
IN DEGREE PROJECT MATHEMATICS,
SECOND CYCLE, 30 CREDITS

,  STOCKHOLM SWEDEN 2018

Exotic Derivatives and Deep 
Learning

AXEL BROSTRÖM

RICHARD KRISTIANSSON

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ENGINEERING SCIENCES





Exotic Derivatives and Deep 
Learning  
 
 
AXEL BROSTRÖM  
RICHARD KRISTIANSSON  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Degree Projects in Financial Mathematics (30 ECTS credits)  
Degree Programme in Industrial Engineering and Management 
KTH Royal Institute of Technology year 2018 
Supervisor at Algorithmica Research: Magnus Ekdahl 
Supervisor at KTH: Boualem Djehiche 
Examiner at KTH: Boualem Djehiche 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TRITA-SCI-GRU 2018:162 
MAT-E 2018:26 

 
 
 
 
 
 
Royal Institute of Technology 
School of Engineering Sciences 
KTH SCI 
SE-100 44 Stockholm, Sweden 
URL: www.kth.se/sci 

 



Abstract

This thesis investigates the use of Artificial Neural Networks (ANNs) for
calculating present values, Value-at-Risk and Expected Shortfall of options,
both European call options and more complex rainbow options. The per-
formance of the ANN is evaluated by comparing it to a second-order Tay-
lor polynomial using pre-calculated sensitivities to certain risk-factors. A
multilayer perceptron approach is chosen based on previous literature and
applied to both types of options. The data is generated from a financial risk-
management software for both call options and rainbow options along with
the related Taylor approximations. The study shows that while the ANN
outperforms the Taylor approximation in calculating present values and risk
measures for certain movements in the underlying risk-factors, the general
conclusion is that an ANN trained and evaluated in accordance with the
method in this study does not outperform a Taylor approximation even if
it is theoretically possible for the ANN to do so. The important conclusion
of the study is that the ANN seems to be able to learn to calculate present
values that otherwise require Monte Carlo simulation. Thus, the study is a
proof of concept that requires further development for implementation.





Sammanfattning

Denna masteruppsats undersöker användningen av Artificiella Neurala
Nätverk (ANN) för att beräkna nuvärdet, Value-at-Risk och Expected Short-
fall för optioner, både Europeiska köpoptioner samt mer komplexa rainbow-
optioner. ANN:t jämförs med ett Taylorpolynom av andra ordningen som
använder känsligheter mot ett flertal riskfaktorer. En typ av ANN som kallas
multilayer perceptron väljs baserat på tidigare forskning inom området och
appliceras på båda typerna av optioner. Datan som används har genererats
från ett finansiellt riskhanteringssystem för såväl köpoptioner som rainbow-
optioner tillsammans med tillhörande Taylorapproximation. Studien visar
att även om ANN slår Taylorpolynomet för vissa specifika beräkningar av
nuvärdet och riskvärden så är den generella slutsatsen att ett ANN som är
tränad och utvärderad enligt metoden i denna studie inte presterar bättre än
ett Taylorpolynom även om det är teoretiskt möjligt att ANN:t kan göra det.
Den viktigaste slutsatsen från denna studie är att ANN:t verkar kunna lära
sig prissätta komplexa finansiella derivat som annars kräver Monte Carlo-
simulering. Således validerar denna studie ett koncept som kräver ytterligare
utveckling före det implementeras.
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Chapter 1

Introduction

Calculating present values of financial instruments is an important part of all
financial mathematics and is done by traders, risk-managers, and quantita-
tive analysts on a daily basis. There are multiple approaches to calculating
the present value of a financial instrument. One approach is using a widely-
accepted mathematical expression, a classic example being the Black-Scholes
model for pricing European options which derives from a perfect hedge of
the option given all the assumptions of a Black-Scholes world (see [1]).

The advantage of these mathematical expressions is that they are easily com-
puted for many di�erent combinations of inputs. Unfortunately there are
many financial instruments for which no analytic valuation expression exists
or is di�cult to evaluate. Thus, there is a need for a numerical method.
Monte Carlo simulation is a broad class of algorithms that use random num-
ber generators to simulate random variables. Many complex financial instru-
ments are valued using Monte Carlo simulation of potential outcomes. This
approach to calculating the present value of financial derivatives was first
proposed by Phelim Boyle in 1977 [2].

Since 1977 Monte Carlo simulation has become the backbone of valuation for
many financial instruments. To calculate present values with Monte Carlo
simulation risk-neutral paths of financial assets are analyzed, distributions
estimated and models built. This allows for the creation of an arbitrary
number of scenarios. The financial instruments are then valued for all of
these scenarios and an approximation of the present value of the instrument
is found from the average. To obtain reliable results many simulations must
be run as the Monte Carlo methods use the Law of Large Numbers (see [3]).
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This means that any changes in input variables requires the computationally
intensive simulations to be run again. Thus, in a modern financial world with
ever-changing spot prices, interest rates, implied volatilities, and currencies
it is di�cult to keep up to date with the prices of these complex instruments
which require Monte Carlo simulation.

To avoid having to run time consuming simulations every time there is a
change in inputs - a di�erent approach is needed. One that preferably cor-
rectly represents the present values but avoids the computational require-
ments of Monte Carlo simulation. One solution may be Artificial Neural
Networks (ANNs) which have been successfully applied to a variety of cases
in financial economics including option pricing (see [4]). While ANNs can be
computationally intensive to train they are e�cient when used after the train-
ing. Thus, the question is whether an ANN can be trained to price complex
financial instruments in a way that could replace Monte Carlo simulation.

The purpose of this study is to determine whether, and if so when, ANNs
can adequately approximate the present values, Value-at-Risk and Expected
Shortfall of complex financial instruments that would otherwise require Monte
Carlo simulation.

The approach that will be used to determine whether the ANN can ade-
quately approximate the present value, Value-at-Risk and Expected Short-
fall is a comparison of the ANN-calculated value with another method of
handling input moves without Monte Carlo simulation as well as with Monte
Carlo simulation itself as a benchmark. One method which avoids Monte
Carlo simulation is using pre-calculated sensitivities of the present value to
certain risk-factors and using a second-order Taylor polynomial to handle
changes in the inputs.

From the purpose of the study the following research question is specified:

• Can an ANN outperform a second-order Taylor approximation when
handling moves in the inputs of financial instruments that require
Monte Carlo simulation to calculate their present value, Value-at-Risk
and Expected Shortfall? If so, when?

As has been mentioned, many complex financial instruments lack analytic
solutions and require Monte Carlo Simulations, rainbow options are one of
these instruments. Rainbow options, also called multi-asset options, correla-
tion options, or basket options, are options whose value depends on multiple
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sources of uncertainty (see [5]). The general idea behind rainbow options is
that the pay-o� depends on the best or worst performing asset of the basket,
creating best-of rainbow options and worst-of rainbow options. The rainbow
options examined in this study are best-of call options with three underlying
equity assets.

There are many variations of rainbow options but a best-of call option is a
good example to understand how rainbow options work. The payo� ⇧ of a
best-of call option on n underlying assets is as follows, where S

i

and K
i

are
the respective spot- and strike prices of each underlying asset at maturity.

⇧ = max

1in

[⇧

i

, 0],

⇧

i

=

S
i

K
i

� 1.

For simpler rainbow options with only two underlying assets closed-form so-
lutions for calculating the present value exist. For slightly more complex
rainbow options semi-analytic solutions and analytical approximations exist
but in general Monte Carlo simulation is the primary method used for cal-
culating the present value (see [5][6][7]).

Chapter 1 has introduced the background, problematization, and purpose of

the study along with the research question. In Chapter 2 the literature and

theory upon which the study is based is presented giving a short overview

of ANNs and their use in option pricing. In Chapter 3 the research design

which allows the research question to be answered is presented. This includes

the method and data used in the study. In Chapter 4 the results of the study

are presented. Finally in Chapter 5, the results are analyzed and conclusions

are drawn. The results indicate that an ANN can learn to price options that

require Monte Carlo simulation, however further development is needed to

reach adequate levels of accuracy.
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Chapter 2

Literature and Theory

2.1 ANNs in Financial Economics

ANNs have a wide variety of uses from image recognition and biology to
finance. Li and Ma [4] present a survey of the application of ANNs in financial
economics. This survey covers many areas of finance and many research
articles but in general covers ANNs and exchange rates, ANNs and stock
markets, and prediction of banking and financial crisis. The most relevant
aspect is ANNs and stock markets and the sub-topic option pricing and ANNs
where the authors present the results of previous research regarding the topic
including multiple successful applications of ANNs for option pricing.

2.2 ANNs for Option Pricing

This section will present earlier research into the use of ANNs for option
pricing. The previous studies shown here are di�erent from this study in
multiple ways. Firstly, the previous studies have mostly been focused on
market data meaning that the ANN is trained to price options according to
a "true" market pricing formula and compared to the results of for example
the Black-Scholes formula. Secondly, most of the previous studies have been
on European call options. Thirdly, these studies have not utilized deep neural
networks with multiple hidden layers. In spite of this there are many parts
of the research that are transferable to this study.
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Hutchinson et al. [8] used multiple non-parametric models including an ANN
with one hidden layer with four nodes and a sigmoid function evaluated by R2

to investigate the performance of the network when pricing S&P 500 futures
options between January 1987 and December 1991. The authors used daily
data and used S/K and T � t as inputs and C/K as an output.

Lajbcygier and Connor [9] used an three-layer ANN with 15 hidden nodes
to price option futures on the Australian SPI between January 1992 and
December 1994. The authors used daily data and F/K, T � t and � as
inputs and C � C

MB

as outputs, the work was evaluated using R2.

Gencay and Qi [10] used three-layer ANNs with Bayesian regulation, early
stopping and bagging to price call options on the S&P 500 Index between
January 1988 and December 1993. The authors used daily data and S/K and
T � t as inputs and C/K as outputs, the work was evaluated using MSPE,
DM test and WS test.

Amilion [11] used three-layer ANNs with 10, 12 and 14 hidden nodes evalu-
ated by RMSE to investigate the performance of the network when pricing
call options on OMXS30 between June 1997 and March 1998 as well as June
1998 and March 1999. Amilion used daily data and I/K, T � t and r as
inputs and C

bid

/K and C
ask

/K as outputs.

Gradojevic et al. [12] used modular neural networks (3-9 modules) with one
hidden layer evaluated by MSPE and DM test to investigate the performance
of the network when pricing call options on the S&P 500 Index between
January 1987 and December 1994. The authors used daily data and S/K
and T � t as inputs and C/K as output.

Liang et al. [13] used three-layer ANNs and support vector machines to price
options based on Hong Kong option market data (122 firms) between January
2006 and December 2007. The authors used S/K, T � t, e(BT ), e(FD) and
e(MC) as inputs and C as output. The e-terms are the results of a binomial
tree, finite di�erence and Monte Carlo valuation. The performance of the
network was evaluated using MAPE and MRPE.

Wang [14] used three-layer ANNs with a sigmoid activation function to price
options on the Taiwan Stock Index between January 2005 and December
2006. Wang used S/K, T � t, r and GARCH(�) as inputs and � as output.
The network was evaluated using RMSE, MAE, MAPE and MSPE.
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2.3 ANNs - A Short Overview

ANNs are built on learning algorithms and architectures that try to resemble
features of the human brain. Neurons in di�erent constellations are connected
in a network that is trained to solve di�erent problems. The network is
trained and calibrated on labeled data, known as training data. Once the
model is trained new unlabeled data is presented to the model and the model
outputs an answer in accordance with what it has learnt during training.

ANNs do not rely on any underlying models, there are no underlying prob-
ability distributions to be estimated or likelihoods to be maximized. The
advantage of using this approach is that the algorithm determines relation-
ships in the data itself without any assumptions. ANNs are however not
a single approach. There are several di�erent types of ANN models that
all have their respective strengths in di�erent applications, such as Con-
volutional Neural Networks, Recurrent Neural Networks which have their
strengths in among other things image recognition and speech recognition
respectively (see [15][16]). For regression a useful approach is the multilayer
perceptron (MLP) since it is a theoretical universal function approximator
as shown by Cybenko [17].

The MLP organizes neurons in di�erent layers. Inputs are inserted in an
input layer, then the problem solving takes place in an arbitrary number of
hidden layers, and lastly the output is exhibited in the output layer. An
example architecture is displayed in figure 2.1.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.1: A MLP with an input layer with four nodes, one hidden layer
with five nodes and an output layer consisting of one node.
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An ANN with multiple hidden layers is often called a deep neural network.
These deep neural networks are often of the MLP type. The extra hidden
layers allows more complex relationships to be modeled with fewer neurons
than a network with fewer layers that has similar performance. (see [18][19])

In general an ANN works in the following way (see [20]). Each neuron com-
putes a weighted sum of all inputs leading to it, adds a bias term (2.1) and
computes a transformation of that sum (2.2). Typically the transformation
function is a sigmoid, a smooth monotonically increasing function, such as
the logistic function or the hyperbolic tangent. However, it can also be a
linear function such as a rectified linear unit (max[0, x]). The transformed
sum is passed on as an input to the nodes in the next layer until the output
is attained.

zl
j

=

X

k

wl

jk

al�1
k

+ bl
j

, (2.1)

al
j

= �(zl
j

). (2.2)

In the equation above zl
j

is the weighted input in node j in layer l, wl

jk

is the
weight applied to the activation al�1

k

from node k in the preceding layer l�1,
bl
j

is the bias term and � is the transformation function. In vector form this
can be represented as:

zl = wlal�1
+ bl, (2.3)

al = �(zl). (2.4)

The activations in the input layers are taken directly as the inputs without
any transformation. This means that the input data must be represented in
a reasonable way. The output layer can be calculated in many di�erent ways
depending on what the ANN is trying to achieve. For example in a regression
a weighted sum can be calculated, while in a classification a softmax function
can be applied to give probabilities to certain classifications (see [21][22]).

Lastly, when the calculations of the ANN are complete, the output is com-
pared against the labeled values of the training data and a cost function is
computed. An algorithm called backpropagation is used to understand how
the weights and biases a�ect the cost function and another algorithm, gra-
dient descent is used to adjust the weights and biases to minimize the cost
function. This procedure is repeated until the error is minimized at which
point the model is considered to be trained and ready to investigate new
data.
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The cost function C is a measure of di�erence between the output of the ANN
and the correct output, and is used to train the model. To be able to use
backpropagation multiple assumptions are necessary. The first assumption is
that the cost function for all inputs can be written as an average over the cost
function for single inputs. This is necessary since backpropagation calculates
the cost function for single inputs at a time. The second assumption is that
the cost function has the partial derivatives @C/@w and @C/@b since these
are necessary part of the backpropagation calculations. The final assumption
on the cost function is that it can be written as a function of the outputs
from the neural network. This ensures that the cost function only responds
to changes in what the network has learned. (see [23])

2.3.1 Backpropagation Algorithm

As mentioned in the previous section, ANNs can be trained using a combina-
tion of backpropagation and gradient descent to minimize the cost function.
Backpropagation, made famous by Rumelhart et al. [23], calculates the gra-
dient of the cost function with respect to the weights and biases of the ANN
and gradient descent minimizes the cost function using the calculated gradi-
ent.

The backpropagation algorithm calculates how di�erent weights and biases
a�ect the cost function, which allows gradient descent to be applied. The
following is a derivation of backpropagation for a MLP (see [20]).

The first step is to introduce the error term �l
j

, the error in the jth neuron in
the lth layer. Secondly, the partial derivatives for the cost function C with
respect to weights w and biases b, @C/@wl

jk

and @C/@bl
j

are computed. The
error term is calculated as follows:

�l
j

=

@C

@zl
j

. (2.5)

The procedure going forward is to calculate �l
j

for every node and relate it
to @C/@wl

jk

and @C/@bl
j

. Backpropagation does this by focusing on four
fundamental equations that make it possible to compute both the error �l
and the gradient of the cost function.
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The first equation (2.6), is used for calculating the error � in the output layer
L:

�L
j

=

@C

@aL
j

�0
(zL

j

), (2.6)

where the term @C/@aL
j

is the partial derivative of the cost function with
respect to the jth output activation aL

j

. Intuitively, if a particular output
neuron aL

j

has low influence on the cost function C, then the error will be
small. The derivative of the activation function �0

(zL
j

) shows the activation
function’s � movements related to the weighted input zL

j

. In matrix form,
the equation takes the following expression:

�L = r
a

C � �0
(zL), (2.7)

where r
a

C is a vector with the partial derivatives @C/@aL
j

, �0
(zL) is the

vector of �0
(zL

j

) and � is the Hadamard product.

The second equation (2.8) is used for calculating the error � in layer l in
terms of the error in the next layer �l+1:

�l = ((wl+1
)

T �l+1
)� �0

(zl), (2.8)

where (wl+1
)

T is the weight matrix for the (l + 1)

th layer transposed. Intu-
itively, if the error �l+1 and the weight matrix wl+1 is known for the (l+1)

th

layer the error can be transferred back to the lth layer. The Hadamard prod-
uct moves the error backwards in the network through the derivative of the
activation function �0

(zl) in layer l. By repeating this process backwards
through the network the error �l is calculated for all layers l.

The third equation (2.9), is used to calculate the bias term’s e�ect on the
cost function and is expressed as:

@C

@bl
j

= �l
j

. (2.9)

Which shows that the error from the bias term is equal to the rate of change
@C/@bl

j

which is intuitive since the bias directly a�ects zl
j

and thereby the
error.

The fourth equation (2.10), is used to calculate the rate of change of the cost
function with respect to any weight in the network, and is expressed as:

@C

@wl

jk

= al�1
k

�l
j

. (2.10)
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2.3.2 Gradient Descent

Gradient descent is an optimization algorithm used to find the minimum of
a di�erentiable function. In neural networks it is used to find the weights
and biases that minimize the cost function. The iterative algorithm seeks to
find local minimum by taking one step proportional to the negative gradient
of the function at the current point (see [20]). In neural networks, gradient
descent uses the gradient calculated in the backpropagation algorithm.

The change in the cost function can be approximated as:

�C ⇡ rC ·�v, (2.11)

where rC is the gradient of the cost function and �v is the change. �v is
chosen in the following way:

�v = �⌘rC, (2.12)

where ⌘ is a small positive parameter known as the learning rate that repre-
sents the step size.

Combining (2.11) and (2.12) gives the following expression:

�C ⇡ rC ·�⌘rC = �⌘krCk2 . (2.13)

This equation shows that sincekrCk2 � 0, the change in the cost function in
guaranteed to be �C  0 if �v is chosen as in (2.12). The algorithm keeps
iterating until it finds a minimum. The learning rate ⌘ has to be small enough
so that the approximation (2.11) holds, but if too small, the algorithm will
be slow and ine�cient. It is important to note that if the cost function is
non-convex a global minimum can never be guaranteed by gradient descent.

Applied to the optimization problem of choosing weights w
k

and biases b
l

,
the gradient descent algorithm leads to the following updating rules:

w0
k

= w
k

� ⌘
@C

@w
k

, (2.14)

b0
l

= b
l

� ⌘
@C

@b
l

, (2.15)

where w
k

and b
l

are the current weights and biases and w0
k

and b0
l

are the
updated values. This update rule is repeated until the algorithm has found
the weights and biases that minimize the cost function. It is important to
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notice that the cost function is an average over cost for all individual training
examples as per earlier assumptions:

C =

1

n

X

x

C
x

. (2.16)

In practice this means that the gradient rC
x

has to be computed for each
training input x, and then averaged to get rC.

rC =

1

n

X

x

rC
x

. (2.17)

This means that learning can take an extensive amount of time, since a large
number of training inputs means that a large number of gradients need to
be calculated.

2.3.3 Stochastic Gradient Descent

Stochastic gradient descent is an approach used to get around the time con-
suming problem of calculating gradients for all training inputs in order to
speed up learning. The idea is to calculate the gradient only for a small
sample of the training inputs and average them to get an estimate of the
true gradient of the cost function rC. (see [24])

1

m

mX

j=1

rC
Xj ⇡

1

n

X

x

rC
x

= rC. (2.18)

The left hand side of (2.18) represents the average over the small sample m
and the right hand side is the true average over the full training set n.

Applied to the optimization problem, the stochastic gradient descent algo-
rithm works in the following way:

w0
k

= w
k

� ⌘

m

X

j

@C
Xj

@w
k

, (2.19)

b0
l

= b
l

� ⌘

m

X

j

@C
Xj

@b
l

, (2.20)

where m is an randomly chosen sample of the training input samples, a batch,
and X

j

is an input sample within the batch. This approach is repeated by
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picking another randomly chosen batch from the remaining training data
until all training data has been used in the training of the network. When all
training inputs have been used, one epoch of training has been completed.
The number of epochs used di�ers and is adjusted to make sure a minimum
is reached while trying to avoid overfitting the model to the training data.

2.3.4 Adam Optimizer

A variation of gradient descent, the Adaptive Moment Estimation (Adam)
optimization method was presented by Kingma and Ba [25]. The authors
present the method with the following words:

The method is straightforward to implement, is computationally

e�cient, has little memory requirements, is invariant to diagonal

rescaling of the gradients, and is well suited for problems that

are large in terms of data and/or parameters. The method is

also appropriate for non-stationary objectives and problems with

very noisy and/or sparse gradients. The hyper-parameters have

intuitive interpretations and typically require little tuning.

The Adam optimizer works by adapting the learning rates for each parameter.
The method stores an exponentially decaying average of previous gradients
squared v

t

and an exponentially decaying average of previous gradients m
t

.
The updates to the variables are calculated in the following way:

m0
k

= �1mk

+ (1� �1)rC, (2.21)
v0
k

= �2vk + (1� �2)(rC)

2, (2.22)

m̂
k

=

m0
k

1� �1
, (2.23)

v̂
k

=

v0
k

1� �2
. (2.24)

Thus the final update rule for weights and biases becomes:

w0
k

= w
k

� ⌘
m̂

kp
v̂
k

+ ✏
, (2.25)

b0
l

= b
l

� ⌘
m̂

kp
v̂
k

+ ✏
, (2.26)
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where �1 and �2 are the exponential decay factors while ✏ is a small number
to avoid zero division, and (rC)

2 is the element-wise square of rC. Kingma
and Ba recommend �1 = 0.9 �2 = 0.999 and ✏ = 10

�8 as default values for
the parameters of the optimization method.

2.3.5 Bias-Variance Trade-O�

Low Variance High Variance

Lo
w

Bi
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H
ig

h
Bi

as

Figure 2.2: A visual representation of the bias and variance of an estimator

The bias-variance trade-o� is the comparison of accuracy versus quality of
an estimator by the use of bias and variance as the measurable quantities.
In general the bias-variance trade-o� leads to the following conclusions. If
a model is too complex it is sensitive to small variations in the input data
while a model that is too simple will be biased and not fit the data properly.
In mathematical terms in can be explained in the following way. (see [26])

Consider a training set x1, .., xn

and real values y
i

with the following rela-
tionship.

y
i

= f(x
i

) + E

where E is noise with zero mean and variance �2. If the attempted model
is represented by ˆf(x) then the error can be decomposed in the following
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manner.

E[(y � ˆf(x))2] = Bias[ ˆf(x)]2 + Var[ ˆf(x)] + �2,

where

Bias[ ˆf(x)] = E[

ˆf(x)]� f(x),

Var[ ˆf(x)] = E[(

ˆf(x)� E[

ˆf(x)])2].

Thus the total error is decomposed into three parts which form a lower bound
on the expected error of the estimator on unseen samples.

• The square of the bias: The error due to overly simple models.

• The variance of the estimator: How much the estimator moves around
the mean indicating more complexity.

• The irreducible error: The �2 error which can not be avoided due to a
noisy relationship between x and y.

2.3.6 Training and Validation Data

To handle the problem of the bias-variance trade-o� a common approach is
to divide the input data set into two data sets, one of which is used to train
the model and the other which is used for validating the model choice. This
allows a comparison to be made between di�erent models as every model is
evaluated on the same validation data set. Thus a comparison can be made
between simpler models and more complex models to ensure that a model of
su�cient complexity for the problem is chosen without overfitting the model
to the training data. (see [26])

2.3.7 Worst Case

Barron [27] investigated the approximation properties of ANNs showing that
a three layer MLP with sigmoidal activation functions can achieve an inte-
grated squared error of O(1/n) where n is the number of nodes. Goodfellow
et al. [28] expanded upon this by determining that in the worst case an expo-
nential number of hidden units may be required. While a MLP with a single
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hidden layer can represent any function it may become infeasibly large or fail
to learn.

Montufar et al. [29] investigated similar properties for deep neural networks
using ReLU activation functions. The authors showed a lower bound for the
maxiamal number of linear regions that that an ANN with ReLU activation
functions can approximate given input nodes of O(1), the same number of
nodes in all hidden layers, more nodes in the hidden layers than in the input
layer and with L hidden layers. Goodfellow et al. [28] reformulated the main
theorem of Montufar et al. as follows. The number of linear regions a deep
ReLU network with d inputs, l hidden layers and n units per hidden layer
can represent is:

O

 ✓
n

d

◆
d(l�1)

nd

!
.

2.4 Option Pricing

2.4.1 Arbitrage-Free Pricing

Arbitrage-free pricing or valuation is a wide spread theory used in pricing
models. Prices are determined in such a manner as to preclude any arbitrage
opportunities.

Black-Scholes Model

The Black-Scholes model is an arbitrage-free pricing model for European
options. The model calculates the price as the discounted risk-neutral ex-
pected value of the payo� of the option. This is also known as calculating the
price under the risk-neutral measure Q, which is not the real world observed
probability measure but a probability measure for arbitrage-free prices. The
risk-neutral measure implies that there is a unique arbitrage-free price for
each asset in the market (see [30]). The arbitrage-free price is realized by
using dynamic hedging.

For the the Black-Scholes model to hold some main assumptions and simpli-
fications must be applied to the underlying asset and markets (see [31]).
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• Interest rate: Assumed to be known, risk-free and constant.

• Log-normal distribution of returns: This means that the stock price
at maturity S

T

and the stock price at time 0, S0 has the following
distribution. ST

S0
2 eZ where Z 2 N((r � �

2

2 )T, �
p
T ).

• Volatility: Assumed to be constant over time and di�erent strike prices.

• No dividends: A simplification, which is easily worked around by sub-
tracting the discounted value of the dividend from the stock price or
by using a dividend yield (see [31]).

• Arbitrage-free: There are no risk-free arbitrage opportunities.

• Cash: It is possible to borrow and lend any amount, even fractional at
risk-free rate.

• Liquidity: It is possible to buy and sell any amount, even fractional, of
the underlying without any bid-ask-spread.

• No transaction costs or taxes: A necessary assumption for the constant
rebalancing in dynamic hedging.

If these assumptions hold the payo� X can be priced as follows:

⇧

t

(X) = e�r(T�t)EQ

[X], (2.27)

where ⇧
t

is the price at time t of the payo� X that occurs at time T (see [32]).
To find the expected value under the risk neutral probability measure, the
following equation is used:

EQ

[X] =

Z 1

�1
x (z)dz, (2.28)

where  (z) is the probability density function of Z 2 N((r � �

2

2 )(T �
t), �

p
T � t).

These equations give the price of a option with payo� X, which is also the
price of the dynamic hedge. This is because the dynamic hedge will recreate
the same cash flows as the derivative and since there is no arbitrage the price
of identical cash flows must be equal. Thus by pricing the dynamic hedge
the price of the option is found as well.
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Problems with Arbitrage-Free Pricing

Though the Black-Scholes model is widely used in the world of finance it is
not perfect. There have been many articles that are highly critical of the
formula, not least an article by Haug and Taleb [33]. Some of the common
criticisms of the Black-Scholes model include:

• The normality of asset returns: The normality assumption of asset
returns in the Black-Scholes model has been criticized for underesti-
mating extreme movements of assets. As Hull [31] states returns are
leptokurtic meaning that there are far too many outliers for a normal
distribution to be correct.

• Constant volatility: As noted by Yalincak [34] asset volatility is often
clustered over time. In practice volatility is also non-constant for dif-
ferent strike prices and times to maturity, leading to so called volatility
smiles (see [35]).

• Instant and cost-less trading: In the real world there are fees for trad-
ing options and stocks as well as barriers to trading. The model also
assumes perfect liquidity in the market which has been proven false on
multiple occasions not least during the global financial crisis and other
times of financial distress.

Why Monte Carlo?

There are multiple problems with the Black-Scholes framework, some of
which can be handled in di�erent ways, but a problem which it can not
handle is increasing complexity. Monte Carlo simulation is one option for
handling increases in complexity when calculating the present value of op-
tions.

2.4.2 Monte Carlo Pricing

Monte Carlo pricing is a commonly used technique for calculating option
prices with complicated features that are di�cult if not impossible to price
using analytic expressions. Examples of options that are usually priced with
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Monte Carlo simulations are rainbow options as well as path dependent op-
tions such as look-back options and options with Asian tails, as no analytic
solution exists for these derivatives.

The Monte Carlo method relies on risk neutral valuation where the price of
the option is the discounted expected value. The first step is to generate a
large sample of random possible risk-neutral price paths for the underlying
asset(s) by simulation. Secondly, the option payo� of each price path is
calculated. Finally, the value of the option is calculated as the discounted
average of all payo�s. (see [2])

The benefits of the Monte Carlo approach is that it allows for compounding
in the source of uncertainty. This opens up the possibility to price options
with multiple sources of uncertainty such as rainbow options with multiple
underlying assets. For rainbow options correlation plays an important role
and is therefore incorporated in the simulations. (see [36])

Furthermore, the Monte Carlo pricing approach is not limited to any type
of probability distribution, which makes it a flexible approach for pricing. It
is also possible to specify the stochastic process of the underlying asset(s) so
that it exhibits jumps or mean reversion. (see [36])

The main drawback with the Monte Carlo method is that it is computa-
tionally intensive. If an analytic technique for valuing the option exists the
Monte Carlo method will usually be too slow to be competitive (see [3]). This
is mainly due to the fact that the convergence of a Monte Carlo simulation
is inversely proportional to the square root of the number of samples.

Monte Carlo simulation is carried out by generating random numbers X
i

from
the probability density function f

X

(x) and computing the objective function
for each case and estimating the average µ̂ (see [3]). If Y = h(X) then by
the Law of the Unconscious Statistician:

E[Y ] = E[h(X)] =

Z 1

�1
h(x)f

X

(x)dx, (2.29)

µ̂ =

1

N

NX

i=1

h(x
i

), (2.30)

where x
i

is an independent sample of the random variable X and µ̂ converges
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almost surely to E[Y ] by the Strong Law of Large Numbers.

µ̂ = lim

N!1

1

N

NX

i=1

h(x
i

)

a.s.��!
Z 1

�1
h(x)f

X

(x)dx = E[Y ]. (2.31)

The standard error �
µ̂

(2.34) of the Monte Carlo simulation is proportional
to 1/

p
N where N is the number of samples.

Var( 1
N

NX

i=1

h(x
i

)) =

�2

N
, where �2

= Var(x
i

), (2.32)

�̂2
=

1

N � 1

NX

i=1

(h(x
i

)� µ̂)2, (2.33)

�
µ̂

/ �̂p
N
. (2.34)

2.5 Risk Measures

2.5.1 Value-at-Risk

The Value-at-Risk (VaR) is a measure of risk in a portfolio. The VaR esti-
mates the potential losses in a portfolio for a certain amount of time. The
VaR of a portfolio X is given as:

VaR
p

(X) = min{m : P (m ·R0 +X < 0)  p}
= min{m : P (�X/R0  m) � 1� p},

(2.35)

where R0 is the return of the risk-free rate and p 2 (0, 1) is the confidence
level. (see [37])

If X is given as V1 � V0R0, the net gain of the portfolio, then the discounted
loss can be represented as:

L = �X

R0
= V0 �

V1

R0
, (2.36)

where V0 and V1 are the values of the portfolio at time 0 and 1. Using this
notation the VaR can be expressed as:

VaR
p

(X) = min{m : P (L  m) � 1� p}. (2.37)
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In statistical terms this is the (1� p)-quantile of L and thus is follows that:

VaR
p

(X) = F�1
L

(1� p). (2.38)

2.5.2 Expected Shortfall

Expected Shortfall is an extension of the VaR concept which takes into ac-
count the shape of the tail of the loss distribution (see [37]). The Expected
Shortfall of a portfolio X can be calculated as:

ES
p

(X) =

1

p

Z
p

0

VaR
u

(X)du. (2.39)

2.5.3 Empirical Distribution

The empirical distribution of a sample X1, . . . , Xn

is given as:

F
n,X

(x) =
1

n

nX

k=1

I{X
k

 x}, (2.40)

where n is the number of samples and I is an indicator function. This
representation can be justified by the Law of Large Numbers. (see [37])

If Z1, . . . , Zn

are independent copies of Z and if E[Z] is finite, then the Law

of Large Numbers states:

lim

n!1

1

n

nX

k=1

Z
k

a.s.��! E[Z]. (2.41)

Setting Z
k

= I{X
k

 x} implies that E[Z
k

] = P (X
k

 x) = F (x). Thus, the
Law of Large Numbers implies that lim

n!1 F
n,X

(x) = F (x) almost surely.

2.5.4 Empirical Value-at-Risk

With X and L as in section 2.5.1, using independent samples L1, . . . , Ln

of
L the empirical VaR

p

(X) can be calculated as:
dVaR

p

(X) = L[np]+1,n, (2.42)

where the sample is ordered, L1,n �, . . . ,� L
n,n

(see [37]).
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2.5.5 Empirical Expected Shortfall

Using the empirical VaR the empirical Expected Shortfall is estimated by
simply replacing VaR

p

(X) by its empirical estimator dVaR
p

(X) (see [37]).

cES
p

(X) =

1

p

Z
p

0

dVaR
u

(X)du =

1

p

Z
p

0

L[nu]+1,ndu

=

1

p

0

@
[np]X

k=1

L
k,n

n
+

✓
p� [np]

n

◆
L[np]+1,n

1

A .
(2.43)
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Chapter 3

Research Design

3.1 Research Design

The design of a study is what allows the research question to be answered.
Using ANNs to predict option prices was a well-motivated choice as their
usefulness in the area has been proven on multiple occasions as seen in sec-
tion 2.2. While those studies mostly try to estimate prices from market data
there is an obvious parallel to pricing options using risk-factor simulation
leading to the hypothesis that ANNs may be able to price options which
require Monte Carlo simulation as well. To investigate the research question
and hypothesis the following research design was used.

1. Evaluate performance for European call options to investigate perfor-
mance for simpler options that do not require Monte Carlo simulation.

2. Evaluate performance for rainbow options to investigate performance
for more complex options that do require Monte Carlo simulation.

For both the call option and the rainbow option the following plan was used.

1. Collect data containing option present values and inputs.

2. Clean and format the data as necessary.

3. Train and validate ANNs on the data.

22



4. Collect new data using current approximations.

5. Compare the results of the ANN with current approximations for cal-
culations of present value, Value-at-Risk and Expected Shortfall.

3.2 Method

To execute the study in accordance with the research design the workflow
shown in Table 3.1 was used.

Risk-Management Software Excel Python/Tensorflow
1. Data Gathering

2. Data Formatting
3. Data Transfer

4. Data Split
5. Model Construction

6. Model Training
7. Model Validation

8. Comparison Data
9. Data Formatting
10. Data Transfer

11. Model Use
12. Evaluation

Table 3.1: The software used to prepare data, train the model and analyze
results

3.2.1 Data Gathering

The present values were collected from a risk-management software. The
risk-management software does not use market data explicitly but rather
uses market data as an input to create risk-factors which are then used to
evaluate pre-determined pricing formulas or simulate outcomes and calculate
present values. This means that the options and present values used in
the study were not live market prices therefore no cleaning of the data is
necessary to handle for example bid-ask-spreads.
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3.2.2 Data Cleaning, Formatting, Transfer, and Split

As Python could not directly interact with the risk-management software
Excel was used as an intermediary step. The data was written into an Excel
file where the data was formatted in such a way that was easy for Python to
read. The Python script read from the Excel file to load the data. In Python
the rows of the data were randomly arranged and split into a training set
and a validation set.

3.2.3 Model Construction, Training, and Validation

The construction, training and validation of the model was completed using
the open-source library for machine learning in Python, Tensorflow with the
various native commands that are o�ered. Tensorflow’s native commands
allows for easy execution of backpropagation, gradient descent, stochastic
gradient descent and the use of the Adam optimizer mentioned in sections
2.3.1-2.3.4.

The validation was done by evaluating the di�erent ANNs on the same vali-
dation data set and comparing the results. Tensorflow allows for easy changes
of network architecture by adding another matrix multiplication and trans-
form to add a layer or simply changing a variable to change the number of
nodes in a layer.

3.2.4 Comparison Data, Formatting, and Transfer

Comparison data was generated by creating an option position in the risk-
management software, calculating the position’s sensitivities to di�erent risk-
factors using the centered finite di�erence method and using these sensitivi-
ties to calculate a present value for di�erent types of moves in the risk-factors
a�ecting the position. The new values were recorded, formatted and trans-
ferred to Python via Excel.
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3.2.5 Model Use and Evaluation

The comparison data was loaded into Python and run through the trained
ANN of choice. This generated predicted option values for all the di�er-
ent cases. These predicted option values were saved along with the other
comparison data.

To evaluate the performance of the ANN against the Taylor approxima-
tion the data was moved to Excel. In Excel the MSE and the MAPE of
the predicted present value and the Taylor approximated present value were
compared for the di�erent types of moves in the risk-factors to see when and
if the ANN outperformed the Taylor approximation. Once present values
had been compared the ANN’s performance on Value-at-Risk and Expected
Shortfall was evaluated and compared by calculating the MSE, the MAPE
and the MPE.

3.3 Evaluation Metrics

Three di�erent metrics were used to evaluate the performance of the ANN
and Taylor approximation. The mean squared error (MSE) and the mean
absolute percentage error (MAPE) were used to investigate the performance
of the two valuation methods for moves in equity spot prices, interest rates
and implied volatility. In addition the mean percentage error (MPE) was
used when evaluating performance on Value-at-Risk and Expected Shortfall
calculations to investigate whether the method over- or underestimates the
risk measures on average.

In the following expressions P represents the predicted values, A is the actual
value and n is the number of investigated cases.

MSE(P ) =

1

n

nX

i=1

(A
i

� P
i

)

2, (3.1)

MAPE(P ) =

1

n

nX

i=1

����
A

i

� P
i

A
i

���� , (3.2)

MPE(P ) =

1

n

nX

i=1

A
i

� P
i

A
i

. (3.3)
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3.4 Data

This section briefly describes the data used in the study. It specifies which
data was used to train and validate the ANN as well as the data used to
compare the results of the ANN with the Taylor approximations.

3.4.1 Description

Call Option

In the case of the European call option the following inputs were used: Time
to maturity, risk-free rate, spot/strike and implied volatility for the underly-
ing equity as seen in the most of the previous research. Here:

• Time to maturity: The time between the date on which the present
value is being calculated and the maturity of the option in years.

• Risk-free rate: The risk-free rate corresponding to the time to maturity.

• Spot/strike: The spot/strike was calculated to remove the e�ect of
di�erent strikes such that the ANN interprets the input as how much
the equity must move in percent terms and not in absolute terms which
would require training the ANN for all di�erent combinations of spot
and strike prices.

• Implied volatility: The individual volatility of the underlying equity.
As in the Black-Scholes model this is not a historical volatility but
rather a market-implied volatility.

Rainbow Option

In the case of a rainbow option with three underlying equities quoted in a
common currency the following inputs were used: time to maturity, risk-
free rate, correlations between the equities as well as strike-level and implied
volatility for each underlying equity which closely resembles the approach
used for the European call options. To further clarify:
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• Time to maturity: As for the call option.

• Risk-free rate: As for the call option.

• Correlations: The correlations between the returns of the equities.

• Strike-level: For each equity the strike-level is calculated in the fol-
lowing manner, K/S where S is the spot price of the equity and K
is the strike price for that equity. Thus, the strike-level is a number
representing the strike price as a percentage of the spot price.

• Implied volatility: The individual volatility of each underlying equity.
As in the Black-Scholes model this is not a historical volatility but
rather a market-implied volatility.

3.4.2 Input to the ANN

Call Option

The input data used to train and validate the ANN took the form shown in
Table 3.2. Note that Table 3.2 is an extraction from the original data set.

S/K T r �
1.47 0.15 0.02 0.34
0.91 0.98 0.01 0.10
0.55 0.74 0.05 0.14

... ... ... ...

Table 3.2: The structure of the training and validation data for call options

In the Table 3.2 S/K is the spot/strike, T is the time to maturity of the
option, r is the risk-free rate and � is the implied volatility for the underlying
equity.

Rainbow Option

The input data used to train and validate the ANN took the form shown in
Table 3.3. Note that Table 3.3 is an extraction from the original data set.
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T r s1 �1 s2 �2 s3 �3 ⇢12 ⇢13 ⇢23
0.81 0.02 0.87 0.26 1.62 0.40 0.90 0.06 0.26 -0.89 0.53
0.32 0.05 0.68 0.43 0.72 0.72 0.69 0.57 -0.02 0.56 0.75
0.98 0.02 1.10 0.16 1.77 0.61 0.96 0.50 0.89 -0.68 -0.68

... ... ... ... ... ... ... ... ... ... ...

Table 3.3: The structure of the training and validation data for rainbow
options

In the Table 3.3 T is the time to maturity of the option, r is the risk-free
rate, s

i

is the strike-level for underlying i, �
i

is the implied volatility for
underlying i and ⇢

ij

is the correlation between underlying i and j.

Training and Validation Data Split

For both the call option and the rainbow option the generated data set
consisted of 1 million samples with di�erent combinations of all inputs in
random order. This data set was split into two di�erent data sets. 80% of
the data was moved into the training data set while the remaining 20% was
used as a validation data set by which di�erent models could be compared.

Call Option: The 1 million call options generated for training and validation
used the following parameters.

• Time to maturity: Randomly selected from a uniform distribution be-
tween 1 day to 1 year.

• Risk-free rate: Randomly selected from a uniform distribution between
0% and 5%.

• Spot/strike: Randomly selected from a uniform distribution between
0.5 and 1.5.

• Implied volatility: Randomly selected from a uniform distribution be-
tween 5% and 80%.

Rainbow Option: The 1 million rainbow options generated for training
and validation used the following parameters.
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• Time to maturity: As for the call option.

• Risk-free rate: As for the call option.

• Correlations: Randomly selected from a uniform distribution between
-1 and 1 independently for each equity pair.

• Strike-level: Randomly selected from a uniform distribution between
2/3 and 2 independently for each equity which represents a spot price
at 50% of the strike price up to a spot price at 150% of the strike price.

• Implied volatility: Randomly from a uniform distribution selected be-
tween 5% and 80% independently for each equity.

3.4.3 Data for Present Values

In order to evaluate the performance of the ANN with the current approxi-
mation methods new data needed to be generated as the comparison would
be unfair if the ANN was evaluated with the same data upon which it had
been trained. This data was generated and handled in the same way as the
training and validation data. The di�erence being that this time the ANN
was not going to be trained or validated but rather tested, thus the ANN
only received the inputs and generated predictions.

Call Option

To compare performance, 10000 call options were generated and priced using
the same parameters as the training and validation data while allowing for
the 20% moves in either direction without moving outside the input space
for which the ANN was trained.

After the first- and second-order sensitivities were calculated each of the
inputs were moved ceteris paribus between -20% and +20% and a new true
present value was calculated along with a Taylor approximation of the present
value as well as an ANN prediction of the present value. 10000 options with
18 seperate moves for these options gives 180000 individual triplets of true
present value, Taylor approximated present value and ANN predicted present
value to compare.
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Rainbow Option

To compare performance, 10000 rainbow options were generated and priced
using the same parameters as the training and validation data while allowing
for the 20% moves in either direction without moving outside the input space
for which the ANN was trained.

After the first- and second-order sensitivities were calculated each of the
inputs were moved ceteris paribus between -20% and +20% and a new true
present value was calculated with Monte Carlo simulations along with a
Taylor approximation of the present value as well as an ANN prediction
of the present value. 10000 options with 42 seperate moves for these options
gives 420000 individual triplets of true present value, Taylor approximated
present value and ANN predicted present value to compare.

3.4.4 Data for Risk Measurement

In order to be able to evaluate the ANNs’ performance on risk measures new
data needed to be generated. Once again 10000 options were generated, for
both the call and rainbow option, and priced using the same parameters as
the training and validation data while allowing for the 20% moves in either
direction without moving outside the input space for which the ANN was
trained. For each option 100 random end of day market states were generated,
where all inputs could move up to 20% in either positive or negative direction.
Once the data set was complete the true empirical VaR and ES was calculated
as well as approximated with the ANN and the Taylor polynomial.

3.4.5 Monte Carlo Convergence

As Monte Carlo simulations are a stochastic method it is important to under-
stand that if the same option is evaluated twice with Monte Carlo simulation
two di�erent present values will be calculated. This means that there is an
uncertainty in what the ANN interprets as the true answer. Thus, it is im-
portant to examine the convergence of the Monte Carlo method used in the
study. The following table shows a point estimate of the convergence of the
Monte Carlo method for 10000 calculations of the same rainbow option with
a di�erent number of samples per calculation.
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Samples Mean PV �̂2 �̂ �̂/Mean PV
1000 1.665 · 10�1

1.66 · 10�5
4.07 · 10�3 2.44%

5000 1.666 · 10�1
3.90 · 10�6

1.98 · 10�3 1.19%
10000 1.666 · 10�1

2.01 · 10�6
1.42 · 10�3 0.85%

Table 3.4: A point estimate of the convergence of the Monte Carlo simulation

It is important to note that this is only a point estimate for one set of inputs.
Thus, the irreducible error for the general data set may be larger but Table 3.4
gives an indication as to the order of magnitude of the irreducible error in
the Monte Carlo simulations.

As mentioned in section 2.4.2 the convergence of the Monte Carlo simulation
is inversely proportional to the square root of the number of samples. In
theory this means that an extraordinarily large amount of samples are needed
to converge to an accurate rainbow option price.

In practice, a simple fit of an exponential curve shows that reducing the
variance in the Monte Carlo simulations to an order of magnitude of 10

�8

approximately 40000 paths per option are needed. Using the personal com-
puter available to the authors this would require days of Monte Carlo sim-
ulation to produce the training data. Thus, 10000 paths were used as this
allowed for generation of the training data in approximately six hours while
still reducing the error from 5000 paths by a factor of two. Parallelization
and micro-architecture optimization of the Monte Carlo simulation could al-
low for more samples to be used in the same time frame but this is deemed
out of scope for the purpose of this study.

3.5 Taylor Approximation

The Taylor approximation used in this study is a second-order Taylor poly-
nomial with the following sensitivities:

• Delta: The sensitivity of the present value with respect to a move in
the spot price of the underlying equity.

• Gamma: The second-order sensitivity of the present value with respect
to a move in the spot price of the underlying equity.
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• Vega: The sensitivity of the present value with respect to a move in
the implied volatility of the underlying equity.

• Volga: The second-order sensitivity of the present value with respect
to a move in the implied volatility of the underlying equity.

• Rho: The sensitivity of the present value with respect to a move in the
interest rate.

• Second-order Rho: The second-order sensitivity of the present value
with respect to a move in the interest rate.

These sensitivities were calculated using the centered finite di�erence method
for all options in the comparison data. For the rainbow options each sensi-
tivity was calculated for each underlying equity individually.

3.6 ANN Structure

3.6.1 Choice of Cost Function

As shown in section 2.2 the MSE has a proven history as a cost function
when using ANNs for option pricing.
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(Y
i

� ˆY
i

)
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3.6.2 Choice of Activation Function

The Rectified Linear Unit (ReLU) (max[0, x]) was chosen as the activation
function for multiple reasons. One reason is the sparse activation of the
network meaning that training is faster. Another reason is that the ReLU
avoids the vanishing gradient problem that sigmoid activation functions su�er
from (see [38]). The final and most important reason for choosing the ReLU
activation function is it’s success and popularity in recent ANN applications
(see [39]). An important point to note is that the ANN is still a universal
function approximator while using the ReLU activation function as shown
by Leshno et al. [40].
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3.6.3 Training Parameters

All ANNs were trained using a batch size of 200 as this resulted in the lowest
validation errors. The batch size was varied between 10 and 1000 with 200
yielding the lowest validation error thus those are the results presented in
this study.

The number of epochs used was 50 as all networks had reached a stable
validation error which did not change after 50 epochs. The number of epochs
was varied between 10 and 500 but as mentioned the validation error did not
improve after 50 in any of the cases and thus those are the results presented
in this study.
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Chapter 4

Results

4.1 Comparison of Run Times

Since the basis of the research question is the fact that an ANN can out-
perform Monte Carlo computationally it is important to ensure that this is
the case. The following table shows the run times for calculating the present
value of 10000 options with the di�erent methods as a percentage of the
slowest method. The rainbow options were evaluated with three di�erent
amounts of samples for the Monte Carlo simulation. The ANN run times for
both the call option and the rainbow option are the ANNs with the lowest
validation errors as shown in the sections that follow. In the table RMS
stands for risk-management software.

Method Run Time
Call Option RMS 0.01%
Call Option ANN 4.03%
Rainbow Option RMS 1000 samples 10.18%
Rainbow Option RMS 5000 samples 50.80%
Rainbow Option RMS 10000 samples 100.00%
Rainbow Option ANN 4.24%

Table 4.1: The run times for the di�erent methods of calculating present
values
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4.2 Call Option

4.2.1 Model Selection

This section will present the results of the training of the model with di�erent
network architectures.

Validation Results

In Table 4.2 the results of the MSE evaluation of the validation data set are
shown. The MSE is calculated as the MSE between the ANN’s predicted
C/K and the true C/K.

Inputs Layer 1 Layer 2 Layer 3 Output MSE
4 8 0 0 1 7.12 · 10�5

4 16 0 0 1 2.84 · 10�5

4 32 0 0 1 1.18 · 10�5

4 64 0 0 1 3.63 · 10�6

4 128 0 0 1 1.39 · 10�6

4 256 0 0 1 2.99 · 10�7

4 512 0 0 1 4.34 · 10�7

4 8 8 0 1 3.24 · 10�5

4 16 16 0 1 2.58 · 10�6

4 32 32 0 1 1.61 · 10�6

4 64 64 0 1 3.52 · 10�7

4 128 128 0 1 8.03 · 10�8

4 256 256 0 1 7.27 · 10�8

4 512 512 0 1 9.43 · 10�8

4 8 8 8 1 7.92 · 10�6

4 16 16 16 1 1.31 · 10�6

4 32 32 32 1 2.13 · 10�7

4 64 64 64 1 1.39 · 10�6

4 128 128 128 1 8.15 · 10�8

4 256 256 256 1 9.26 · 10�8

4 512 512 512 1 9.74 · 10�8

Table 4.2: The MSE results of the validation of di�erent models for call
options
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Choice of Model

The model that was chosen has two hidden layers with 256 nodes in each.
This is the model with the lowest MSE, as seen in Table 4.2. This model
was chosen with the bias-variance trade-o� in mind and therefore the model
with the lowest validation MSE was chosen rather than the model with the
lowest training MSE.

4.2.2 Evaluation of Present Value Calculations

The chosen ANN’s performance was compared with Taylor approximation
for three di�erent cases; movements in stock price, movement in implied
volatility and movement in interest rates. For each case six sub cases were
investigated, both positive and negative moves of 1%, 10%, and 20%.

In all of these evaluations the MSE was calculated as the MSE of the ANN’s
predicted C/K times K = 1649 (predicted present value) and the true
present value as well as the Taylor approximated present value and the true
present value. This explains why the ANN MSE is no longer in the order of
magnitude 10

�8 as it was in the earlier example.

When calculating the MAPE all cases with a true PV lower than 1 have been
excluded from the calculations as this value is only approximately 0.06%
of the underlyings value while at the same time leading to extreme and
misleading errors for both the Taylor approximation and the ANN.
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Movement in Stock Price

Mean MSE MSE MAPE MAPE
Move PV Taylor ANN Taylor ANN
-20% 46.27 1.26 · 103 8.75 · 10�2

188.40% 1.81%
-10% 87.56 4.01 · 101 1.65 · 10�1

19.62% 1.32%
-1% 145.17 9.86 · 10�5

1.89 · 10�1
0.02% 0.95%

+1% 160.53 9.22 · 10�5
1.91 · 10�1

0.02% 0.89%
+10% 239.80 2.97 · 101 2.19 · 10�1

4.34% 0.65%
+20% 344.54 9.14 · 102 2.48 · 10�1

11.52% 0.48%

Table 4.3: The results of the model comparison for stock price movements
for call options

Movement in Implied Volatility

Mean MSE MSE MAPE MAPE
Move PV Taylor ANN Taylor ANN
-20% 129.33 2.34 · 10�2

1.74 · 10�1
0.44% 1.11%

-10% 140.85 2.84 · 10�4
1.79 · 10�1

0.04% 1.04%
-1% 151.54 6.34 · 10�8

1.89 · 10�1
0.00% 0.95%

+1% 153.95 6.22 · 10�8
1.91 · 10�1

0.00% 0.95%
+10% 164.93 2.19 · 10�4

2.01 · 10�1
0.03% 0.86%

+20% 177.35 1.39 · 10�2
2.14 · 10�1

0.22% 0.81%

Table 4.4: The results of the model comparison for implied volatility move-
ments for call options
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Movement in Interest Rates

Mean MSE MSE MAPE MAPE
Move PV Taylor ANN Taylor ANN
-20% 151.47 7.22 · 10�8

1.88 · 10�1
0.00% 0.96%

-10% 152.10 3.65 · 10�8
3.62 · 10�1

0.00% 0.97%
-1% 152.68 4.47 · 10�10

2.26 · 10�1
0.00% 0.97%

+1% 152.80 4.47 · 10�10
2.01 · 10�1

0.00% 0.97%
+10% 153.38 3.66 · 10�8

1.27 · 10�1
0.00% 0.97%

+20% 154.02 7.22 · 10�8
8.71 · 10�2

0.00% 0.99%

Table 4.5: The results of the model comparison for interest rate movements
for call options

4.2.3 Evaluation of Risk Measurement

Value-at-Risk

The ANN’s performance on Value-at-Risk was compared with Taylor ap-
proximation by investigating the MSE, the MAPE and the MPE. When
calculating the MAPE and MPE all cases with a true VaR/ES lower than 1
have been excluded from the calculations as this value is only approximately
0.06% of the underlyings value while at the same time leading to extreme
and misleading errors for both the Taylor approximation and the ANN.

Mean MSE MSE MAPE MAPE MPE MPE
VaR Taylor ANN Taylor ANN Taylor ANN
109.08 7.80 · 102 1.01 · 10�1

13.45% 0.46% �4.08% 0.09%

Table 4.6: The results of the model comparison for VaR calculations for call
options

38



Expected Shortfall

Mean MSE MSE MAPE MAPE MPE MPE
ES Taylor ANN Taylor ANN Taylor ANN

161.64 1.58 · 103 8.06 · 102 13.92% 13.57% �9.68% 13.55%

Table 4.7: The results of the model comparison for ES calculations for call
options

4.3 Rainbow Option

4.3.1 Model Selection

This section will present the results of the training of the model with di�erent
network architectures.

Validation Results

In Table 4.8 the results of the MSE evaluation of the validation data set are
shown. The MSE is calculated as the MSE between the ANN’s predicted
PV and the true PV . The validation data set was calculated using 10000
samples per option.
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Inputs Layer Layer Layer Out- MSE MSE MSE
1 2 3 put 1000 5000 10000 samples

11 8 0 0 1 1.89 · 10�3
1.69 · 10�3

9.30 · 10�3

11 16 0 0 1 7.71 · 10�4
6.75 · 10�4

6.72 · 10�4

11 32 0 0 1 4.76 · 10�4
2.88 · 10�4

3.99 · 10�4

11 64 0 0 1 3.39 · 10�4
1.55 · 10�4

1.34 · 10�4

11 128 0 0 1 1.94 · 10�4
6.85 · 10�5

6.66 · 10�5

11 256 0 0 1 1.75 · 10�4
5.39 · 10�5

5.90 · 10�5

11 512 0 0 1 1.42 · 10�4
4.33 · 10�5

3.80 · 10�5

11 8 8 0 1 8.80 · 10�4
6.31 · 10�4

7.17 · 10�4

11 16 16 0 1 2.62 · 10�4
2.31 · 10�4

1.78 · 10�4

11 32 32 0 1 1.60 · 10�4
6.59 · 10�5

5.36 · 10�5

11 64 64 0 1 1.52 · 10�4
4.89 · 10�5

1.68 · 10�5

11 128 128 0 1 1.41 · 10�4
1.66 · 10�5

7.61 · 10�6

11 256 256 0 1 1.29 · 10�4
8.81 · 10�6

5.98 · 10�6

11 512 512 0 1 1.39 · 10�4
1.42 · 10�5 3.54 · 10�6

11 8 8 8 1 5.35 · 10�4
6.46 · 10�4

7.08 · 10�4

11 16 16 16 1 2.13 · 10�4
1.34 · 10�4

9.39 · 10�5

11 32 32 32 1 1.46 · 10�4
5.74 · 10�5

3.68 · 10�5

11 64 64 64 1 1.58 · 10�4
1.43 · 10�5

1.18 · 10�5

11 128 128 128 1 1.22 · 10�4
1.31 · 10�5

7.69 · 10�6

11 256 256 256 1 1.25 · 10�4
1.32 · 10�5

4.50 · 10�6

11 512 512 512 1 1.25 · 10�4
9.96 · 10�6

3.96 · 10�6

Table 4.8: The MSE results of the validation of di�erent models for rainbow
options

Choice of Model

Since the present value which the ANN uses as an answer contains an error
due to the fact that it is the product of a Monte Carlo simulation it is
important to remember �2 and E from section 2.3.5. As shown in section 3.4.5
the �̂2 for the Monte Carlo simulations used with 10000 samples are of the
order of magnitude 10

�6 meaning that there is an irreducible error of that
size which the ANN cannot avoid.

As can be seen in Table 4.2 the general trend is that the more samples used
in the Monte Carlo simulation, the lower the MSE for a model of a given
complexity. This indicates that the error from the Monte Carlo simulations
is carrying forwards into the ANN. The lowest validation error for each sample
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amount is close to being the same size as the irreducible error for that sample
amount meaning that the ANN is close to learning as much as it can from
the Monte Carlo simulations. This indicates that more rigorous Monte Carlo
simulations of the present value could allow for even better MSE results for
the ANN but as mentioned in section 3.4.5 there are certain computational
boundaries.

The model that was chosen has two hidden layers with 512 nodes in each. The
choice was based on the performance with 10000 samples in the Monte Carlo
simulations. This is the model with the lowest MSE, as seen in Table 4.8.
This model was chosen with the bias-variance trade-o� in mind and therefore
the model with the lowest validation MSE was chosen rather than the model
with the lowest training MSE.

4.3.2 Evaluation of Present Value Calculations

The chosen ANN’s performance was compared with Taylor approximation
for seven di�erent cases; movements in stock price for each equity, movement
in implied volatility for each equity and movement in interest rates. For each
case six sub cases were investigated, both positive and negative moves of 1%,
10%, and 20%.

In all of these evaluations the MSE was calculated as the MSE of the ANN’s
predicted present value and the true present value as well as the Taylor
approximated present value and the true present value.

When calculating the MAPE all cases with a true PV lower than 0.001 have
been excluded from the calculations as this value is only approximately 0.1%
of the underlyings value while at the same time leading to extreme and
misleading errors for both the Taylor approximation and the ANN.
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Movement in Stock Price for Equity 1

Mean MSE MSE MAPE MAPE
Move PV Taylor ANN Taylor ANN
-20% 0.21 2.27 · 10�4

4.82 · 10�5
20.58% 4.19%

-10% 0.23 1.68 · 10�5
4.63 · 10�5

3.40% 3.46%
-1% 0.25 1.10 · 10�5

4.44 · 10�5
1.03% 2.93%

+1% 0.26 1.13 · 10�5
4.33 · 10�5

1.01% 2.81%
+10% 0.29 1.81 · 10�5

4.15 · 10�5
1.42% 2.36%

+20% 0.34 2.05 · 10�4
3.94 · 10�5

3.31% 1.91%

Table 4.9: The results of the model comparison for stock price movements
in equity 1 for rainbow options

Movement in Stock Price for Equity 2

Mean MSE MSE MAPE MAPE
Move PV Taylor ANN Taylor ANN
-20% 0.20 3.14 · 10�4

3.76 · 10�5
21.57% 4.07%

-10% 0.22 2.13 · 10�5
4.10 · 10�5

4.27% 3.42%
-1% 0.25 1.05 · 10�5

4.30 · 10�5
1.02% 2.93%

+1% 0.26 1.09 · 10�5
4.31 · 10�5

1.01% 2.84%
+10% 0.29 2.01 · 10�5

4.52 · 10�5
1.52% 2.38%

+20% 0.35 2.39 · 10�4
4.74 · 10�5

3.61% 1.97%

Table 4.10: The results of the model comparison for stock price movements
in equity 2 for rainbow options
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Movement in Stock Price for Equity 3

Mean MSE MSE MAPE MAPE
Move PV Taylor ANN Taylor ANN
-20% 0.21 2.35 · 10�4

2.83 · 10�5
22.26% 3.75%

-10% 0.23 1.67 · 10�5
3.53 · 10�5

3.31% 3.39%
-1% 0.25 1.09 · 10�5

4.23 · 10�5
1.03% 2.97%

+1% 0.26 1.13 · 10�5
4.44 · 10�5

1.02% 2.92%
+10% 0.29 1.77 · 10�5

5.39 · 10�5
1.41% 2.54%

+20% 0.34 1.86 · 10�4
6.37 · 10�5

3.28% 2.24%

Table 4.11: The results of the model comparison for stock price movements
in equity 3 for rainbow options

Movement in Implied Volatility in Equity 1

Mean MSE MSE MAPE MAPE
Move PV Taylor ANN Taylor ANN
-20% 0.24 9.62 · 10�6

4.44 · 10�5
1.01% 3.14%

-10% 0.25 9.71 · 10�6
4.33 · 10�5

0.98% 2.96%
-1% 0.25 1.07 · 10�5

4.34 · 10�5
0.99% 2.89%

+1% 0.25 1.12 · 10�5
4.24 · 10�5

1.02% 2.89%
+10% 0.26 1.23 · 10�5

4.23 · 10�5
1.03% 2.75%

+20% 0.27 1.35 · 10�5
4.29 · 10�5

1.04% 2.68%

Table 4.12: The results of the model comparison for implied volatility move-
ments in equity 1 for rainbow options

43



Movement in Implied Volatility in Equity 2

Mean MSE MSE MAPE MAPE
Move PV Taylor ANN Taylor ANN
-20% 0.24 9.73 · 10�6

3.69 · 10�5
1.02% 2.94%

-10% 0.25 1.01 · 10�5
3.92 · 10�5

1.01% 2.93%
-1% 0.25 1.09 · 10�5

4.30 · 10�5
1.01% 2.93%

+1% 0.25 1.11 · 10�5
4.31 · 10�5

1.02% 2.90%
+10% 0.26 1.21 · 10�5

4.83 · 10�5
1.01% 2.89%

+20% 0.27 1.32 · 10�5
5.42 · 10�5

1.02% 2.81%

Table 4.13: The results of the model comparison for implied volatility move-
ments in equity 2 for rainbow options

Movement in Implied Volatility in Equity 3

Mean MSE MSE MAPE MAPE
Move PV Taylor ANN Taylor ANN
-20% 0.24 9.27 · 10�6

2.88 · 10�5
1.02% 2.78%

-10% 0.25 9.85 · 10�6
3.53 · 10�5

1.00% 2.87%
-1% 0.25 1.07 · 10�5

4.27 · 10�5
1.01% 2.93%

+1% 0.25 1.09 · 10�5
4.47 · 10�5

1.01% 2.97%
+10% 0.26 1.22 · 10�5

5.30 · 10�5
1.02% 3.01%

+20% 0.27 1.39 · 10�5
6.53 · 10�5

1.04% 3.06%

Table 4.14: The results of the model comparison for implied volatility move-
ments in equity 3 for rainbow options
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Movement in Interest Rates

Mean MSE MSE MAPE MAPE
Move PV Taylor ANN Taylor ANN
-20% 0.25 3.64 · 10�5

4.31 · 10�5
1.95% 2.93%

-10% 0.25 1.89 · 10�5
4.93 · 10�5

1.38% 2.88%
-1% 0.25 1.13 · 10�5

4.29 · 10�5
1.04% 2.84%

+1% 0.25 1.02 · 10�5
4.35 · 10�5

1.00% 2.86%
+10% 0.25 1.16 · 10�5

4.29 · 10�5
1.09% 2.92%

+20% 0.25 2.19 · 10�5
4.36 · 10�5

1.49% 2.92%

Table 4.15: The results of the model comparison for interest rate movements
for rainbow options

4.3.3 Evaluation of Risk Measurement

Value-at-Risk

The ANN’s performance on Value-at-Risk was compared with Taylor approx-
imation by investigating the MSE, the MAPE and the MPE. When calcu-
lating the MAPE and MPE all cases with a true VaR/ES lower than 0.001
have been excluded from the calculations as this value is only approximately
0.1% of the underlyings value while at the same time leading to extreme and
misleading errors for both the Taylor approximation and the ANN.

Mean MSE MSE MAPE MAPE MPE MPE
VaR Taylor ANN Taylor ANN Taylor ANN
0.11 4.02 · 10�4

6.03 · 10�5
12.55% 4.78% 1.92% �2.56%

Table 4.16: The results of the model comparison for VaR calculations for
rainbow options

45



Expected Shortfall

Mean MSE MSE MAPE MAPE MPE MPE
ES Taylor ANN Taylor ANN Taylor ANN
0.19 9.49 · 10�4

8.49 · 10�4
11.25% 14.64% 3.30% 14.29%

Table 4.17: The results of the model comparison for ES calculations for
rainbow options
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Chapter 5

Analysis and Conclusion

5.1 Analysis

5.1.1 Run Times

The run times of the di�erent methods are interesting, beginning with the call
option. Since the risk-management software uses a pre-determined pricing
formula it executes extremely quickly. The ANN on the other hand must
execute multiple matrix multiplications and transformations that take time.
Even though matrix multiplication is often quite fast it is not faster than
evaluating a single formula.

The rainbow option on the other hand is the most interesting as this is the use
case being studied. The ANN is much more computationally e�cient running
between two and twenty-five times faster than the Monte Carlo simulation
depending on the number of samples per option. It is also interesting to note
that the run time for the ANN is the same for both call and rainbow options
since approximately the same matrix multiplications and transformations
must be executed.
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5.1.2 Call Option

The present value evaluation in section 4.2.2 shows that the ANN outper-
forms Taylor approximation for large moves in the stock price when evaluat-
ing both MSE and MAPE, while the Taylor approximation performs better
than the ANN for small 1% moves. For moves in implied volatility the Taylor
approximation performs extremely well with a small MSE and a low MAPE,
with the largest error for movements of 20% while the ANN performs worse
but with a constant MAPE around 1%. For moves in interest rates the Tay-
lor approximation is the better performing approach with a very low MSE
and a MAPE close to 0%. For interest rate moves the ANN MAPE is stable
around 1% as well.

An important observation is that for all samples and cases the total MSE for
the ANN is 1.88 · 10�1 and the median squared error is 6.55 · 10�2 while the
total MSE for the Taylor approximation is 1.25 · 102 with a median squared
error of 2.38·10�7. This points to the fact that the Taylor approximation does
very poorly in a few cases and very well in all others leading to a misleading
total MSE.

Equity Moves

It is interesting to note that the ANN outperforms the Taylor approximation
in four sub-cases within the equity movements. The ANN outperforms the
Taylor approximation for both positive and negative moves of 10% and 20%,
especially negative 20%. This can be traced to the large movements of the
price of the option with regards to theses moves meaning that the Taylor
approximation fails. This is quite natural since the Taylor approximation
fits a second degree polynomial to the delta function which is a third degree
polynomial, thus it fits the tails of the delta function poorly and is more
suitable for approximating small moves. These large errors are the probable
root cause of the misleading MSE of the Taylor approximation in comparison
with the median squared error as referenced above.

Implied Volatility Moves

The Taylor approximation beats the ANN in all the di�erent types of implied
volatility moves examined in this study. This is mainly due to the fact that
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the even the largest moves in implied volatility of plus or minus 20% do not
a�ect the present value as much as for example and equity move of plus or
minus 20% as seen in the movements of the mean present value. This means
that the assumptions in the Taylor approximation are closer to being true.

The MAPE for ANN is as for equity moves approximately 1%, thus if one
believes the Taylor error will be around 1% using an ANN could still be a
useful approach.

Interest Rate Moves

The Taylor approximation once again outperforms the ANN with regards to
handling movements in rates. The rate moves are similar to the volatility
moves since the e�ect of a plus or minus 20% move on the present value of
the option is small in comparison to a similar equity move. Once again this
means that the assumptions in the Taylor model are more closely followed
leading to good results using the Taylor approximation.

The MAPE for ANN is as for equity- and implied volatility moves approxi-
mately 1%, thus if one believes the Taylor error will be around 1% using an
ANN could still be a useful approach.

Risk Measures

It is interesting to note that the ANN outperforms Taylor approximation for
Value-at-Risk calculations both when looking at the MSE and the MAPE
and MPE. As for the present value calculations the ANN has a MSE in the
order of magnitude 10

�1, while Taylor performs much worse with an error
in the order of magnitude of 10

2. The ANN’s MAPE of 0.46% and MPE
of 0.09% shows that the ANN both over- and underestimates the present
value of the call option. The Taylor approximation overestimates the Value-
at-Risk which is better than underestimating the risk but the ANN only
slightly underestimates the risk.

When calculating Expected Shortfall the Taylor approximation performs bet-
ter than the ANN. In this case both methods have a large MSE in the order
of magnitude of 10

2 � 10

3 and approximately the same MAPE. However,
the MPE shows that the ANN underestimates the Expected Shortfall by
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roughly 10% while the Taylor approximation overestimates it by a similar
amount which is a better mistake.

5.1.3 Rainbow Option

The present value evaluation in section 4.3.2 shows that as for the call option
the ANN performs better than the Taylor approximation for large equity
moves of 20% when evaluating with MSE and MAPE. However, for small 1%
moves the Taylor approximation outperforms the ANN with a MSE and a
MAPE close to the irreducible error from the Monte Carlo simulation. For
moves in implied volatility the Taylor approximation performs very well with
a MSE close to the irreducible error regardless of the size of the move, and
the MAPE is very low. The ANN performs worse, but with a stable MSE
in the order of magnitude 10

�5 for all cases and a MAPE close to 3%. For
changes in the interest rate the Taylor approximation performs better when
evaluated with MAPE and MSE.

An interesting observation is that the ANN exhibits an MSE in the order of
magnitude 10

�5 for all types of moves and cases. This is in line with what
can be expected since it is approximately equal to the irreducible error and
validation error from the Monte Carlo simulations as shown in section 3.4.5.

Equity Moves

As for the call option the ANN performs better than the Taylor approxi-
mation for larger moves in the equity. However, it is only in the case of a
negative move of 20% that the ANN substantially outperforms. The reason
that the ANN does not outperform the Taylor approximation as much as
it does for call options can be traced to the movements of the option price
with regards to the moves in the equity spot price. For the call option a
large move in equity a�ects the option price more than in the case when one
equity out of three moves in the rainbow option.

Implied Volatility Moves

For all types of moves in implied volatility the Taylor approximation is close
to the irreducible error meaning that the Taylor approximation itself has
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an extremely small error. The strong performance can be traced to what
is discussed for the equity case, small movements in the option price. For
the largest moves in implied volatility of plus or minus 20% the option price
moves similar to a 1% move in equity. This means that the assumptions in
the Taylor approximation are closer to being true, and thus it performs well.

The MAPE for the Taylor approximation is close to 1% and for the ANN is
it is stable around 3%.

Interest Rates Moves

The Taylor approximation once again outperforms the ANN with regards
to handling movements in rates. The reason for this is as for the implied
volatility, the moves in interest rates do not a�ect the present value of the
option much and thus the assumptions in the Taylor approximation are closer
to being true. Once again the Taylor approximation is very close to the
irreducible error meaning that the Taylor approximation has a very small
error in comparison to the Monte Carlo simulations.

The MAPE for ANN is as for equity- and implied volatility moves approxi-
mately 3%, thus if the error from a Taylor approximation is expected to be
larger than than 3% using an ANN could still be a useful approach.

Risk Measures

For calculation of Value-at-Risk the ANN outperforms the Taylor approxi-
mation in all categories except MPE. It is important to note that while the
ANN has a larger MPE in absolute terms the ANN overestimates the risk
while the Taylor approximation underestimates the risk.

When calculating Expected Shortfall the Taylor approximation outperforms
the ANN in all categories. It is interesting to note the di�erence between
the MAPE and MPE between the two methods. The Taylor MAPE is ap-
proximately three times larger than the MPE indicating that there are large
errors in both direct directions that cancel out when calculating the MPE.
Meanwhile, the ANN consistently underestimates the risk by approximately
14%.
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5.2 Discussion

5.2.1 Reflection on the Study

In the ideal case the ANN would learn the exact pricing function used by the
risk-management software for both the call option and the rainbow option.
This is the universal approximation theorem proven by Cybenko [17]. The
theorem states that a MLP with a single hidden layer can represent contin-
uous functions on compact subsets. An important point to note is that the
theorem does not comment upon the learnability of the correct parameters
to create this approximation.

Regarding the underperforming ANNs for both call options and rainbow
options it does not look like the ANN has learned the underlying function it is
trying to approximate well enough to outperform the Taylor approximation.
In the rainbow option case both the Monte Carlo simulation and an imperfect
ANN cause errors while in the call option case it is only an imperfect ANN
that leads to the errors seen in the results. In the ideal case, the errors due
to an imperfect ANN would be zero but that is not the case in this study.
There may be multiple reasons for this which can be grouped into four major
categories: data, algorithms, algorithm tuning, and learning di�culty.

One possible explanation for the underperformance of the ANN is a lack of
qualitative training data. A lack of qualitative training data would lead to
the ANN not learning the underlying function in an adequate manner. In the
case of ANNs more data is always better and this is a possible explanation
of the underperformance of the ANN. This can be shown by looking at an
example from the call option case. Using only 10% of the training data and
the model of choice for call options gives an MSE in the order of magnitude
10

�6 which is much larger than the original 10�8. This shows that adding
more data improves the MSE results for the ANN.

Another explanation for the performance of the ANN in the rainbow option
case is the quality of the training data. Since the rainbow option is a product
of a Monte Carlo simulation there is an error term in the "correct answer"
creating a lower bound for the approximation error as shown in section 2.3.5.
As seen in Table 4.8 this became a bottleneck regarding the training of the
ANN. As mentioned, this study has been bounded by the performance and
memory of a personal computer and thus equipment allowing for more and
better data along with more training could yield better results.
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Another possible explanation is the choice of algorithm. A poor choice of
algorithm could lead to di�culties for the ANN in learning the underlying
mechanics that are supposed to be modeled. The choices of algorithm made
in this study were based upon established methods found in previous litera-
ture.

Another possible explanation is poor algorithm tuning. Poor choice of net-
work architecture, activation function and optimization could inhibit the
ANNs learning capabilities. This study has tried to counteract these e�ects
by choosing established methods from previous research as well as diligent
use of a validation data set to evaluate network architecture. Unfortunately
there is no guarantee that any network architecture or learning algorithm
can find the correct parameters especially if working with an error function
with many local minima.

As stated above the universal approximation theorem does not comment
upon the learnability of the correct parameters for universal function approx-
imation. This along with the fact that gradient descent does not guarantee a
global minimum for non-convex surface means that there is a theoretical pos-
sibility that the ANN could outperform the Taylor approximation but this
study could not reach the correct parameters to approximate the underlying
pricing function well enough.

5.2.2 Comparison with Other Studies

The ANN used in this study did not manage to replicate the pricing func-
tion used by the risk-management software well enough to beat the Taylor
approximation. However, when comparing the results to other studies the
ANN presented in this study performs well. It is important to note that
most studies conducted in the field of option pricing with ANNs di�er from
this study, both in terms of the purpose of the studies and how the ANN
has been designed and used. This makes it hard to relate the performance
of these ANNs to the ANN used in this study. The study that most strongly
resembles the ANN used in this study is Amilon’s [11] comparison of ANN
performance on pricing and hedging versus the Black-Scholes model for op-
tions on the Swedish stock index. As mentioned earlier, this study compares
the ANN to the Black-Scholes model applied to market data meaning that
the ANN is trying to replicate a "true" market pricing formula which is quite
di�erent to what this study is trying to achieve but it is still closest to what
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this study has attempted.

In spite of the di�erences, Amilon’s best performing ANN had an average
MSE of 1.82 when evaluated using implied volatility and the Black-Scholes
model had an average MSE of 2.48 when evaluated with the same data. To
be able to compare to this study the average value for bid and ask MSE was
calculated for Amilon’s study.

The ANN used in this study for pricing call options has a validation error
of 1.20 · 10�4 when calculated in terms of the option price meaning that this
study clearly outperforms the ANN Amilon presents. This is not a surprise
as the network used in this study is more complex and has an easier task at
hand with clean data.

5.3 Conclusion

While the idea of using an ANN to approximate the present value function
for European call options and rainbow options is theoretically sound, the
method used in this study does not give adequate enough approximations
though there are many positive signs. While there are some cases in the
equity movements when the ANN beats the Taylor approximation the general
answer to the research question is that the ANN does not outperform the
Taylor approximation in general for either call options or rainbow options
when trained and evaluated according to this study’s method. While the
ANNs examined in this report did not outperform the Taylor approximation
it is important to remember that if the correct weight and bias parameters
can be learnt an ANN is a universal function approximator. This means that
a method which can find those correct weights and biases will outperform
any Taylor approximation since the ANN will approximate the underlying
function arbitrarily well.

In the case of the call option the bottleneck for ANN performance seems
to be the training, both in terms of data and time. One possible solution
is to increase the training by orders of magnitude. This includes training
data that may include billions of samples along with running the ANN on
a/multiple dedicated and optimized machine(s). While this is no guarantee
for success both theory and the learning trend when increasing data in this
study point to it being a road forward.
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For the rainbow option there are two bottlenecks. The first and the limiting
factor in this study is the quality of the Monte Carlo simulations. The ANN
will never be able to outperform the irreducible error from the Monte Carlo
simulation. Once the error from the Monte Carlo simulation has been reduced
the same bottleneck as for the call option is still in place regarding training.
This study shows positive signs that the ANN seems to be able to learn
how to price rainbow options but once again to be able to compete with the
Taylor approximation an order of magnitude shift is needed in training. To
reach the level of precision needed for risk measurement once again billions
of samples may be needed to train an ANN running on a/multiple dedicated
and optimized machine(s).

The most interesting part of the study is the fact that there are positive signs
that the ANN can learn the pricing function for rainbow options that require
Monte Carlo simulation. This is interesting since there are no analytic solu-
tions for the price of a rainbow option as has been mentioned multiple times.
Thus, the study is a proof of concept that an ANN can learn these types of
pricing functions. The ANNs in this study were able to minimize the vali-
dation error to approximately the irreducible error meaning that approaches
which have a smaller irreducible errors, such as more accurate Monte Carlo
simulations, could yield better results. While the ANNs trained and evalu-
ated in this study could not outperform the Taylor approximation there are
no indications that it could not done in the right setting.

5.4 Future Research

One potential road to improved performance of the ANN is to create a com-
mittee machine known as an ensemble. An ensemble utilizes multiple ANNs
and averages their results to create a final result. Ensembles rely on two
facts. The first is the fact that an ANN can reduce bias while increasing
variance and the second is that a group of networks can reduce variance
without a�ecting bias (see [41]).

The creation of an ensemble of neural networks has multiple benefits. Firstly,
the ensemble is less complex than a similarly performing single network in
almost every case (see [42]). Secondly, the ensemble often outperforms any
single network (see [43]). Finally, as there are fewer parameters in every ANN
the risk of overfitting is reduced (see [44]). These benefits could help improve
the performance of an ANN trying to calculate present values of options.
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