
IN DEGREE PROJECT MATHEMATICS,
SECOND CYCLE, 30 CREDITS

,  STOCKHOLM SWEDEN 2018

Text Feature Mining Using 
Pre-trained Word 
Embeddings

HENRIK SJÖKVIST

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ENGINEERING SCIENCES





Text Feature Mining Using Pre-
trained Word Embeddings 
 
 
HENRIK SJÖKVIST  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Degree Projects in Financial Mathematics (30 ECTS credits)  
Degree Programme in Industrial Engineering and Management 
KTH Royal Institute of Technology year 2018 
Supervisor at Handelsbanken: Richard Henricsson 
Supervisor at KTH: Henrik Hult 
Examiner at KTH: Henrik Hult 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TRITA-SCI-GRU 2018:167 
MAT-E 2018:28 

 
 
 
 
 
 
Royal Institute of Technology 
School of Engineering Sciences 
KTH SCI 
SE-100 44 Stockholm, Sweden 
URL: www.kth.se/sci 

 



Abstract

This thesis explores a machine learning task where the data contains not only numer-
ical features but also free-text features. In order to employ a supervised classifier and
make predictions, the free-text features must be converted into numerical features.
In this thesis, an algorithm is developed to perform that conversion.

The algorithm uses a pre-trained word embedding model which maps each word
to a vector. The vectors for multiple word embeddings belonging to the same sentence
are then combined to form a single sentence embedding. The sentence embeddings
for the whole dataset are clustered to identify distinct groups of free-text strings.
The cluster labels are output as the numerical features.

The algorithm is applied on a specific case concerning operational risk control in
banking. The data consists of modifications made to trades in financial instruments.
Each such modification comes with a short text string which documents the modi-
fication, a trader comment. Converting these strings to numerical trader comment
features is the objective of the case study.

A classifier is trained and used as an evaluation tool for the trader comment
features. The performance of the classifier is measured with and without the trader
comment feature. Multiple models for generating the features are evaluated. All
models lead to an improvement in classification rate over not using a trader com-
ment feature. The best performance is achieved with a model where the sentence
embeddings are generated using the SIF weighting scheme and then clustered using
the DBSCAN algorithm.

Keywords — Word embeddings, Feature engineering, Unsupervised learning,
Deep learning, fastText, Operational risk





Sammanfattning

Detta examensarbete behandlar ett maskininlärningsproblem där data innehåller
fritext utöver numeriska attribut. För att kunna använda all data för övervakat
lärande måste fritexten omvandlas till numeriska värden. En algoritm utvecklas i
detta arbete för att utföra den omvandlingen.

Algoritmen använder färdigtränade ordvektormodeller som omvandlar varje ord
till en vektor. Vektorerna för flera ord i samma mening kan sedan kombineras till
en meningsvektor. Meningsvektorerna i hela datamängden klustras sedan för att
identifiera grupper av liknande textsträngar. Algoritmens utdata är varje datapunkts
klustertillhörighet.

Algoritmen appliceras på ett specifikt fall som berör operativ risk inom banksek-
torn. Data består av modifikationer av finansiella transaktioner. Varje sådan mod-
ifikation har en tillhörande textkommentar som beskriver modifikationen, en hand-
larkommentar. Att omvandla dessa kommentarer till numeriska värden är målet med
fallstudien.

En klassificeringsmodell tränas och används för att utvärdera de numeriska vär-
dena från handlarkommentarerna. Klassificeringssäkerheten mäts med och utan de
numeriska värdena. Olika modeller för att generera värdena från handlarkommentar-
erna utvärderas. Samtliga modeller leder till en förbättring i klassificering över att
inte använda handlarkommentarerna. Den bästa klassificeringssäkerheten uppnås
med en modell där meningsvektorerna genereras med hjälp av SIF-viktning och sedan
klustras med hjälp av DBSCAN-algoritmen.

Nyckelord — Ordvektorer, Attributgenerering, Oövervakat lärande,
Djupinlärning, fastText, Operativ risk
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Chapter 1

Introduction

Machine Learning and Feature Engineering

The fields of machine learning and artificial intelligence have seen a recent surge
of commercial interest. The continuing development of more powerful and less
expensive computer hardware, breakthroughs in training algorithms and the ever-
increasing availability of data have enabled widespread deployment of machine learn-
ing models. What was once regarded as little more than an arcane field of puzzle
solving in computer science is now finding its way into just about every industry.

Machine learning enables computers to perform tasks such as pattern recogni-
tion, forecasting, classification and anomaly detection. Fundamentally, these are all
examples of tasks where an agent attempts to extract meaningful information from
large sets of data. A human can learn to perform such tasks with experience. A
doctor can learn to recognize patients’ symptoms and diagnose them correctly with
a reasonable probability of success. A financial analyst can take data and use math-
ematics and their experience to determine whether or not to invest in a company.
Provided enough data and a suitable model, a machine could also learn to perform
or assist with such tasks.

In machine learning, a model is typically trained on a large set of historical data.
Each data point consists of a number of observations of various characteristics, known
as features. The machine learning algorithm then trains the model by taking these
features as input. For instance, consider the problem of predicting housing prices on
the real estate market. A machine could learn to predict prices by processing data
of historical real estate sales and training a model on that data. Suitable features to
include in the model could for instance be house size, number of bedrooms, age of
the house and average price of houses in the same area. Typically, a perfect dataset
of relevant features is not readily available. Instead, a data scientist can use domain
knowledge and intuition to craft features. This process is commonly known as feature
engineering.

Feature engineering can be tedious and highly technical. The time spent on
crafting high-quality features can easily exceed the time spent implementing and
training the actual machine learning model. The success of the model often hinges on
the underlying quality of the data and the feature engineering. There exist scenarios
where algorithms can effectively extract and select features automatically, however
this is not the case generally. In general a human is still required to help the computer
with data preprocessing and feature engineering.

Consider again the problem of predicting housing prices. Notice that all the fea-
tures (size, number of bedrooms, age and price of comparables) are numerical. Most
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machine learning algorithms accept only numerical features as input. Algorithms
that accept other forms of data, such as text or images, have some internal way of
representing those data types numerically. There exist many types of interesting
characteristics that cannot be initially represented numerically in a model without
some form of numerical representation schema. In the housing prediction problem,
one might for instance consider it a good idea to provide the model with information
regarding whether a home is a detached house or an apartment. The characteristic of
a real estate object being a detached house is certainly not numerical. This is known
as a categorical feature. Conveniently, categorical features can easily be represented
as numerical values by a simple encoding. Let the feature have the value 1 if the
object is a detached house and 0 if the object is an apartment.

Representing categorical features numerically is simple. Consider a more chal-
lenging case; assume that for each real estate object in the housing dataset there is a
short text description of the house. This could be the property description from the
real estate ad. The text is a free-text and is not categorical since the writer is free
to formulate the text in any way rather than choosing from a predetermined list of
allowed texts. How to represent such a free-text numerically? This is a much more
complex problem and is the central topic of this thesis.

The purpose of this thesis is to develop and evaluate models for converting free
text strings into numerical values that can be used as features. It will be shown
that a good approach for this is to represent the text strings as real-valued vectors,
known as word embeddings. There exist advanced neural network models that can
efficiently train such vectors. Furthermore, it will be shown that for the purpose of
feature generation one can make use of pre-trained models which have been trained
on enormous datasets. This eliminates the need for training new word embedding
models in order to generate features.

Operational Risk Management

This thesis has been commissioned by Svenska Handelsbanken (SHB) and has been
carried out at the Model Validation & Quantitative Analysis department of the bank.
The techniques explored in this thesis could be applied to any machine learning
problem of similar nature in any industry. However, for this thesis a very specific
application is considered and studied. The problem considered in this thesis is similar
to the example of predicting housing prices, but rather than studying real estate, the
case studied in this thesis concerns operational risk management.

The Basel III regulatory framework defines operational risk as "the risk of loss
resulting from inadequate or failed internal processes, people and systems or from
external events" [22]. This is a broad definition. Essentially, operational risk covers
most risks associated with human error, failure of operational processes and external
factors which are not linked to any other main category of risks such as financial or
market risk.

Operational risks are of paramount importance to financial institutions. Unlike
financial risk and market risk, operational risk is difficult to detect and hedge against.
This is because operational risks often arise from human error. Such errors could be
with or without malicious intent. Since large banks like Handelsbanken deal with
very large transactions, simple human errors could prove extremely costly.

There are many examples of large banks which have taken heavy losses due to
factors relating to operational risk.
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• In 1995 a derivatives trader at Barings Bank, the oldest merchant bank in the
United Kingdom, made a series of unauthorized trades. When finally discov-
ered, the losses due to these trades had reached $1.4 billion and the 233 year
old bank was declared insolvent and later acquired for £1 [29].

• In 2005, a trader at Mizuho Securities was instructed to sell one share of a
particular stock at U610,000. Instead, the trader issued an order to sell 610,000
shares at U1 a share. Despite discovering the mistake within 85 seconds of the
order, the error ended up costing the firm $255 million [5].

Clearly, it is very much in the risk control department’s interest to have the ability
to identify anomalous behavior in the trading department.

The data studied in this thesis specifically concerns modifications made to ex-
isting trades. When a trader at Handelsbanken modifies an existing trade s/he
is required to enter a free-text comment into the trading platform explaining and
documenting the modification. The comments are typically very brief and full of
nomenclature. Nevertheless it is reasonable to expect that these comments contain
information relevant for identifying and predicting suspicious behavior. Hundreds of
thousands of such modifications of trades are made annually resulting in a dataset
far too large to analyze manually for anomalies. Thus machine learning is a natural
approach to this problem. SHB had models in place prior to the work conducted
during this thesis, but those did not make use of the free-text comments in the data.
Thus, the objective of this thesis is twofold; the first goal is to explore techniques
for converting the free-text trader comments into meaningful numerical features, the
second goal is to test the existing anomaly detection models with and without the
trader comment features to see if the performance improves when the information
from the comments is incorporated.

Research Questions

• How can word embeddings be employed to represent short text strings as nu-
merical features with minimal information loss?

• What is the predictive impact of including such features?

Delimitations

• The text studied in this thesis is in Swedish, however the models used are
applicable for any language.

• The data used contains modifications of trades in exchange rate derivatives
(FX) only. The reason for this is that the vast majority of labeled data available
was for FX trades. Again, the models used are applicable for any type of trade
and more generally for non-financial applications as well.

Thesis Outline

Chapter 2 provides a brief review of machine learning and natural language process-
ing tools relevant for this thesis. Chapter 3 covers relevant literature and positions
the thesis. Chapter 4 describes the dataset used in this study. Chapter 5 provides
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a detailed description of the algorithm developed for this thesis and its implementa-
tion. Chapter 6 presents results of the algorithm tests. Finally, Chapter 7 discusses
the results, provides concluding analysis and suggests future research directions.
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Chapter 2

Theory

This Chapter provides the reader a review of prerequisite theory relevant to under-
standing the methods used in the thesis. Readers familiar with the topics covered
here can skip ahead to Chapter 3.

Section 2.1 covers the basics of machine learning, Section 2.2 introduces the
reader to the various machine learning models used in this thesis, Section 2.3 covers
relevant NLP models and Section 2.4 describes some probabilistic modeling.

2.1 Machine Learning Preliminaries

Machine learning is a subfield within computer science where computers are trained
to perform certain tasks without the need for an explicit set of rules to follow. In
order to do this, the computer requires a model and a set of data.

Fundamentally, the machine learning model is a framework consisting of the
following items:

• A mathematical description of the machine learning task at hand.

• A training algorithm for finding a solution to the task

• A set of hyperparameters. These are parameters of the model which must be
specified prior to learning a solution.

Typically, the hyperparameters specify the way in which a solution is learned and/or
the structure of the solution. For instance, this could be the number of iterations
to run a training algorithm. The process of selecting the optimal hyperparameter
values, known as hyperparameter tuning is usually not trivial. An approach to tuning
hyperparameters is to specify a range of hyperparameter values to evaluate and then
choose the set of values which perform the best according to some evaluation criteria.

In practice, standard machine learning models are usually implemented through
open-source code libraries. Thus the user is only required to choose a model and
specify the (range of) hyperparameters.

Crucial to success in a machine learning project is the availability of data. Each
data point is a collection of observations of random variables, each representing a
characteristic of the subject. These random variables are known as data features.
Assuming all features can be represented numerically, one can conveniently represent
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a dataset of n data points each with j features as an n× j matrix X.

X =


x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
. . .

...
xn1 xn2 . . . xnp


Each row of the matrix X is a data point, denoted as the feature vector xi =
(xi,1, xi,2, . . . , xi,p)

T . The p-dimensional vector space spanned by the vectors xi,
i = 1, 2, . . . , n is known as the feature space of the dataset.

The machine learning model parses the data and searches for patterns. Many fac-
tors influence the success of the machine learning model’s attempt to model patterns
in the data, mainly:

• Data quality. Noise in the data will distort the solution and make finding
true patterns difficult. There may also be limitations in the way data has been
observed and recorded. The machine learning model can only work with the
data features which have been recorded. Moreover, the data may be funda-
mentally uncorrelated with the phenomenon being studied. The performance
of the machine learning model stands or falls with the data quality. Applying
all the best practices in modeling will not help if there is no pattern in the data
to model.

• Data quantity. Machine learning models typically require large amounts of
data to train on in order to perform well. Many models rely directly on the
law of large numbers to achieve asymptotic convergence to optimal solutions
with increasing data quantity. Certain models require more data than others.

• Choice of model. Machine learning models are designed to perform a certain
set of tasks well. A model for product suggestion is probably unsuitable for
speech recognition. Selecting an appropriate model is crucial.

• Computational resources. Training machine learning models can be very
computationally strenuous. Some models are unfeasible to train efficiently on
a standard personal computer. Access to powerful hardware can be a crucial
requirement for success in a machine learning project.

Computers use GPU’s to perform the fast matrix calculations required to ren-
der complex computer graphics. Such operations are similar to the ones re-
quired to train certain machine learning models. Thus, using GPU’s to train
models can massively reduce training time [25].

The emergence of cloud computing has opened up the possibility for users to
run their code on virtual machines with third party hardware. This enables
individual users the access to large amounts of computing power on demand.

Fundamentally, machine learning models can be divided into two categories: su-
pervised learning and unsupervised learning.1 They are used for different tasks and
require different types of data.

1Sometimes reinforcement learning is included as a third main category of machine learning
models.



CHAPTER 2. THEORY 7

Supervised Learning

In supervised learning, one of the data features is designated as a response variable.
The task in supervised learning settings is then to create a model capable of pre-
dicting the response yi, based on the input features xi, i = 1, 2, . . . , n. If the yi are
quantitative, such as in the case where yi represents a real estate price to predict,
the learning task is referred to as regression. If the yi are categorical, such as in the
case of predicting whether or not a patient has a particular disease, the learning task
is referred to as classification. Moreover, in the case of classification, the response
yi is referred to as the label of that data point.

In supervised learning, one typically splits the data into two subsets. One is
referred to as the training data. Like the name implies, this data is used to train a
machine learning model. Given a set of data points with their associated responses
{(x1, y1), (x2, y2), . . . , (xn, yn)} a supervised learning model attempts to find patterns
in the features which can be used to predict the responses. The other subset is known
as the test data. The trained model is tested on this data to evaluate performance.
Since the model hasn’t seen the test data during training, this makes it possible to
detect if the model has been overfit to patterns only present in the training data.

When a model has been trained and evaluated, it can be used to predict the
responses of new data. This allows the model to make predictions about responses
which have not been recorded yet.

Unsupervised Learning

In unsupervised learning, the data consists of only observed features and no re-
sponse. Thus, unsupervised learning problems do not concern prediction, since there
is nothing to predict. Rather, unsupervised learning models focus solely on finding
geometric structures in the data. The task of finding groups of data points which
are geometrically proximate in the feature space is known as clustering. For in-
stance, clustering can be used to identify segments in a customer base, i.e. clusters
of customers who are similar.

Since predictions cannot be evaluated when data is unlabeled, there is no need
to allocate some data as test data. Rather, the model can be trained on the full
dataset.

2.2 Machine Learning Models

This thesis project employs both supervised and unsupervised techniques. This
section covers the various machine learning models used.

k-Means Clustering

k-means clustering is a unsupervised model which partitions a dataset into k clusters.
Each data point thus belongs to exactly one cluster. Consider a dataset X consisting
of n data points. Let C1, C2, . . . , Ck be a partition of the data index set {1, 2, . . . , n}.
These sets represent the k clusters, i.e. if i ∈ Cj then the data point xi is contained
in cluster j.

The objective of k-means clustering is to find the partition which best describes
the data. But by what criterion should one measure the fit of the clustering? The
standard approach is to find the cluster partition such that the total within-cluster
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squared Euclidean variation is minimized [12]. I.e. for a given partition, the objec-
tive function is the squared Euclidean distance ‖xi − xi′‖2 between all data points
belonging to the same cluster, summed over all clusters. In other words, k-means
clustering is defined by the optimization problem:

minimize
C1,...,Ck

k∑
j=1

1

|Cj |
∑

i,i′∈Ck

‖xi − xi′‖2

Finding a global optimal solution to the problem above is NP-hard [1]. The number
of possible ways to partition a set of n data points into k clusters is a Stirling number
of the second kind, S(n, k), where

S(n, k) =
1

k!

k∑
j=0

(−1)k−j
(
n

k

)
This number explodes as n or k increase. Thus, a locally optimal solution to k-means
clustering is instead found through a heuristic algorithm.

Crucial to defining the clusters are the cluster centroids. The centroid cj of cluster
j is the mean point of all the data points in the cluster, i.e.

cj =
1

|Cj |
∑
i∈Cj

xi

The centroid can be thought of as the center of mass of the cluster. Below, a heuristic
algorithm for finding local optima to the k-means problem is presented.
Algorithm 1: k-means clustering heuristic algorithm
1 assign unique initial values for k centroids c1, . . . , ck;
2 do
3 for each data point xi do
4 assign xi to the cluster whose centroid is closest;
5 end
6 for each cluster Cj do
7 update centroid values cj = 1

|Cj |
∑

i∈Cj
xi;

8 end
9 while centroid values changed from previous iteration;

This algorithm converges in O(nkpi) where i is the number of iterations needed
until convergence. It has been shown in [27] that in the worst case, the number of
iterations is i = 2Ω(n). This means that the algorithm is superpolynomial in the
worst case if run until convergence. In practice however, if the data has cluster
structures the algorithm converges very quickly [4]. In the case of slow convergence,
early stopping criteria can be employed to significantly reduce run time with little
performance loss [24].

DBSCAN

Another commonly used unsupervised clustering algorithm is Density-Based Spatial
Clustering of Applications with Noise (DBSCAN). Whereas in k -means a fixed num-
ber of clusters are generated based on the positions of centroids, in the DBSCAN
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algorithm the number of clusters is dynamic and decided by the structure of the data
and some hyperparameters.

Again, consider the problem of clustering a dataset X of n data points. The
DBSCAN algorithm takes two parameters: ε and minPts. Clusters are formed in
the following way; for a data point xi, count the number of data points within a
radius of ε from xi, this region is known as the ε-neighborhood of the data point. If
the number of data points in the ε-neighborhood exceeds minPts, a new cluster is
formed. If minPts is not exceeded, the data point is labeled as noise, i.e. not part
of a cluster. This highlights a critical difference between DBSCAN and k -means, in
DBSCAN not all data points are required to belong to a cluster, they can instead
be labeled as noisy outliers. Furthermore, the number of clusters is not an input
parameter but rather learned by the algorithm itself. This is an attractive property
since a suitable number of clusters to look for is typically not known and can be hard
to discover in high-dimensional data. However, ε and minPts must still be tuned to
the data for good performance.

In Algorithm 2, the DBSCAN algorithm in pseudocode is presented. The algo-
rithm parses through all data points and first checks that the data point has not yet
been visited and labeled. If not, then a function findNeighbors() is called which
returns a list N of all data points within the ε-neighborhood of the data point in
question. If the number of elements in the list of neighbors is less than minPts then
that data point is labeled as noise since it is not found in a dense region. Noisy data
points are labeled −1. If the number of neighbors is not less than minPts then a new
cluster is created with a unique identifier.

Next, the algorithm attempts to expand the cluster. This is done by parsing
through the list of neighbors N to see if any of those data points are close to other
dense groups of data points. For each data point in N, first check if the data point
has previously been labeled as noise. This is a possibility since a data point may
not itself have enough neighbors to start a new cluster but could be a neighbor of
another data point which does fulfill that requirement. Thus if a neighbor has been
labeled as noise, change the label to the cluster label. Then check if the neighbor
has been labeled as belonging to any cluster, if so then there is nothing to expand
into in this iteration of the loop so continue to the next. This includes the points
which are relabeled from noise to the current class label since if they have previously
been labeled as noise their ε-neighborhoods have already been checked and found to
contain too few elements. If the data point was unlabeled then give it the label of
the current cluster. Then call findNeighbors() again to find the list of neighbors
M of this data point. If the size of M also exceeds minPts, then merge N and M by
setting N to be the union of N and M.

In Figure 2.2 the expansion process of the DBSCAN algorithm is shown. In
the figure, the algorithm is able to add two data points which were not part of
the original ε-neighborhood by finding an intersecting dense ε-neighborhood which
includes them.
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Figure 2.1: The DBSCAN algorithm expanding a cluster

The output of the algorithm is a cluster label for each data point in the dataset. If
the label is a natural number, then the associated data point belongs to the cluster
corresponding to that label. If the label is −1 then the data point was a remote
outlier and has been labeled as noise.
Algorithm 2: DBSCAN algorithm
1 C=0;
2 for each data point xi do
3 if xi.label 6= Null then
4 continue //data point has already been visited
5 end
6 N=findNeighbors(xi, ε);
7 if |N| < minPts then
8 xi.label = -1;
9 continue //classify as noise

10 end
11 C++;
12 xi.label = C;
13 for each neighbor nj in N do
14 if nj.label == -1 then
15 nj .label = C;
16 end
17 if nj.label 6= Null then
18 continue
19 end
20 nj .label = C;
21 M = findNeighbors(nj , ε);
22 if |M| ≥ minPts then
23 N = N ∪ M;
24 end
25 end
26 end

Given that the ε-neighborhoods typically are small compared to the whole dataset,
the average run time complexity of the function findNeighbors() which finds all
data points in an ε-neighborhood is O(log n). The dataset has n elements and
findNeighbors() is called at most once for each element. Thus, the average run
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time complexity of DBSCAN is O(n log n) [8].
Beyond the fact that DBSCAN does not require specifying the number of clusters

a priori and that its notion of noise makes it robust to extreme outliers, the algorithm
also comes with the advantage of being able to find arbitrarily shaped non-linear clus-
ters. Unlike the linearly separable Voronoi cells created by the k-means algorithm,
DBSCAN can find clusters of any shape so long as they are connected by a common
dense region of data points.

Deep Belief Network

A Deep Belief Network (DBN) is a type of deep neural network which can be used
for both unsupervised and supervised learning tasks. In this thesis, a DBN will be
used as a supervised classifier. However, the main focus of the thesis is on feature
generation for the DBN and not the DBN itself. The reader can choose to view
the DBN in this thesis as essentially a black box algorithm replaceable by any other
classifier. As such, this section will only give a brief introduction to DBN’s. For a
more thorough description of DBN’s and the vast and interesting topic of artificial
neural networks, see for example [10, 15].

In essence, a deep belief network is a created by "stacking" several smaller neural
network models known as Restricted Boltzmann Machines (RBM). An RBM con-
sists of a visible and a hidden layer where the hidden layer is trained to model the
probability distribution of the visible inputs. The restricted property of a restricted
Boltzmann machine comes from the fact that no two neurons within the same layer
may be connected. In a DBN, the hidden layer of an RBM acts as the visible layer
for the next DBN in the stack. The RBM’s act as unsupervised feature detectors.

Training a DBN consists of two steps. The first step is an unsupervised learning
task where the DBN learns to extract features from the data. In the second step
labels are introduced to perform supervised learning for the purpose of classification.
A critical property of DBN’s is that each RBM can be isolated and trained greedily
[11].

Figure 2.2: Architecture of a deep belief network. Image source:2

2https://www.ibm.com/developerworks/library/cc-machine-learning-deep-learning-
architectures/index.html
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2.3 Natural Language Processing

Natural Language Processing is the field in computer science that studies techniques
which enable computers to process human language. It is closely related to machine
learning, and machine learning techniques are frequently employed to improve the
computer’s ability to understand language.

Word Representations

This study mainly concerns the usage of numerical word representations, typically
in the form of real-valued vectors in high-dimensional space. For this reason, such
word representations are commonly referred to as word vectors. Word representation
models are often trained with machine learning algorithms on datasets containing
text. Such a dataset is referred to as a text corpus.

Bag-of-Words

The simplest word representation model is the Bag-of-Words model. In the Bag-of-
Words model, the number of dimensions is equal to the number of unique words,
with each dimension corresponding to a unique word. For instance, consider the
sentence: The quick brown fox jumps over the lazy dog. The sentence con-
tains eight unique words: ’the’, ’quick’, ’brown’, ’fox’, ’jumps’, ’over’,
’lazy’, ’dog’. Thus, if one wants to create a Bag-of-Words using that sentence
as the training corpus, 8-dimensional word vectors are needed. Typically, a word
vector in the Bag-of-Words model is a one-hot encoded vector. The word vector
for the word ’fox’ thus becomes vfox = [0, 0, 0, 1, 0, 0, 0, 0]. We can get a sentence
vector for The quick brown fox jumps over the lazy dog by simply adding to-
gether the vectors for each word. This gives us the sentence vector [2, 1, 1, 1, 1, 1, 1, 1]

For practical applications, one needs a corpus much larger than just one sentence.
As the size of the Bag-of-Words vectors grows with the number of unique words, one
quickly realizes that storing one-hot encoded vectors in memory will be impractical.
Instead one can use a hashing function and map the words to indices in a hash table.
This makes the Bag-of-Words model more scalable with corpus size.

tf-idf

An obvious limitation of the Bag-of-Words model where each element corresponds to
the frequency of the occurrence of a particular word is that the model assigns equal
importance to each word in a text. Thus, a simple extension would be to weight each
word by some measure of the importance of that word to a particular text. This is
exactly the reasoning behind the tf-idf score. The tf-idf score of a word j in a text
d of the corpus D is a metric computed as the product of two other metrics:

• The term frequency tf(j, d) = |{i ∈ d : i = j}|, i.e. the word count of j in d.

• The inverse document frequency idf(j, d,D) = log
( |D|
|{d∈D:j∈d}|

)
. The numer-

ator in the logarithm is the cardinality of D, i.e. the number of texts in the
corpus. The denominator is the number of texts in the corpus which contain
the word j.

Multiplying these gives the tf-idf score:

tf-idf(j, d,D) = tf(j, d) · idf(j, d,D)
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If a word occurs many times in a particular text it will achieve a high term frequency
for that text. A word which appears in a particular text but not in many other texts
in the corpus will achieve a high inverse document frequency for that text. Thus, the
intuition behind the tf-idf score is that if a rare word appears many times in a text,
then that word is of great importance to that text. A word representation model
would thus be to let each element in the word vectors correspond to the tf-idf score
of the word.

Word Embeddings

Even after weighting the words by a metric like the tf-idf score, the Bag-of-Words
model is still simple and has severe limitations. Particularly, it is inconvenient to
have each element of the embeddings correspond to a single word. A more advanced
approach would have the elements of the vector correspond to more complex linguistic
and semantic characteristics of a word or text, thus making the size of the vectors
independent of the size of the corpus. Such word representations are known as word
embeddings. Recent research on word embeddings has been focused on developing
techniques for learning word vectors of lower dimensionality while still capturing as
much of the semantics as possible. Such models are much more useful than the
Bag-of-Words-like models for the purposes of this thesis. There now exist techniques
which can model the entire vocabulary of a language with word vectors in only a few
hundred dimensions yet which are able to capture incredible amounts of semantic
patterns. The most well-known class of such techniques is word2vec.

Word2vec

The main background literature of this project is the seminal work of the Google
Brain team led by Tomas Mikolov [18, 20]. In these two papers, Mikolov et al.
present two new models: the Continuous Bag-of-Words Model and the Continuous
Skip-gram Model. These are neural network models which can be used to learn
vector representations of words from enormous text corpora at a computational cost
much lower than previous neural network models while offering large improvements
in accuracy. These techniques and their associated algorithms are commonly referred
to as word2vec.

Broadly speaking, in the training phase these models consider words and their
context windows. A context window is a number of words occurring directly before
and after the word in question in the text corpus. This provides the context for the
word. The Continuous Bag-of-Words model is trained by attempting to correctly
classify words based on the words in their context windows. On the other hand, the
Continuous Skip-gram Model works the other way, by taking a word and attempting
to predict its context window [18].

Figure 2.3: An example context window for the word ’fox’.

Consider the context window in Figure 2.3. The Continuous Bag-of-Words model
would learn by attempting to predict the word ’fox’ from the words ’quick’,
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’brown’, ’jumps’, ’over’. The Continuous Skip-gram model would learn by at-
tempting to predict the words ’quick’, ’brown’, ’jumps’, ’over’ from the word
’fox’. The words ’brown’ and ’jumps’ would be weighted more heavily since they
appear closer to ’fox’ than the words ’quick’ and ’over’ do.

Since the contexts of words are used for training, the word embeddings produced
by these models are able to capture certain semantic patterns. Incredibly, these
patterns are modeled as linear vector relations. The famous result of the vector
calculation vking− vman+ vwoman is a vector which is closer to vqueen than any other
word vector, despite the algorithm not being programmed to know what a man or a
woman is [21]. The model learns the common relationship between male and female
words simply by the contexts in which these words occur. Such results are not limited
to the English language. The same result has been tested and successfully reproduced
with the corresponding Swedish words and their word embeddings, as shown in Figure
2.4a. Figure 2.4b shows the (Swedish) word embeddings most similar to the word
embedding for KTH.

(a) vking − vman + vwoman in Swedish (b) vKTH

Figure 2.4: Examples of word embedding similarity
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Figure 2.5: PCA projection of skip-gram word vectors. Linear relationship between countries and
their capital cities successfully captured by the model, even though no information was provided to
the model about what a capital city is. Image source: [20]

Figure 2.5 illustrates how word2vec word embeddings can be used to capture
the semantic relationship between countries and their capital cities. This type of
relationship has been successfully modeled because countries and their capital cities
appear in similar linguistic contexts in the training corpus. In essence, sentences of
the type "[city X] is the capital of [country Y]" are likely to occur for many different
capital/country pairs.

FastText

Mikolov has since left Google Brain and now works for the Facebook AI Research
team (FAIR) which is where the main developments in the field are now happening.
The current state-of-the-art in word embeddings is the fastText library which has
been made available open-source by FAIR. The algorithms used in fastText build
upon the Continuous Skip-gram model and can be trained on corpora with billions
of words in minutes [6, 14].

A disadvantage of the word2vec algorithms is that they ignore the structure
of words by assigning different vectors to each word independently. Grammati-
cal inflections are treated as completely separate words. I.e. words like ’sleep’,
’sleeps’, ’sleeping’, ’slept’ are modeled independently of each other. Given
a large enough corpus, the word2vec model is likely to be able to assign the inflec-
tions of ’sleep’ similar word vectors because they appear in similar contexts in the
corpus. However, certain languages have much more complicated and rare inflections
which makes it possible for certain inflections to not occur frequently enough even in
very large corpora. English is a very easy language to model with word embeddings
since the number of inflections is relatively low and compound words usually occur
in open form (post office, rather than postoffice). Spanish, on the other hand, has
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over 40 different verb inflections, and Finnish has 15 noun inflections [6].
The fastText algorithm known as Subword Information Skip-gram (SISG) solves

the problem of modeling languages with rare word inflections by using character n-
grams. A character n-gram is a sequence of n letters contained within a word. For
instance, the word sleep contains the 3-gram sle. The SISG algorithm first adds the
characters < and > to each word to mark the beginning and end of each word. Then
each word is decomposed into all of its character n-grams where n = 3, 4, 5, 6. For
example, <sleep> would be represented by the n-grams <sl, sle, lee, eep, ep>,
<sle, slee, leep, eep>, <slee, sleep, leep>, <sleep and sleep>. Then, a
word vector is trained for each of the n-grams of <sleep>. Finally, the original
word <sleep> is assigned the word vector equal to the sum of the word vectors of
its n-grams. The point of this is that the words ’sleep’, ’sleeps’, ’sleeping’,
’slept’ share many n-grams and so their word embeddings will be correlated.

Furthermore, SISG remarkably allows for creating word embeddings for words
which were not at all present in the training corpus. These are referred to as out-
of-vocabulary words (OOV). Given an OOV word, as long as sufficiently many of
its n-grams are present in the corpus, it can be modeled as the sum of the word
vectors of those n-grams. This is a truly astonishing result as it gives the model a
much deeper knowledge of the language and allows for just about any sequence of
characters to be systematically assigned a word embedding.

Pre-trained Word Embeddings

The fact that these models are able to capture strong semantic patterns as linear vec-
tor relations is incredibly powerful for semantic analysis of large text corpora. The
potential drawback of these models is that they require enormous quantities of train-
ing data (and enormous amounts of computing power in order to train efficiently).
However, these models concern language. In most applications, the semantics of the
natural language should be roughly the same as in a very general setting. In other
words, as long as the text used in the data does not have completely different mean-
ings than the natural interpretation (sarcasm, metaphors, allegories, etc) then one
can use a pre-trained model trained by somebody else. In the case of this thesis,
the text comes from professional traders whose job it is to document the changes
they make to transactions. Although they employ frequent use of nomenclature, it
is reasonable to expect that they should avoid sarcasm in their comments. Thus,
using pre-trained models should work fine in this context.

The fastText developers have released large pre-trained models for 294 differ-
ent languages (including Swedish). The Swedish model contains roughly 1.1 million
words and their word vectors and has been trained on Swedish Wikipedia articles.
The word vectors have dimension 300. The fastText library is under active devel-
opment. For a detailed guide on how to obtain and install the fastText library, see
appendix A.

2.4 Probability Theory

A Generative Model for Discourse

In two papers [2] and [3] by Arora et al. an interesting probabilistic model for the
process by which discourse is generated is presented. The model provides theoretical
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support for certain heuristics in algorithms generating word embeddings. The rele-
vant aspects of the model will be presented here but for a more detailed description
see the papers.

In [2] the model is a hidden Markov model (HMM) in which a discourse vector
ct ∈ Rd performs a discrete random walk on the unit sphere. The discourse vector
is a representation of the context of some current discourse at time t, i.e. what is
currently being talked about. Given that the discourse vector is in some state at
time t, a word wt from a vocabulary V is randomly emitted. The discourse vector
ct+1 for the next time step is then obtained by adding a small displacement vector to
the previous discourse vector. In [3], the model is modified slightly. Given a sentence
s, the discourse vector is held constant throughout the sentence. The authors argue
from empirical evidence that the discourse vector does not tend to change much
within a single sentence. As such, in the model the discourse vector cs moves over
sentences rather than time steps.

For any word wt, a time-invariant word embedding vwt ∈ Rd exists. The proba-
bility of a word w ∈ V being emitted in sentence s at time t given a discourse vector
cs is modeled as

P(wt|cs) = αP(wt) + (1− α)
exp(vTwt

bs)

Zbs
where

bs = βc0 + (1− β)cs, c0 ⊥ cs
Zbs =

∑
w∈V

exp(vTwbs)

and α, β are hyperparameters. The first term in the probability, αP(wt) is a smooth-
ing term which accounts for the fact that there exists some probability of a word being
emitted which is independent of the current discourse. The vector bs = βc0+(1−β)cs
is a shifted discourse vector. Here, c0 represents some common time-invariant dis-
course bias. Zbs is a normalization constant.

Smooth Inverse Frequency

Given a sentence s and the word embeddings for its words, the discourse vector cs can
be estimated. The method for doing so involves first estimating bs using maximum
likelihood estimation. It turns out that the MLE estimate of bs involves a weighted
sum of the word embeddings in the sentence. The weights in this sum are known as
smooth inverse frequencies (SIF) [3].

Let L(bs) =
∏
w∈s P(w|cs) be the likelihood function of the sentence s.

L(bs) =
∏
w∈s

P(w|cs) =
∏
w∈s

(
αP(w) + (1− α)exp(v

T
wbs)

Zbs

)
logL(bs) =

∑
w∈s

log
(
αP(w) + (1− α)exp(v

T
wbs)

Zbs

)
Let

lw(bs) , log
(
αP(w) + (1− α)exp(v

T
wbs)

Zbs

)
⇒ logL(bn) =

∑
w∈s

lw(bs)
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In [2] it is argued that Zbs is roughly the same for all bs, thus let Zbs = Z, ∀bs.
Then,

lw(bs) = log
(
αP(w) + (1− α)exp(v

T
wbs)

Z

)
∇lw(bs) =

1

αP(w) + (1− α) exp(vTwbs)
Z

(1− α)exp(v
T
wbs)

Z
vw

A first-order Taylor expansion of lw(bs) gives

lw(bs) ≈ lw(0) +∇lw(0)Tbs

= lw(0) +
1

αP(w) + 1−α
Z

1− α
Z

vTwbs

Now consider again the log-likelihood

logL(bn) =
∑
w∈s

lw(bs) ≈
∑
w∈s

(
lw(0) +

1

αP(w) + 1−α
Z

1− α
Z

vTwbs

)
= constant+

∑
w∈s

( 1

αP(w) + 1−α
Z

1− α
Z

vTw

)
bs

= constant+
(∑
w∈s

a

P(w) + a
vw

)T
bs

where a = 1−α
Zα .

Recall that c0 and cs are on the unit sphere. Thus, the convex combination bs
is also on the unit sphere. Given this, note that

(∑
w∈s

a
P(w)+avw

)T
bs is maximized

when
∑

w∈s
a

P(w)+avw and bs are parallel, i.e. when

bs =

∑
w∈s

a
P(w)+avw

‖
∑

w∈s
a

P(w)+avw‖

Since argmaxL(bs) = argmax logL(bs) the maximum likelihood estimate of bs is
found to be approximately

b̂s ∝
∑
w∈s

a

P(w) + a
vw �

Here, the weights a
P(w)+a in the sum are the aforementioned SIF weights.

In order to find cs, the common discourse bias c0 must also be estimated. Let
S be a set of many sentences whose common discourse bias is to be found. In the
model, this is done via principal component analysis where the estimate ĉ0 is set to
be the projection of b̂s onto the first principal component of the matrix X whose
columns are the estimates of bs for all s ∈ S.

Once c0 has been estimated, the estimated discourse vector ĉs for the sentence s
can be computed as

ĉs =
b̂s − βĉ0

1− β
Since principal components are orthogonal to each other, this gives the desired prop-
erty of c0 ⊥ cs.
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Chapter 3

Literature Review

This chapter provides a short review of relevant previous studies related to this thesis,
and positions the thesis in the wider field of research.

This thesis exists in the intersection of two important and well-studied areas
of machine learning. The first is traditional supervised learning with numerical
features, this is the most prevalent form of machine learning in academia as well
as in industry. The other is document classification, i.e. supervised learning using
text strings as input data. A more detailed description of the data used in this
thesis will be provided in Chapter 5, but for now suffice to say that the data consists
of both numerical features (nominal trade value, time between trade creation and
modification, etc.) and text features (short strings documenting modifications made
to existing trades).

Figure 3.1: Intersection of traditional supervised machine learning and document classification

Academia and industry seems well-equipped to handle the case of a machine
learning problem with only numerical features or only text features. There seems
to have been significantly less research into how to deal with problems where the
data contains both numerical and text features. This could be either a traditional
supervised learning problem where most features are numerical but the dataset also
includes one or more text features (as in the case of this thesis) or a document
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classification problem where one wants to incorporate some numerical data into the
model as well (cf. [16]).

The simplest and most intuitive approaches to the problem of converting text
to numerical features are based on the Bag-of-Words model as described in section
2.3. A commonly used model is to create word embeddings for texts where the
elements correspond to the frequency of occurrence (in the text) of the most common
words (in the corpus) [28]. Again, a natural extension of this model is to weight
each word by a suitable metric. Weighting by each word’s tf-idf score means that
rare words which occur frequently in a text are weighted more heavily. Using tf-idf
weighted embeddings is the most common approach for real-valued feature vector
representations of text [9].

Modern research in deep learning has brought on a variety of word embedding
models trained by neural networks. These include the previously discussed word2vec
(2013) [18, 20, 21] and fastText (2016) [6, 14] models, as well as numerous other
popular similar models such as UC Berkeley’s Caffe (2014) [13] and Stanford’s GloVe
(2014) [23]. Collectively, the word embeddings produced by such models are known
as distributed word representations.

There has been some research into how pre-trained distributed representations
can be used to improve performance of other machine learning tasks. Turian et al.
[26] add word embeddings as extra features to improve performance in some NLP
labeling and prediction tasks. However, these are exclusively NLP tasks, i.e. not
containing numerical features as well. Correa et al. [7] use word2vec embeddings,
and combine them in a way similar to in this thesis, for sentiment analysis of tweets;
again, a pure NLP task.

Macskassy et al. [17] take the converse approach to the problem. Instead of
attempting to convert the text features to numbers for use in machine learning al-
gorithms, they convert the numerical features to text-like representations and use
document classification algorithms.

There does not seem to have been much research into the effects of using pre-
trained distributed word representations to improve the performance of machine
learning models which are not pure NLP models. Given how new the word embedding
models used in this thesis are and how quick developments in the field are, it is likely
that if the problem is not novel then at least any similar studies rapidly become
outdated.
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Chapter 4

Data

This chapter describes the data used in this thesis. Beyond a brief description of the
contents of the data, the chapter also discusses data quality and the steps taken to
prepare data for the modeling.

Confidentiality

The data used in this thesis comes from the trading systems of Svenska Handels-
banken. The data contains information about trades made by SHB traders. Due to
the strict confidentiality of such information, the raw data can not be presented in
detail within this thesis. Furthermore, in order to preserve client, counterparty and
trader confidentiality all sensitive information in the data which could link the trade
to an individual, client or counterparty was anonymized prior to the start of this
thesis project. This includes the name or other identifier of the client, counterparty
and the SHB trader facilitating the trade.

4.1 Data Description

Trade Modifications

The dataset made available by SHB for this thesis contains information about certain
trades made on their platforms between the dates 2014-07-01 and 2017-10-03. The
raw data contains approximately 190,000 data points. More specifically, the data
concerns trades which have been modified after the initial trade date. A modification
of a trade refers to some property of the trade conditions being intentionally changed
after the trade has been initially entered into the trading system.

There are several possible reasons for why such a modification is made. One
possibility is to modify a trade in order to correct a mistake made at the initial
entering of the trade. The trade may have mistakenly been entered with an incorrect
maturity date, incorrect margin, not booked on the right account, double-booked,
traded in the wrong direction, entered with missing information etc. These are
typical examples of fat-finger errors which are central in operational risk.

Another possible reason for why a trade is modified after the trade has been
entered is if the trade is made on the behalf of a client who then requests the modifi-
cation. This may be due to a mistakenly incorrect trade request by the client, again
due to a fat-finger error. It could also be so that the conditions of the trade allow
for the client to change certain trade properties.
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Technical errors are another possible reason for having to modify trades. A
system bug may cause values in the trading system to be entered incorrectly or in
an invalid way so that the errors must be corrected ex post facto. It could also be
that a system error causes the trade to not execute or to execute in an unexpected
manner.

Certain trades are designed in such a way that they can or will require modifica-
tions in the future. This could again be because the conditions of the trade allow for
the trader or client to edit certain trade properties. It may also be so that new in-
formation which is not available at the trade inception appears and must be entered
into the system.

There are other more obscure ad hoc reasons for why trades must be modified
ex post facto, but the categories listed above give a good picture of the main expla-
nations behind the modifications studied in this thesis.

Trader Comments

Regardless of what the reasoning behind a modification of a trade is, when the
modification is made the trader administering the modification must type a short
text note into the system documenting the modification. This comment is entered
into a free text field, meaning the trader can essentially enter any arbitrary sequence
of characters, including leaving the field empty.

The purpose of the trader comment is to document any manual modifications
being made to trades in the system. Since the trades can often be of a very large
value and the changes to them sometimes critical, it is important that a convenient
paper trail is established. Simultaneously, writing long and detailed documentation
of ones activities is not an especially value-adding activity. Particularly not when
considering the fact that a large portion of the work of modifying trades concerns
the exact same type of modification and so is likely to be quite repetitive.

As with any practical machine learning application, there are some data quality
issues which deserve mentioning. Listed below are some of the main data quality
issues with the trader comments.

• Length. The average length of a trader comment in the system is very short,
with the vast majority of comments being shorter than five words. This is
evidence of the low incentive for traders to write descriptive comments. The
length of the comments (in terms of number of words) is important because it
governs which NLP models are applicable for this particular case.

• Empty comments. Some trade modifications have no comment attached to
them at all. In most cases this is due to the modification being automatically
generated, but there are also some manual modifications in the dataset with
an empty comment.

• Language. The vast majority of comments in the dataset are written in
Swedish. However, the data also contains comments made in many other dif-
ferent languages. These include at least English, Norwegian and Finnish, with
the possibility of other languages also being present in the dataset. The pres-
ence of multiple languages is problematic because this study uses pre-trained
Swedish word embeddings. The word embeddings have only been trained on
a Swedish corpus, thus they will not be able to effectively model words from
other languages.
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• Misspellings. Many of the comments seem to have been written very quickly
with little concern about correct spelling. This actually turns out to be less
of a problem than one might suspect. The comments will be modeled with
fastText word embeddings which use character n-grams meaning comments
with minor spelling errors can still be modeled effectively. See Section 2.3 for
a more detailed description of fastText and character n-grams.

• Acronyms. Acronyms are also common in the trader comments as another
means of speeding up the documenting process. Acronyms are potentially a
much more severe problem than misspellings. This is because unless the pre-
trained word embedding model used contains a trained vector for that acronym
it will be very difficult to construct such a vector from the acronym’s n-grams
since an acronym naturally contains very few characters which additionally
tend to appear in a rare sequence.

• Nomenclature. Since the traders are discussing their own work in the com-
ments, they contain a lot of finance nomenclature. This could include mention-
ing things such as option deltas and spot rates which are not typically common
in general text topics. As long as these technical terms are common enough to
appear on Wikipedia (which is what the word embeddings are trained on) then
this is no problem (rather, it is good to use such words). The problem is when
the traders use very obscure or self-invented nomenclature and acronyms. This
is very problematic because if a word is rare enough to not be on Wikipedia
then it will not be included in the word embedding model. Furthermore if it is
not descriptive enough then the model will not be able to reconstruct it using
the character n-grams. Since these technical terms are often the most crucial
word in the meaning of the comment it is a major information loss if the model
can not understand them.

Despite all these flaws the comments still clearly have a lot of information value in
them. From a simple ocular inspection, reading the comment is often enough to
understand what the change to the trade was. Thus there is still hope that helpful
features can be extracted from them. With that said, efforts to improve the way the
comments are written with regards to the points listed above would almost certainly
improve the results of projects such as this one.

Other Features

The dataset contains many other features with information about the trade modifica-
tion beyond the trader comment. Almost 50 different features of varying importance
are included in the data, only the key ones will be described here. There are essen-
tially two groups of features for each data point. One contains information about
the trade; the instrument and instrument type that was traded, a time-stamp for
the trade, name of the counterparty, maturity date (if applicable), nominal value,
price, etc. The other group of features contains information about the modification
made to the trade; a time-stamp for the modification, ID of the trader, the type of
modification made, what values were changed and of course the trader comment.

All of the other features in the dataset are either numerical or categorical. Only
the trader comment is a true free-text.
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4.2 Labeled Data

Two smaller sets of labeled data were provided. These contain modifications of trades
which have been manually labeled as the type of suspicious behavior the risk control
division wants to detect. These contain 242 and 45 data points respectively. The
two sets intersect but the smaller is not fully contained in the larger.

All but two of the labeled data points concern trades in foreign exchange rate
derivatives; FX spot trades, FX futures contracts and FX swaps.

4.3 Data Preparation

As with most machine learning projects, a lot of data cleaning was required in order to
improve quality and prepare the data for the algorithms. Only the trader comments
were cleaned since this thesis focuses purely on that feature. Below are again the
same main data quality issues listed, this time with how they were remedied in the
data cleaning process.

• Length. The length of the existing comments is difficult to do much about.
Worth mentioning however is that some of the other remedies, such as ex-
panding acronyms and removing meaningless words, can change the number
of words in a comment somewhat. The algorithms used are robust to small
changes in the number of words.

• Empty comments. It is not possible to add words to an empty comment.
The question rather becomes what value to assign the feature if there is no
comment. Again, many of the modifications with empty comments were auto-
matically generated by the system and thus removed from the dataset as only
modifications made by actual persons are of interest. In the case of manual
modifications the property that the trader chose to not input any comment is
still somewhat interesting, and the model is capable of assigning a unique word
vector to the empty string.

• Language. The only translations made were for individual English words
which occur often in otherwise Swedish comments, such as for instance the word
trade. Some efforts were made to remove data points where the comment was
entirely in a language other than Swedish. This was done with simple queries
until the number of non-Swedish comments was deemed to be acceptably low.
If the dataset had contained a larger number of non-Swedish comments an
alternative approach could have been to use a language detection algorithm
combined with an automatic translator to translate the comments.

• Misspellings. As mentioned previously, the use of n-grams make misspellings
less of a problem. Still, correct spelling is preferable for the model in this thesis
so a small amount of effort was made to correct the most common spelling
errors. An interesting alternative approach could have been to create a new
feature counting the number of spelling errors, with the hypothesis that spelling
errors can be useful in predicting suspicious behavior.

• Acronyms. As acronyms are a more severe issue, more time was spent ad-
dressing them. This process consisted of identifying common acronyms and
creating a translation key mapping each acronym to its expanded form. Again,
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increasing the number of words by a few is no problem so an acronym can (and
should if necessary) be replaced by more than one word.

• Nomenclature. As with the acronyms, any obscure nomenclature was trans-
lated and added to the translation key. Many of the terms were highly technical
and had to be translated by individuals with more domain knowledge.

Other than the cleaning listed above, many data points were filtered out of the
dataset. The dataset contains certain indicators of system generated modifications.
Again, since those are not interesting in this type of operational risk control they
were removed from the dataset. Furthermore, all trades in instruments other than
FX spots, FX futures and FX swaps were removed from the dataset. This was
because the vast majority of the labeled data was for FX trades. It is reasonable to
expect that the way traders write differs to some degree between instruments. Thus,
in order to perform supervised learning the decision was made to exclude the other
types of trades. If one were to obtain a set of labeled data for some other type of
trade, for instance bond trades, then the same type of modeling could be applied
to that data. Finally trades with comments in languages other than Swedish were
removed as mentioned above. After all data cleaning, the result was a dataset of
approximately 17,000 data points, all in FX trades.
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Chapter 5

Methodology

This extensive chapter describes the methodology by which the research in this thesis
was conducted. Mainly, this involves describing the design of the algorithm devel-
oped for converting trader comments into numerical features, this algorithm will be
frequently referred to simply as the algorithm. Sections 5.1 and 5.2 describe the
algorithm and its modules. Section 5.3 discusses the supervised classifier used to
evaluate the quality and performance of the features produced by the algorithm.
Section 5.4 covers how the evaluation and comparison of different models was con-
ducted. Finally, Section 5.5 describes the specifications of the machine used to run
the programs.

5.1 Brief Algorithm Overview

The goal of this thesis project was to transform free-text comments from the trading
platform into quantitative features for supervised learning. To do this an algorithm
was designed and implemented. The algorithm takes the comments from the trading
platform as input and categorizes them, outputting a number for each comment
indicating which category it belongs to. The main algorithm can be divided into
four modules which can be run independently:

I Data cleaning. This part prepares the free-text comments for the second
module by attempting to maximize the information and clarity contained in
each word. This is done by expanding abbreviations and acronyms, correcting
spelling errors, translating certain English words, etc. as mentioned in Section
4.3. Beyond the initial cleaning an effort is made to remove stop words from the
comments. These are very common words in the language which contain little
semantic information.

II Word embeddings. After cleaning the data, the second module of the al-
gorithm maps each comment to a vector. This is done by first loading a large
pre-trained fastText model. Each word in a comment is mapped to a word vec-
tor. OOV words are decomposed into their character n-grams an reassembled
using the pre-trained n-gram vectors to obtain the word embedding.

III Sentence embeddings. After finding a word embedding for each word in a
comment, the word vectors are combined to obtain a single vector representation
for the whole comment. Several different ways of combining pre-trained word
embeddings into a sentence embedding are explored in this thesis.
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IV Clustering. The final module takes the whole dataset of sentence embeddings
and clusters them in order to form distinct categories of comments. The index
of each comment’s cluster is returned as the output of the algorithm. Several
different clustering models are tested.

In the following section, each module of the algorithm and its implementation
will be presented in further detail.

5.2 Algorithm Description

I. Data Cleaning

Much of the initial data cleaning was done in Excel to expand abbreviations and
acronyms, correct spelling errors, translate certain English words, as well as filter
out unwanted data such as non-FX trades and trades with non-Swedish comments.
Again please refer to Section 4.3 for more detail on this.

An important step in this module is the removal of stop words. Stop words are
very common words in any language which do not carry much interesting semantic
meaning. Examples of stop words in English are ’on’, ’for’, ’as’, ’if’, etc.
and in Swedish ’att’, ’i’, ’med’, ’på’, etc. To understand why removing stop
words makes sense one must understand how the algorithm processes a sentence.
Consider the following hypothetical trader comment:

Updated the rate and maturity date

The sentence contains two stop words: ’the’ and ’and’. Removing the two stop
words leaves the following sentence:

Updated rate maturity date

Although the sentence now reads a bit awkwardly, it is still very clear what the
meaning of it is. Very little semantic information has been lost by the removal of
the two stop words. Now consider how the algorithm reads a sentence such as this.
Each word is individually converted into a single word vector and all of the vectors
in the sentence are then combined to form the sentence vector. In fact, the order of
the words does not matter. The sentence with the two stop words included contains
six words, so six word vectors will be created and then combined. But two of the
words contribute very little to the meaning of the word, and so their word vectors
are essentially just noise when it comes to finding the sentence representation. By
first removing the two stop words only four word embeddings have to be found and
combined. This way, each of the four meaningful words contribute more to the final
sentence vector.

The implementation of the stop word filtering is done via a Python script using
the Cucco library.1 The library supports 50 languages including Swedish and the
native stop word list has been used. There is no general consensus on exactly which
words are considered to be stop words. The Swedish stop word list used by Cucco
contains 401 unique stop words.

Another approach to dealing with stop words could be to give them a low weight
when combining word embeddings. This is a valid approach and such a weighting

1https://github.com/davidmogar/cucco
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scheme will be explored later in this thesis to weight other words based on their
estimated importance. However, since the semantic information in a stop word is
next to zero it is more convenient to simply remove them altogether from the data.

II. Word embeddings

After the data has been cleaned and stop words have been removed the remaining
words in the trader comments are ready to be converted into word embeddings. This
is done using pre-trained fastText2 word embeddings. The word embeddings used
were trained by FAIR on Swedish Wikipedia articles.3 For a detailed description of
how the embeddings were trained, see the following recent article by Mikolov et al.
[19]

The Swedish fastText model in .bin file format is roughly 5 GB and contains
∼1.1 million words. Each word embedding is a real valued vector of dimension 300.
Loading such a model into the RAM can be a strenuous effort for some machines.
For initial algorithm testing a smaller word2vec model containing ∼50,000 words
was used.4 The file size of this smaller model is only a few megabytes, so the model
loads instantly. For a more detailed description of how to install, download and use
the fastText library, please see Appendix A.

The fastText library is written in C++ and does not build natively on Windows
machines. The implementation of the fastText model in this project was done via
the official FAIR Python bindings for fastText. A Python script loads the pre-
trained word embeddings and the dataset of cleaned trader comments. Then for each
word in each comment the script calls a function which gets the word embedding for
that word from the fastText model. This function returns a word embedding for
any sequence of characters, including OOV words since their word embeddings can
be constructed from the character n-grams.

Consider again the example sentence from before, with the stop words removed.
In the second module, each of these four words will be replaced by a pre-trained
word embedding.

Figure 5.1: Words in an example sentence replaced by their word embeddings

This module is very much the core of the algorithm since it is here the text strings
get converted into numerical vectors. Despite its importance, the implementation is

2https://github.com/facebookresearch/fastText
3The word embeddings used in this thesis (and word embeddings for 293 other languages) can

be downloaded at the following website: https://fasttext.cc/docs/en/pretrained-vectors.html
4https://github.com/Kyubyong/wordvectors
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very simple due to the existence of the fastText library, Python bindings and large
pre-trained models.

Motivating the Usage of Word Embeddings

At this point it is fair to take a step back and think about why word embeddings
are a good approach to this problem. The fields of text mining and natural language
processing are rich and contain many other techniques than word embeddings which
could have been applied in this scenario. However, a typical text mining problem
concerns analysis of longer texts than in this case. Such a problem could for instance
be to automatically classify thousands of legal documents, or quickly analyze financial
press releases and make investment decisions automatically. In these examples, the
texts are typically many paragraphs or even pages long. This means that there are
a lot more information sources (words) to interpret in each text. This thesis deals
with trader comments with as few as just a single word. Thus, techniques which are
designed to interpret longer texts might not be applicable here. It is crucial to use a
method which can extract maximal information from each word which is input.

Furthermore, since most of the data is unlabeled, many interesting supervised
learning schemes are not applicable to this problem. Instead, unsupervised methods
have to be used in the feature mining. Word embeddings are perfect for this situation
since each individual word can be mapped to a unique vector.

Since the comments are short, there is not much of a context for most of the
words. Thus training a model based on context windows would be very difficult.
However, by using a pre-trained word embedding model this problem is eliminated.
The words which lack context in the trader comments can appear in some contexts
in the Wikipedia corpus and thus they can still be modeled. This allows for the
potential to capture information from every single word entered by the trader.

In particular, the fastText library is especially suitable. Not only are the word
vectors of state-of-the-art quality, the SISG algorithm it uses allows us to model
OOV words. Due to the nature of the trader comments, there are plenty of OOV
words, be it misspellings or self-invented acronyms. Attempts are made to translate
many of these in the data cleaning module, but not all able can be captured. Thus
the fact that the algorithm is able to make an educated guess at what a suitable
word embedding should be for an OOV word is extremely helpful.

III. Sentence embeddings

At this point, each trader comment has been converted into a set of word embed-
dings. However, the aim is to obtain a single, simpler numerical representation of
each comment. The next step in the algorithm is thus to convert the set of word
embeddings into a single vector, a sentence embedding. This can be done in many
different ways, two have been explored in this thesis.

Averaging

The simplest way of obtaining a sentence embedding from a set of word embeddings is
to let the sentence embedding be the vector mean of the word embeddings. Consider
again the sentence s = Updated rate maturity date and let vw1 , vw2 , vw3 , vw4 be
the word vectors of the words in that sentence. The sentence embedding c for this
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sentence would be

c =
1

4

4∑
i=1

vwi

and more generally for an arbitrary sentence containing m words the sentence em-
bedding would be

c =
1

m

m∑
i=1

vwi

This simple method does surprisingly well at producing sentence embeddings. Recall
from Section 2.3 that modern word embedding models are able to capture linguistic
patterns as linear vector relations, e.g. the vector relationship between the embed-
dings for different countries and their capital cities is linear and approximately equal.
In an effort to preserve these linear relationships, it seems intuitive to let the sentence
embeddings be linear combinations of the word embeddings.

There is some theoretical justification for setting a sentence embedding to be the
mean word embedding. In the word2vec CBOW model, the probability of a word
wk being emitted as a function of the previous k − 1 words w1, w2, ..., wk−1 is

P(wk|w1, w2, ..., wk−1) ∝ exp
(
vTwk

1

k − 1

k−1∑
i=1

vwi

)
[2]. In other words, the likelihood of the next word to follow a sequence of words in
a sentence depends on how aligned the word embedding of the next word is with the
mean word embedding of the previous words.

Averaging is very easy to implement as there exists a function in the fastText
library which does exactly this.

Weighted Averaging

Is it possible to do better than to simply average the word embeddings to get a
sentence embedding? Given that a linear combination seems to be an attractive idea
for a model, the natural extension is to have the sentence embedding be a weighted
average of the word embeddings. This preserves the model linearity but allows for a
weighting scheme to be employed. This is useful because it allows for the model to
assign a larger weight to words it thinks are important and vice versa. In a weighted
average model, a sentence embedding c is set to be

c =
1

m

m∑
i=1

uivwi

where ui is the weight for word wi.
The obvious question is how to choose the weights ui. A potential candidate is

to set the weights to be the tf-idf scores for their words. Recall from Section 2.3
that the tf-idf score is the product of the term frequency and the inverse document
frequency. If a word occurs many times in a comment then the term frequency will
be higher. If a word is very uncommon in the dataset then its inverse document
frequency will be higher. Thus rare words and/or words which occur many times
in a sentence would be weighted more heavily in that comment if tf-idf scores are
used for weighting. This is seems like an attractive idea, however it has some flaws.
Consider the term frequency when applied to very short sentences such as in this
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thesis. For a comment containing less than five words, it is very unlikely that any
word is repeated more than once in the same comment. Thus the term frequency will
almost always be 1 for every word. The tf-idf score was designed to be applied on
longer documents where certain common words could be expected to appear many
times in the same document, which definitely is not the case in the data for this
thesis.

Consider the generative discourse model from Section 2.4. In the paper [3], the
authors argue that the discourse vector cs for a sentence s is a suitable choice of
sentence embedding. It was shown that the discourse vector can be estimated from
data by first computing the maximum likelihood estimate b̂s ∝

∑
w∈s

a
P(w)+avw and

then subtracting its projection onto the first principal component of the matrix whose
columns are the estimates of bs for a large collection of sentences.

This weighting scheme includes a weighted average where the weights are the
smooth inverse frequencies (SIF), i.e. a

P(w)+a . For more common words, P(w) is
larger and thus those words are down-weighted. This is essentially the same rationale
as for tf-idf weights, only that there is no need for term frequencies in short sentences.

The SIF weighting scheme was implemented as the other way to generate sentence
embeddings. A Python implementation of SIF weighting created by the authors ex-
ists.5 However, their implementation uses (English) GloVe word embeddings. Recon-
figuring their implementation to work with fastText embeddings was deemed more
inconvenient than writing a new implementation from scratch. Thus, a fastText
configured implementation of the SIF weighting scheme was written in Python for
this thesis. The implementation is in accordance with the description in Section 2.4.
However a few details which are not discussed in the paper [3] deserve mentioning.
It was shown in Section 2.4 that the MLE estimate of bs is approximately

bs =

∑
w∈s

a
P(w)+avw

‖
∑

w∈s
a

P(w)+avw‖

However, in the algorithm presented in [3] bs is set to be

bs =
1

|s|
∑
w∈s

a

P(w) + a
vw

For most words P(w) is going to be small, so for word embeddings on the unit circle

‖
∑
w∈s

a

P(w) + a
vw‖ ≈ |s|

Furthermore, in the source code for the authors’ Python implementation of the
SIF weighting scheme it is noted that the parameter a is "usually in the range [3e-5,
3e-3]", and the default parameter value is a = 10−3. Thus the parameter in the
implementation written for this thesis was also set to be 10−3.

5https://github.com/PrincetonML/SIF
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Figure 5.2: A sentence embedding created from word embeddings

IV. Clustering

The fourth and final module of the feature generation algorithm takes a set of
sentence embeddings and performs clustering in order to reduce the set of 300-
dimensional continuous vectors into a discrete set of categories. This is done in
order to create a general-purpose representation of the information extracted from
the trader comments which can be input into virtually any machine learning algo-
rithm.

The underlying hypothesis behind this module is that there exists a finite set
of general topics which the trader comments discuss. Thus an attempt is made to
collect trader comments which concern the same topic and put them into the same
bucket.

There are many different approaches to clustering unlabeled data. In order to
motivate the choice of clustering algorithm, recall again from Section 2.3 that the
word embeddings used in this thesis are able to capture linguistic and semantic
patterns as linear vector relations. It is thus reasonable to suspect that certain
clusters of distinct but related sentence topics could be linearly separable, or at least
nearly linearly separable. This means that a clustering algorithm which produces
linearly separated Voronoi cells, such as k -means, could effectively cluster this data.
A non-linear clustering algorithm could potentially lead to too high cluster variance.

Two different clustering algorithms have been tested in this thesis. One is the
k -means algorithm, which produces linearly separable clusters in accordance with
the hypothesis above. The other is the DBSCAN algorithm which in contrast can
produce arbitrary non-linear clusters. Both clustering models output a single value
for each data point, corresponding to the cluster it belongs to. DBSCAN has a built
in notion of noise which means it can classify data points as not belonging to any
cluster. The property of a comment being unique enough to not belong to any cluster
(meaning it was written in a very unique way) is certainly very interesting, thus the
noisy data points are essentially considered to constitute their own cluster despite
likely not being a coherent geometric cluster. For a more detailed description of the
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clustering algorithms, see Section 2.2.

Hyperparameter Tuning

Both k -means and DBSCAN require the user to set certain hyperparameter values
prior to usage. Setting such values a priori can be very difficult without significant
domain knowledge. Instead, the parameter values can be tuned by testing a range of
values and picking the one which gives the best model performance. This is relatively
straightforward in supervised learning since model performance typically is easy to
measure. In unsupervised learning it can be far less obvious how to tune the model.
In this case however, although the tuning concerns hyperparameters in unsupervised
models, the clustering is done in order to produce features for a supervised model.
Thus the hyperparameters can be tuned based on their effect on the supervised model
where the trader comment feature is used along with all the other features present
in the original dataset.

Tuning the parameters is indeed possible in this case, however given that the
supervised model used is a deep belief network which is relatively computationally
time-consuming to train, there are technical limits to how finely the parameters can
be tuned. Training times for the supervised model will be discussed further in later
sections but suffice to say that the training time ranges from at least 10 minutes to
several hours depending on the amount of data used and the hyperparameters of the
DBN.

For the k -means model, the number of clusters k is tuned from k = 10 to k = 200
with increments of size 10. The DBSCAN model has two parameters which are both
tuned in the set

ε×minPts ∈ {0.06, 0.1, 0.2, 0.3, 0.4, 0.5} × {3, 5, 7, 9, 11}

Additionally, all the parameters are tuned separately for the two different choices of
sentence embedding generation techniques discussed in module III.

The clustering algorithms are implemented in Python using the widely used
sklearn library.

5.3 Supervised Classifier

Again, the objective of the feature generation algorithm is to create features for
a supervised classifier used to detect suspicious trading behavior. The method for
creating features is general enough to be applied in virtually any supervised classifier.
In the case of this thesis, a deep belief network has been used. The construction of
this DBN is not of primary interest in this thesis, and the reader may choose to
think of the DBN as a general black box classifier. However, for the purposes of
transparency and reproducibility the DBN architecture and implementation will be
discussed in brief.

The deep belief network takes a large dataset containing many features in addition
to the trader comment and performs unsupervised feature detection followed by
supervised classification as described in Section 2.2. The supervised learning is a
binary classification where each data point is classified as suspicious or not suspicious.
For the supervised learning, the labeled data described in Section 4.2 is used. Since
this labeled data contains labels exclusively from the suspicious class, an equally
large sample is randomly drawn from the data and assumed to be "clean" trades.
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As the number of actual operational high-risk events is low in comparison to normal
trading behavior it is likely that most if not all of the data points assumed to not be
suspicious behavior are correctly classified.

For the classification, the labeled data is split into a training dataset and a test
dataset. The training data is used to train the DBN and the test data is used to
evaluate the performance. 40% of the labeled data is used for training and the rest for
testing. This is different split than what is traditionally recommended for machine
learning tasks, typically a larger portion of the data is allocated for training. The
reason behind this choice is the low amount of labeled data available. Retaining
a larger portion of data for testing creates a more challenging learning task with
more room for models to make errors in order to gage performance. Crucially the
same training and test data allocation is used for all models for a fair comparison.
The empirical results show that the models achieve a very high classification rate
despite the lower-than-usual amount of training data. An alternative approach could
have been to employ a cross-validation scheme whereby the data is partitioned into
many subsets and repeatedly trained using different subsets as test data each time.
This allows for a better evaluation of model performance. However, it comes at the
cost of increased computational time as the model must be re-trained many times.
As the DBN used in this thesis is computationally expensive to train this presents
a problem. Both hyperparameter tuning and cross-validation demand repeated re-
training of the model. The decision was made to favor more detailed hyperparameter
tuning over a cross-validation scheme. Note that the objective here is to compare
model performance. Exactly what the performances of the models are is not of
primary interest in this study, the real goal is to find out which model performs the
best.

Figure 5.3: Error rate of the DBN during the supervised phase across epochs

The DBN architecture has 10 hidden layers. In the unsupervised learning phase,
the model is trained for 100,000 epochs and in the supervised learning phase the
model is trained for an additional 50,000 epochs. This has proven to be enough
epochs to escape local optima in the early epochs. In Figure 5.3 two such local
optima can be identified within the first 5,000 epochs of the supervised learning
phase.

The implementation of the DBN used in this thesis is written in C#. The classifier
predicts a class label for each data point in the dataset, i.e. it tells the user which
data points it considers to be suspicious and which it does not. For the purposes
of this thesis, the only interesting classification output is on the test set where the
performance of the classifier can be measured. However, the real purpose of the model
is of course to make a judgement about the level of operational risk in unlabeled data
so that suspicious activity can be monitored and intercepted.
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5.4 Evaluation

The evaluation metric used in this thesis is the classification rate, i.e. the fraction
of data points in the test data which are correctly classified. A classification rate of
0.68 means that 68% of the test data was correctly classified.

The purpose of evaluation is to see if the models produced can outperform a
benchmark, and if so which choice of hyperparameter values gives the optimal model.
The benchmark tested against is the performance of the DBN if no trader comment
feature is included. A myriad of models and hyperparameter values were evaluated
against each other. For each iteration of running the DBN classifier, four distinct
model degrees of freedom are set:

• Sentence embedding generation technique. The method for generating
sentence embeddings from word embeddings is either averaging or weighted
averaging with SIF weights.

• Clustering algorithm. Either k -means or DBSCAN is used for clustering
the sentence embeddings.

• Hyperparameters. If k -means is used for clustering, k must be set. If DB-
SCAN is used, ε and minPts must both be set.

• Data. The amount of data used can be varied from iteration to iteration.
Using less data speeds up the training time but potentially makes the model
susceptible to overfitting and high variance.

The different combinations of sentence embedding generation techniques and clus-
tering algorithms allows for four different models, named accordingly: Averaged k-
means, SIF k-means, Averaged DBSCAN and SIF DBSCAN. Each one of these
models can be used with varying hyperparameter values and input datasets.

Training the DBN on the full dataset is a computationally strenuous task. On
the machine used in this thesis (described in Section 5.5) the training process takes
approximately six hours. During the course of this thesis project, hundreds of models
had to be evaluated. In order to facilitate this, much of the parameter tuning was
done on a subset of the data containing only the trade modifications made during the
time period from 2015-01-01 to 2015-03-01. This subset will be known as the tuning
set (similar to but not exactly the same as a training set). This time period was
chosen because a large portion of the labeled data is dated within this time period.
Training the network on the data in this time period takes roughly ten minutes on
the machine used.

5.5 Machine Specifications

There are two main computational choke points in this thesis. The first involves
the usage of very large pre-trained word embedding models for module II of the
algorithm. The file size of the model used in this thesis is roughly 5 GB. This can
potentially be a problem on older machines. For instance, a processor with a 32-bit
architecture is limited to 232 ≈ 4 GB of memory meaning such a machine cannot load
the full model used in this thesis. The second issue involves the training of the deep
belief network used for classification. The training time can be closely dependent on
the hardware used.
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In this thesis project a machine with the following specifications was used to train
the DBN:

• Intel Xeon E3-1240 v5 CPU, 3.50 GHz, 4 cores, 8 threads

• 16 GB DDR4 RAM

• Windows 7 64-bit OS
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Chapter 6

Results

In this chapter the results of the DBN classifier, using various models for trader
comment features, will be presented. First, the results of the hyperparameter tuning
will be covered, followed by the results of the tuned models on the full dataset.

6.1 Hyperparameter Tuning

For the hyperparameter tuning a smaller subset of the data, the tuning set, was used.
It includes only data from 2015-01-01 to 2015-03-01. This relatively short time-span
includes all 45 labeled suspicious data points from the smaller of the two labeled
datasets described in Section 4.2.

While tuning the hyperparameters of the unsupervised clustering models the
classification rates of the DBN were benchmarked against the DBN’s performance
with no trader comment feature included. On the dataset from 2015-01-01 to 2015-
03-01 the benchmark model with no trader comment feature achieved a classification
rate of 0.732.

Averaged k-means

Figure 6.1: Classification rate of the DBN using the Averaged k -means model
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Figure 6.1 shows the classification rate of the DBN where the trader comment feature
has been generated from the k-means algorithm, with sentence embeddings computed
as the average of the trader comments’ word embeddings. The classification rate is
plotted for various values of k in the interval [10, 200]. Also, the classification rate of
the benchmark model is plotted. Interestingly, the model with the trader comment
feature included achieves a higher classification rate for all tested values of k. This is
a promising indicator that including a feature generated from the trader comments
does improve the predictive power of the DBN classifier. The highest classification
rate achieved by the model in Figure 6.1 is 0.902 which is achieved when k = 90 and
k = 130.

SIF k-means

Figure 6.2: Classification rate of the DBN using the SIF k -means model

Figure 6.2 also shows the performance of the DBN with the trader comment feature
generated by k-means. However, this time the sentence embeddings are computed
using the SIF weighting scheme. Again, the model seems to outperform the bench-
mark. The highest classification rate achieved by the SIF k -means model is 0.878 at
k = 130.



CHAPTER 6. RESULTS 39

Figure 6.3: Comparison of Averaged k -means and SIF k -means models

Figure 6.3 shows the performance of the two k-means based models plotted in
the same window. There are a few interesting things to note. Both models achieve
peak performance at k = 130, indicating that this is a suitable number of clusters
for this dataset. Furthermore, the two models seem to perform comparably and
both clearly outperform the baseline model. The Averaged k -means model achieves
a slightly higher best classification rate. It was argued in Section 5.2 that the k -
means algorithm should perform well if the cluster structure in the data is such that
clusters can be linearly separated. A possible explanation for the somewhat inferior
performance of k-means on the SIF generated dataset is that the SIF weighting
scheme somehow distorted some of the linear relationships in the word embedding
data.
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Averaged DBSCAN

(a) (b)

(c) (d)

Figure 6.4: Classification rate of the DBN using the Averaged DBSCAN model

The DBSCAN algorithm has two hyperparameters, ε and minPts, which both have to
be tuned. Thus, Figure 6.4 shows the classification rate of the DBN with a DBSCAN
generated feature as a bivariate function of both hyperparameters. In Figure 6.4
the sentence embeddings input into the DBSCAN algorithm were computed as the
average of each trader comment’s word embeddings.

As with the case of k -means, the DBN classifier using DBSCAN outperforms
the baseline model for all tested hyperparameter values. The best classification
rate for this model is 0.902, which is achieved when (ε,minPts) = (0.1, 9) and also
(ε,minPts) = (0.2, 11).

It seems as though the model performs well for large values of minPts and small
values of ε (top left of Figure 6.4 (a)). This is interesting because that combination of
parameter values corresponds to a model with a very high threshold for creating new
clusters. If ε is small, then the ε-neighborhood checked for data density is small.
Meanwhile, if minPts is large then a large number of data points must be found
within the small ε-neighborhood in order for a new cluster to be initiated. If these
parameters are set too extreme, then no new cluster will be created and all data points
will be labeled as noise, making the feature useless. However, consider the fact that
many trader comments are exactly identical. If two strings are identical, then they
will contain the same words which will be mapped to the same word embeddings and
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thus produce the same sentence embedding. If two sentence embeddings are equal,
then they will be in each other’s ε-neighborhood regardless of what ε is set to be.
This means that DBSCAN can create clusters even if ε is very low so long as there
exist groups of more than minPts number of identical trader comments. Indeed,
looking at the cluster data for the parameter pair (0.06, 11), the steepest threshold
for cluster creation among the tested parameter values, the DBSCAN algorithm still
managed to create 176 clusters.

In contrast, consider the opposite extreme case for DBSCAN parameters. If
minPts is small and ε is large (bottom right of Figure 6.4 (a)) then large ε-neighborhoods
will be searched and only a small amount of data points are required in order to start
or expand a cluster. If these values are set too extreme then a single cluster will be
able to spread and cover the entire dataset, thus labeling all data points identi-
cally and again making the feature useless. The results in Figure 6.4 show that the
model performed poorly particularly for the case of large ε. By investigating the
corresponding cluster data, it is found that for ε = 0.5 only one cluster was created
regardless of the value of minPts. A few data points were labeled as noise but almost
all were put in the single large cluster. This was a case of a single cluster enveloping
most of the dataset due to the low threshold for spreading the cluster. Since almost
all the data points have the same value for the trader comment feature there is very
little information added with the inclusion of that feature. Indeed, the classification
rates of the models with ε = 0.5 are nearly equal to the benchmark, confirming that
the trader comment feature was unable to add much information in those cases.

Due to the nature of the data, a third extreme case is somewhat interesting to
examine as well. Consider the case of both minPts and ε being small (bottom left of
Figure 6.4 (a)). Given that the dataset contains many identical comments (making
ε irrelevant for the creation of those clusters), having a small minPts and a small ε
should lead to a situation where many clusters are created but are unable to expand.
This is because there exist points with enough identical comments to exceed the
minPts threshold and create a cluster, but due to the small ε-neighborhoods there
are no additional neighbors to spread the clusters to. Examining the cluster data for
the extreme parameter pair (0.06,3) confirms this hypothesis as this model spawned
a staggering 665 distinct clusters. The performance of the DBN on so many clusters
was poor (0.756).
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SIF DBSCAN

(a) (b)

(c) (d)

Figure 6.5: Classification rate of the DBN using the SIF DBSCAN model

Figure 6.5 also shows the classification rate of the DBN with DBSCAN features,
this time using the SIF weighting scheme to generate sentence embeddings. Just
as for the Averaged DBSCAN model in Figure 6.4, the classification rate using the
SIF DBSCAN model is highest for low values of ε and high values of minPts. For
the SIF DBSCAN, the highest classification rate is 0.927 which is obtained when
(ε,minPts) = (0.1, 9). Interestingly this is the same pair of parameter values for
which the model in Figure 6.4 performs the best.

There is a region in the hyperparameter space in the center of Figure 6.5 (a)
where the model performs very poorly, as poorly as the baseline model in fact. This
is difficult to explain as anything other than the model in that region preferring a
cluster partition which fits the classification purposes exceptionally poorly.
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(a) (b)

Figure 6.6: Comparison of Averaged DBSCAN and SIF DBSCAN models

Figure 6.6 shows a comparison of the two DBSCAN-based models. In Figure 6.6
(a) one can see which of the two sentence embedding generation techniques leads to
the higher classification rate for various points in the two-dimensional hyperparam-
eter space. Blue areas correspond to the Averaged DBSCAN performing better and
red areas to the SIF DBSCAN performing better. A majority of Figure 6.6 is red.
The blue area mainly consists of the central parts of the figure for which the SIF
DBSCAN model inexplicably performed very poorly.

Figure 6.6 (b) shows that the SIF DBSCAN model achieved both the highest and
the lowest classification rate of the two DBSCAN models.

6.2 Results of Tuned Models

In Table 6.1 the classification rates of the tuned models on the tuning set are pre-
sented. Two of the models achieved peak classification rate for two different choices
of parameter values. For further analysis a choice was made to continue with a single
set of parameters for each model.

The Averaged k -means model achieved a classification rate of 0.902 for both
k = 90 and k = 130. Since the heuristic k -means algorithm (see Algorithm 1)
converges in O(nkpi) the choice is made to opt for the lower value of k = 90 with a
nod to Occam’s razor.

The Averaged DBSCAN model also achieved a classification rate of 0.902, for
(ε = 0.1,minPts = 9) and (ε = 0.2,minPts = 11). Either choice would be sensible,
however choosing (ε = 0.1,minPts = 9) allows for a comparison of the Averaged
DBSCAN and SIF DBSCAN models with the same parameter values which could
be interesting.

Model Sentence Clustering Tuned Classification
name embeddings technique parameters rate

Benchmark N/A N/A N/A 0.732
Averaged k -means Averaged k -means k = 90 0.902

SIF k -means SIF Weighted k -means k = 130 0.878
Averaged DBSCAN Averaged DBSCAN ε = 0.1, minPts = 9 0.902

SIF DBSCAN SIF Weighted DBSCAN ε = 0.1, minPts = 9 0.927

Table 6.1: Model results on the smaller tuning set
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After settling for a choice of parameters for each models, another round of testing
was done on the full dataset containing all of the labeled data described in Section
4.2. The training time of the DBN on the full dataset was approximately six hours.

Model Sentence Clustering Tuned Classification
name embeddings technique parameters rate

Benchmark N/A N/A N/A 0.876
Averaged k -means Averaged k -means k = 90 0.931

SIF k -means SIF Weighted k -means k = 130 0.897
Averaged DBSCAN Averaged DBSCAN ε = 0.1, minPts = 9 0.912

SIF DBSCAN SIF Weighted DBSCAN ε = 0.1, minPts = 9 0.945

Table 6.2: Model results on the full dataset

Again, the DBN using the SIF DBSCAN model yields the highest classification
rate, followed by the Averaged k -means model. Also, all of the models outperform
the benchmark model on the full dataset as well. The spread between the best and
the worst performing models in Table 6.2 is narrower than for the tuning set in Table
6.1. This can be explained by the fact that the lower amount of data in the tuning
set causes a higher variance in results.

Comparing the results of Tables 6.1 and 6.2 one can see that the order of the
models from best to worst classification rate is the same for both datasets (save
the fact that the Averaged k -means and Averaged DBSCAN models achieve equal
classification rate on the tuning set). This is excellent because it adds reliability
to the hyperparameter tuning done on the smaller dataset. Furthermore it should
be noted that every model achieved a higher classification rate on the full dataset
compared to the tuning set. This is a neat observation and a nice confirmation of
the scalability with data of neural network classifiers.
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Chapter 7

Discussion

In this chapter, the results from Chapter 6 will be analyzed and discussed. After
that, the research questions from Chapter 1 will be brought back up and evaluated.
Finally, some suggestions for future research directions will be given.

7.1 Analysis of Results

The results from Chapter 6 show convincingly that the inclusion of a trader com-
ment feature does improve the predictive ability of the deep belief network classifier.
Indeed, not a single model achieved a classification rate lower than the benchmark
model, even for the worst performing choices of hyperparameter values.

Figure 7.1: Comparison of different models’ classification rates on full dataset

On both the tuning set and the full dataset, the model with SIF DBSCAN trader
comment features performed the best, followed by the model with Averaged k -means.
It’s interesting that two opposite combinations of sentence embedding generation
technique and clustering algorithm performed the best. If it were the case that
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for instance the SIF weighting scheme was a fundamentally superior technique for
sentence embedding generation compared to averaging, then one might have expected
the two SIF models to outperform the two averaged models. The same holds for the
case of either clustering algorithm being superior. However, the results show that
this is not the case. Rather, in this experiment the k -means algorithm is superior
for averaged sentence embeddings but not for SIF weighted sentence embeddings.

The cause of this occurrence is unknown, however as discussed in Section 6.1
there might be some intuitive and empirical backing for the hypothesis that the
SIF weighting scheme disrupts some of the linearity in the word embedding data to
the benefit of the DBSCAN algorithm. If the SIF weighting scheme contorts the
relationships between word embeddings in a slightly non-linear fashion but which
more effectively captures the information contained in the sentence then this could
explain the empirical results. The k -means algorithm would struggle to model such
non-linear clusters since it partitions the dataset into linearly separable Voronoi cells.
Meanwhile the DBSCAN algorithm is perfectly capable of discovering abstract non-
linear cluster shapes. The results shown in Figure 7.1 support this hypothesis as
the SIF k -means model had the worst performance out of the four models which
used a trader comment feature. Meanwhile, the SIF DBSCAN model had the best
performance out of all models.

On the set of averaged sentence embeddings, where the linear vector relationships
have not been altered, the k -means algorithm should perform well. If the optimal
cluster partition indeed is a linear one, then one would expect the DBSCAN algo-
rithm to also fit (nearly) linearly separable clusters. The DBSCAN algorithm would
not benefit from its ability to fit non-linear cluster structures. Rather, it would run
a risk of overfitting a suboptimal non-linear cluster structure to the data. Again,
strong empirical support for this hypothesis is found in the results. Figure 7.1 shows
that the two models with averaged word embeddings were much closer in classifica-
tion rates than the two SIF models. In fact, the results in Table 6.1 show that on
the tuning set the two clustering algorithms achieved the exact same classification
rates when clustering the averaged sentence embeddings. It seems plausible that the
clusters they fit to that data were very similar. In fact, looking at the cluster data
from the Averaged DBSCAN (with tuned parameters ε = 0.1, minPts = 9) it turns
out that the algorithm fit 103 clusters to the data. This is quite similar to the 90
clusters fit by the Averaged k -means model where k was tuned to be 90. On the full
dataset, the Averaged DBSCAN model performed slightly worse than the Averaged
k -means. Again, this is consistent with the hypothesis.

7.2 Reliability of Results

Due to constrained resources the models had to be tuned on a smaller subset of the
full dataset. This creates some uncertainty regarding the reliability of these models.
Fortunately, the results of the models using the full dataset, shown in Table 6.2, show
strong consistencies with the results of the tests on the tuning set. The models rank
the same way in order of performance for both the tuning set and the full dataset.
This is encouraging, since it reassures that the relative performance of the models
on the smaller tuning set was consistent with the full dataset and not distorted by
some local anomalies present in the tuning set.

Although the results can be considered reasonably reliable, it should be noted
that given more time and computing power the more reliable methodology would
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have been to tune the models on the full dataset, preferably using a cross-validation
scheme. This could potentially also have allowed for the testing of other types of
models as well.

7.3 Concluding Remarks

The research questions from Chapter 1 will now be assessed based on the results
obtained.

• How can word embeddings be employed to represent short text strings as nu-
merical features with minimal information loss?

The algorithm described in Chapter 5 is an attempt to do exactly what is described in
this research question. The word embeddings are combined to form a single sentence
embedding for each text string. The sentence embeddings are then clustered to create
the numerical features specified.

Multiple degrees of freedom in the algorithm, such as choice of sentence embed-
ding generation technique and clustering algorithm, allow for a high level of flexibility
so that the model produced can be fit to the data effectively.

• What is the predictive impact of including such features?

All models tested which included a trader comment feature performed equally or (in
most cases) better than the benchmark model with no trader comment. Given this,
it seems fair to conclude that the predictive ability of the DBN classifier assuredly
was improved by the inclusion of the trader comment feature.

This means that by including the trader comment feature, the DBN can more
effectively classify the level of operational risk in the trade modifications. Exactly
what this means in monetary terms is very difficult to determine, as with almost all
cases of operational risk. Regardless, it is certainly beneficial to be able to improve
the classification accuracy of an operational risk classifier.

7.4 Future Research

Non-linear Vector Relations of SIF Weighted Sentence Embeddings

There seems to be strong empirical evidence in this thesis supporting the hypoth-
esis that the SIF weighting scheme in some way contorts some of the linear vector
relations between (fastText) word embeddings. The k -means clustering algorithm
performs well on the dataset of averaged sentence embeddings (where supposedly the
vector relations are kept linear) but performs poorly on the dataset of SIF weighted
sentence embeddings (where supposedly they are not). The DBSCAN algorithm,
which unlike k -means can fit non-linear cluster structures, performs much better on
the SIF weighted embeddings.

A study of this phenomenon could lead to greater insights regarding the SIF
weighting scheme and word embeddings in general.
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Other Applications

In this thesis the algorithm from Chapter 5 was tested on a specific case concerning
operational risk in banking. However, the algorithm is very general and can be
applied to any situation where one wishes to convert a free-text into a numerical
data feature. Thus it would be interesting to study the performance of the algorithm
on other datasets from various industries.

Particularly, it would be interesting to study how the algorithm performs on
datasets where the free-texts differ a lot from the ones in this study. This could for
instance mean a case where the texts are longer or more diverse. It would also be
interesting to study a case with a larger availability of labeled data.

Further Exploration of Models

There are many degrees of freedom in this thesis which can be tweaked to produce
new alternative and potentially superior models. Things which could be altered to
create new models are:

• Pre-trained word embeddings. In this thesis, fastText word embeddings
were used. However, many alternatives exist, such as word2vec, Caffe and
GloVe.

• Sentence embedding generation techniques. This thesis explores two
ways of generating sentence embeddings: averaging and SIF weighting. Other
weighted average schemes or more advanced methods could be explored as
alternatives.

• Clustering algorithms. In this thesis the k -means and DBSCAN algorithms
were used. There exist many other unsupervised learning algorithms which
could potentially perform well.

• Classifiers. The algorithm in this thesis was evaluated using a deep belief net-
work but is designed to work with any classifier. Thus, testing its performance
with other classifiers would be interesting.
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Appendix A

Implementing pre-trained fastText & word2vec models

This section explains how to obtain and implement pre-trained word embeddings
and their associated packages. Note that the fastText library is under heavy de-
velopment as of the time of writing this report (May 2018). Thus, the instructions
in this section may be outdated. It is however unlikely that the packages have been
made less user friendly with further development.

Installing fastText

The current state-of-the-art in word embeddings is the fastText library, developed
by Facebook AI Research. It is open-source and can be cloned straight from GitHub.
The original C++ code can only be built on Mac OS and Linux systems. Several
options do however exist for those wanting to use fastText in a Windows environ-
ment. In November 2017, the developers of fastText pushed Python bindings for
fastText. These can be used to run fastText in Python scripts and is a convenient
way to use fastText on a Windows machine.

Dependencies

• Python 2.7 or Python 3.6 (or newer)

• A C++ compiler with C++11 support. This must be the same compiler version
as your Python install was compiled with. On Windows, Python typically
comes pre-compiled on Microsoft Visual C++. You can find the version of
VC++ that your Python install was compiled with by writing python in the
command prompt.
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(a) Check which version of VC++ your Python install was compiled with

(b) Mapping of MSC v.X codes to actaul VC++ versions

Figure A.1: Mapping VC++ version number from Python compilation to actual version ID

With the help of the table above, you can find the name of the VC++ version
you want. Again, it must support C++11. so you need VC++ 2012 or later.
If your installation of Python was compiled using an earlier version of VC++
you should download a newer version of Python. When you have figured out
which VC++ version you need, find and download the corresponding VC++
Build Tools (not the redistributable).

• NumPy, SciPy, Cython, Pybind11. These are Python libraries which can be
installed using pip.

Furthermore, the following are recommended:

• A 64-bit machine

• At least 8 GB of RAM

Installation

To install fastText, first clone the fastText repository from GitHub. Then run the
setup.py script. This will compile and install the library. The easiest way to do this
is through the command prompt:

$ git clone https://github.com/facebookresearch/fastText.git
$ cd fastText
$ python setup.py install

The fastText library can then be imported into Python code by import fastText.

Using pre-trained models

For most purposes, it is not necessary to train a new word embedding model for
every application since the underlying language has the same general semantics.
Training models on extremely large corpora is much more computationally intensive
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than actually using the model. Luckily, there exist pre-trained open-source fastText
models of various sizes and languages.

fastTextmodels for languages other than English are typically trained onWikipedia
articles. The fastText developers have release large pre-trained models in many lan-
guages.1 The models come in two different file formats, .vec and .bin. The .vec
file is a text file in which each row is a word followed by its word vector. The .bin
file is a binary format native to the fastText library. If you are using the official
fastText library to load the models, you should always use the binary file as it
loads significantly faster (seconds compared to minutes). Use .vec files only if you
are using a different library than fastText to load the models (such as Gensim), or
if you are using a pre-trained model which does not exist in a .bin format.

The only drawback to using the official fastText pre-trained models from Face-
book AI Research is that the models are very large which may not be practical for
all purposes. The Swedish fastText model in .bin format is roughly 5 GB which
means your machine must be able to efficiently load 5 GB into the RAM. This model
contains ∼ 1.1 million words, the majority of which are probably superfluous for your
applications. An alternative is to use third-party models of smaller size. Initial test-
ing of the algorithm in this thesis was done with a smaller model.2 This model
contains ∼ 50, 000 words, which is plenty for most testing purposes. The file size is
a few megabytes, so the model loads instantly.

Working around the fastText library

If for some reason you are not able to use the fastText library you can still load
and use the pre-trained models. The pre-trained models are essentially just words
and their associated vectors, so many other libraries are well-equipped to load them.
An example is the Gensim library, a robust and well-established library for word
embeddings which predates both fastText and word2vec. Gensim can be installed
using pip, so the setup is much quicker than for the fastText library.

Since Gensim is a more established library, it contains many useful built-in func-
tionalities which are not yet implemented in the fastText library. For example,
when loading a pre-trained model one can set a limit for the number of words to
load from the model. The official fastText models are ordered by frequency, so by
loading such a model and setting a limit, e.g. 50, 000 words, the program will load
the 50, 000 most frequently appearing words rather than all 1.1 million words. This
of course significantly improves loading times for testing purposes.

The main drawbacks of using the Gensim library rather than the fastText library
is that you lose the ability to train your own models, and load times are generally
slower. The reason for the load times being slower is because Gensim currently does
not support the fastText .bin format for pre-trained models and as such the models
must be loaded from the .vec files. In testing, the loading time for the 1.1 million
word fastText model using the fastText library and .bin file was a few seconds.
The loading time for the same model, but with the Gensim library and .vec file was
about 30 minutes, so the difference is significant.

1Pre-trained fastText models in 294 different languages:
https://fasttext.cc/docs/en/pretrained-vectors.html

2Smaller pre-trained fastText models in 30+ languages:
https://github.com/Kyubyong/wordvectors
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fastText Gensim

Installation & setup Tedious on a Windows
machine

Quick and easy using pip

Train new models Yes No
Load .vec models Yes Yes
Load .bin models Yes No

Loading time Short Long

Functionalities Limited Many interesting features
for data exploration

Table A.1: Comparison of the fastText and Gensim libraries

The table above illustrates the advantages and disadvantages of the fastText
library compared to third-party libraries such as Gensim. In general, use Gensim for
light-weight tasks such as initial testing and use the fastText library for optimal
performance on larger tasks.



56

Appendix B

Visualizing and Analyzing Trader Comment Clusters

The output of the algorithm described in Chapter 4 is a number of clusters. Each
text comment in the input belongs to one and only one cluster. In this section we
look closer at the results of one particular run of the algorithm. This section is
purely meant as a means for gaining more insight into the clustering results. As
such, not everything will be directly relevant for the purposes of using the results
of the clustering to perform classification. The results presented here are for the
k -means algorithm with k = 10, i.e. ten clusters.

Visualizing the Clusters

The sentence embeddings which are clustered are 300-dimensional and thus cannot
be meaningfully visualized as such. Instead, by performing principal component
analysis on the set of sentence embeddings the dimension can be reduced to 2 or 3
dimensions for visualization purposes.

This makes it possible to visualize the k-means clustering in a two- or three-
dimensional plot to some degree. It should of course be noted that 300-dimensional
relations cannot be perfectly modeled in two or three dimensions. Some information
will be lost when reducing the dimensionality.

Figures B.1 and B.2 show the ten clusters when reduced to two and three PCA
dimensions. Each color corresponds to a unique cluster.
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Figure B.1: PCA with two principal components and ten clusters

Figure B.2: PCA with three principal components and ten clusters
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Trader Analysis

The dataset contains (anonymized) information about which trader made each trade
modification. In Figure B.3 the three traders with the highest number of modifica-
tions made in the dataset are studied to see whether their comments are distributed
similarly.

Figure B.3: Cluster distribution of comments made by three traders

Figure B.3 shows each of the three traders and how their comments were clus-
tered. Again, the trader ID’s YJZR02, SZMJ06 and POQJ02 are not the actual ID’s
of these traders. There are some clear differences between the traders’ distributions
of comments. The most dramatic is that trader POQJ02 had more than 50% of
their comments end up in Cluster 8 whereas the other two traders had almost no
comments in Cluster 8. In Cluster 7 the roles were reversed with POQJ02 having
fewer comments than the other two traders.

There are two natural explanations for this. Firstly, different traders may have
different areas of responsibility which can be reflected in their comments. For in-
stance, Cluster 1 largely contained changes to trades regarding the split rates. Trader
SZMJ06 made a fair amount of such comments, but the other two traders made very
few or none. It is reasonable to suspect that trader SZMJ06 has work duties relating
to split rates whereas the other two traders do not. Secondly, different people tend
to write slightly differently compared to other people. If two traders make differ-
ent word choices when they document trades, then those comments could end up in
different clusters for that reason alone.
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