25] Øksendal, Bernt, Stochastic Differential Equations: An Introduction with Ap-
plications, 5th edn., New York, Springer-Verlag Heidelberg, 1998.

93



INTERVIEWS

Interviews

[a] Bygge, Johan, EQT AB [interviewed by Carl Åkerlind], October 11, Hong Kong.

[b] Lindberg, Magnus, EQT AB [interviewed by Carl Åkerlind and Filip
[b] Kwetczer], February 6, 2018, Stockholm, Sweden.

[c] Strömberg, Per, Stockholm School of Economics [interviewed by Carl Åkerlind
[c] and Filip Kwetczer], February 8, 2018, Stockholm, Sweden.

[d] Sylvan, Fredrik, Nordea Bank AB [interviewed by Carl Åkerlind and Filip
[d] Kwetczer], January 31, 2018, Stockholm, Sweden.

94



A FUND DATA

Appendices

A Fund Data

A.1 Global Fund A

Figure A.1: Global fund A, the fund invests in global companies, i.e. companies that have
FX exposures in several currencies

Portfolio Company Quarterly
Growth (Equity)

Quarterly Growth
(Infrastructure)

Investment
Quarter

GA1 3.56% 2.18% 1
GA2 4.66% 2.87% 1
GA3 8.78% 5.53% 1
GA4 0.00% 0.00% 1
GA5 4.66% 2.87% 5
GA6 4.66% 2.87% 5
GA7 5.74% 3.56% 5
GA8 3.56% 2.18% 5
GA9 5.74% 3.89% 9
GA10 6.78% 4.22% 9
GA11 5.74% 3.56% 9
GA12 4.28% 2.87% 9

Table A.1: Characteristics of global fund A, investments take place in the beginning of
each quarter
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A.2 Global Fund B

Figure A.2: Global fund B, the fund invests in global companies, i.e. companies that have
FX exposures in several currencies

Portfolio Company Quarterly
Growth (Equity)

Quarterly Growth
(Infrastructure)

Investment
Quarter

GB1 3.56% 2.18% 1
GB2 4.66% 2.87% 1
GB3 8.78% 5.53% 1
GB4 0.00% 0.00% 1
GB5 4.66% 2.87% 5
GB6 4.66% 2.87% 5
GB7 5.74% 3.56% 5
GB8 3.56% 2.18% 5
GB9 5.74% 3.89% 9
GB10 6.78% 4.22% 9
GB11 5.74% 3.56% 9
GB12 4.28% 2.87% 9

Table A.2: Characteristics of global fund B, investments take place in the beginning of
each quarter
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A.3 Global Fund C

Figure A.3: Global fund C, the fund invests in global companies, i.e. companies that have
FX exposures in several currencies

Portfolio Company Quarterly
Growth (Equity)

Quarterly Growth
(Infrastructure)

Investment
Quarter

GC1 3.56% 2.18% 1
GC2 4.66% 2.87% 1
GC3 8.78% 5.53% 1
GC4 0.00% 0.00% 1
GC5 4.66% 2.87% 5
GC6 4.66% 2.87% 5
GC7 5.74% 3.56% 5
GC8 3.56% 2.18% 5
GC9 5.74% 3.89% 9
GC10 6.78% 4.22% 9
GC11 5.74% 3.56% 9
GC12 4.28% 2.87% 9

Table A.3: Characteristics of global fund C, investments take place in the beginning of
each quarter
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A.4 Local Fund A

Figure A.4: Local fund A, the fund only invests in local companies, i.e. companies that
only have FX exposures in one currency

Portfolio Company Quarterly
Growth (Equity)

Quarterly Growth
(Infrastructure)

Investment
Quarter

LA1 3.56% 2.18% 1
LA2 4.66% 2.87% 1
LA3 8.78% 5.53% 1
LA4 0.00% 0.00% 1
LA5 4.66% 2.87% 5
LA6 4.66% 2.87% 5
LA7 5.74% 3.56% 5
LA8 3.56% 2.18% 5
LA9 5.74% 3.89% 9
LA10 6.78% 4.22% 9
LA11 5.74% 3.56% 9
LA12 3.51% 2.55% 9

Table A.4: Characteristics of local fund A, investments take place in the beginning of each
quarter
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A.5 Local Fund B

Figure A.5: Local fund B, the fund only invests in local companies, i.e. companies that
only have FX exposures in one currency

Portfolio Company Quarterly
Growth (Equity)

Quarterly Growth
(Infrastructure)

Investment
Quarter

LB1 3.56% 2.18% 1
LB2 4.66% 2.87% 1
LB3 8.78% 5.53% 1
LB4 0.00% 0.00% 1
LB5 3.56% 2.18% 5
LB6 3.56% 2.18% 5
LB7 5.74% 4.00% 5
LB8 6.78% 4.22% 5
LB9 3.56% 2.18% 9
LB10 5.74% 4.22% 9
LB11 5.74% 3.56% 9
LB12 3.47% 2.18% 9

Table A.5: Characteristics of local fund B, investments take place in the beginning of each
quarter
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A.6 Local Fund C

Figure A.6: Local fund C, the fund only invests in local companies, i.e. companies that
only have FX exposures in one currency

Portfolio Company Quarterly
Growth (Equity)

Quarterly Growth
(Infrastructure)

Investment
Quarter

LC1 3.56% 2.18% 1
LC2 4.66% 2.87% 1
LC3 8.78% 5.53% 1
LC4 0.00% 0.00% 1
LC5 3.56% 2.18% 5
LC6 3.56% 2.18% 5
LC7 5.74% 4.00% 5
LC8 6.78% 4.22% 5
LC9 3.56% 2.18% 9
LC10 5.74% 4.22% 9
LC11 5.74% 3.56% 9
LC12 3.47% 2.18% 9

Table A.6: Characteristics of local fund C, investments take place in the beginning of each
quarter
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B Foreign Exchange Rates Simulations

B.1 Historical Rates
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Figure B.1: Historic development of risk free interest rates
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Figure B.2: Historic development of the SEK/EUR, NOK/EUR, GBP/EUR and
USD/EUR rates
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B.2 Random Walk Simulation Method
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Figure B.3: Expected development and example paths of the FX rates under the random
walk simulation method
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Figure B.4: Empirical distribution of n = 10, 000 simulated FX rates in 10 years under
the random walk simulation method
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B.3 Random Walk Simulation Method with Zero Drift
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Figure B.5: Expected development and example paths of the FX rates under the random
walk simulation method with zero drift
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Figure B.6: Empirical distribution of n = 10, 000 simulated FX rates in 10 years under
the random walk simulation method with zero drift
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B.4 Historical Simulation Method
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Figure B.7: Expected development and example paths of the FX rates under the historical
simulation method
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Figure B.8: Empirical distribution of n = 10, 000 simulated FX rates in 10 years under
the historical simulation method
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B.5 Q-Q Plots of Marginal Distributions for Copula Meth-
ods

-3 -2 -1 0 1 2 3

Standard Normal quantiles

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

S
E

K
/E

U
R

 l
o

g
 r

e
tu

rn
s
 q

u
a

n
ti
le

s

QQ plot of log returns of SEK/EUR against N(0,1)-tails

-4 -3 -2 -1 0 1 2 3 4

Standard Students t
17.92

 quantiles

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

S
E

K
/E

U
R

 l
o

g
 r

e
tu

rn
s
 q

u
a

n
ti
le

s

QQ plot of log returns of SEK/EUR against t
17.92

-tails

(a) SEK/EUR

-3 -2 -1 0 1 2 3

Standard Normal quantiles

-0.04

-0.02

0

0.02

0.04

0.06

N
O

K
/E

U
R

 l
o

g
 r

e
tu

rn
s
 q

u
a

n
ti
le

s

QQ plot of log returns of NOK/EUR against N(0,1)-tails

-5 -4 -3 -2 -1 0 1 2 3 4 5

Standard Students t
5.95

 quantiles

-0.05

0

0.05

N
O

K
/E

U
R

 l
o

g
 r

e
tu

rn
s
 q

u
a

n
ti
le

s

QQ plot of log returns of NOK/EUR against t
5.95

-tails

(b) NOK/EUR

-3 -2 -1 0 1 2 3

Standard Normal quantiles

-0.04

-0.02

0

0.02

0.04

G
B

P
/E

U
R

 l
o

g
 r

e
tu

rn
s
 q

u
a

n
ti
le

s

QQ plot of log returns of GBP/EUR against N(0,1)-tails

-4 -3 -2 -1 0 1 2 3 4

Standard Students t
10.28

 quantiles

-0.05

0

0.05

G
B

P
/E

U
R

 l
o

g
 r

e
tu

rn
s
 q

u
a

n
ti
le

s

QQ plot of log returns of GBP/EUR against t
10.28

-tails

(c) GBP/EUR

-3 -2 -1 0 1 2 3

Standard Normal quantiles

-0.04

-0.02

0

0.02

0.04

U
S

D
/E

U
R

 l
o

g
 r

e
tu

rn
s
 q

u
a

n
ti
le

s

QQ plot of log returns of USD/EUR against N(0,1)-tails

-4 -3 -2 -1 0 1 2 3 4

Standard Students t
9.97

 quantiles

-0.05

0

0.05

U
S

D
/E

U
R

 l
o

g
 r

e
tu

rn
s
 q

u
a

n
ti
le

s

QQ plot of log returns of USD/EUR against t
9.97

-tails

(d) USD/EUR

Figure B.9: Q-Q plots of the log-returns of the FX rates against normal and Student’s t
tails
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B.6 Gaussian Copula Simulation Method
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Figure B.10: Expected development and example paths of the FX rates under the Gaussian
copula simulation method
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Figure B.11: Empirical distribution of n = 10, 000 simulated FX rates in 10 years under
the Gaussian copula simulation method
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B.7 Student’s t Copula Simulation Method
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Figure B.12: Expected development and example paths of the FX rates under the Student’s
t copula simulation method
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Figure B.13: Empirical distribution of n = 10, 000 simulated FX rates in 10 years under
the Student’s t copula simulation method
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B.8 Random Walk Simulation Method with Stochastic Short
Rates
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Figure B.14: Fitted piecewise constant σ for the Hull-White model
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Figure B.15: Observed and fitted Hull-White curves for all markets
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Figure B.16: Expected development and example paths of the FX rates under the Random
Walk simulation method with stochastic short rates
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Figure B.17: Empirical distribution of n = 10, 000 simulated FX rates in 10 years under
the Random Walk simulation method with stochastic short rates
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B.9 Random Walk Simulation Method with US as Domestic
Market
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Figure B.18: Expected development and example paths of the FX rates under the random
walk simulation method with US as domestic market

Figure B.19: Empirical distribution of n = 10, 000 simulated FX rates in 10 years under
the random walk simulation method with US as domestic market
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C Performance of the Hedging Strategies - Base
Model

C.1 Random Walk Simulation of FX Rates, Equity Funds

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 19.43% 19.45% 19.45% 18.70% 18.90% 19.17% 18.59% 18.87% 19.24% 17.93% 18.38% 18.99%
GE B 19.69% 19.72% 19.71% 18.87% 19.10% 19.41% 18.94% 19.21% 19.54% 18.20% 18.66% 19.27%
GE C 18.99% 19.05% 19.05% 18.39% 18.56% 18.79% 18.09% 18.38% 18.78% 17.56% 17.99% 18.59%
LE A 19.46% 19.47% 19.49% 18.70% 18.91% 19.19% 18.59% 18.88% 19.26% 17.92% 18.38% 19.01%
LE B 19.70% 19.71% 19.72% 18.87% 19.10% 19.41% 18.94% 19.21% 19.55% 18.19% 18.66% 19.27%
LE C 19.30% 19.33% 19.34% 18.69% 18.87% 19.10% 18.35% 18.65% 19.07% 17.82% 18.26% 18.88%

Table C.1: IRR for the Equity Funds, Random Walk Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 17.37% 18.08% 18.21% 16.36% 16.63% 17.02% 16.91% 17.12% 17.35% 16.00% 16.42% 16.99%
GE B 17.02% 18.35% 18.47% 15.92% 16.23% 16.65% 17.16% 17.28% 17.28% 16.10% 16.50% 16.91%
GE C 16.44% 17.70% 17.86% 15.74% 15.94% 16.21% 16.46% 16.69% 16.89% 15.71% 16.15% 16.63%
LE A 17.42% 17.63% 18.06% 16.41% 16.69% 17.08% 16.76% 17.02% 17.31% 15.82% 16.31% 16.97%
LE B 17.08% 17.79% 18.04% 15.95% 16.29% 16.71% 16.83% 17.02% 17.17% 15.78% 16.23% 16.79%
LE C 16.92% 17.24% 17.54% 16.12% 16.36% 16.67% 16.15% 16.45% 16.86% 15.43% 15.91% 16.59%

Table C.2: VaR for the Equity Funds, Random Walk Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 16.90% 17.72% 17.90% 15.86% 16.16% 16.55% 16.53% 16.72% 16.90% 15.58% 16.00% 16.54%
GE B 16.45% 17.95% 18.16% 15.34% 15.67% 16.09% 16.76% 16.88% 16.87% 15.67% 16.08% 16.49%
GE C 15.90% 17.33% 17.58% 15.19% 15.41% 15.69% 16.07% 16.29% 16.48% 15.30% 15.72% 16.21%
LE A 16.92% 17.08% 17.67% 15.88% 16.17% 16.57% 16.31% 16.56% 16.86% 15.36% 15.84% 16.49%
LE B 16.48% 17.28% 17.72% 15.33% 15.67% 16.11% 16.39% 16.56% 16.68% 15.31% 15.76% 16.30%
LE C 16.36% 16.75% 17.20% 15.53% 15.78% 16.09% 15.69% 15.98% 16.37% 14.94% 15.42% 16.09%

Table C.3: ES for the Equity Funds, Random Walk Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 14.97 22.86 25.76 12.26 12.83 13.78 16.58 16.15 15.51 13.18 13.44 14.06
GE B 11.39 22.65 25.93 9.06 9.56 10.40 14.61 13.73 12.36 10.97 11.03 11.12
GE C 11.51 22.54 26.65 9.84 10.25 10.87 15.62 15.04 13.68 12.47 12.60 12.56
LE A 15.58 17.44 22.97 12.91 13.49 14.45 15.54 15.61 15.74 12.83 13.28 14.35
LE B 12.24 16.46 18.64 9.70 10.25 11.16 13.91 13.61 12.91 10.96 11.20 11.66
LE C 13.17 15.13 17.23 11.24 11.71 12.41 12.73 13.07 13.54 11.16 11.63 12.62

Table C.4: SR for the Equity Funds, Random Walk Simulation
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C.2 Random Walk Simulation of FX Rates, Infrastructure
Funds

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 11.41% 11.42% 11.42% 11.01% 11.12% 11.26% 11.16% 11.26% 11.38% 10.79% 10.99% 11.24%
GI B 11.65% 11.67% 11.67% 11.20% 11.32% 11.49% 11.42% 11.52% 11.63% 11.00% 11.20% 11.47%
GI C 11.04% 11.09% 11.09% 10.71% 10.80% 10.92% 10.83% 10.92% 11.03% 10.52% 10.70% 10.92%
LI A 11.43% 11.45% 11.46% 11.03% 11.14% 11.29% 11.18% 11.29% 11.40% 10.81% 11.00% 11.26%
LI B 11.65% 11.66% 11.67% 11.19% 11.32% 11.48% 11.41% 11.51% 11.62% 10.98% 11.19% 11.46%
LI C 11.20% 11.24% 11.25% 10.87% 10.97% 11.09% 10.97% 11.07% 11.19% 10.67% 10.85% 11.08%

Table C.5: IRR for the Infrastructure Funds, Random Walk Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 9.76% 10.55% 10.72% 9.10% 9.28% 9.53% 9.95% 9.96% 9.90% 9.32% 9.50% 9.66%
GI B 9.41% 10.77% 10.95% 8.69% 8.90% 9.18% 10.09% 10.04% 9.81% 9.36% 9.51% 9.57%
GI C 8.92% 10.20% 10.41% 8.48% 8.61% 8.79% 9.60% 9.63% 9.55% 9.09% 9.26% 9.37%
LI A 9.81% 10.19% 10.62% 9.13% 9.32% 9.58% 9.81% 9.85% 9.87% 9.17% 9.37% 9.63%
LI B 9.54% 10.48% 10.80% 8.79% 9.03% 9.31% 9.95% 9.96% 9.82% 9.23% 9.42% 9.57%
LI C 9.31% 9.97% 10.29% 8.82% 8.97% 9.15% 9.48% 9.57% 9.62% 8.99% 9.19% 9.43%

Table C.6: VaR for the Infrastructure Funds, Random Walk Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 9.40% 10.30% 10.54% 8.71% 8.91% 9.17% 9.69% 9.69% 9.60% 9.03% 9.20% 9.36%
GI B 8.92% 10.49% 10.77% 8.20% 8.41% 8.69% 9.82% 9.76% 9.52% 9.07% 9.22% 9.26%
GI C 8.48% 9.93% 10.24% 8.05% 8.19% 8.36% 9.33% 9.36% 9.27% 8.81% 8.97% 9.08%
LI A 9.41% 9.80% 10.38% 8.72% 8.92% 9.18% 9.50% 9.53% 9.53% 8.85% 9.05% 9.29%
LI B 9.05% 10.10% 10.61% 8.31% 8.53% 8.81% 9.65% 9.63% 9.47% 8.91% 9.09% 9.22%
LI C 8.87% 9.60% 10.07% 8.35% 8.51% 8.70% 9.16% 9.23% 9.25% 8.65% 8.85% 9.06%

Table C.7: ES for the Infrastructure Funds, Random Walk Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 11.02 21.03 26.60 8.62 9.10 9.92 12.87 12.34 11.61 9.60 9.75 10.23
GI B 7.97 20.37 26.66 6.14 6.52 7.17 10.97 10.10 8.82 7.76 7.76 7.78
GI C 8.00 19.98 27.05 6.66 6.98 7.47 11.56 11.04 9.85 8.81 8.89 8.86
LI A 11.23 14.84 22.73 8.85 9.33 10.16 11.89 11.74 11.54 9.20 9.47 10.21
LI B 8.73 15.96 21.72 6.60 7.03 7.78 11.22 10.61 9.55 8.02 8.12 8.34
LI C 9.50 14.50 19.05 7.72 8.13 8.77 10.48 10.60 10.58 8.54 8.85 9.51

Table C.8: SR for the Infrastructure Funds, Random Walk Simulation
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C.3 Random Walk Simulation of FX Rates with Zero Drift,
Equity Funds

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 20.10% 20.11% 20.11% 18.99% 19.27% 19.67% 19.43% 19.67% 19.97% 18.41% 18.89% 19.54%
GE B 20.08% 20.10% 20.11% 19.02% 19.30% 19.69% 19.44% 19.68% 19.97% 18.47% 18.95% 19.58%
GE C 20.06% 20.11% 20.10% 18.92% 19.20% 19.60% 19.40% 19.64% 19.93% 18.34% 18.82% 19.48%
LE A 20.09% 20.10% 20.12% 18.96% 19.25% 19.65% 19.40% 19.66% 19.96% 18.37% 18.86% 19.53%
LE B 20.10% 20.11% 20.13% 19.04% 19.32% 19.71% 19.46% 19.70% 19.99% 18.48% 18.96% 19.60%
LE C 20.10% 20.12% 20.13% 18.95% 19.24% 19.64% 19.42% 19.67% 19.97% 18.36% 18.84% 19.51%

Table C.9: IRR for the Equity Funds, Random Walk Simulation, Zero Drift

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 18.02% 18.74% 18.87% 16.56% 16.92% 17.46% 17.74% 17.91% 18.03% 16.37% 16.82% 17.47%
GE B 17.42% 18.72% 18.87% 16.05% 16.44% 16.94% 17.64% 17.76% 17.70% 16.32% 16.76% 17.21%
GE C 17.42% 18.70% 18.85% 16.01% 16.38% 16.88% 17.55% 17.71% 17.73% 16.14% 16.61% 17.15%
LE A 18.02% 18.22% 18.68% 16.54% 16.92% 17.45% 17.54% 17.77% 18.01% 16.16% 16.68% 17.42%
LE B 17.48% 18.21% 18.46% 16.08% 16.46% 16.97% 17.41% 17.57% 17.64% 16.08% 16.56% 17.13%
LE C 17.61% 18.05% 18.45% 16.15% 16.51% 17.03% 17.29% 17.49% 17.69% 15.86% 16.38% 17.09%

Table C.10: VaR for the Equity Funds, Random Walk Simulation, Zero Drift

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 17.52% 18.35% 18.55% 16.03% 16.41% 16.94% 17.35% 17.51% 17.61% 15.94% 16.41% 17.03%
GE B 16.78% 18.30% 18.56% 15.41% 15.80% 16.31% 17.27% 17.37% 17.27% 15.90% 16.34% 16.76%
GE C 16.90% 18.29% 18.54% 15.47% 15.84% 16.36% 17.16% 17.29% 17.30% 15.69% 16.16% 16.71%
LE A 17.53% 17.63% 18.27% 16.01% 16.39% 16.93% 17.09% 17.31% 17.53% 15.67% 16.20% 16.93%
LE B 16.83% 17.71% 18.14% 15.41% 15.80% 16.33% 16.96% 17.10% 17.11% 15.59% 16.06% 16.58%
LE C 17.09% 17.48% 18.07% 15.57% 15.96% 16.50% 16.80% 17.00% 17.18% 15.34% 15.86% 16.56%

Table C.11: ES for the Equity Funds, Random Walk Simulation, Zero Drift

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 15.27 23.52 26.60 12.04 12.60 13.63 16.97 16.57 15.88 12.92 13.22 13.94
GE B 11.64 22.93 26.48 9.06 9.56 10.45 14.77 13.91 12.57 10.83 10.92 11.11
GE C 11.49 22.33 26.19 8.98 9.41 10.18 14.05 13.45 12.42 10.37 10.51 10.79
LE A 15.77 17.83 23.73 12.45 13.03 14.08 15.80 15.92 15.98 12.44 12.92 14.04
LE B 12.53 17.07 19.31 9.69 10.24 11.20 14.37 14.04 13.26 10.95 11.21 11.71
LE C 13.61 16.05 18.92 10.47 11.00 11.96 14.18 14.23 14.10 11.00 11.38 12.23

Table C.12: SR for the Equity Funds, Random Walk Simulation, Zero Drift
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C.4 Random Walk Simulation with Zero Drift, Infrastruc-
ture Funds

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 12.02% 12.03% 12.04% 11.41% 11.56% 11.78% 11.79% 11.89% 11.99% 11.21% 11.44% 11.75%
GI B 12.01% 12.03% 12.03% 11.42% 11.57% 11.78% 11.79% 11.88% 11.98% 11.24% 11.46% 11.76%
GI C 12.00% 12.03% 12.03% 11.35% 11.51% 11.73% 11.78% 11.87% 11.97% 11.17% 11.40% 11.71%
LI A 12.02% 12.03% 12.04% 11.40% 11.55% 11.77% 11.79% 11.89% 11.99% 11.20% 11.44% 11.75%
LI B 12.02% 12.04% 12.05% 11.43% 11.59% 11.80% 11.80% 11.90% 12.00% 11.25% 11.48% 11.78%
LI C 12.02% 12.04% 12.05% 11.38% 11.53% 11.76% 11.80% 11.89% 11.99% 11.19% 11.42% 11.73%

Table C.13: IRR for the Infrastructure Funds, Random Walk Simulation, Zero Drift

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 10.33% 11.14% 11.32% 9.38% 9.62% 9.96% 10.52% 10.53% 10.47% 9.59% 9.81% 10.09%
GI B 9.74% 11.11% 11.32% 8.87% 9.12% 9.45% 10.42% 10.37% 10.12% 9.51% 9.70% 9.79%
GI C 9.80% 11.10% 11.31% 8.88% 9.12% 9.45% 10.38% 10.37% 10.21% 9.41% 9.63% 9.83%
LI A 10.36% 10.74% 11.19% 9.38% 9.63% 9.97% 10.38% 10.43% 10.45% 9.45% 9.70% 10.05%
LI B 9.92% 10.86% 11.18% 9.01% 9.26% 9.60% 10.36% 10.34% 10.18% 9.45% 9.66% 9.85%
LI C 10.05% 10.75% 11.17% 9.09% 9.33% 9.68% 10.29% 10.33% 10.26% 9.32% 9.57% 9.87%

Table C.14: VaR for the Infrastructure Funds, Random Walk Simulation, Zero Drift

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 9.95% 10.87% 11.14% 8.97% 9.22% 9.57% 10.27% 10.26% 10.16% 9.30% 9.52% 9.77%
GI B 9.24% 10.80% 11.14% 8.35% 8.60% 8.93% 10.16% 10.11% 9.83% 9.23% 9.41% 9.49%
GI C 9.38% 10.79% 11.12% 8.47% 8.71% 9.04% 10.11% 10.08% 9.89% 9.11% 9.32% 9.49%
LI A 9.95% 10.33% 10.94% 8.95% 9.20% 9.56% 10.06% 10.10% 10.10% 9.09% 9.35% 9.70%
LI B 9.38% 10.49% 10.98% 8.48% 8.74% 9.07% 10.05% 10.02% 9.81% 9.11% 9.32% 9.46%
LI C 9.59% 10.35% 10.94% 8.62% 8.87% 9.22% 9.96% 9.97% 9.89% 8.95% 9.19% 9.48%

Table C.15: ES for the Infrastructure Funds, Random Walk Simulation, Zero Drift

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 11.35 21.72 27.55 8.52 8.98 9.84 13.12 12.67 11.95 9.35 9.55 10.13
GI B 8.22 20.63 27.43 6.18 6.56 7.24 11.06 10.24 9.02 7.64 7.67 7.79
GI C 8.20 20.28 27.17 6.18 6.51 7.11 10.53 9.96 9.02 7.34 7.41 7.62
LI A 11.47 15.32 23.80 8.61 9.06 9.93 12.09 12.01 11.81 8.89 9.20 10.01
LI B 9.00 16.61 22.43 6.63 7.05 7.84 11.46 10.86 9.80 7.93 8.06 8.35
LI C 9.75 15.53 21.84 7.08 7.50 8.28 11.29 11.06 10.50 7.93 8.14 8.68

Table C.16: SR for the Infrastructure Funds, Random Walk Simulation, Zero Drift
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C.5 Historical Simulation of FX Rates, Equity Funds

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 19.62% 19.50% 19.45% 18.89% 19.10% 19.38% 18.59% 18.89% 19.33% 17.95% 18.42% 19.09%
GE B 19.47% 19.68% 19.69% 18.54% 18.80% 19.15% 18.63% 18.89% 19.24% 17.78% 18.25% 18.92%
GE C 20.49% 19.35% 19.17% 20.17% 20.28% 20.42% 18.80% 19.25% 19.95% 18.56% 19.09% 19.89%
LE A 19.85% 19.74% 19.59% 19.08% 19.30% 19.59% 18.79% 19.10% 19.54% 18.11% 18.60% 19.29%
LE B 19.56% 19.78% 19.74% 18.60% 18.87% 19.23% 18.72% 18.97% 19.33% 17.85% 18.32% 19.00%
LE C 20.16% 18.92% 19.14% 19.88% 19.98% 20.10% 18.44% 18.90% 19.61% 18.23% 18.76% 19.56%

Table C.17: IRR for the Equity Funds, Historical Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 17.13% 18.14% 18.24% 16.12% 16.41% 16.78% 16.98% 17.18% 17.27% 16.05% 16.48% 16.94%
GE B 17.06% 18.39% 18.47% 15.93% 16.26% 16.70% 17.11% 17.25% 17.25% 16.06% 16.48% 16.87%
GE C 17.27% 17.76% 17.94% 16.39% 16.65% 16.98% 16.64% 16.88% 17.15% 15.87% 16.32% 16.88%
LE A 17.38% 17.97% 18.24% 16.33% 16.63% 17.03% 16.87% 17.13% 17.39% 15.96% 16.42% 17.02%
LE B 17.01% 17.95% 18.07% 15.82% 16.17% 16.62% 16.77% 16.96% 17.02% 15.73% 16.16% 16.65%
LE C 17.28% 16.75% 17.37% 16.40% 16.65% 16.99% 16.22% 16.56% 17.01% 15.52% 16.03% 16.74%

Table C.18: VaR for the Equity Funds, Historical Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 16.60% 17.74% 17.94% 15.53% 15.84% 16.24% 16.59% 16.77% 16.87% 15.65% 16.06% 16.52%
GE B 16.48% 18.05% 18.16% 15.32% 15.66% 16.10% 16.76% 16.88% 16.81% 15.69% 16.09% 16.43%
GE C 16.56% 17.22% 17.64% 15.69% 15.95% 16.28% 16.22% 16.47% 16.70% 15.46% 15.90% 16.43%
LE A 16.78% 17.39% 17.86% 15.67% 15.99% 16.41% 16.40% 16.65% 16.88% 15.45% 15.93% 16.52%
LE B 16.43% 17.55% 17.76% 15.23% 15.58% 16.04% 16.36% 16.51% 16.55% 15.29% 15.72% 16.17%
LE C 16.57% 16.14% 17.01% 15.68% 15.95% 16.28% 15.77% 16.08% 16.47% 15.04% 15.52% 16.19%

Table C.19: ES for the Equity Funds, Historical Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 12.80 22.97 26.57 10.45 10.95 11.74 17.15 16.16 14.30 13.45 13.35 12.95
GE B 12.86 24.52 26.60 10.71 11.34 12.19 18.12 16.63 14.20 14.34 14.18 13.37
GE C 9.74 18.69 25.63 7.64 7.94 8.52 11.52 11.01 10.25 8.64 8.68 8.86
LE A 12.90 18.21 24.09 10.53 11.01 11.79 15.14 14.87 13.97 12.40 12.56 12.66
LE B 12.72 17.25 18.72 10.70 11.28 12.07 15.19 14.77 13.59 12.85 13.01 12.86
LE C 11.28 14.46 17.17 8.60 8.98 9.71 12.75 12.44 11.81 9.58 9.70 10.07

Table C.20: SR for the Equity Funds, Historical Simulation
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C.6 Historical Simulation of FX Rates, Infrastructure Funds

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 11.58% 11.46% 11.43% 11.18% 11.30% 11.45% 11.16% 11.28% 11.45% 10.80% 11.02% 11.32%
GI B 11.46% 11.66% 11.66% 10.89% 11.04% 11.25% 11.14% 11.22% 11.35% 10.61% 10.83% 11.15%
GI C 12.35% 11.25% 11.14% 12.30% 12.34% 12.37% 11.40% 11.64% 12.04% 11.38% 11.64% 12.05%
LI A 11.72% 11.62% 11.52% 11.31% 11.43% 11.58% 11.29% 11.42% 11.59% 10.92% 11.14% 11.46%
LI B 11.51% 11.72% 11.69% 10.93% 11.09% 11.30% 11.19% 11.28% 11.40% 10.65% 10.87% 11.20%
LI C 12.17% 11.01% 11.12% 12.14% 12.17% 12.19% 11.20% 11.45% 11.85% 11.20% 11.47% 11.88%

Table C.21: IRR for the Infrastructure Funds, Historical Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 9.52% 10.55% 10.74% 8.84% 9.03% 9.29% 9.98% 9.99% 9.83% 9.35% 9.52% 9.59%
GI B 9.45% 10.82% 10.96% 8.69% 8.92% 9.21% 10.06% 10.02% 9.75% 9.35% 9.51% 9.51%
GI C 9.59% 10.16% 10.45% 9.01% 9.18% 9.40% 9.73% 9.76% 9.72% 9.19% 9.38% 9.54%
LI A 9.67% 10.37% 10.72% 8.95% 9.16% 9.43% 9.91% 9.95% 9.89% 9.27% 9.47% 9.65%
LI B 9.48% 10.63% 10.83% 8.70% 8.93% 9.22% 9.93% 9.92% 9.70% 9.22% 9.39% 9.45%
LI C 9.66% 9.63% 10.15% 9.08% 9.26% 9.48% 9.58% 9.68% 9.71% 9.08% 9.29% 9.53%

Table C.22: VaR for the Infrastructure Funds, Historical Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 9.04% 10.28% 10.56% 8.32% 8.53% 8.80% 9.72% 9.72% 9.54% 9.08% 9.24% 9.30%
GI B 8.96% 10.59% 10.77% 8.18% 8.41% 8.71% 9.83% 9.77% 9.46% 9.09% 9.24% 9.21%
GI C 8.98% 9.76% 10.27% 8.40% 8.58% 8.80% 9.44% 9.49% 9.40% 8.91% 9.10% 9.21%
LI A 9.16% 9.93% 10.51% 8.43% 8.65% 8.92% 9.55% 9.60% 9.52% 8.90% 9.11% 9.28%
LI B 9.02% 10.35% 10.64% 8.23% 8.47% 8.77% 9.66% 9.62% 9.38% 8.92% 9.09% 9.13%
LI C 9.08% 9.15% 9.94% 8.49% 8.67% 8.89% 9.25% 9.33% 9.33% 8.74% 8.94% 9.14%

Table C.23: ES for the Infrastructure Funds, Historical Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 8.94 20.35 27.23 7.08 7.46 8.07 13.37 12.23 10.33 9.78 9.60 9.14
GI B 9.03 22.37 27.13 7.30 7.80 8.48 14.37 12.68 10.24 10.59 10.35 9.53
GI C 6.86 16.16 26.55 5.25 5.47 5.90 8.53 8.02 7.31 6.07 6.07 6.18
LI A 8.98 15.05 24.10 7.12 7.49 8.09 11.79 11.27 10.09 9.09 9.09 8.95
LI B 9.35 17.44 21.94 7.53 8.04 8.75 13.52 12.46 10.48 10.36 10.29 9.73
LI C 7.67 13.37 18.80 5.68 5.94 6.46 9.56 9.03 8.22 6.60 6.62 6.79

Table C.24: SR for the Infrastructure Funds, Historical Simulation
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C.7 Gaussian Copula Simulation of FX Rates, Equity Funds

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 20.14% 19.54% 19.48% 19.52% 19.70% 19.93% 18.82% 19.19% 19.75% 18.29% 18.80% 19.55%
GE B 20.05% 19.77% 19.73% 19.23% 19.45% 19.76% 18.92% 19.26% 19.74% 18.18% 18.70% 19.46%
GE C 20.20% 19.26% 19.14% 19.81% 19.93% 20.08% 18.58% 19.01% 19.69% 18.27% 18.79% 19.58%
LE A 20.19% 19.63% 19.55% 19.54% 19.72% 19.97% 18.85% 19.24% 19.80% 18.29% 18.81% 19.59%
LE B 20.02% 19.75% 19.73% 19.18% 19.40% 19.72% 18.89% 19.22% 19.71% 18.13% 18.65% 19.42%
LE C 20.11% 19.13% 19.24% 19.74% 19.86% 20.01% 18.46% 18.90% 19.59% 18.17% 18.69% 19.49%

Table C.25: IRR for the Equity Funds, Gaussian Copula Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 18.21% 18.12% 18.26% 17.26% 17.53% 17.87% 17.09% 17.42% 17.87% 16.24% 16.75% 17.54%
GE B 17.88% 18.39% 18.50% 16.82% 17.13% 17.53% 17.25% 17.47% 17.72% 16.23% 16.73% 17.37%
GE C 17.48% 17.74% 17.94% 16.76% 16.97% 17.24% 16.61% 16.95% 17.35% 15.93% 16.41% 17.09%
LE A 18.15% 17.82% 18.17% 17.18% 17.44% 17.82% 16.86% 17.23% 17.78% 16.01% 16.55% 17.43%
LE B 17.72% 17.90% 18.07% 16.64% 16.96% 17.36% 16.88% 17.14% 17.49% 15.87% 16.40% 17.14%
LE C 17.73% 16.98% 17.47% 16.94% 17.16% 17.47% 16.29% 16.70% 17.28% 15.65% 16.18% 17.02%

Table C.26: VaR for the Equity Funds, Gaussian Copula Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 17.76% 17.74% 17.95% 16.77% 17.05% 17.41% 16.70% 17.01% 17.45% 15.80% 16.33% 17.10%
GE B 17.35% 18.02% 18.19% 16.30% 16.61% 17.02% 16.87% 17.10% 17.30% 15.83% 16.34% 16.95%
GE C 16.93% 17.30% 17.64% 16.19% 16.41% 16.69% 16.20% 16.53% 16.94% 15.48% 15.98% 16.67%
LE A 17.67% 17.28% 17.79% 16.65% 16.93% 17.31% 16.40% 16.74% 17.29% 15.48% 16.04% 16.93%
LE B 17.21% 17.47% 17.74% 16.12% 16.44% 16.86% 16.47% 16.72% 17.03% 15.43% 15.95% 16.66%
LE C 17.11% 16.37% 17.09% 16.32% 16.55% 16.85% 15.86% 16.23% 16.78% 15.16% 15.70% 16.52%

Table C.27: ES for the Equity Funds, Gaussian Copula Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 16.75 22.75 26.19 13.48 14.06 15.10 17.00 16.86 16.73 13.40 13.84 14.92
GE B 14.37 23.45 26.26 11.68 12.40 13.50 16.84 16.01 14.82 13.08 13.37 13.81
GE C 11.26 20.14 26.17 8.96 9.31 9.99 12.88 12.46 11.83 9.79 9.94 10.34
LE A 15.86 17.59 23.63 12.94 13.42 14.32 14.59 14.85 15.39 11.97 12.50 13.79
LE B 14.41 17.25 18.82 11.86 12.54 13.56 15.07 14.92 14.54 12.34 12.79 13.60
LE C 13.61 14.64 17.18 10.63 11.10 11.99 13.53 13.64 13.72 10.75 11.11 12.01

Table C.28: SR for the Equity Funds, Gaussian Copula Simulation
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C.8 Gaussian Copula Simulation of FX Rates, Infrastruc-
ture Funds

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 12.06% 11.48% 11.44% 11.77% 11.85% 11.96% 11.36% 11.55% 11.84% 11.11% 11.37% 11.75%
GI B 11.97% 11.71% 11.68% 11.52% 11.63% 11.80% 11.38% 11.54% 11.80% 10.96% 11.22% 11.63%
GI C 12.11% 11.20% 11.13% 11.99% 12.03% 12.08% 11.22% 11.45% 11.81% 11.13% 11.39% 11.79%
LI A 12.09% 11.54% 11.49% 11.79% 11.87% 11.99% 11.39% 11.58% 11.88% 11.12% 11.38% 11.77%
LI B 11.96% 11.70% 11.68% 11.49% 11.61% 11.78% 11.36% 11.53% 11.78% 10.93% 11.20% 11.61%
LI C 12.06% 11.13% 11.18% 11.95% 11.99% 12.04% 11.16% 11.39% 11.76% 11.08% 11.34% 11.74%

Table C.29: IRR for the Infrastructure Funds, Gaussian Copula Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 10.53% 10.57% 10.74% 9.91% 10.08% 10.31% 10.08% 10.19% 10.37% 9.50% 9.75% 10.14%
GI B 10.19% 10.83% 10.97% 9.51% 9.71% 9.97% 10.17% 10.21% 10.19% 9.48% 9.71% 9.96%
GI C 9.81% 10.19% 10.45% 9.36% 9.50% 9.66% 9.74% 9.86% 9.96% 9.26% 9.50% 9.78%
LI A 10.49% 10.29% 10.67% 9.85% 10.02% 10.26% 9.93% 10.07% 10.30% 9.34% 9.61% 10.06%
LI B 10.23% 10.61% 10.83% 9.54% 9.74% 10.01% 10.05% 10.11% 10.17% 9.35% 9.61% 9.93%
LI C 10.12% 9.77% 10.22% 9.61% 9.76% 9.94% 9.63% 9.80% 10.03% 9.17% 9.44% 9.85%

Table C.30: VaR for the Infrastructure Funds, Gaussian Copula Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 10.18% 10.30% 10.57% 9.52% 9.71% 9.95% 9.83% 9.93% 10.07% 9.21% 9.46% 9.84%
GI B 9.77% 10.57% 10.79% 9.10% 9.31% 9.56% 9.92% 9.96% 9.89% 9.20% 9.44% 9.66%
GI C 9.38% 9.86% 10.28% 8.93% 9.06% 9.23% 9.45% 9.56% 9.65% 8.95% 9.19% 9.47%
LI A 10.13% 9.90% 10.46% 9.46% 9.64% 9.90% 9.61% 9.74% 9.96% 8.98% 9.26% 9.72%
LI B 9.82% 10.30% 10.63% 9.12% 9.33% 9.60% 9.76% 9.81% 9.83% 9.04% 9.29% 9.58%
LI C 9.63% 9.32% 9.99% 9.13% 9.27% 9.46% 9.33% 9.47% 9.64% 8.84% 9.10% 9.46%

Table C.31: ES for the Infrastructure Funds, Gaussian Copula Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 12.53 20.63 27.00 9.58 10.05 10.95 13.15 12.88 12.60 9.69 9.98 10.84
GI B 10.44 21.55 26.96 8.16 8.74 9.67 13.16 12.18 10.91 9.51 9.69 9.99
GI C 8.02 17.65 26.89 6.18 6.44 6.97 9.60 9.16 8.54 6.91 6.99 7.27
LI A 11.78 14.75 23.46 9.15 9.56 10.35 11.26 11.31 11.52 8.71 9.05 10.01
LI B 11.15 17.45 21.97 8.61 9.25 10.27 13.02 12.43 11.50 9.57 9.88 10.47
LI C 9.61 13.81 18.79 7.10 7.45 8.16 10.66 10.44 10.05 7.62 7.81 8.37

Table C.32: SR for the Infrastructure Funds, Gaussian Copula Simulation
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C.9 Student’s t Copula Simulation of FX rates, Equity Funds

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 20.16% 19.53% 19.48% 19.55% 19.73% 19.96% 18.84% 19.22% 19.78% 18.31% 18.83% 19.58%
GE B 20.07% 19.77% 19.73% 19.25% 19.48% 19.78% 18.94% 19.28% 19.77% 18.20% 18.72% 19.48%
GE C 20.21% 19.26% 19.14% 19.83% 19.95% 20.10% 18.60% 19.04% 19.71% 18.30% 18.82% 19.60%
LE A 20.21% 19.63% 19.55% 19.57% 19.75% 19.99% 18.88% 19.26% 19.82% 18.32% 18.85% 19.62%
LE B 20.03% 19.74% 19.73% 19.20% 19.42% 19.74% 18.90% 19.24% 19.73% 18.15% 18.67% 19.44%
LE C 20.12% 19.12% 19.24% 19.76% 19.88% 20.02% 18.48% 18.93% 19.61% 18.19% 18.72% 19.51%

Table C.33: IRR for the Equity Funds, Student’s t Copula Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 18.21% 18.11% 18.25% 17.26% 17.53% 17.89% 17.10% 17.42% 17.89% 16.24% 16.76% 17.54%
GE B 17.89% 18.40% 18.50% 16.86% 17.18% 17.56% 17.28% 17.52% 17.77% 16.27% 16.76% 17.41%
GE C 17.39% 17.72% 17.92% 16.67% 16.89% 17.15% 16.62% 16.94% 17.36% 15.92% 16.42% 17.11%
LE A 18.11% 17.76% 18.13% 17.15% 17.42% 17.77% 16.87% 17.24% 17.75% 16.00% 16.56% 17.42%
LE B 17.74% 17.92% 18.07% 16.64% 16.96% 17.38% 16.90% 17.17% 17.52% 15.90% 16.44% 17.16%
LE C 17.65% 16.97% 17.46% 16.87% 17.08% 17.38% 16.28% 16.67% 17.26% 15.63% 16.19% 17.01%

Table C.34: VaR for the Equity Funds, Student’s t Copula Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 17.72% 17.71% 17.94% 16.72% 17.00% 17.37% 16.70% 17.00% 17.43% 15.80% 16.32% 17.09%
GE B 17.36% 18.01% 18.18% 16.31% 16.63% 17.03% 16.89% 17.12% 17.33% 15.84% 16.36% 16.97%
GE C 16.82% 17.26% 17.63% 16.10% 16.31% 16.58% 16.18% 16.50% 16.90% 15.46% 15.96% 16.63%
LE A 17.58% 17.17% 17.75% 16.56% 16.84% 17.22% 16.35% 16.72% 17.24% 15.45% 16.02% 16.88%
LE B 17.18% 17.45% 17.74% 16.09% 16.41% 16.83% 16.47% 16.74% 17.05% 15.43% 15.96% 16.68%
LE C 17.05% 16.38% 17.11% 16.26% 16.49% 16.78% 15.81% 16.19% 16.75% 15.12% 15.66% 16.48%

Table C.35: ES for the Equity Funds, Student’s t Copula Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 16.75 22.69 26.23 13.46 14.02 15.05 16.97 16.85 16.76 13.34 13.78 14.88
GE B 14.54 23.60 26.32 11.83 12.56 13.67 17.07 16.25 15.05 13.24 13.56 14.03
GE C 10.98 19.69 25.96 8.75 9.09 9.74 12.58 12.19 11.56 9.58 9.72 10.10
LE A 15.70 17.37 23.42 12.83 13.30 14.16 14.44 14.72 15.28 11.87 12.39 13.67
LE B 14.43 17.23 18.80 11.92 12.61 13.62 15.18 15.03 14.64 12.45 12.92 13.73
LE C 13.35 14.57 17.24 10.44 10.88 11.74 13.35 13.47 13.56 10.59 10.94 11.81

Table C.36: SR for the Equity Funds, Student’s t Copula Simulation

119



C PERFORMANCE OF THE HEDGING STRATEGIES - BASE MODEL

C.10 Student’s t Copula Simulation of FX rates, Infrastruc-
ture Funds

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 12.07% 11.48% 11.44% 11.80% 11.88% 11.98% 11.38% 11.57% 11.86% 11.14% 11.39% 11.78%
GI B 11.99% 11.70% 11.68% 11.54% 11.66% 11.82% 11.39% 11.56% 11.82% 10.98% 11.24% 11.65%
GI C 12.12% 11.20% 11.13% 12.00% 12.05% 12.09% 11.23% 11.47% 11.83% 11.15% 11.41% 11.81%
LI A 12.11% 11.54% 11.49% 11.82% 11.90% 12.01% 11.42% 11.61% 11.90% 11.16% 11.42% 11.80%
LI B 11.97% 11.70% 11.68% 11.51% 11.63% 11.80% 11.38% 11.55% 11.80% 10.95% 11.22% 11.63%
LI C 12.07% 11.13% 11.18% 11.97% 12.01% 12.05% 11.18% 11.41% 11.78% 11.10% 11.36% 11.77%

Table C.37: IRR for the Infrastructure Funds, Student’s t Copula Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 10.54% 10.56% 10.74% 9.90% 10.07% 10.31% 10.08% 10.21% 10.39% 9.50% 9.75% 10.16%
GI B 10.22% 10.82% 10.97% 9.57% 9.77% 10.02% 10.18% 10.23% 10.23% 9.50% 9.73% 10.01%
GI C 9.77% 10.19% 10.44% 9.34% 9.46% 9.62% 9.72% 9.85% 9.94% 9.25% 9.49% 9.77%
LI A 10.45% 10.24% 10.65% 9.83% 10.00% 10.24% 9.93% 10.08% 10.30% 9.34% 9.62% 10.07%
LI B 10.24% 10.60% 10.82% 9.55% 9.75% 10.01% 10.05% 10.12% 10.19% 9.37% 9.62% 9.96%
LI C 10.05% 9.81% 10.22% 9.56% 9.69% 9.87% 9.62% 9.77% 9.99% 9.15% 9.41% 9.82%

Table C.38: VaR for the Infrastructure Funds, Student’s t Copula Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 10.15% 10.29% 10.57% 9.50% 9.68% 9.92% 9.83% 9.93% 10.06% 9.21% 9.46% 9.83%
GI B 9.78% 10.56% 10.79% 9.12% 9.32% 9.58% 9.93% 9.98% 9.92% 9.20% 9.45% 9.68%
GI C 9.29% 9.82% 10.27% 8.85% 8.98% 9.15% 9.44% 9.55% 9.62% 8.94% 9.17% 9.44%
LI A 10.05% 9.84% 10.43% 9.38% 9.57% 9.82% 9.57% 9.71% 9.92% 8.95% 9.23% 9.68%
LI B 9.79% 10.29% 10.63% 9.10% 9.31% 9.57% 9.76% 9.82% 9.84% 9.04% 9.29% 9.60%
LI C 9.55% 9.34% 10.00% 9.06% 9.20% 9.38% 9.27% 9.42% 9.60% 8.79% 9.05% 9.42%

Table C.39: ES for the Infrastructure Funds, Student’s t Copula Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 12.54 20.56 27.02 9.57 10.02 10.91 13.09 12.85 12.62 9.62 9.92 10.80
GI B 10.57 21.72 27.00 8.27 8.87 9.81 13.31 12.36 11.09 9.61 9.82 10.16
GI C 7.83 17.27 26.77 6.05 6.30 6.81 9.39 8.98 8.36 6.78 6.85 7.12
LI A 11.71 14.65 23.26 9.10 9.49 10.26 11.16 11.23 11.47 8.63 8.97 9.93
LI B 11.24 17.46 21.91 8.71 9.35 10.38 13.16 12.59 11.67 9.68 10.02 10.64
LI C 9.37 13.74 18.89 6.95 7.29 7.96 10.40 10.21 9.85 7.47 7.65 8.19

Table C.40: SR for the Infrastructure Funds, Student’s t Copula Simulation
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D Performance of the Hedging Strategies - Extended
Model I

D.1 Random Walk Simulation of FX Rates with Stochastic
Short Rates, Equity Funds

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 19.36% 19.42% 19.39% 18.80% 18.99% 19.22% 18.57% 18.86% 19.22% 18.07% 18.52% 19.09%
GE B 19.69% 19.72% 19.73% 18.89% 19.13% 19.44% 18.97% 19.24% 19.56% 18.26% 18.72% 19.32%
GE C 18.88% 19.03% 18.93% 18.58% 18.72% 18.88% 18.10% 18.40% 18.77% 17.84% 18.26% 18.77%
LE A 19.39% 19.41% 19.42% 18.79% 19.00% 19.24% 18.59% 18.88% 19.25% 18.05% 18.52% 19.11%
LE B 19.68% 19.73% 19.72% 18.88% 19.12% 19.43% 18.97% 19.24% 19.56% 18.25% 18.72% 19.32%
LE C 19.21% 19.38% 19.24% 18.93% 19.07% 19.22% 18.38% 18.70% 19.09% 18.14% 18.57% 19.09%

Table D.1: IRR for the Equity Funds, Random Walk Simulation with Stochastic Short
Rates

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 17.26% 18.05% 18.14% 16.45% 16.72% 17.06% 16.90% 17.12% 17.31% 16.16% 16.58% 17.09%
GE B 16.97% 18.35% 18.49% 15.89% 16.22% 16.64% 17.19% 17.33% 17.31% 16.18% 16.60% 16.97%
GE C 16.47% 17.73% 17.75% 16.06% 16.24% 16.43% 16.48% 16.72% 16.92% 16.04% 16.45% 16.85%
LE A 17.35% 17.47% 18.00% 16.49% 16.78% 17.10% 16.74% 17.00% 17.30% 15.98% 16.45% 17.07%
LE B 17.04% 17.78% 18.04% 15.89% 16.25% 16.69% 16.86% 17.06% 17.18% 15.84% 16.30% 16.83%
LE C 16.83% 17.36% 17.44% 16.39% 16.59% 16.80% 16.18% 16.49% 16.87% 15.79% 16.23% 16.81%

Table D.2: VaR for the Equity Funds, Random Walk Simulation with Stochastic Short
Rates

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 16.78% 17.66% 17.83% 15.92% 16.20% 16.55% 16.53% 16.73% 16.91% 15.76% 16.19% 16.68%
GE B 16.40% 17.93% 18.18% 15.31% 15.64% 16.07% 16.81% 16.94% 16.91% 15.75% 16.17% 16.56%
GE C 15.89% 17.35% 17.45% 15.50% 15.69% 15.88% 16.10% 16.34% 16.53% 15.64% 16.06% 16.46%
LE A 16.84% 16.95% 17.60% 15.96% 16.24% 16.59% 16.28% 16.55% 16.85% 15.50% 15.99% 16.61%
LE B 16.40% 17.27% 17.72% 15.26% 15.61% 16.05% 16.42% 16.60% 16.67% 15.37% 15.82% 16.31%
LE C 16.26% 16.84% 17.10% 15.79% 16.00% 16.22% 15.75% 16.04% 16.38% 15.32% 15.78% 16.33%

Table D.3: ES for the Equity Funds, Random Walk Simulation with Stochastic Short Rates

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 14.58 22.61 25.46 12.05 12.59 13.48 16.50 16.02 15.22 13.25 13.45 13.87
GE B 11.24 22.53 25.91 8.89 9.38 10.19 14.52 13.61 12.19 10.83 10.87 10.90
GE C 11.68 22.63 26.38 10.22 10.62 11.19 15.91 15.35 13.95 13.04 13.17 13.01
LE A 15.31 17.16 22.58 12.74 13.31 14.22 15.60 15.64 15.59 12.97 13.38 14.26
LE B 12.02 16.37 18.62 9.48 10.01 10.90 13.83 13.49 12.71 10.82 11.03 11.41
LE C 13.16 15.44 17.10 11.53 11.98 12.62 12.82 13.13 13.56 11.49 11.95 12.85

Table D.4: SR for the Equity Funds, Random Walk Simulation with Stochastic Short Rates
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D.2 Random Walk Simulation of FX Rates with Stochastic
Short Rates, Infrastructure Funds

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 11.34% 11.40% 11.36% 11.05% 11.16% 11.28% 11.16% 11.26% 11.36% 10.89% 11.08% 11.29%
GI B 11.65% 11.68% 11.69% 11.21% 11.34% 11.51% 11.44% 11.54% 11.64% 11.04% 11.25% 11.50%
GI C 10.94% 11.08% 10.98% 10.81% 10.88% 10.96% 10.83% 10.93% 11.01% 10.72% 10.88% 11.03%
LI A 11.37% 11.40% 11.40% 11.07% 11.18% 11.30% 11.18% 11.29% 11.39% 10.90% 11.10% 11.32%
LI B 11.64% 11.69% 11.67% 11.20% 11.33% 11.50% 11.43% 11.53% 11.63% 11.03% 11.24% 11.50%
LI C 11.12% 11.29% 11.15% 11.00% 11.07% 11.14% 10.99% 11.10% 11.18% 10.88% 11.05% 11.21%

Table D.5: IRR for the Infrastructure Funds, Random Walk Simulation with Stochastic
Short Rates

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 9.66% 10.52% 10.66% 9.11% 9.29% 9.51% 9.93% 9.96% 9.89% 9.43% 9.60% 9.73%
GI B 9.37% 10.77% 10.97% 8.65% 8.87% 9.16% 10.10% 10.07% 9.82% 9.40% 9.56% 9.59%
GI C 8.91% 10.22% 10.30% 8.70% 8.82% 8.92% 9.63% 9.66% 9.57% 9.32% 9.47% 9.52%
LI A 9.74% 10.10% 10.55% 9.18% 9.36% 9.58% 9.82% 9.88% 9.87% 9.30% 9.50% 9.71%
LI B 9.47% 10.47% 10.81% 8.74% 8.97% 9.24% 9.97% 9.98% 9.82% 9.27% 9.47% 9.59%
LI C 9.27% 10.04% 10.19% 8.99% 9.12% 9.26% 9.52% 9.60% 9.62% 9.23% 9.43% 9.58%

Table D.6: VaR for the Infrastructure Funds, Random Walk Simulation with Stochastic
Short Rates

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 9.28% 10.26% 10.47% 8.72% 8.90% 9.13% 9.69% 9.70% 9.59% 9.16% 9.33% 9.43%
GI B 8.87% 10.48% 10.79% 8.15% 8.38% 8.65% 9.84% 9.80% 9.54% 9.11% 9.28% 9.31%
GI C 8.48% 9.95% 10.13% 8.26% 8.38% 8.49% 9.35% 9.40% 9.29% 9.04% 9.21% 9.25%
LI A 9.33% 9.73% 10.32% 8.75% 8.94% 9.17% 9.49% 9.55% 9.53% 8.95% 9.16% 9.37%
LI B 8.98% 10.10% 10.61% 8.24% 8.47% 8.76% 9.67% 9.66% 9.46% 8.95% 9.14% 9.22%
LI C 8.80% 9.68% 9.97% 8.52% 8.65% 8.79% 9.22% 9.30% 9.28% 8.93% 9.11% 9.24%

Table D.7: ES for the Infrastructure Funds, Random Walk Simulation with Stochastic
Short Rates

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 10.66 20.73 26.18 8.44 8.89 9.65 12.80 12.22 11.34 9.65 9.74 10.04
GI B 7.82 20.16 26.64 6.00 6.36 6.99 10.84 9.95 8.66 7.61 7.60 7.58
GI C 8.12 19.96 26.56 6.94 7.25 7.71 11.78 11.29 10.06 9.25 9.33 9.21
LI A 10.98 14.63 22.27 8.69 9.15 9.93 11.95 11.75 11.39 9.29 9.51 10.09
LI B 8.53 15.91 21.72 6.40 6.81 7.54 11.08 10.43 9.32 7.85 7.92 8.08
LI C 9.54 14.87 18.85 7.97 8.37 8.97 10.56 10.67 10.63 8.84 9.14 9.73

Table D.8: SR for the Infrastructure Funds, Random Walk Simulation with Stochastic
Short Rates
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E Performance of the Hedging Strategies - Extended
Model II

E.1 Random Walk Simulation of FX Rates, USD Denomi-
nated Equity Funds

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 21.02% 21.12% 21.10% 19.16% 19.50% 20.05% 20.64% 20.79% 20.96% 18.88% 19.33% 20.00%
GE B 21.08% 21.19% 21.17% 19.12% 19.46% 20.04% 20.71% 20.85% 21.02% 18.85% 19.30% 19.99%
GE C 21.23% 21.34% 21.32% 19.21% 19.57% 20.17% 20.89% 21.03% 21.18% 18.97% 19.42% 20.12%
LE A 20.84% 20.90% 20.91% 18.94% 19.28% 19.85% 20.44% 20.60% 20.77% 18.65% 19.10% 19.79%
LE B 20.89% 20.98% 20.97% 18.92% 19.27% 19.84% 20.52% 20.66% 20.83% 18.66% 19.10% 19.79%
LE C 20.98% 21.07% 21.06% 18.95% 19.31% 19.91% 20.64% 20.78% 20.93% 18.71% 19.17% 19.87%

Table E.1: IRR for the USD Denominated Equity Funds, Random Walk Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 16.86% 19.53% 19.77% 14.28% 14.78% 15.58% 18.08% 17.97% 17.57% 15.58% 15.92% 16.28%
GE B 16.76% 19.59% 19.84% 14.07% 14.57% 15.39% 18.04% 17.92% 17.51% 15.42% 15.76% 16.10%
GE C 16.97% 19.73% 19.96% 14.18% 14.72% 15.57% 18.19% 18.05% 17.65% 15.47% 15.82% 16.24%
LE A 17.28% 18.80% 19.51% 14.61% 15.12% 15.94% 18.04% 18.04% 17.83% 15.52% 15.92% 16.46%
LE B 16.84% 18.91% 19.39% 14.05% 14.58% 15.43% 17.75% 17.70% 17.41% 15.08% 15.47% 15.98%
LE C 17.03% 19.04% 19.49% 14.13% 14.68% 15.57% 17.88% 17.78% 17.52% 15.10% 15.49% 16.05%

Table E.2: VaR for the USD Denominated Equity Funds, Random Walk Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 15.97% 19.05% 19.44% 13.37% 13.88% 14.68% 17.64% 17.53% 17.09% 15.10% 15.44% 15.79%
GE B 15.85% 19.08% 19.51% 13.13% 13.65% 14.47% 17.59% 17.47% 17.02% 14.92% 15.26% 15.62%
GE C 16.12% 19.24% 19.64% 13.31% 13.85% 14.71% 17.74% 17.61% 17.14% 14.96% 15.32% 15.71%
LE A 16.52% 17.94% 19.11% 13.78% 14.32% 15.15% 17.53% 17.54% 17.31% 14.94% 15.37% 15.93%
LE B 15.92% 18.23% 19.04% 13.09% 13.63% 14.48% 17.22% 17.15% 16.82% 14.53% 14.91% 15.37%
LE C 16.12% 18.40% 19.14% 13.19% 13.76% 14.65% 17.35% 17.25% 16.90% 14.56% 14.94% 15.43%

Table E.3: ES for the USD Denominated Equity Funds, Random Walk Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GE A 7.71 20.64 25.44 5.56 5.82 6.33 9.97 9.36 8.46 6.75 6.73 6.80
GE B 7.44 20.43 25.55 5.33 5.57 6.05 9.55 8.99 8.14 6.42 6.41 6.49
GE C 7.71 20.76 25.41 5.48 5.73 6.25 9.70 9.14 8.33 6.49 6.49 6.63
LE A 9.20 16.87 24.99 6.24 6.56 7.22 11.92 11.27 10.19 7.59 7.61 7.79
LE B 8.25 16.69 21.01 5.68 5.97 6.55 10.48 9.93 9.04 6.83 6.86 7.02
LE C 8.47 17.07 21.26 5.79 6.09 6.69 10.55 10.00 9.16 6.84 6.89 7.11

Table E.4: SR for the USD Denominated Equity Funds, Random Walk Simulation
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E.2 Random Walk Simulation of FX Rates, USD Denomi-
nated Infrastructure Funds

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 12.85% 12.93% 12.92% 11.79% 11.98% 12.29% 12.78% 12.82% 12.86% 11.77% 11.98% 12.31%
GI B 12.91% 13.01% 12.99% 11.78% 11.98% 12.30% 12.84% 12.89% 12.92% 11.77% 11.99% 12.32%
GI C 13.04% 13.14% 13.12% 11.88% 12.09% 12.42% 12.97% 13.02% 13.05% 11.86% 12.09% 12.44%
LI A 12.74% 12.80% 12.80% 11.67% 11.86% 12.18% 12.66% 12.71% 12.75% 11.65% 11.86% 12.19%
LI B 12.82% 12.91% 12.90% 11.69% 11.88% 12.21% 12.76% 12.80% 12.83% 11.68% 11.89% 12.23%
LI C 12.92% 13.01% 13.00% 11.75% 11.96% 12.30% 12.85% 12.89% 12.93% 11.74% 11.96% 12.31%

Table E.5: IRR for the USD Denominated Infrastructure Funds, Random Walk Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 9.18% 11.82% 12.13% 7.43% 7.77% 8.31% 10.70% 10.49% 9.97% 9.00% 9.10% 9.11%
GI B 9.09% 11.86% 12.20% 7.27% 7.63% 8.18% 10.64% 10.45% 9.90% 8.86% 8.96% 8.97%
GI C 9.31% 12.00% 12.32% 7.40% 7.77% 8.37% 10.76% 10.54% 10.01% 8.89% 9.01% 9.06%
LI A 9.51% 11.23% 11.97% 7.72% 8.06% 8.61% 10.68% 10.53% 10.14% 8.95% 9.12% 9.25%
LI B 9.19% 11.50% 12.04% 7.29% 7.65% 8.23% 10.54% 10.37% 9.92% 8.73% 8.85% 8.95%
LI C 9.37% 11.65% 12.14% 7.43% 7.82% 8.40% 10.65% 10.46% 9.99% 8.75% 8.89% 9.02%

Table E.6: VaR for the USD Denominated Infrastructure Funds, Random Walk Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 8.43% 11.40% 11.93% 6.67% 7.02% 7.57% 10.38% 10.18% 9.62% 8.66% 8.77% 8.75%
GI B 8.32% 11.42% 12.00% 6.47% 6.83% 7.39% 10.33% 10.12% 9.55% 8.51% 8.62% 8.61%
GI C 8.56% 11.58% 12.12% 6.65% 7.02% 7.61% 10.44% 10.22% 9.65% 8.55% 8.67% 8.69%
LI A 8.78% 10.56% 11.73% 6.98% 7.34% 7.89% 10.31% 10.18% 9.76% 8.56% 8.73% 8.86%
LI B 8.38% 10.94% 11.83% 6.48% 6.85% 7.42% 10.16% 9.98% 9.48% 8.33% 8.46% 8.52%
LI C 8.59% 11.11% 11.94% 6.63% 7.01% 7.61% 10.26% 10.06% 9.56% 8.36% 8.50% 8.57%

Table E.7: ES for the USD Denominated Infrastructure Funds, Random Walk Simulation

Fund Unh. For. Rol. for. CallKC
1

CallKC
2

CallKC
3

PutKP
1

PutKP
2

PutKP
3

Str.KS
1

Str.KS
2

Str.KS
3

GI A 5.36 17.72 26.41 3.78 3.96 4.33 7.20 6.69 5.95 4.70 4.66 4.69
GI B 5.15 17.35 26.49 3.61 3.78 4.13 6.85 6.38 5.70 4.45 4.42 4.46
GI C 5.37 17.86 26.39 3.73 3.91 4.28 6.97 6.51 5.85 4.51 4.49 4.57
LI A 6.02 13.60 25.56 4.07 4.28 4.71 8.13 7.58 6.73 5.06 5.04 5.11
LI B 5.45 14.81 24.34 3.73 3.92 4.30 7.26 6.78 6.05 4.60 4.59 4.65
LI C 5.64 15.29 24.72 3.83 4.02 4.42 7.34 6.86 6.17 4.63 4.62 4.73

Table E.8: SR for the USD Denominated Infrastructure Funds, Random Walk Simulation
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F Stochastic Calculus Results

In this section some important stochastic calculus results are presented. The theory
is covered in Øksendal (1998) [25] and inspiration is to a large extent gathered from
Björk (2009) [2].

F.1 Stochastic Processes

Let us begin with stating some important definitions required to develop the theory
of asset pricing in continuous time. The theory used in the thesis builds on the
concepts diffusion processes and SDEs.

Diffusion processes are stochastic processes, i.e. collections of random variables.
They can be thought of as a series of values where each value depends on two
separate terms, a locally deterministic velocity and a random disturbance term.

Definition F.1 Diffusion process
X is said to be a diffusion processes if its local dynamics is on the form

dXt = µ(t,Xt)dt+ σ(t,Xt)Zt, (F.1)
X0 = x, (F.2)

where Zt is a Gaussian disturbance term independent of events that have occurred
before time t. Furthermore, µ, the drift of the process, and σ, the diffusion of the
process, are given deterministic functions and x is a given constant.

The disturbance term of a diffusion process can be nicely modelled using Wiener
processes. A Wiener process can be thought of as a random movement of a point
in time, not depending on its previous position.

Definition F.2 Wiener process
A stochastic process Wt is called a Wiener process (or Brownian motion) if

(i) W0 = 0,

(ii) Wt has independent increments, i.e. if r < s ≤ u < v then Wv − Wu and
Ws −Wr are independent stochastic variables,

(iii) Ws −Wr ∼ N(0, s− r) if r < s,

(iv) Wt has continuous trajectories.

Using a Wiener process the diffusion process defined in Definition F.1 can be stated
in its commonly used form

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (F.3)
X0 = x. (F.4)

Moreover, let us introduce the concept of correlated Wiener processes. Correlated
Wiener processes are used to model the common movements of several dependent
processes.
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Definition F.3 Correlated Wiener processes
Given a vector of d independent standard Wiener processes, W̃1, ..., W̃d, a vector of
n correlated Wiener processes, W1, ...,Wn is defined by the matrix multiplication

W = δW̃ , (F.5)

where

δ =


δ11 δ12 · · · δ1d
δ21 δ22 · · · δ2d
...

... . . . ...
δn1 δn2 · · · δnd

 (F.6)

is a matrix of constant and deterministic elements. Furthermore, the correlation
matrix of W is given by

ρ = δδT . (F.7)

F.2 Stochastic Integrals

The aim of this section is to define integrals of the form
∫ b

a
g(s)dWs. The concept of

information will play an important role in the theory to be developed. We denote
by FX

t the information generated by X on the interval [0, t], i.e. FX
t can be thought

of as an object remembering all the values that X has taken over the interval [0, t].
To develop this further the two concepts of measurability and adaptedness will be
required. Observe that a formal treatment of the concepts is out of the scope of
this thesis, instead we give the heuristic definitions.

Definition F.4 Measurability
A stochastic variable Z is said to be FX

t measurable, Z ∈ FX
t , if the value of Z can

be completely determined given observations of the trajectory Xs for s ∈ [0, t].

Definition F.5 Adaptedness
A stochastic process Yt is said to be adapted to the filtration F =

{
FX

t

}
t≥0

if
Yt ∈ FX

t for all t ≥ 0.

Next the construction and some important properties of stochastic integrals is con-
sidered. For the sake of completeness the following definition is important.

Definition F.6
The process g is said to belong to the class L2[a, b] if

(i)
∫ b

a
E[g2(s)]ds < ∞,

(ii) The process g is adapted to the FW
t -filtration.

Furthermore, the process g is said to belong to the class L2 if g ∈ L2[0, t] for all
t > 0.

Given a Wiener process W and a stochastic process g ∈ L2[a, b] a stochastic integral
can schematically be defined in the following steps. First, it is assumed that g ∈
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L2[a, b] is simple, i.e. that there exists deterministic points a = t0 < t1 < · · · < tn =
b such that g(s) = g(tk) for s ∈ [tk, tk+1). Then the stochastic integral is defined as∫ b

a

g(s)dWs =
n−1∑
k=0

g(tk)[W (tk+1)−W (tk)]. (F.8)

However, the process g needs not be simple. In the general case g is approximated
with a sequence of simple processes gn such that

∫ b

a
E
[
{gn(s)−g(s)}2

]
ds → 0 in L2

sense as n → ∞. Finally, the stochastic integral in the general case can be defined
as follows.

Definition F.7 Stochastic integral
The stochastic integral is defined as∫ b

a

g(s)dWs = lim
n→∞

∫ b

a

gn(s)dWs, (F.9)

where g ∈ L2[a, b] and gn ∈ L2[a, b] and are simple processes.

We finish up by stating some important results for stochastic integrals that will be
useful later on.

Proposition F.1 Properties of stochastic integrals
For the stochastic integral defined in Definition F.7 the following relations hold

E

[ ∫ b

a

g(s)dWs

]
= 0, (F.10)

E

[(∫ b

a

g(s)dWs

)2]
=

∫ b

a

E[g2(s)]ds, (F.11)∫ b

a

g(s)dWs is FW
b - measurable. (F.12)

F.3 Martingales

The modern theory of financial derivatives is to a large extent based on martingale
theory. Since a formal treatment of martingale theory requires abstract measure
theory we limit ourselves to an informal treatment. A martingale is a stochas-
tic process, X, for which the expectation of the future value of X, given today’s
information, is equal to the observed value of X today.

Definition F.8 Martingale
A stochastic process X is called an Ft-martingale if the following hold.

(i) X is Ft-measurable, i.e. X is adapted to the filtration {Ft}t≥0,

(ii) X is integrable, i.e. E[|Xt|] < ∞ for all t,

(iii) X satisfies the martingale condition, i.e. E[Xt|Fs] = Xs for all s and t such
that s ≤ t.
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Returning to the discussion about stochastic integrals the following result can now
be established.

Proposition F.2
For any process g ∈ L2 the process X defined by Xt =

∫ t

0
g(s)dWs is an FW

t -
martingale.

Put in other words, given that the integrability condition is fulfilled, every stochastic
integral is a martingale. The above relation can be expressed on differential form as
dXt = g(t)dWt. It can thus be deduced that a stochastic process X is a martingale
if its differential has no drift term.

F.4 Itô’s Formula

In this section one of the most important formulas for the thesis, Itô’s formula
that originates from Itô (1944) [18], is presented. Itô’s formula fills the role of the
classical chain rule of differentiation in stochastic calculus.

An Itô process is a stochastic process that can be represented as a sum of a deter-
ministic integral and a stochastic integral. That is, Xt on the following form is an
Itô process

Xt = x+

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dWs. (F.13)

The stochastic differential and initial condition of Xt are thus given by

dXt = µ(t)dt+ σ(t)dW (t), (F.14)
X0 = x, (F.15)

where µ and σ are adapted processes and x is a constant.

Before we present Itô’s formula some auxiliary properties are investigated. Note
that the following reasoning leading up to Itô’s formula is purely heuristic and not
a formal proof in any sense. Setting s < t and defining

∆t = t− s,

and
∆Wt = Wt −Ws,

the following relations follow from the fact that ∆Wt ∼ N(0, t− s).

E[∆Wt] = 0,

V ar(∆Wt) = ∆t,

E
[
(∆Wt)

2
]
= ∆t,

V ar
(
(∆Wt)

2
)
= 2(∆t)2.

An important observation is that the variance of (∆Wt)
2 is negligible in comparison

to its expected value. This means that as ∆t tends to zero (∆Wt)
2 will tend to zero,
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however, the variance of (∆Wt)
2 will tend to zero much faster than the expected

value of (∆Wt)
2. Thus, in the limit, as t tends to zero (dWt)

2 = dt or, using bracket
notation, d〈W 〉t = dt.

Theorem F.1 Itô’s formula
Define the process Z by Zt = f(t,Xt) where f is a C1,2-function and Xt is the
Itô process given in Eqs. F.14 and F.15. Then, Itô’s formula states that Z has a
stochastic differential given by

df(t,Xt) =

{
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2∂

2f

∂x2

}
dt+ σ

∂f

∂x
dWt. (F.16)

Using the auxiliary relations defined above Itô’s formula can be expressed as

df(t,Xt) =
∂f

∂t
dt+

∂f

∂x
dXt +

1

2

∂2f

∂x2
d〈X〉t, (F.17)

where (dt)2 = 0, dt · dW = 0 and (dW )2 = dt.

F.5 The Girsanov Theorem

The Girsanov theorem describes how the dynamics of a stochastic processes change
when the original probability measure P is changed to an equivalent probability
measure Q. Most important, the process will be a martingale under the equivalent
martingale measure. Girsanov’s theorem allows us to convert the physical measure
to a risk neutral measure which will be used for pricing derivatives on underlying
instruments. For the reader wishing the full formal treatment, see Girsanov (1960)
[13].

Theorem F.2 Girsanov’s theorem
Let W P denote a standard P -Wiener process on (Ω,F , P,F) and let ϕ be an ar-
bitrary adapted process. Assume that the Girsanov kernel, ϕ, fulfils the Novikov
condition

EP

[
exp

(
1

2

∫ T

0

||ϕt||2dt
)]

< ∞. (F.18)

Moreover, define the likelihood process by

dLt = ϕtLtdW
P
t (F.19)

L0 = 1, (F.20)

i.e.

Lt = exp

(∫ t

0

ϕsdW
P
s − 1

2

∫ t

0

||ϕs||2ds
)
. (F.21)

Define the new probability measure Q as

dQ = LTdP, on FT . (F.22)

Then,
dWQ

t = dW P
t − ϕtdt, (F.23)
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where WQ
t is a Q-Wiener process.

F.6 Stochastic Differential Equations and Geometric Brow-
nian Motions

We proceed our exploration of stochastic calculus by recalling the concept of SDE.
The question which is set out to be answered is whether there exists a stochastic
process X satisfying the stochastic differential equation (SDE)

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (F.24)
X0 = x0. (F.25)

The general SDE defined in Eqs. F.24-F.25 is complicated to solve in an explicit
manner. Fortunately, there are exceptions, the most important one being the Ge-
ometric Brownian motion.

Definition F.9 Geometric Brownian motion
The Geometric Brownian motion is defined as the SDE

dXt = αXtdt+ σXtdWt, (F.26)
X0 = x0. (F.27)

Proposition F.3 Solution to the Geometric Brownian motion
The solution to the Geometric Brownian motion defined in Eqs. F.26-F.27 is given
by

Xt = x0 exp

((
α− 1

2
σ2

)
t+ σWt

)
. (F.28)

Proof. In order to establish Proposition F.3 the Itô formula Eq. F.17 with f(t, x) =
lnx will be used. The partial derivatives of f(t, x) are given by

∂f

∂t
(t, x) = 0,

∂f

∂x
(t, x) =

1

x
,

∂2f

∂x2
(t, x) = − 1

x2
.

Furthermore, applying Itô’s formula to f(t, x) gives

df(t,Xt) =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt +

1

2

∂2f

∂x2
(t,Xt)d〈X〉t

= 0 · dt+ 1

Xt

(αXtdt+ σXtdWt)−
1

2

1

X2
t

σ2X2
t dt

= (α− 1

2
σ2)dt+ σdWt.
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Writing the expression in its integral form yields

lnXt = ln x0 +

∫ t

0

(
α− 1

2
σ2
)
ds+

∫ t

0

σdWs

= ln x0 +
(
α− 1

2
σ2
)
t+ σWt.

And finally, by taking the exponent the desired result is obtained

Xt = x0 exp

((
α− 1

2
σ2
)
t+ σWt

)
.

F.7 Partial Differential Equations and Feynman-Kač

In this section we present the general stochastic partial differential equation that
returns frequently in the study of the Black-Scholes model. Furthermore, the
Feynman-Kač formula for solving these types of problems is derived.

The general boundary value problem that will be considered is given by

∂F

∂t
(t, x) + µ(t, x)

∂F

∂x
(t, x) +

1

2
σ2(t, x)

∂2F

∂x2
(t, x)− rF (t, x) = 0, (F.29)

F (T, x) = Φ(x), (F.30)

where µ, σ and Φ are known scalar functions and r is a known constant. In order
to solve the above boundary value problem it will be assumed that there exists a
function F satisfying Eqs. F.29-F.30 on [0, T ] × R. We will then seek a stochastic
representation formula which gives the solution to Eqs. F.29-F.30 in terms of the
solution of an SDE associated to the problem at hand.

Suppose that Xs has the dynamics

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs,

Xt = x.

Using the technique of integrating factor and applying Itô’s formula to Zs =
e−

∫ s
0 rduF (s,Xs) we get

dZs = e−
∫ s
0 rdu

(
∂F

∂t
(s,Xs) + µ(s,Xs)

∂F

∂x
(s,Xs) +

1

2
σ2(s,Xs)

∂2F

∂x2
(s,Xs)− rF (s,Xs)

)
ds

+ σ(s,Xs)e
−

∫ s
0 rdu∂F

∂x
(s,Xs)dWs.

Using Eq. F.29 the above expression reduces to

dZs = σ(s,Xs)e
−

∫ s
0 rdu∂F

∂x
(s,Xs)dWs.
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Writing the expression in its integral form yields

ZT = Zt +

∫ T

t

σ(s,Xs)e
−

∫ s
0 rdu∂F

∂x
(s,Xs)dWs,

or more precisely

e−
∫ T
0 rduF (T,XT ) = e−

∫ t
0 rduF (t,Xt) +

∫ T

t

σ(s,Xs)e
−

∫ s
0 rdu∂F

∂x
(s,Xs)dWs.

The initial condition, Eq. F.30, and the fact that Xt = x allow us to rewrite the
expression as

e−
∫ T
0 rduΦ(XT ) = e−

∫ t
0 rduF (t, x) +

∫ T

t

σ(s,Xs)e
−

∫ s
0 rdu∂F

∂x
(s,Xs)dWs.

Taking expectation conditional on Xt = x yields

Et,x

[
e−

∫ T
0 rduΦ(XT )

]
= e−

∫ t
0 rduF (t, x) + Et,x

[ ∫ T

t

σ(s,Xs)e
−

∫ s
0 rdu∂F

∂x
(s,Xs)dWs

]
.

Finally, assuming that e−
∫ s
0 rduσ(s,Xs)

∂F
∂x
(s,Xs) fulfils the Novikov condition, Eq.

F.18, and using property 1 of Proposition F.1 we get the following after rearranging

F (t, x) = Et,x

[
e−

∫ T
t rduΦ(XT )

]
= e−r(T−t)Et,x

[
Φ(XT )

]
.

Formulating our findings in a proposition we arrive at the famous Feynman-Kač
stochastic representation formula which concludes this section.

Proposition F.4 Feynman-Kač
Assume that F is a solution to the boundary value problem

∂F

∂t
(t, x) + µ(t, x)

∂F

∂x
(t, x) +

1

2
σ2(t, x)

∂2F

∂x2
(t, x)− rF (t, x) = 0, (F.31)

F (T, x) = Φ(x). (F.32)

Furthermore, assume that e−rsσ(s,Xs)
∂F
∂x
(s,Xs) fulfils the Novikov condition, Eq.

F.18. Then F has the stochastic representation

F (t, x) = e−r(T−t)Et,x

[
Φ(XT )

]
, (F.33)

where the dynamics of X are given by

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs, (F.34)
Xt = x. (F.35)
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