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Abstract

To maintain solvency in times of severe economic downturns banks and financial
institutions keep capital cushions that reflect the risks in the balance sheet. Broadly,
how much capital that is being held is a combination of external requirements from
regulators and internal assessments of credit risk. We discuss alternatives to the
Basel Pillar II capital add-on based on multi-factor models for held capital and how
these can be applied so that only concentration (or sector) risk affects the outcome,
even in a portfolio with prominent idiosyncratic risk. Further, the stability and
reliability of these models are evaluated. We found that this idiosyncratic risk can
efficiently be removed both on a sector and a portfolio level and that the multi-factor
models tested converge.

We introduce two new indices based on Risk Weighted Assets (RI) and Economic
Capital (EI). Both show the desired effect of an intuitive dependence on the PD
and LGD. Moreover, EI shows a dependence on the inter-sector correlation. In the
sample portfolio, we show that the high concentration in one sector could be (better)
justified by these methods when the low average LGD and PD of this sector were
taken into consideration.

Keywords: Economic Capital, Regulatory Capital, Basel Pillar II, Systematic

Risk





Konsolidering av flerfaktormodeller för systematisk

risk med reglerande kapital

Sammanfattning

För att behålla solvens i tider av svår lågkonjunktur håller banker och finansiella
institutioner buffertar med kapital som reflekterar risken i balansräkningen. I stora
drag så är mängden kapital som hålls beroende av en kombination av externa krav
från regulatorer och interna uppskattningar av kredit risken. Den här avhandlingen
diskuterar alternativ till Basel pelare II kapital påslaget som är baserade på multi-
faktor modeller för kapital och hur dessa kan appliceras så att endast koncentration
(eller sektor) risk påverkar resultat, även i en portfölj med tydlig idiosynkratisk
risk. Utöver detta behandlas stabilitet och reliabilitet hos dessa modeller. Genom
detta hittas att den idiosynkratisk risk kan effektivt tas bort på både portfölj- och
sektornivå och att de multifaktor modeller som testas konvergerar.

Den här avhandlingen introducerar två nya index, baserat på Risk Weighted Assets
(RI) och Economic Capital (EI). Båda visar på den önskade effekten av ett intuitivt
beroende av PD och LGD. Dessutom visar EI ett beroende av inter-sektor korrela-
tion. Med stickprovsportföljen som används var det tydligt att hög koncentration
i en sektor kunde (bättre) rättfärdigas av båda dessa metoder då LGD och PD för
sektorn i fråga har beaktats.

Nyckelord: Ekonomisk kapital, Regulatoriskt kapital, Basel pelare II, Systematisk

risk
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Notation and Abbreviations

PD - Probability of Default

EAD - Exposure at Default

LGD - Loss Given Default

D - Default variable

X - Systemic risk variable

A - Asset value

L - The Loss varaible

ASRF - Asymptotic Single Risk Factor

IRB - Internal Ratings-Based

EL - Expected Loss

VaR - Value at Risk

ES - Expected Shortfall

UL - Unexposed Loss

EC - Economic Capital

RWA - Risk Weighted Asset

� - Average cross-sector correlation

CDI - Sector concentration

HHI - Herfindahl-Hirschman Index

CI - Concentration Index

EI - Economic capital Index

RI - Risk weighted asset Index

S2 - PD dependent index



1 Introduction

Financial institutions hold capital cushions that reflect the risks in their balance
sheets. The size of these is determined by a combination of external requirements
from regulators and internal assessments of credit risk. However, in a competitive
market holding unnecessary large capital cushions naturally reflects on the profitabil-
ity by tying up capital that could otherwise be used to profit from (e.g. lending it).
Consequently, an overestimation reduces profitability while an underestimation puts
the bank at risk. Thus, any improvement in the accuracy of a credit risk models
either reduce the risk or improves profitability.

Credit risk is the risk that an obligor (borrower) does not repay the loan in full and
the lender may then lose the principal of the loan or the interest associated with
it. A lender can in practice never be certain that a borrower will hold up its end
of the contract and thus all lending is exposed to credit risk. Having said that,
the estimated credit risk is reflected in the interest rate the lender is willing to give
the borrower. A borrower with a low probability of not repaying the loan in full
is most likely able to borrow to a lower interest rate than a borrower with higher
probability. There are many different approaches to quantifying this estimate of
the probability of not repaying; or as it is commonly referred to, the probability of
default. A common way is using a logistic regression with both obligor specific and
macroeconomic information or to infer the risk by the price of a Credit Default Swap
or CDS [1]. A third frequently used approach is applying the credit rates provided
by Moody’s or Standard and Poors which are based on historical data. Whatever the
approach, the move to analytical models from the historical "gut feeling approach"
greatly improved (i.e. lowered) the defaults rates of financial institutions [2].

Despite the improvement, during the 2008 financial crisis, weaknesses of the then
used analytically approach was uncovered. Firstly, the failure to differentiate the
default behavior of obligors during a stressful time and during "normal" conditions
[3] [4]. Secondly, the underestimation of the liquidity risk taken by financial insti-
tutions at the time [5]. To explore these mistakes one must first understand the
importance of diversification and why liquidity reserves are needed.

A well-diversified a portfolio of loans refer to a portfolio of loans that are not highly
concentrated to any industry or geographical location (referred to as sectors). Given
the assumption that these loans are random and independent of each other a large
enough portfolio would be sufficient to ensure that defaults follow that aggregated
estimate. However, it is widely known that loans within a sector are correlated*.
The rationale is that, entire sectors are able to experience stressful scenarios and that
the entirety of loans within that sector are then exposed to a higher risk. Assuming
that one cannot know beforehand which sectors that might experience this scenario
it would make sense to not rely too heavily on any one of them, i.e. diversify.
A natural way to quantify this sector risk is then by quantifying the correlations
within each sector. Consequently, the historical correlation might seem as a sufficient
indicator of the risk; however, as was uncovered during the financial crisis this
approach greatly underestimated the actual correlation in a stressful scenario. This
⇤There is correlation between sectors as well although this is not as prominent as the intra-
correlation
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is because correlations are greater in such a scenario and since they are rare the
data used will tend to estimate the correlations closer to those in a normal scenario
[6]. This emphasizes the importance of differentiating between these normal and
stressful scenarios and preparing for the correlation structure to change during the
later one.

During a scenario with great stress to one or more sectors, liquidity could become
an issue to financial institutions. The Liquidity of an asset refers to how quickly it
can be sold without affecting the price of the asset. For the purpose of this thesis,
liquidity risk occurs when an institution (or other entity) cannot repay its short-term
debt. The institution cannot convert its assets to cash since there are no or too few
buyers of the asset they want to sell. In order to combat this risk, there need to
be a reserve of highly liquid assets that can be used in such a scenario. Naturally,
there is a trade-off for any institution that trades in assets that are not highly liquid
(illiquid). Simplified, to minimize risk only highly liquid assets should be held and
to maximize profit (long term) the institution wants to invest in illiquid assets. As
such, institutions seek the optimal reserve and this is of course, in part, dependent
on the ability of their obligors to repay their loans. The risk of obligors defaulting
(credit risk) is not alone responsible for the entirety of this reserve, other areas that
contribute include market risk and operational risk [7]. This reserve is referred to
differently depending on if it is calculated by the institution themselves or if it is
a requirement. Economic capital refers to the reserve that the institution would
themselves set if there were no regulations. In contrast, the Capital requirement is
the reserve currently used since there are indeed regulations on how much should
be held [8]. This is explored further in the next section.

1.1 The Basel Accords

The Basel Committee on Banking Supervision (BCBS) is a committee of banking
supervisory authorities that was established in 1974 by the central bank governors
from ten different countries [9]. Since then 45 institutions from 28 jurisdictions have
joined the committee. The goal of the committee is to provide a supervisory standard
for its members. This standard is not a regulatory demand since the committee does
not enforce its standards. The local authorities of each member enforce the decisions
made by the committee and as such there are some irregularities (see Section 1.2).
Nevertheless, the total effect of the committee is a more uniform banking sector
throughout its member states.

In terms of credit risk, the Basel accord of 1988 introduced the first capital require-
ments under what is referred to as Pillar I. Banks are required to keep capital for
credit risk on an exposure by exposure basis*. The basic formula for computing the
required capital is called the internal ratings-based model or IRB and this model is
explained in more (mathematical) detail in Section 3.1. The IRB model is based on
two simplifying assumptions:

Assumption 1.1 The portfolio is infinitely fine-grained and thus all idiosyncratic

risk is diversified away on a portfolio level.

⇤Note that it is possible for an obligor to have more than one exposure. However, this thesis
assumes that obligor only have one unique exposure to simplify calculations and notation
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Assumption 1.2 All default correlations are represented by one risk factor repre-

senting the state of the economy.

Violation of the first assumption, i.e. there are large single exposures in the portfo-
lio, gives rise to so-called name-concentration risk, whereas violation of the second
assumption gives rise to so-called sector concentration. In the words of the Basel
committee:

Sector concentration arises from the violation of the single systematic

risk factor assumption which represents an elementary departure from the

IRB model framework. It arises because business conditions and hence

default risk may not be fully synchronized across all business sectors

or geographical regions within a large economy. A bank’s portfolio may

be more or less concentrated on some of these risk factors leading to a

discrepancy between the measured risk from a single-factor model and a

model that allows for a richer factor structure. Given the calibration of

the ASRF model for the IRB formulae, this discrepancy can be positive

as well as negative. [10]

To remedy these shortcomings of the IRB model capital requirements for, respec-
tively, name and sector risks are covered under Pillar II of the Based accord which
is the focus of this thesis. Furthermore, only models pertaining to the sector risk
is explored in this thesis. The main reasoning behind this is that advanced models
measuring name-concentration, like the granularity adjustment [11], is, in general,
more accepted and in use while more simplistic models are used to measure the
sector risk. Thus, the applicability of a more advanced (and hopefully more precise)
model of sector risk is vital for banks using the IRB framework.

1.2 Sector Risk Today

Continuing on the point in the last section, there is much research on the subject
of sector risk and much debate on how to accurately model it. This section aims to
explain the current situation in this field of study.

To start with the IRB model is portfolio invariant and this is a very important
property if a model is to be realistically used. A portfolio with this property is able
to introduce or exclude any exposure to the model framework without recalculating
for the entirety of the portfolio; in other words, it only needs to add or subtract
the calculated change from the current portfolio. In theory, it would be desirable to
have a model where an introduction of an exposure in a sector would affect the risk
of other exposures within that sector, or even exposures that are not in the same
sector to better reflect the actual change in risk for the portfolio. In practice, this
would be far to calculation heavy to be realistically used since portfolios change on
a day to day basis, if not on a minute to minute basis.

Sector risk is for regulatory purposes divided into two components: industry risk and
geographical risk. Although, in the literature, sector risk will often only refer to the
industry risk. Presumably because it is conceptually easier to quantify one specific
exposure or obligor to a sector than to a country (or region). As such, there are
advanced model estimations for the industry risk while there is not much discussion

3



on the estimation of geographical risk. Despite the fact that these models (presented
in Section 4) are usable for the entirety of sector risk, authors neglect to estimate
the effect of geographical risk. One is then left to assume that the uncertainties of
calculating the correlation to a geographical area for each obligor mean that a more
simplistic model is preferred in this case.

As mentioned in Section 1.1 each member state of the Basel accords are able to ap-
ply their own regulations [12]. Consequently, sector risk is treated differently within
each member state. In Sweden, which is the focus area of this thesis, the Swedish
Financial Supervisory Authority (Finansinspektionen) provide the models for cal-
culating the sector risk. Both components have a unique model, albeit analogous.
The models make use of the Herfindahl-Hirschman Index (HHI) which is defined as
follows:

HHI =
KX

k=1

s

2
k

. (1.1)

In the context of this thesis s

k

is the proportion of each industry or geographical
region (henceforth region) in the portfolio. This index punishes a high concentra-
tion in any sector and notably punishes this equally not taking into account the
difference in the riskiness of each sector. Using the calculated HHI for industry and
geographical region respectively an add-on for the capital requirement of pillar I is
calculated to be:

For Industry: ⇢

BK

= 8 ·
⇣
1� e

�5·HHI1.5
⌘
,

For Region: ⇢

GK

= 8 ·
⇣
1� e

�2·HHI1.7
⌘
.

(1.2)

Where ⇢

GK

and ⇢

BK

are the percentage units of the total capital requirement for
credit risk in pillar I. The Swedish FSA use 12 industries and 15 regions which can
be found on page 23 and 24 respectively in [13].

This "mapping" of HHI to a capital requirement takes a maximum value when HHI
is equal to 1 and using 12 industries of SFSA (which is close to the 13 used in this
thesis) yields a minimum value when HHI is

P12
k=1

�
1
12

�2 ⇡ 0.0833. From Fig. (1.1)
it is evident that Banks that have a HHI between 0.10 and 0.20 are significantly
more affected by a change than a bank with higher HHI.
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Figure 1.1: Left: Industry mapping. Right: First order derivative

1.3 Purpose

The purpose of this thesis is to evaluate different proposed multi-factor credit risk
models and use these to find a tractable way to connect the multi-factor framework
to a pillar II capital add-on. The aim is to bridge the gap between the academic
models and those currently in use so that a variation of the models presented in this
thesis could realistically be used in practice.

1.4 Limitations

The methods discussed in this thesis are applicable to any financial institution with
implemented methods for PD, LGD, and EAD. However, the results are compared
to the standard methodology currently in use in Sweden when the capital add-on is
discussed and the Basel methodology when multi-factor models are discussed.

While concentration or sector risk includes both industry and geographical risk this
thesis is limited to the industry component. As mentioned, this is a difference in the
data used and not in the models. In order to keep consistency throughout the thesis
"sector" is used exclusively while the geographical component is not included.

1.5 Outline

The remainder of this thesis is structured as follows: Section 2 covers the general
framework in credit risk modeling and introduces the Vasicek formula, which is
the basis of both single-factor and multi-factor models introduced in later sections.
In Section 3 the currently used IRB model is explained as well as its connection
to the capital requirements. Section 4 introduces the different multi-factor models
developed to improve on the IRB model. Section 5 covers different proposals on
connecting the economic capital to a capital requirement. Section 6 explains the
choice of portfolio used in testing and some of the difficulties in applying the multi-
factor framework. In Section 7 the results of this thesis are shown and finally in
Section 8 a conclusion is presented.
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2 Credit Risk Modelling

To model the credit risk of a portfolio a range of definitions and notations are
introduced. Although definitions are consistent the notation tends to vary in the
literature; this thesis only uses the notation presented in this section.

2.1 General Framework

While the theory behind this framework is extensive this thesis will not go further
than to define the notation and some properties. Some explanations of how PD,
EAD and LGD are calculated can be found in the Basel framework [14]. However,
this is not a comprehensive list since banks and financial institutions are able to
apply internal approaches to these calculations (see Section 1.2).

Probability of Default is the probability that an obligor default over some spec-
ified time horizon is denoted PD

i

. There are two commonly used variations of PD;
point-in-time (PIT) and through-the-cycle (TTC). TTC is the average probability
of default over a business cycle which is in contrast to PIT where the state of the
economy at that time is used. In other words, PIT uses all the available information
at that time and TTC does not. It may then seem natural to only use PIT but
since neither of them is known the reliability of each method needs to be taken into
account.

The default variable often denoted D

i

, is a random variable specified over some
time horizon with a Bernoulli distribution and it takes the value 1 when obligor i

has defaulted on 0 if it has not.

D

i

=

(
1, with probability PD

i

0, with probability 1 - PD

i

.

(2.1)

Note that by the properties of the Bernoulli distribution the expected value of D
i

is
the same as the PD

i

.

Exposure at Default is the total value that the bank is exposed to at the time of
the default. It is a random variable but for the purpose of this thesis, the expected
value of EAD is easily found. Similarly to D

i

the ÊAD
i

refers to the obligor specific
exposure. To separate the random variable EAD with the expected value of it the
following notation is introduced

E[ÊAD
i

] = EAD
i

. (2.2)

When the nominal value of the exposure is not of interest the ratio of the exposure
to the total portfolio of exposure is used as a replacement:

w

i

=

EAD
iP

n

j=1 EAD
j

. (2.3)
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Both these terms are used interchangeably in this thesis to better align with the
literature.

Loss given Default or LGD
i

is the fraction of EAD
i

that cannot be recovered in
the event of a default. This random variable depends on many factors, one intuitive
factor is if the bank owns collateral. This collateral could then be sold off after the
default and thus some value is retained. In some literature the Recovery rate RR

i

is used instead of LGD
i

. The Recovery rate is defined as 1 � LGD
i

. Again, to not
confuse the random variable with the expected value similar notation (to EAD) is
introduced

E[L̂GD
i

] = LGD
i

. (2.4)

Systemic Risk Variable At the heart of both the Asymptotic Single Risk Factor
Model (ASRF) introduced in 2.3 and the multi-factor model introduced in 4 is the
assumption that assets are correlated with some systemic risk factor denoted X

in the single factor model or X1, X2, ..., XS

where S is the number of sectors in
the multi-factor model. X and X

s

are assumed to be standard normal distributed
N(0, 1). The rationale in the model is that the default variable D

i

is dependent on
the state of the economy. In the single factor case X represents the state of the
economy and in the multi-factor case, X

s

represents the state of each sector.

The Loss variable The loss variable L

i

is defined, over a specific time horizon, to
be the outstanding amount that is not recovered due to a default within the time
period. The loss of a credit portfolio with n obligors is defined as L =

P
n

i=1 Li

.
Using the notation already introduced as well it can be expressed as

L =

nX

i=1

ÊAD
i

· L̂GD
i

·D
i

. (2.5)

With some assumptions, the loss variables dependence on the systemic risk factor(s)
can be deduced. To relax notation X is used to represent both the single-factor and
multi-factor model (interpreted as a vector in this case).

Assumption 2.1 Both EAD

i

and LGD

i

are mutually independent i.e. LGD1, ...,LGD

n

and EAD1, ...,EAD

n

are independent of each other. Furthermore, these variables are

independent of both D1, ..., Dn

and X.

By this assumption it is trivial that

E[L|X] = E

"
nX

i=1

ÊAD
i

· L̂GD
i

·D
i

���X
#
=

nX

i=1

EAD
i

· LGD
i

· E
h
D

i

���X
i
. (2.6)

Where X can be either the sector-specific systemic risk factor or the state of the
economy as a whole.
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2.2 Risk Measures

All information about the risk of a portfolio (at some future point in time) is con-
tained in the Loss variable L defined in the previous section. A risk measure quan-
tifies the risk associated with L so that one can, for example, calculate the required
capital given a risk appetite. It is important to note that a risk measure, as the
name suggests, only measures the risk and not the possible gain of a portfolio. To
those familiar with financial mathematics, it might seem natural to try to estimate
the expected utility. However, in the case of risk measures (and specifically their
usage within the banking sector) the return is maximized given a target level of
risk.

A more precise definition is that a risk measure maps a set of random variables
to real numbers. Consider a random outcome Z viewed as an element of a linear
space L of measurable functions, defined on an appropriate probability space. A
functional ⇢ : L ! R [ {+1} is said to be risk measure for L if it satisfies the
following three properties [15]

1. Normalized ⇢(0) = 0. The risk of having an empty portfolio should be 0.

2. Translative If ↵ 2 R and Z 2 L then ⇢(Z + ↵) = ⇢(Z) � ↵. Since ↵ here is
a real number the interpretation of this property is that it is a deterministic
addition to the portfolio. Thus, if a known amount is added to the portfolio
naturally the risk should be lowered by the same amount.

3. Monotone If Z1, Z2 2 L and Z1  Z2 then ⇢(Z2)  ⇢(Z1). If it is known that
Z2 has better values than Z1 (i.e. worth more but otherwise equal) then the
risk measure should always have a lower risk for Z2.

Expected Loss, denoted EL, is a risk measure that shows the expected value of
the sum of the total loss. it is defined as

EL = E[L] =
nX

i=1

EAD
i

· LGD
i

· E[D
i

], (2.7)

this is again making use of Assumption (2.1). While EL by itself is of interest the
variance of the loss distribution is not considered and as such a bank holding only
the value of EL in capital risk defaulting if the losses during the time horizon are
any greater than expected.

Value at Risk, to capture the behavior of the variance Value at Risk or VaR is
introduced. VaR requires a specified probability (i.e. risk) threshold z at which a
default is acceptable. Naturally one would like this risk to be 0% but as mention
in the introduction, there is, of course, a trade-off in risk versus profit. As such,
commonly used z are 95%, 99% and in the case of the IRB model 99.9% [6].

For a portfolio, X with a threshold of a default at x VaR at level z is defined as

VaR(X)

z

= inf{x 2 R : 1� F
X

(�x) � z}. (2.8)
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For F
X

that is continuous and strictly increasing the VaR at level z is the quantile
of the function F

X

i.e. VaR(X)

z

= F�1
X

(z). In the case of IRB and this thesis, the
portfolio X that is of interest is the portfolio of losses i.e. L.

Unexpected Loss is the risk measure that is used in the IRB framework [7]. It is
defined as the difference between the Value at Risk for X and the Expected value of
X: UL(X)

z

= VaR(X)

z

�E[X]. With the more relevant notation it is written:

UL
z

= VaR(L)

z

� EL. (2.9)

The relationship between the three measures is shown in Fig. (2.1).

Figure 2.1: Depicting the relationship between EL, UL and VaR (Source: Basel [7])

Expected Shortfall A major critique of the VaR is that three properties presented
earlier are not sufficient and that the risk measure used should be a coherent risk

measure. This means that two new properties are added to list, namely:

4. Positive homogeneity If ↵ � 0 and Z 2 L, then ↵⇢(Z) = ⇢(↵Z)

5. Sub-additivity If Z1, Z2 2 L then ⇢(Z1 + Z2)  ⇢(Z1) + ⇢(Z1)

Note that VaR fulfills the Positive homogeneity but that it does not fulfill the pro-
priety of Sub-additivity [15]. If a risk measure does not follow the sub-additive
property it may discourage diversification. Consequently, Some argue that instead
of VaR a coherent risk measure should be used: Expected Shortfall or ES. This
measure has an intuitive interpretation from Fig. (2.1) since it is the expected value
of the area in grey. It can be defined both as the expected value conditional on the
VaR at z:

ES(X)

z

= E[X|X � VaR(X)

z

], (2.10)

or as the integral:
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ES(X)

z

=

1

1� z

Z
z

1

VaR(X)

u

du. (2.11)

It should be noted that VaR does not necessarily lack sub-additivity but rather
there are settings at which it does. The argument for using VaR often points to
the difficulty of modeling the tail behavior and thus, ES introduces uncertainty by
depending on it. Since both models are based on historical data a lack of data from
extreme scenarios may inhibit the ability to estimate the behavior at the tail.

2.3 The Vasicek model

Merton introduced his model of pricing corporate debt and estimating the proba-
bility of default in 1974 [16]. Vasicek realized that with slight modifications it could
instead be used to model the dependence of default events [17]. Since the single-
factor model is a special case of the multi-factor model, only the multi-factor model
is explained in this section. In the Vasicek model, the asset value A of obligor i at
time t is modeled as multivariate geometric Brownian motion

dA

i,t

= µ

i

A

i,t

dt+ A

i,t

mX

k=1

�

i,k

dW

k,t

+ ⌘

i

A

i,t

dB

i,t

, (2.12)

here µ

i

, ⌘
i

and �

i,1, ..., �i,n

are constants which need to be estimated. W1,t, ...,Wm,t

and B

i,t

are mutually independent Wiener processes. W1,t, ...,Wm,t

represents the
systemic risk factors introduced in Section 2.1, as such W1,t, ...,Wm,t

are not unique
to each obligor. B

i,t

represent the idiosyncratic risk that each obligor faces. Björk
explains the perhaps counter intuitive assumption that W1,t, ...,Wm,t

are mutually
independent. After all, it seems natural that there should be some correlation be-
tween sectors, whether they represent geographical locations or industries one ex-
pects that there should be some dependence. However, if W1,t, ...,Wm,t

were cor-
related it would be possible to rewrite Eq. (2.12) so that they are independent by
changing �

i,1, ..., �i,n

[18].

Solving the differential equation with T = 1 (i.e one year) Eq. (2.12) can be rewritten
as

A

i,1 = A

i,0 exp

 
µ

i

+

mX

k=1

✓
�

i,k

X

k

� 1

2

�

2
i,k

◆
+ ⌘

i

✏

i

� 1

2

⌘

2
i

!
, (2.13)

where X

k

and ✏

i

are i.i.d standard normal variables N(0,1). If A

i,T

is below the
value of its liabilities of obligor i then it is assumed to be in default, this threshold
is denoted �

i

. Consequently, the probability of default of obligor i:
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PD
i

= P

 
A

i,0 exp

 
µ

i

+

mX

k=1

✓
�

i,k

X

k

� 1

2

�

2
i,k

◆
+ ⌘

i

✏

i

� 1

2

⌘

2
i

!
< �

i

!

= P

 
mX

k=1

�

i,k

X

k

+ ⌘

i

✏

i

 ln

✓
�

i

A

i,0

◆
+

1

2

mX

k=1

�

2
i,k

+

1

2

⌘

2
i

� µ

i

!

= P

0

@
P

m

k=1 �i,k

X

k

+ ⌘

i

✏

iqP
m

k=1 �
2
i,k

+ ⌘

2
i


ln

⇣
�i
Ai,0

⌘
+

1
2

P
m

k=1 �
2
i,k

+

1
2⌘

2
i

� µ

i

qP
m

k=1 �
2
i,k

+ ⌘

2
i

1

A
.

(2.14)

Note that since X

k

and ✏

i

are i.i.d the dividing factor introduced in the last step
means that the probability is standard normal and that the condition for default is
on the right-hand side of the last step in Eq. (2.14). Thus it has a clear relation to
the PD

i

�

�1
(PD) =

ln

⇣
�i
Ai,0

⌘
+

1
2

P
m

k=1 �
2
i,k

+

1
2⌘

2
i

� µ

i

qP
m

k=1 �
2
i,k

+ ⌘

2
i

. (2.15)

To continue the left-hand side of Eq. (2.14) is rewritten so that it can be interpreted
in terms of the correlation to the systemic risk factors. To achieve this the following
notation is used

⇢

i

=

P
m

k=1 �
2
i,kP

m

k=1 �
2
i,k

+ ⌘

2
i

and ↵

i,k

=

�

i,kqP
m

k=1 �
2
i,k

. (2.16)

The choice of ⇢ is deliberate since it will be shown that this in fact used (in com-
bination with ↵

i,k

) as the correlation of obligor i to the systemic risk factors. With
some clever rewriting it can be shown that

P
m

k=1 �i,k

X

k

+ ⌘

i

✏

iqP
m

k=1 �
2
i,k

+ ⌘

2
i

=

P
m

k=1 �i,k

X

kqP
m

k=1 �
2
i,k

+ ⌘

2
i

+

⌘

i

✏

iqP
m

k=1 �
2
i,k

+ ⌘

2
i

=

p
⇢

i

·
0

@
sP

m

k=1 �
2
i,k

+ ⌘

2
iP

m

k=1 �
2
i,k

·
P

m

k=1 �i,k

X

kqP
m

k=1 �
2
i,k

+ ⌘

2
i

1

A
+

p
1� ⇢

i

· ✏
i

=

p
⇢

i

·
 

mX

k=1

↵

i,k

X

k

!
+

p
1� ⇢

i

· ✏
i

=

p
⇢

i

·↵
i

↵

i

↵

i

|
X

X

X +

p
1� ⇢

i

· ✏
i

.

(2.17)

Where the last step introduces the vector notations of X
k

and ↵

i,k

. Using the result
from Eq. (2.15) with the notation from Eq. (2.17) it is apparent that obligor i
defaults if
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D
i

= 1 if
p
⇢

i

·↵
i

↵

i

↵

i

|
X

X

X +

p
1� ⇢

i

· ✏
i

 �

�1
(PD) . (2.18)

Some notable properties are

⇢

i

2 [0, 1],

mX

k=1

↵

2
i,k

= 1,

p
⇢

i

·↵
i

↵

i

↵

i

|
X

X

X +

p
1� ⇢

i

· ✏
i

⇠ N(0,1). (2.19)

Finally, this condense to a model of the dependent probability of default

P (D
i

= 1|XXX = x

x

x) = P
⇣p

⇢

i

·↵
i

↵

i

↵

i

|
x

x

x+

p
1� ⇢

i

· ✏
i

 �

�1
(PD)

⌘

= P
✓
✏

i

 �

�1
(PD)�p

⇢

i

·↵
i

↵

i

↵

i

|
x

x

xp
1� ⇢

i

◆

= �

✓
�

�1
(PD)�p

⇢

i

·↵
i

↵

i

↵

i

|
x

x

xp
1� ⇢

i

◆
.

(2.20)

This is known as the Vasicek formula and the single-factor version is used in the
current framework. By Eq. (2.19), the single-factor case ↵

i

is equal to 1 and it can
then be written as

P (D
i

= 1|X = x) = �

✓
�

�1
(PD)�p

⇢

i

· xp
1� ⇢

i

◆
. (2.21)

The sign within this formula varies from paper to paper depending on if losses are
defined as positive values and negative losses (i.e. profits) have a negative value or
vise versa. The most common approach, which is used in the IRB model, is to view
losses as positive values. For this reason the sign in Eq. (2.20) and (2.21) are flipped
to:

P (D
i

= 1|XXX = �xxx) = �

✓
�

�1
(PD) +

p
⇢

i

·↵
i

↵

i

↵

i

|
x

x

xp
1� ⇢

i

◆
. (2.22)

The factor loadings p
⇢

i

(seen in Eq. 2.21) represent borrower’s i sensitivity to
systematic risk X. In the multi-factor case (Eq. 2.22) these show the sensitivity to
the sector risk factors.
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3 The Internal Ratings-Based Approach

In the currently used IRB model all obligors depend on a single risk factor. Concep-
tually this is regarded as the "state of the economy" with the reasoning that if this
state worsens or improves all obligors are affected to some degree. This is in contrast
to the multi-factor models presented in Section 4 where each obligor is dependent
on the state of the individual sector of the obligor as well as other sectors.

3.1 The Asymptotic Single Risk Factor Model

The assumptions of the ASRF model are explained in the introduction (Section 1.1).
However, to use them in the context of the mathematical model the assumption of
an infinitely fine-grained portfolio needs to be more rigorously defined.

Definition 3.1 A Portfolio is considered infinitely fine-grained if the portfolio con-

sists of close to an infinite number of obligors and satisfies following the conditions

lim

n!1

nX

i=1

EAD
i

�! 1 and lim

n!1

nX

j=1

✓
EAD

jP
n

i=1 EAD
i

◆2

< 1. (3.1)

Given Assumption 1.1 that the portfolio is infinitely granular it can be shown that
the loss (L) almost surely converges to the expected loss conditional realization of
the systematic risk factor [19].

L(n)� E[L(n)|X = x] ! 0 a.s. (3.2)

Consequently, this means that

lim

n!1
VaR

z

(L(n))� VaR
z

(E[L(n)|X = x]) = 0, (3.3)

and given Assumption (1.2) of a single risk factor (X) it is shown that [20].

VaR
z

(E[L|X = x]) = E[L|X = VaR1�z

(X)]. (3.4)

Using the established definition of the Loss variable the Value at Risk is then, in
the context of ASRF, found to be:

VaRIRB
z

(L) =

nX

i=1

EAD
i

· LGD
i

· E[D
i

|X = VaR1�z

(X)]. (3.5)

Since X is a standard normal variable the VaR1�z

(X) is trivial to calculate. Note
that �

�1
(1� z) = ��

�1
(z) so, as stated in the previous section, the sign is flipped

in Eq. (2.22). As a next step, this is translated first to economic capital and then
to a capital requirement.
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3.2 Economic Capital and Pillar I Capital Requirements

As mentioned in Section 1 the economic capital is the amount of capital a bank
would, in theory, hold if there were no regulations. In the framework of the ASRF
model, this is named unexpected loss

ULIRB
= ECIRB

= VaRIRB
z

(L)� EL. (3.6)

Inserting the result from Eq. (3.5) and (2.7) into (3.6) yields

ECIRB
=

nX

i=1

EAD
i

· LGD
i

· (E[D
i

|X = VaR1�z

(X)]� PD
i

) . (3.7)

The risk appetite z is set by Basel to be 0.999. Using the Vasicek formula from
Eq. (2.22) (and the fact that the expected value of the indicator function is its
probability) the final expression is found to be:

ECIRB
=

nX

i=1

EAD
i

· LGD
i

·

�

✓
�

�1
(PD

i

) +

p
⇢

i

· ��1
(0.999)p

1� ⇢

i

◆
� PD

i

�
. (3.8)

Here the ⇢

i

is defined (for corporate exposures) to be:

⇢

i

= 0.12 · 1� e

�50·PDi

1� e

�50
+ 0.24 ·

✓
1� 1� e

�50·PDi

1� e

�50

◆
. (3.9)

However, capital requirements are not limited to this, instead, the Risk-Weighted
Asset (RWA) is calculated for each obligor. This is done differently deepening on
the asset class, for the purpose of this thesis only risk-weighted assets for corporate,
sovereign, and bank exposures are relevant*. To calculate the RWA one must first
find the aptly named "capital requirement" K by

K
i

= SF · LGD
i

·

�

✓
�

�1
(PD

i

) +

p
⇢

i

· ��1
(0.999)p

1� ⇢

i

◆
� PD

i

�
· MA. (3.10)

Where the scaling factor (SF) and the maturity adjustment (MA) are

SF = 1.06, MA =

1 + (M
i

� 2.5)b

i

(1� 1.5b

i

)

. (3.11)

The scaling factor was introduced to maintain the aggregate level of regulatory
capital when Basel II was implemented. In the maturity adjustment, M

i

is the time
to maturity for each asset and b is defined as follows
⇤ These are all affected by the same model.
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b

i

=

�
0.11852� 0.05478 · lnPD

i

�2
. (3.12)

Note that the effect of the maturity adjustment increases with an increased maturity
and decreases with an increase in PD. The reasoning behind more capital needed
to be held with longer maturity is intuitive: an asset with longer maturity has a
longer time of exposure and thus a longer time frame to default, or more commonly
be downgraded on the PD scale. Consequently, an asset with a high PD has less
room (potential) to be downgraded and as such does not increase its risk as much
by increasing the time to maturity. The constants used in b and the maturity
adjustment are derived by the Basel committee using a mark-to-market (MtM)
model and the same underlying data as the ASRF model is based on [7].

The capital requirement (K) as laid out in the Framework is expressed as a percent-
age of the exposure. In order to derive RWA, it must be multiplied by EAD and the
reciprocal of the minimum capital ratio of 8%, i.e. by a factor of 12.5

RWA
i

= 12.5 · K
i

· EAD
i

. (3.13)

Note that RWA is the Unexpected loss for each asset scaled by the reciprocal of
the minimum capital ratio, the scaling factor and by the maturity adjustment. The
total RWA (the sum of RWA per obligor) is used to determine different capital ratios
that are regulated. The Common Equity Tier 1 or CET1 ratio broadly speaking
measures the ratio of equity held and the risk-weighted assets. Banks are required
to have a CET1 ratio greater than 4.50% by 2019 [21],

CET1P
n

i=1 RWA
i

� 4.5%. (3.14)

As such, the RWA of each addition to the credit portfolio is of importance to a
bank and therefore the accuracy of the models calculating the RWA is of great
importance.
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4 Multi-Factor Models

The Vasicek model introduced in Section 2.3 is applied, not only in the IRB model
but in multi-factor models as well. As stated, the IRB make use of the special case
of a single factor in the Vasicek model. The greatest advantage with this approach
is that there is a tractable derivation of the VaR namely, the inverse of the standard
normal function. In addition to this, the Swedish FSA argues that there is a greater
model risk due to the introduction of sector correlations that are to be estimated
[13] (revisited in Section 5). Leaving the argument of model risk for now, there is no
simple way of determining the loss distribution of a multi-factor model. The different
models in this section explore different ways of circumventing this issue.

The multi-factor Vasicek model shown in Section 2.22 is used throughout the section.
However, there are some properties and different ways of writing this formula that
was not shown here and is commonly used; equations (4.1), (4.2) and (4.3) are not
conflicting with the Vasicek model but rather a rewritten form of it. The concept of
inter-correlation and intra-correlation is introduced as well. The intra-correlation is
the correlation within the sector that the exposure is in and the inter-correlation is
the correlation between sectors (which is not obligor specific). From Eq. (2.17) the
Asset value A

i

is found to be (in the single factor case):

A
i

=

p
⇢intra,i ·X +

p
1� ⇢intra,i · ⌘i, (4.1)

and in the general multi-factor case:

A
i

=

p
⇢intra,i ·Xs

+

p
1� ⇢intra,i · ⌘i where X

s

=

KX

k=1

↵

i(s),kZk

. (4.2)

These ↵

i(s),k are found from the Cholesky decomposition of the inter-correlation
(as seen in Eq. 2.16). Some literature inserts an extra subscript for each sector
component of the asset (i.e. A

i,s

) but since every obligor can only be in one sector
this is deemed unnecessary. Instead the subscript i(s) denotes the specific sector of
obligor i. However, to relax the notation further, outside of this introduction ↵

i(s),k

is denoted ↵

i,k

, observe that the i does not indicate that it takes values from 1 to n

but rather that its sector defined by obligor i.

⇢

inter
i,j

=

KX

k=1

↵

i(s),k · ↵j(s),k where
KX

k=1

↵

2
i(s),k = 1. (4.3)

Consequently, the correlation between two assets is found by:

corr(A
i

,A
j

) =

(p
⇢intra,i

p
⇢intra,j if i = j

p
⇢intra,i

p
⇢intra,j

P
K

k=1 ↵i(s),k↵j(s),k if i 6= j,

(4.4)

where if i and j belong to the same sector the inter-correlation is 1 by Eq. (4.3).
Finally, note that the economic capital referred to in this section (and the rest of the
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thesis) is found in Eq. (3.6) where the value at risk is calculated by some multi-factor
model.

4.1 The Monte Carlo Approach

The most mathematically simple method of approaching the Value at Risk for the
loss distribution is a Monte Carlo (MC) simulation. In a MC simulation N portfolios
are simulated and sorted by the loss. To find the quantile z of the loss distribution
the z:th element is the VaR, at the level of z, for that portfolio (e.g. if N=100 and
z = 99% then VaR1�z

(L) is the 2nd largest loss). In order to find the loss of one
iteration the asset value A

i

for each obligor, i is simulated by drawing Z

k

and ⌘

i

from the standard normal distribution. Inserting this in Eq. (2.18) it is determined
if the indicator variable D

i

is 1 or 0. Summation of these losses gives the total loss
of that iteration:

L
iter

=

nX

i=1

EAD
i

· LGD
i

· ˆD
i

, (4.5)

where ˆD
i

is the estimated default variable for obligor i in that specific iteration.

The models presented in the rest of this section either seek to mitigate the compu-
tational burden of the MC approach or propose a different framework for measuring
risk in the multi-factor case.

4.2 Pykhtin - Analytic Value at Risk

This section introduces a multi-factor derivation of the value at risk. To do this a
range of new notations are needed. Assume that all variables sharing notation with
what was previously defined is the same. Pykhtin [23] offers a closed form calculation
of the VaR to reduce the computational burden of a MC simulation. The general
idea is to map the multi-factor model onto a single factor model, namely, the IRB
model. To achieve this the systemic risk factors X

s

of the multi-factor model are
mapped to a single factor ¯

X. This ¯

X differs from the X in the IRB model; it is
determined by the correlation between the new single factor ( ¯X) and the old factors
(X

S

).

¯

X =

KX

k=1

b

k

·X
k

and

¯L =

nX

i=1

w

i

· LGD
i

· PD
i

(

¯

X). (4.6)

Here PD
i

(x̄) make use of the Eq. (2.21) but with the factor loading’s of x̄ which
are explained later on. Additionally, w

i

is used instead of EAD

i

with no loss of
generality. Intuitively this problem of finding an optimal mapping to a single factor
can be formulated as a maximization problem since the best choice of the set of b

k

is where the correlation between ¯

X to X

s

is maximized over the entire portfolio. In
other words, what is achieved by the optimization is replacing the inter-correlation
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matrix in the multi-factor model by an average single risk factor by looking at
the effect of this change on the entreaty of the portfolio. By using the fact that
corr(X

s

,

¯

X) =

P
K

k=1 ↵s,k

b

k

the optimization is set up as:

maximize

bk

NX

i=1

✓

i

KX

k=1

↵

i,k

b

k

subject to:
KX

k=1

b

2
k

= 1.

(4.7)

The squares of b
k

need to sum to 1 to keep the standard normal properties. Using
the Lagrange multiplier � the solution to this problem is found to be [24]:

b

k

=

NX

i=1

↵

i,k

✓

i

�

=) � =

vuut
KX

k=1

 
NX

i=1

↵

i,k

✓

i

!2

. (4.8)

Note that, as explained in Section (4), the inter-correlation matrix is the same for
all obligors i so the ↵

i,k

denotes index for the sector of obligor i and sector k. Since
there is no unique solution to (4.8) Pykhtin proposed (after experimental testing)
to use

✓

i

= w

i

· LGD
i

· �
 
�

�1
(PD

i

) +

p
⇢intra,i · ��1

(z)

p
1� ⇢intra,i

!
. (4.9)

Where z is the confidence level. Furthermore, Pykhtin introduced the notation p

i

as
the factor loadings in the multi-factor case when correlation is between corr(X

i

,

¯

X)

(in contrast to corr(X

i

, X

j

) which gives the factor loading
p

⇢intra,i). Inserting ¯

X in
Eq. (4.2) and calcualting the new factor loading gives:

A
i

= p

i

¯

X +

q
1� p

2
i

· ⌘
i

, p

i

=

p
⇢intra,i

KX

k=1

↵

i,k

b

k

. (4.10)

The next step is to use this newly defined A

i

and find an algebraic expression for
the value at risk for the Loss L. To do this the VaR is approximated by the second
order Taylor series around the solution for the IRB model, which loss is denoted ¯L.
Additionally, the permutation U is introduced and defined as the difference between
the multi-factor loss and the IRB loss (i.e. U = L � ¯L). Finally, to relax notation
q

z

is set to be the quantile (VaR) at level z:

q

z

(L) ⇡ q

z

(

¯L) +
dq

z

�
¯L + ✏ · ¯U�

d✏

�����
✏=0

+

1

2

· dq
2
z

�
¯L + ✏ · ¯U�

d✏

2

�����
✏=0

+O(✏

3
). (4.11)

It can be shown that the first order derivative in Eq. (4.11) is equal to zero [26].
Hence, the so-called multi-factor adjustment is explained by the second order deriva-
tive. This is rewritten as:
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where �q
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is the difference of the second order derivative
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Recall that there is ��1
(1�z) is the value at risk at level z in the single factor model

and that ¯

L is a single factor model. l0 and l

00 is the first and second order derivative
of ¯

L and v is the conditional variance of L (and v

0 its derivative). The derivatives
of l0 and l

00 are trivially found when the derivative of PD is known*.This variance
of L can be divided into two parts representing the systematic risk adjustment and
the granularity adjustment (name-concentration) by making use of the following
property:

V ar[L| ¯X = x]| {z }
v(x̄)

= V ar

⇥
E [L|X

s

] | ¯X = x

⇤
| {z }

Systematic(�2
1)

+E

⇥
V ar [L|X

s

] | ¯X = x

⇤
| {z }
Granularity Adjustment(�2

GA)

. (4.14)

By the linearity of Eq. (4.13) these two terms (and their derivatives) can be calcu-
lated separately and then used to finally find an algebraic expression for q

z

(L). After
some tedious calculation and by introducing some new notations, they are found to
be:
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Here �2(·) is the bivariate normal distribution. To find the derivative of probability
of default component (PD0

i

(x)) the derivative of the standard normal distribution
is used (i.e. d

dx

�

�
µ�x

�

�
= � 1

�

�(x)). For the conditional asset correlation, ⇢X̄
i,j

recall
the factor loadings shown in earlier (4.10), using these in Eq. (4.2) and it yields the
following three expressions:
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Since PD0
i

(x) and PD00
i

(x) are known inserting these results in (4.13) gives an expres-
sion for the value at risk at level z for the multi-factor model by �q

z

= �q

1
z

+�q

GA
z

.
This is then inserted into (4.12) to finally arrive at:
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4.3 Cespedes - Diversification Factor

Cespedes et al. [25] introduced a framework dependent on a diversification factor
which is the connection between the economic capital of the single factor model
and the multi-factor model. This factor takes in the accumulated differences of a
range of portfolios to find a suitable level not just for one portfolio, as is the case in
previously presented models but for all of them. This does, however, make the model
very computationally heavy although in principle it should not be calculated as often
(or maybe even just once) as it factors in different scenarios and thus should not
change when the portfolio does. The diversification factor for a given set of portfolios
needs to be able to be explained by some parameters that reflect the riskiness of
the allocation. When this relationship is modeled the aim is to use this estimated
diversification factor for any new portfolio. This means that only the single factor
model need to be calculated when the relation between the two parameters and DF
is known.

The diversification factor for one portfolio is defined as:

DF =

ECmf

ECsf , DF  1 where ECsf
=

KX

k=1

EC
k

. (4.23)

where ECmf and ECsf is the multi-factor EC and single factor EC respectively. EC
k

is the economic capital attributed to each sector k using the single factor formula.
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For a given percentile level (eg. ↵ = 0.01% used in the IRB model) the ECmf is
found by

ECmf
(↵; ·) ⇡ DF(↵; ·) · ECsf

(↵). (4.24)

DF(↵; ·) is a scalar function with a small number of parameters. With this setup,
the diversified capital is the product of the “additive” bottoms-up capital from a
one-factor model. The authors go on to show that this factor can be estimated
using two parameters:

1. Average cross-sector correlation, �

2. Sector concentration, CDI

They argue that these two broadly capture the effect of diversification. From 1. the
correlation between sectors affect the efficiency of the diversification, if two sectors
were perfectly correlated then there would be no diversification effect by allocating
capital to both. This sector correlation � is the correlation of the systemic risk
factors A

i

in Eq. (4.2). To find this average the authors suggest using the following*
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i

. (4.25)

By 2. there should be a parameter that captures the effect of allocating much capital
to one sector with lower risk should not be punished, even if it is in the "naive way"
of diversifying. Furthermore, the size of each exposure is captured in the parameter.
The capital diversification index, CDI, is defined as the sum of squares of the SF
capital weights in each sector

CDI =

KP
k=1

(EC
k

)

2

�
ECsf�2 =

KX

k=1

w

2
k

. (4.26)

Conceptually, w
k

is the contribution to the single factor capital of sector k. This is
analogous to the HHI and exactly the same as the RI index presented further on.
Applying these parameters in Eq. (4.24):

ECmf
(↵;CDI, �) ⇡ DF(↵;CDI, �) · ECsf

(↵). (4.27)

Using equations (4.23), (4.25) and (4.26) a value of DF, � and CDI respectively is
obtained for each simulated portfolio. Viewing this as a 3D surface (depicted in Fig.
7.4) a parameterization of DF is obtained by fitting it as follows:

DF = a0+a1 ·(1�CDI)·(1��)+a2 ·(1�CDI)2 ·(1��)+a3 ·(1�CDI)·(1��)

2
. (4.28)

⇤to clarify it is the single factor economic capital that is used calculate � and CDI
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Where DF = DF(↵;CDI, �)). Using this to estimate a0, a1, a2 and a3 the relationship
between CDI, � and DF is found (as suggested by [26] [25]). In the framework
presented by Cespedes et al. a0 i set to 1* since the diversification factor is bound
by the single factor model and that the diversification factor can only lower the
economic capital for the multi-factor model. In other words, there should be no
values for CDI and � where DF is greater than 1.

Gürtler et al. [26] proposed that there should not be an upper barrier on risk set
by the single factor model. The economic capital of a multi-factor model should be
increased if it has a relatively risky allocation and conversely it should decrease if
the allocation is not as risky. By changing the framework so that this holds they too
calculate a diversification factor. Since there are no differences in the mathematical
derivation of this factor (aside from the constraints on a0 in DF) the model in its
entirety is not reiterated in this section. To clarify, there is still a theoretical bound
on DF by the multi-factor model being bound by the single factor but it is no longer
bound by the fitting in the DF framework. In the next section, a proposal for
circumventing the theoretical bound on the multi-factor model is shown.

This method is computational heavy, Gürtler et al. propose using 25000 portfolios
for calculation of the multi-factor and single factor economic capital and with 100000
iterations for each MC simulation. They estimate the computational time to 30
days. This can be lowered to under a day using the Pykhtin method for value at
risk instead of MC simulations.

4.4 Gürtler - Implied Correlation

To remove this upper barrier Gürtler et al. propose using a "relatively well di-
versified" portfolio to determine whether the multi-factor model should push the
economic capital up or down (compared to the single factor). The obvious problem
with this approach is defining what these should be relative to. There is no clear
intuition on what this benchmark should reasonably be. It should be noted that if
the data used in the Basel calculations where publicly available such a benchmark
portfolio could be constructed since they implicitly defined it with the capital re-
quirement. Nevertheless, the authors propose a definition of "implicit intra-sector
correlation" ⇢

implied
intra found by:

ECmf
⇣
⇢inter, ⇢

implied
intra

⌘
= ULASRF

(⇢Basel). (4.29)

Here ⇢Basel is the correlation used for corporate exposures under the basel framework
(see Eq. (3.9)). Analogously with this equation the authors propose re-configuring
the scalars in the equation by:

⇢

implied
intra = a0 · 1� e

�50·PDi

1� e

�50
+ a1 ·

✓
1� 1� e

�50·PDi

1� e

�50

◆
. (4.30)

⇤ This is achieved by using the constraints DF(↵;CDI,� = 1) = 1 and DF(↵;CDI = 1,�) = 1.
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They go on to propose that these a

o

and a1 could be found using a grid search
procedure [26]. They find that a

o

= 0.185 and a1 = 0.34 are suitable replacements.
As it is not the purpose of this thesis to find a generalized solution to this problem
but rather to find a fit to the data available the parameters are recalculated (fitted)
to the data used in this thesis by using said grid search algorithm.

4.5 IMF - A Hybrid Approach

The International Monetary Fund (IMF) [12] propose a partial portfolio approach
(PPA) where the aim is to minimize the computational time while maintaining
accuracy. The model is based on the intuition that for smaller exposures the impact
of the change of framework from analytical multi-factor to crude MC multi-factor is
negligible. This is because this "granular" sub-portfolio is assumed to be diversified
on name and sector level. Thus the IRB model is used for these exposures. The
other sub-portfolio called the "non-granular" consists of exposures larger than some
value m (where m << n) and for these obligors, a MC-simulation is used to find
their contribution to the economic capital. Since both models are already presented
they are not reiterated in this section.

4.6 Method Comparison

The models presented in this section are divided in their aim. The obvious outlier is
the diversification factor model which relies on a number of either MC or analytical
calculations of the economic capital and is designed to use these to accurately find
the economic capital of a generic portfolio. In other words, the aim of the model is
to reduce the computational burden (long-term) given an established multi-factor
model.

In this section three different models for calculation, the economic capital using a
multi-factor model was presented. The main advantage of the Pykhtin and IMF
models is that the computational burden is significantly reduced. Additionally, the
Pykhtin model is (can be) consistent with the assumption of no name-concentration.
Importantly, the MC simulation has the major advantage of converging to the correct
answer while the other two are estimations. Although using the term correctly here
could be an overstatement as it does include name-concentration and the currently
used IRB model does not.
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5 Capital Requirements - The Pillar II Add-on

Both the scaling factor and the maturity adjustment are fitted to the single-factor
model and there are no multi-factor alternatives. While both realistically have to
be recalculated if a new multi-factor model was to be used, by assuming they keep
their values some insight into (roughly) the changes in the capital requirement are
found. In an academic sense, this does, however, offer little more than comparing the
economic capital since the difference is just scaled by the same factor(s). Because
of this the economic capital is used from both methods when comparing them in
Section 7. Having said that, this method does offer an estimate of the difference to
capital held in real terms.

Since there is no clear-cut way of moving from EC to regulatory capital the Swedish
FSA has developed an internal method for sector and name-concentration risk re-
spectively (see Section 1.2). While the other methods presented in this section point
to the disadvantages of the Herfindahl–Hirschman Index currently in use the Swedish
FSA points to the model risk that comes with a more advanced model:

The alternative methods available for assessing such risks are signifi-

cantly more complicated and require, among other things, assumptions

of correlations between industries and geographical areas. Correlations

are difficult to estimate and there is often a high variance in correlation

estimates. It is also difficult to validate correlation assumptions, and as

a rule, the outcome of the model is influenced to a high degree by the

correlation assumptions made. - Swedish FSA (2014) [13] (page 16-17)

Under pillar II of the Basel accords the risk of name and sector concentration must be
addressed. However, banks are able to propose an internal methodology to replace
methodology used granted that it is approved by the local authorities. The next two
sections discuss different methods of calculating the regulatory add-on under Pillar
II.

The indices presented in this section addresses the weakness of HHI that all sectors
are treated as equal, even if it is known that some are riskier than others. Using HHI
the optimal strategy, in terms of reducing the capital requirement, is to diversify
the portfolio so that it has an equal amount of exposure in each sector (which is
trivially proven). This is of course not representative of any actual collection of
sectors although it has the advantage of not (wrongly) assuming any sector to be
lower risk and thus placing more of the portfolio in that particular one.

5.1 The Concentration Index

The Concentration Index (CI) is an alternative to the Herfindahl–Hirschman Index
proposed by Cabedo et al. [27]. Assuming that one can identify the covariance (or
correlation) structure between these sectors (i.e. their riskiness) a measurement that
encaptures this is an improvement on HHI.

To see the direct similarities between the two indexes note that HHI can be written
in matrix form as follows:
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HHI = S

T · I · S. (5.1)

here S is the vector with each component s

k

and I is the identity matrix. CI is
similarly defined as CI = S

T · VCM · S where VCM is the following matrix:
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Here �

ij

is the covariance between i and j, since k is the number of sectors the
divider is the maximum variance of all sectors and it is the same for each sector i.
By this definition, any negative covariance is excluded. The authors explain this
property by arguing that negative correlations should be nullified because the aim is
not a full quantification of portfolio risk, but rather, a quantification of risk-weighted
factors. Furthermore, HHI is a special case of CI where there are no correlations
between sectors and the variance is equal to one for all sectors.

There are some noteworthy properties of the CI index (that are all proven in the
paper by Cabedo et al):

Property 5.1 The maximum of CI is when the entire portfolio is allocated in the

sector with the maximum variance

Property 5.2 When introducing exposures in a new sector into a portfolio, the

index will decrease only when the risk (variance) of the new sector is lower than the

portfolio’s original variance.

Property 5.3 CI is downwards bounded. In a scenario where sectors are uncorre-

lated and every change in the fraction invested in a sector involves a decrease in the

index. For investments in a large enough number of sectors, CI will tend to 0.

The third property is shared with the HHI which also tends to 0 for a large number
of sectors. Since a common structure makes use of around 10-20 sectors the third
property is perhaps not as important as the other two. The second property ensures
that the insertion of a relatively (to the portfolio held) risky sector in the portfolio
cannot lower the risk. This is also not relevant to this thesis as the number of sectors
is fixed. Although, in the case where negative covariance is allowed the insertion
of a new exposure could then be seen as negating the risk of other exposures. The
first property is similar to the property of HHI with the critical difference that in
the case of HHI which sector is chosen does not matter when 100% of the portfolio
is allocated there, in the CI case each sector gives a scale on which sectors are worse
in terms of variance and covariance, i.e. risk.
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In the context of this thesis, CI has one fatal flaw, it does not yield a clear-cut view
on how each sector contributes to its value. To remedy this I propose that it is
redefined. In the case of HHI, the S from Eq. 5.1 is (as was already explained) the
concentration of exposures expressed as the percentage of the total exposure. To be
able to compare these models on a sector level and not a portfolio level CI is changed.
By taking VCM ·S as the risk-weighted exposure per sector and normalizing it with
the total sum of risk-weighted exposure. This gives an expression that is similar to
S and further this yields a new expression for CI:

ˆCI = ˆ

C

T · I · ˆC where ˆ

C =

VCM · S
1T · VCM · S . (5.4)

Here 1T is a vector of ones. This ˆCI is comparable in the context of exposure per
sector as well as the exposure of the total portfolio. There is, of course, no need to
normalize VCM when using this adjusted CI but it does not change the outcome
either way.

5.2 PD dependent sector concentration

Lefcaditis and Tsamis[28] argue that the add-on from sector concentration should
be dependent on the probability of default as a heavy concentration in a sector with
a, on average, high PD should be considered worse than one with lower average PD.
To capture this effect they introduce the S2 measurement:

S2
=

P
K

k=1
ˆ

S

2
i⇣P

K

k=1
ˆ

S

i

⌘2 where ˆ

S

i

= S

i

· PD
i

· (1� PD
i

), (5.5)

where PD
i

is the weighted average PD of sector i. One might think that an add-on
should include both the PD and the inter-sector correlation but as Gürtler et al. [26]
points out under the pillar II framework these are assumed to be interdependent.
Combining these two will, therefore, produce an inconsistent sector concentration
measure.

Concerning the properties of this measurement, it is similar to HHI. Exposure in
sectors with a high PD is proportionally scaled up making allocating exposure to
these more expensive compared to using the HHI measurement. Notably PD

i

· (1�
PD

i

) is not strictly increasing and has a maximum at PD
i

= 0.5. Consequently, a
sector with an average PD of a number close to 1 (e.g. a = 0.95) will (all else equal)
be treated the same as a sector with an average PD of 1 � a. This is neglected
due to the fact that no sector would realistically have an average PD greater than
50%.
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5.3 Capital Add-on Alternatives

Analogously with authors of CI and S2 I argue that only the using the exposure
weight does not encapture the underlying risk structure of the sectors. Ultimately
one would like a measurement that took all risk factors into account. CI and S2

account for sector correlations and PD respectively but neither account for LGD.
To this point, the sum of Risk-Weighted Assets (RWA) for each sector could be
used in replacement of the sum of EAD. For notation purposes this is called RI and
defined as:

RI =

KX

k=1

q

2
k

where q

k

=

P
i2k RWA

i

nP
j=1

RWA
j

. (5.6)

This proposal introduces a tractable way of relating the economic capital found to
the capital requirement while not straying from models already in use. It should
be noted that the Swedish FSA considered using the single factor RWA instead of
EAD. They concluded that the model risk was in this case higher. This claim is
not, however, backed up by any (shown) data and the multi-factor case was not
considered*.

One way of circumventing the inconsistency of an add-on sensitive to both PD, LGD
and the correlation of sectors is then to use the multi-factor RWA instead of EAD
in the HHI measurement. Although, as stated earlier in the section there is no clear
way to relate the multi-factor EC to RWA. To address this I propose to use the
Economic Capital of the multi-factor model instead.

EI =

KX

k=1

q

2
k

where q

k

=

EC
kP

K

i=1 EC
i

. (5.7)

As mentioned, if the scaling in RWA is neglected the proportion of EC and RWA in
each sector is exactly the same this would also represent the risk-weighted exposure
in each sector. This then leaves the problem of estimating EC

k

for each sector
k. It could be calculated using the analytical derivation of the multi-factor model.
When the multi-factor model is mapped to a single factor it is made dependent on
the inter-sector correlations and as mentioned it is already dependent on PD and
LGD. This single factor model can then be divided into each sector analogously
with how it is done using the IRB single factor. The issue using this method is
allocating quantiles of the sector and name-concentrations (�q

1
z

and �q

GA
z

). From
the equations for the granularity adjustment Eq. (4.17) and (4.18) it is clear that
this quantile could be divided into sectors by using the sector of each obligor i and
grouping these. This can be done similarly for equations (4.15) and (4.16) where
the sector of obligor i places the partial sum under the associated sector. Using this
the EC

k

can be rewritten as:
⇤ It is not explicitly stated that a multi-factor RWA was not considered. This is concluded from
the fact that they (SFSA) do explicitly state that they did not consider multi-factor models, in
general, it is then assumed that when speaking about RWA they refer to the single factor case.
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Although it should be noted that the granularity adjustment is assumed to be 0 in
Section 7.

The MC approach has no clear interpretation as to what the VaR (and consequently
the EC) is for each sector. It could be seen as the allocation of capital found by
dividing the loss in the z:th scenario so that the loss from obligors that defaulted
under this scenario are ascribed to their respective sectors. This, however, may
not give an accurate result as the sector factors are generated for each iteration
and a large loss may depend mainly on a combination of sectors (see Eq. 4.2) that
under-perform in this scenario. This could change to another combination of sectors
moving just a step up or down in the list of sorted losses. Without referring to the
equations one can think of this as that there is no one scenario that is representative
of the z:th worst case and the loss attributed to this scenario could be similar to the
total loss of all sectors to another scenario while completely different in which sectors
this loss is found in. What is wanted is then a sort of expected VaR for each sector in
the z:th scenario. A natural way of estimating this expected scenario could then be
to redo the simulation a sufficient number of times and find the average distribution
of loss per sector across all simulations. This would, however, require much in terms
of computing power. Recall that in these capital methods the concentration of
exposure is used and the actual value of the exposure (or in this case loss) is not
relevant. If the aim is to answer the question of how the loss is distributed in a
worst case scenario then this could be done using a different approach. Similarly
to expected shortfall, one could use the average of the distribution of loss in each
sector in the scenarios that have a total loss greater than the z:th scenario.

ˆEC
k

=

1

nz

MX

i>z

VaR
i,k

� EL
k

. (5.9)

Here M denote the number of scenarios in the MC simulation. nz is the number of
scenarios that have a loss greater than or equal to z. VaR

i,k

is sum of all obligors
contribution to the value at risk for sector k in scenario i. EL

k

is the sum of expected
loss for all obligors within sector k. By the definition presented in Section 2.2 this
measurement is not the unexpected loss and thus not the economic capital (which
is why it is denoted as ˆEC

k

). In the single factor case Gürtler et al. [26] show that
expected shortfall can be scaled so that it is theoretically the same as the value at
risk (although more stable) but there is not a clear way to achieve this in the multi-
factor case*. Using formula (5.9) as is would yield a slightly greater dependence on
the ES term since it is naturally always greater than the VaR and since the EL is
not scaled up accordingly this would skew the results. As was already mentioned the
actual values of "Economic capital" would not be used, only their division between
sectors which could result in this effect being negligible. To determine if this is
accurate it will be compared to the accurate but more computational heavy method
of determining the average VaR at level z using a bootstrap method. If a bootstrap
⇤ Within the Pykhtin framework it is possible to derive an expected shortfall but this defeats the
purpose since (as is shown) so is the value at risk.
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method was not used the computational time would be unfeasible long. In short,
the bootstrap algorithm is done in the following way:

1. Generate N loss scenarios on sector level from the sample portfolio.

2. Randomly select M of these scenarios and sort them by the sum of the loss
on a sector level

3. Select the z:th loss scenario as the VaR

4. Repeat from step 2. k times and use the average sector specific VaR

The specifics of this method is shown in Section 7.2.

To make clear which of these methods is referred to the use of MC simulations and
the analytical approach to finding EI is denoted EI MC and EI PY respectively.

5.4 Method Comparison

To summarize this section, 6 different methods of calculating a capital add-on were
presented. The HHI methodology is the one currently in use and will serve as a
benchmark for the performance of the other methods. In table 5.1 the dependencies
of input variables of each model is shown. In essence, all methods strive to punish
a high allocation of exposure to one sector while every method, apart from HHI,
includes some more complexity (i.e. risk) into the model.

Method Exposure (EAD) PD Sector corr. LGD

HHI X
S2 X X
CI X X
RI X X X
EI MC X X X X
EI PY X X X X

Table 5.1: Methods dependency on input variables

In the context of evaluating different capital add-ons some measurements could
arguably give meaningful results using a single portfolio (i.e. not comparing between
portfolios). If one thinks of the calculations done by the Swedish FSA as the true
converter of exposure per sector to a capital requirement one could make the case
that using the methods presented in Section 5.3 should fit in the same model (i.e.
no new estimation of parameters is needed). These models strive to provide a more
accurate view of the exposure by weighing in other factors and thus, in some sense
of the word, represent the true exposure per sector (in theory that is). This risk-
weighted exposure changes the model so that it is no longer optimal to allocate
capital evenly between sectors, the optimal strategy is to allocate the risk-weighted
capital evenly. As such, it is of interest how these measurements preform within
the framework presented by the Swedish FSA. Nevertheless, the opposite argument
could be made as well, that these models are in fact not directly comparable to HHI
in this framework. It then follows that their performance must be evaluated on the
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change in their values for a range of portfolios since they cannot be converted to a
capital add-on. While this is not done in this thesis the models are evaluated with
different input intra- and inter-correlations.
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6 Data Selection and Model Application

This section covers the selection process of the sample portfolio used as well as the
correlation matrix created to match the sectors of this portfolio. Additionally, ways
to lower the computational burden when applying the models is presented. Lastly,
how to nullify name-concentration is discussed.

6.1 Portfolio selection

Analogously with similar studies, the portfolio size of 10 000 exposure was chosen in
this thesis. These were drawn independently from a larger set of exposures and with
some restrictions on size and handling of obligors with multiple exposures in order
to make the model fit the requirement of one exposure per obligor. To keep the data
anonymous only the concentration of exposure per sector is shown but some broad
characteristics of each sector is discussed when they are compared in Section 7.2.3.
There are 13 sectors used in this thesis and their concentration is as follows:

#

Sector Name Concentration

1 A 10.1%
2 B 5.1%
3 C 2.8%
4 D 0.4%
5 E 3.7%
6 F 9.4%
7 G 3.6%
8 H 4.8%
9 I 39.8%
10 J 12.6%
11 K 3.3%
12 L 3.5%
13 M 0.9%

100%

Table 6.1: Sector concentration in terms of exposure

The argument could be made that the results should show the models applied to
a multitude of portfolios. Given that the characteristic of the sample portfolio is
already altered by different correlation matrices and intra-correlations this is set to
be outside the scope and only one sample portfolio is used. To clarify, Section 7.1.3
which presents the result of the DF calculations stands out from the rest of the
results as they do not stem from a model designed to have the input as a single
portfolio but rather a multitude of them. To avoid confusion the reasoning for
portfolio selection, in this case, is presented in that section.
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6.2 Model Application

The estimation of the characteristic of the portfolios is convoluted, to say the least.
In the context of this thesis the complexity of the calculations of PD, EAD and
LGD are all neglected and these values are taken at face value. The intra-sector
correlation is provided in the IRB framework* which leaves only the inter-sector
correlation to be estimated.

To estimate the correlation of default rates between sectors a natural first thought
might be to use historical data. Per usual when measuring defaults there is a lack of
data. In the context of capital requirements, severe economic downturns are most
interesting but these are few in numbers and provide a poor basis for statistical
analysis. Consequently, these historical default rates are often not preferred com-
pared to using equity correlations as a proxy for default rates. This is identical to
the reasoning behind the Vasicek model where it is assumed that the chance of a
default is directly dependent on the equity of a company. Assuming that this model
holds these should then be interchangeable. This connection has been shown by
Düllmann et al. [29].

It is outside the scope of this thesis to try to find an estimate of these correlations.
Instead, the correlation matrix produced by Moody’s and SFSA sector definitions
found in [30] is used. Since these sectors are not exactly the same as the sectors used
I attempt to match these as well as possible and use the matrix as a benchmark
when filling out missing values. Lastly, since this is not a calculated correlation
matrix it may not be positive-definite (which a true correlation matrix should be).
To remedy this Higham’s algorithm [31] is used to find the nearest true correlation
matrix. The resulting inter-correlation matrix is presented in Section 7.

6.2.1 Analytic Calculations of Value at Risk

Although it is not explicitly stated, the calculations of Pykhtin requires a small set
of credit scores (PD) to be applied to the portfolio that was used. This is due to the
matrix dimension of the calculations. Assume that in a portfolio of size n that each
obligor has a unique probability of default then equations (4.15) and (4.16) require
each combination of these obligors evaluated. While there is some symmetry, namely
w

i

·w
j

= w

j

·w
i

this takes the calculations from n⇥n to n over 2. For a portfolio of
10 000 obligors (as is used in this thesis) this means 49 995 000 combinations. While
this could be done, it is computationally much heavier than the MC simulation and
in that it becomes virtually useless as the argument for the analytic calculation is
that it sacrifices some accuracy for better computational time.

If the credit scores (PDs) are not unique then the combinations can be drastically
reduced. Consider a case where there are S sectors {S1, S2, ..., SS

} and M credit
scores {PD1,PD2, ...,PD

M

} and there is at least one obligor with each credit score
in every sector. It is then, under the framework of Pykhtin and under the assumption
that the intra-correlation analogously with the Basel framework dependent only on
PD, accurate to think of each group of sectors and credit scores (e.g. PD

i

and S
j

) as
⇤ Except for in Gürtler’s implied correlation model
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one larger obligor. It is then a matter of calculating the loss given default in terms
of size of the group by

P
i2S⇥M

w

i

·LGD
i

(used in equations 4.15 and 4.16) and their
squares

P
i2S⇥M

w

2
i

·LGD2
i

(used in equations 4.17 and 4.18). This new portfolio is of
the size M⇥S and thus the calculations are, if done naively, (M⇥S)2 << n⇥n.

6.2.2 Idiosyncratic Risk

As stated in Section 1.1 this thesis does not go into models concerning idiosyn-
cratic risk. Although, Eq. (4.17) and (4.18) are closely related to the granularity
adjustment which is the primary method used in measuring name-concentration.
It’s also something that is addressed (internally) in many banks while the sector
concentration is not. Further, if the multi-factor model is compared to the IRB
calculations of a portfolio then there is a discrepancy if the multi-factor is affected
by name-concentration since the IRB assumes that there is none.

This does present a problem in evaluating the effectiveness of methods regarding
sector concentration if the name-concentration of the portfolio is not negligible.
This is not a problem if the data is simulated so that the size of each exposure is set
to be the same and thus virtually no name-concentration will exist. However, it is
desirable to have a method that is directly applicable to real data and that does not
require a predefined model for name-concentration. In this thesis, this is achieved
in two different ways. Firstly, using the Pykhtin framework the name-concentration
is adjusted for or it can easily be assumed to be 0 similarly to the IRB model so no
additional adjustments to the methodology are needed in this case. The question is
then how to compare the result of a MC model of a multi-factor framework to IRB.
One approach would be to use a MC model for the single factor (IRB) model as well.
This means that the same name-concentration will affect the result of both models
and thus the discrepancy between them should only be due to the effect of sector
concentration. Furthermore, Since name-concentration is assumed to be negligible
in the IRB framework the difference between this single factor MC simulation and
IRB should only be due to name-concentration.

While this can be extended to sector level (which is needed in the index calculations)
initial testing showed that the method does not work as intended when extended
like this. Instead, the more computational heavy route of splitting the portfolio into
a more granular one is taken. This means that to remove the factor of idiosyncratic
risk all obligors with and EAD larger than X$ are split into n obligors retaining
PD, LGD while EAD is replaced with EAD/n. This is discussed in more detail in
Section 7.2.1.
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7 Results and Discussion

In this section, the results of the models presented in Section 4 and 5 are shown
along with a discussion of their effectiveness, robustness and usefulness when applied.
This section is divided into two parts: Section 7.1 discuss the results of multi-factor
models and diversification factor while Section 7.2 relates these results to a capital
add-on.

To estimate the results of the multi-factor models a sector correlation matrix is
needed. Following the methodology described in Section 6.2 the following correlation
matrix is found:

Sector A B C D E F G H I J K L M

A 1
B 0.80 1
C 0.84 0.90 1
D 0.75 0.77 0.81 1
E 0.77 0.82 0.86 0.81 1
F 0.78 0.89 0.85 0.83 0.80 1
G 0.83 0.85 0.88 0.70 0.87 0.83 1
H 0.73 0.69 0.72 0.67 0.66 0.72 0.71 1
I 0.69 0.73 0.80 0.89 0.62 0.75 0.59 0.57 1
J 0.56 0.66 0.64 0.65 0.52 0.51 0.58 0.70 0.61 1
K 0.68 0.68 0.73 0.81 0.86 0.68 0.61 0.72 0.57 0.64 1
L 0.75 0.87 0.79 0.83 0.83 0.83 0.72 0.83 0.66 0.77 0.91 1
M 0.77 0.80 0.85 0.90 0.83 0.81 0.62 0.63 0.80 0.56 0.90 0.87 1

Table 7.1: Inter-sector correlations

If nothing else is stated it is safe to assume that this is the correlation matrix used
in calculations. In the calculations of the concentration index (CI) the covariance
matrix is used, this is found by using the following randomly generated variance
(drawn from U(0.1,1)).

Sector A B C D E F G H I J K L M

Std. 85% 24% 56% 89% 73% 71% 96% 14% 95% 17% 69% 17% 86%

Table 7.2: Standard deviation per sector

In order to test the robustness of result, it is interesting to investigate the effect
of changing this matrix. To do this, two altered correlation matrices are used with
higher and lower correlations. These are constructed by increasing the decreasing
and decreasing the current correlation between two sectors by 10 and 20 percentage
points respectively. This is not done if the change means that the correlations is
greater than 1 or smaller than 0.
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Sector A B C D E F G H I J K L M

A 1
B 0.89 1
C 0.93 0.94 1
D 0.85 0.89 0.93 1
E 0.88 0.91 0.93 0.89 1
F 0.89 0.96 0.94 0.91 0.91 1
G 0.91 0.92 0.91 0.78 0.91 0.91 1
H 0.82 0.8 0.81 0.77 0.77 0.81 0.8 1
I 0.78 0.82 0.88 0.93 0.73 0.84 0.69 0.66 1
J 0.66 0.75 0.73 0.74 0.63 0.63 0.66 0.8 0.7 1
K 0.78 0.78 0.83 0.88 0.91 0.78 0.73 0.81 0.68 0.72 1
L 0.85 0.93 0.9 0.91 0.9 0.9 0.83 0.9 0.78 0.83 0.92 1
M 0.85 0.88 0.93 0.97 0.91 0.9 0.75 0.74 0.88 0.67 0.9 0.91 1

Table 7.3: High correlations

Sector A B C D E F G H I J K L M

A 1
B 0.60 1
C 0.63 0.71 1
D 0.55 0.57 0.60 1
E 0.57 0.62 0.66 0.61 1
F 0.58 0.68 0.65 0.63 0.59 1
G 0.64 0.65 0.70 0.51 0.69 0.65 1
H 0.53 0.49 0.53 0.47 0.45 0.52 0.51 1
I 0.49 0.53 0.60 0.69 0.44 0.56 0.37 0.38 1
J 0.36 0.46 0.45 0.45 0.30 0.30 0.39 0.49 0.42 1
K 0.48 0.46 0.53 0.61 0.68 0.48 0.41 0.53 0.35 0.45 1
L 0.55 0.69 0.56 0.63 0.65 0.65 0.50 0.65 0.45 0.59 0.71 1
M 0.58 0.61 0.69 0.71 0.61 0.61 0.40 0.41 0.61 0.34 0.74 0.70 1

Table 7.4: Low correlations

Note that the values shown in the three correlation matrices are approximations.
The actual matrices used include more precise estimations due to the change made
by Higham’s algorithm.

7.1 Multi-factor Performance

This section starts with the results of Gürtler’s method as this implied probability
is used in the other methods. When this is found the results for Pykhtin’s and MC
models are shown respectively with individual discussions and finally, these results
are compared. Throughout this section the economic capital EC is shown as percent
of total EAD.
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7.1.1 Implied Correlation

As stated in Section 4.4 This thesis does not aim to define what a well-diversified
portfolio would entail in terms of sector concentration. Instead, the model is used
with the assumption that the IRB-model gives the true result of EC and that a
multi-factor model that is fitted to achieve the same result for the same portfolio
would then better capture the effect of each obligor’s part in this economic capital.
This is admittedly a naive strategy and it would not be suitable to implement this
in practice. This is merely the interpretation of what it means to use the sample
portfolio in the Gürtler et al. framework. This is done for two reasons:

1. First and foremost one could argue that the sample portfolio is "relatively
well-diversified" (which is true for any portfolio) and consequently, it is inter-
esting to compare this to Gürtler’s findings. For this model to realistically
be implemented there would have to be some regulatory definitions on what
a well-diversified portfolio is (as is implicitly done with the intra-correlation
from IRB).

2. As is explained later on in the section the result from these calculations can be
used to deduce the differences (or similarities) between the MC and Pykhtin
models.

To find the parameters of Eq. (4.29) applied to the sample portfolio the aforemen-
tioned grid search was used. Each pair of a

o

and a1 with a step length of 0.01 was
tested and the squared distance between the calculated EC and IRB EC (i.e. UL)
was used as a measurement on how well the pair performed*. These results are
shown in Fig. 7.1.

Figure 7.1: Left: Distance of every pair. Right: left graph zoomed in

As is evident from this test there is no clear "perfect pair". From the left graph,
it is clear that increasing a1 beyond 0.32 is too much while the same cannot be
said for a0 where there is no clear cut-off point. From the right graph, it is obvious
that the pairs that have the shortest distance follow the pattern that if a1 is large
than a0 is small and vice versa. This is, of course, to be expected while it also

⇤ The following equation was used: Dist. = �
⇣
ECmf

⇣
⇢inter, ⇢

implied
intra

⌘
� ECIRB(⇢Basel)

⌘2
and the

maximum value of this is then (theoretically) the best fit.
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demonstrates that this model would have difficulties in determining a "perfect pair"
since from any such pair it could be possible to achieve the same result using a
nudge in opposite direction for a0 and a1. Having said that, except for one outlier of
a0 = 0.14, a1 = 0.31 (which is the actual shortest distance) there is a concentration
of well performing pairs around a0 = 0.20, a1 = 0.30. Consequently, the best of these
(which is the second shortest distance) is chosen. This yield a0 = 0.21, a1 = 0.29 as
the final result of the grid search. Note that even with 100 000 iterations per pair
there is some randomness in the model and therefore the outlier is not chosen, if
it was not there by a coincidence one would expect there to be other peaks (good
pairs) close to the pair.

7.1.2 Multi-factor Models on the Sample Portfolio

When implementing Pykhtin’s framework using the method described in Section
6.2.1 the computational time is significantly lowered to around 10 seconds for a
portfolio that is not already conformed the specified sector/PD groups. The majority
of this time is put in conforming the portfolio so that it is possible to insert it into
the model. The actual calculations are done in less than a second. This is in a stark
contrast to using the "naive" approach. While there is no time needed to conform or
otherwise reshape the data the model takes up to 5 minutes to produce the result.
It should be noted that the program used in this thesis, SAS System, specifically
Interactive Matrix Language (IML) while efficient at matrix operations may not be
best suited for the loops used to solve for the analytical value at risk. Loops had
to be used since there was a problem with memory allocation for a portfolio with
10 000 exposures (i.e. the sample portfolio used). Most likely the computational
time would have been significantly lowered if matrix operations were possible to
use. This was not tested for two reasons: 1. this model must be possible to use of
larger portfolios as well and if 10 000 exposures are computationally heavy than 1000
000 would not be feasible and 2. Conforming the portfolio is much more efficient
in all plausible scenarios and when this is done the effect of loops versus matrix
operations are negligible. Consequently, loops were used in all testing. To clarify, in
a mathematical sense loops versus matrix operations are equivalent to calculating
each of the partial sums of equations (4.15) - (4.18) versus rewriting the equations
in matrix form.

In table 7.5 the results of the components when running the Pykhtin model on the
sample portfolio is shown.

Variable Impact
�q

GA
z

0.39%
�q

1
z

0.01%
q

z

(

¯L) 1.32%
q

z

(L) 1.89%
EL 0.09%
EC 1.80%

Table 7.5: Analytical calculation

It is clear that the name-concentration in the portfolio has a significant effect. By

37



spot-checking the model on a much larger portfolio (100 000 exposures) with similar
characteristics it is found that this effect is indeed significantly reduced: testing
revealed �q

GA
z

= 0.02% while the other variables remain relatively stable.

In contrast to name-concentration, the effect of sector concentration is relatively
small. Recall that this sector concentration result stems from the discrepancy when
the mapping from multi-factor to a single factor is done and is not the same as sector
concentrations being negligible. To find the effect of sector concentrations different
correlation matrices need to be used and the end result (EC) compared.

Variable Low Corr High Corr
�q

GA
z

0.43% 0.37%
�q

1
z

0.02% 0.00%
q

z

(

¯L) 1.02% 1.46%
q

z

(L) 1.66% 2.00%
EL 0.09% 0.09%
EC 1.34% 1.92%

Table 7.6: Analytical calculation - high and low correaltions

The first apparent result is that the granularity adjustment is not stable. It seems
that using the high concentration matrix the mapping into the single factor is more
accurate which is why both the GA and infinity components are smaller. This could
be due to the high correlation matrix being more homogeneous across sectors than
the low correlation.

Before comparing the results from the Pykhtin model with the MC simulations it
is important to note that as Pykhtin’s model is analytical it will produce the same
result when the underlying data has not changed. This is not true for the MC
approach and as such the robustness of the model is of great importance. Most
other academic reports on this subject use simulated data which could affect the
convergence of the economic capital found when the number of iterations is increased.
Nevertheless, when calculating the EC of a sample portfolio both IMF and Gürtler
et al. (see Section 7.1) use 500 000 iterations. Table 7.2 shows how the EC converges
when iterations are sequentially increased to 500 000.
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Figure 7.2: Economic capital estimation based on MC-iterations

As can be seen, there is still some variance at 500 000 iterations and it seems as
the variance in the model is similar from 100 000 iterations and up. In terms of
percent (OBS not percentage points) the difference in EC when comparing 475 000
iterations to 500 000 is around 1%. This is deemed sufficient for this thesis but in
implementing this model this question may have to be revisited.

Finally, to evaluate the differences in the multi-factor models as well as their perfor-
mance with a different intra-correlation table 7.7 shows a side by side comparison
of the EC results.

EC model EC as percent of total EAD

IRB intra-corr Gürtler intra-corr Estimated intra-corr

IRB 1.69% 1.69% 1.69%
Pykhtkin ��q

GA
z

1.24% 1.90% 1.63%
MC single factor* 2.37% 2.37% 2.37%
MC multi-factor 1.96% 2.49% 2.36%
Pykhtkin 1.80% 2.37% 2.13%
IMF methodology** 1.84% 2.43% 2.17%

Table 7.7: Economic capital of single portfolio models

There are four key takeaways from these results:
⇤ To clarify, the different intra-correlation is not inserted into the single factor models
⇤⇤ Here the 30 largest exposures is used as the cut-off point
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1. When excluding the granularity adjustment (GA) from the Pykhtin model it
seems as it yields similar results to the MC estimate. This is shown by the
fact that economic capital of "Pykhtkin ��q

GA
z

" is close to that of "IRB"
when using the "Estimated intra-corr". Recall that in the grid search it was
the MC method that was used to determine these and as can be seen the
single factor and multi-factor MC are close as well. The conclusion is then
that the granularity adjustment slightly underestimates the effect of name-
concentration on this sample portfolio but that the analytical calculations of
value at risk is otherwise similar to the MC simulations.

2. As explained in Section 6.2.2 with this table a tractable measurement of the
effect of name-concentration is implicitly achieved. Since "IRB" assumes that
the portfolio is perfectly diversified while the single factor MC does not and
they are otherwise equal, the difference between the two is equal to the effect of
name-concentration on the portfolio. This further demonstrates the point that
the granularity adjustment underestimates the effect of name-concentration
since it is 0.56% while it is found to be 0.69% with this method. While it
would not be a perfect fit, replacing the GA variable with this value yields
much closer results for the analytical calculations. Note also that the difference
in MC multi-factor and Pykhtin with no granularity adjustment is 0.72%.

3. Using Gürtler’s methodology for intra-correlation all models agree that the
economic capital should be increased. This means that by the definition made
by Gürtler et al. this sample portfolio is not well diversified on a sector level.

4. The IMF methodology yields similar results to the Pykhtin model. Based
solely on these results it does not seem to improve the accuracy of Pykhtin.

Expanding on point 2. it can be shown that this measurement of name-concentration
is accurate by splitting larger obligors so that no obligor made up more than 1/10000
part of the portfolio (as is suggested in Section 6.2.2). Using this granular sample
portfolio, the following table is obtained:

EC model EC as percent of total EAD

IRB intra-corr Gürtler intra-corr Estimated intra-corr

IRB 1.69% 1.69% 1.69%
MC single factor 1.69% 1.69% 1.69%
MC multi-factor 1.25% 1.96% 1.67%
Pykhtkin 1.24% 1.93% 1.66%
IMF methodology 1.24% 1.94% 1.66%

Table 7.8: Economic capital of single portfolio models

Since the economic capital of the models that should theoretically converge do so
it is concluded that the name-concentration make up 0.69% of the economic capital
when the portfolio is not "granularized". Admittedly there is some variation in the
multi-factor models but in the context of this thesis, it is deemed negligible. Further,
the IMF result is somewhat insipid since there are no larger exposures.
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7.1.3 Diversification Factor Performance

The results in this section are based on 10 000 portfolios consisting of 100 obligors
randomly drawn from a larger portfolio. The portfolio size is deliberately kept low
to vary the characteristics of the portfolios and thus increasing the range (in terms
of CDI and �) of which the fitted model is accurate. Furthermore, feeding the model
data that is similar defeats the purpose of the model.

To calculate the multi-factor economic capital the Pykhtin model was used. This is
firstly due to the computational time being unreasonable long using the crude MC
model. Secondly, the possibility to assume that there is no name-concentration is
especially useful in portfolios with 100 obligors.

In Fig. (7.3) the portfolio data is visualized. On the left plot, the diversification
factor is shown on the z-axis, CDI on the y-axis and � on the x-axis. The right plot
shows the concentration of CDI and �. They (roughly) span from 0.55 < � < 0.9

and 0.1 < CDI < 1. There is a lack of data in the top and bottom right corners
which makes predictions made there uncertain.

Figure 7.3: Scatter plot viewed in 3d and 2d of sampled data

Using the parameterization shown in Eq. (4.28) the following values are found:

Parameter Estimate Approx Std Error 95% Conf. Lower 95% Conf. Upper

a0 1.00 0.00 1.00 1.00
a1 -1.03 0.02 -1.06 -0.99
a2 -0.26 0.01 -0.28 -0.24
a3 0.73 0.02 0.68 0.78

Table 7.9: Estimation of parameters

In line with similar studies the R

2
= 0.94 value shows this parameterization is

efficient. Finding a0 = 1 is also in line with what was found by Cespedes et al.
and this was notably done without any restrictions on it which were used in their
study.

The shape of the parameterized surface kept the shape found in previous studies. In
Fig. (7.4) this surface is shown along with the (linearly) extrapolated surface.
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Figure 7.4: Grid found by using parameterization (left) and extrapolated grid from
sample (right)

It is evident that the two are similar in areas where there is underlying data, although
the extrapolated surface is not as smooth. As mentioned, the top and bottom right
corners lack data and this explains the drastically different results there between
the two graphs. The parameterized surface provides a shape that is more intuitively
in this case. Finally, the fitted Eq. (4.28) is used to find the EC of the sample
portfolio.

CDI � DF EC

0.144 0.720 0.813 1.37%

Table 7.10: Using DF on sample portfolio

Comparing this with the value in table 7.7 there is notable difference, it seems
this method overestimated the sample portfolio. Based on the R

2 this should have
more to do with the sample portfolio used being an outlier than with an ineffective
model.

7.2 Relating Economic Capital to Regulatory Capital

The aim of this section is to compare the different indexes that were presented in
Section 5 while accounting for the underlying factors that can affect the outcome.
There are two such factors brought up in the Section 5 and 6.

1. The effect of name-concentration may offset the result and need to be removed
in order to ensure that only sector concentration affects the results (Section
7.2.1).

2. Is the expected shortfall estimator, shown in Section 5.3, is accurate and ro-
bust? Further, since the bootstrap model is assumed to yield the "true" an-
swer the robustness of this answer gives insight into how accurate it is (Section
7.2.2).

When these factors are accounted for the result of each index are compared and the
robustness of each individual factor is discussed (Section 7.2.3).
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7.2.1 Idiosyncratic Risk Removal

The result from table 7.7 is not enough to determine how much of the economic
capital is due to name-concentration. These results need to be divided into sector
components in order to be useful in the context of EI MC index. Note that the
name-concentration of the Pykhtin model can (again) be assumed to be 0 so no new
calculations are needed to remove the idiosyncratic risk in this case.

As discussed earlier in this thesis the results for value at risk on a sector are not
stable and analogously with what is done in the next section, the bootstrap method
is used to determine the value at risk for the single factor MC simulation. By
dividing the EC (or UL) of the IRB model into sectors and subtracting it from EC
found by a single factor MC simulation the resulting effect of name-concentration
on each sector is found. Since name-concentration is theoretically the same in the
single and multi-factor models the resulting name-concentration is used to adjust
the EC found by the multi-factor model. The results from this method are shown
in table 7.11.

Sector MC single factor IRB Initial diff. Positive diff. Major diff.

A 1.01E-03 1.28E-03 -2.05E-04
B 1.81E-03 1.47E-03 4.25E-04 4.25E-04
C 3.82E-04 4.59E-04 -6.02E-05
D 1.01E-04 1.41E-04 -3.20E-05
E 1.06E-03 1.05E-03 6.14E-05 6.14E-05
F 6.74E-03 2.66E-03 4.23E-03 4.23E-03 4.23E-03
G 3.64E-03 8.89E-04 2.79E-03 2.79E-03 2.79E-03
H 7.92E-04 1.20E-03 -3.46E-04
I 5.55E-03 4.93E-03 8.38E-04 8.38E-04
J 4.41E-04 6.59E-04 -1.89E-04
K 6.84E-04 1.02E-03 -2.79E-04
L 8.38E-04 8.22E-04 5.22E-05 5.22E-05
M 1.82E-04 2.71E-04 -7.44E-05

2.32% 1.68% 0.72% 0.84% 0.70%

Table 7.11: Economic capital of the single factor model on sector level

Recall the values presented in table 7.7, it is evident that the calculations when
aggregated yield the same result (i.e. IRB 1.68% and MC sf 2.37%, even if MC
sf deviate some due to the randomness of MC simulation). However, on a sec-
tor level, the contribution to EC is larger in some sectors using the IRB model.
This should be due to fluctuations in the calculations since the limit if there is no
name-concentration should be exactly IRB. Consequently, these values are ignored
and treated as zero since there is no prominent name-concentration. Following this
reasoning, sectors with smaller positive values are probably the result of the same
fluctuations and assumed to have no name-concentration as well. This leaves two
sectors that show prominent name-concentration. As mentioned, the difference be-
tween the two models could be used to adjust the multi-factor model. However, this
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test reveals a weakness in this model since it gives a negative EC for the two sectors
in question (compare sector-level results from table 7.11 and 7.12). The main advan-
tage of this model is that it is much faster computationally compared to "splitting"
the portfolio to a granular one. From this, I conclude that by applying this method,
on the sample portfolio used, it is not possible to measure name-concentration on
a sector level. This is in contrast to the fact that it is possible to measure the
name-concentration accurately on a portfolio level using this method.

Using the aforementioned method of "granularizing" the portfolio the following re-
sults are obtained.

Sector MC multi-factor MC gran. Port. Initial diff. Positive diff. Major diff.

A 4.19E-04 9.77E-04 -5.58E-04
B 1.32E-03 1.26E-03 6.29E-05 6.29E-05
C 1.31E-03 3.97E-04 9.14E-04 9.14E-04
D 6.31E-05 1.16E-04 -5.31E-05
E 1.12E-03 7.38E-04 3.84E-04 3.84E-04
F 4.64E-03 2.14E-03 2.50E-03 2.50E-03 2.50E-03
G 2.17E-03 5.72E-04 1.60E-03 1.60E-03 1.60E-03
H 3.74E-04 7.31E-04 -3.57E-04
I 7.39E-03 3.87E-03 3.52E-03 3.52E-03 3.52E-03
J 1.10E-05 3.40E-04 -3.29E-04
K 2.83E-04 6.23E-04 -3.40E-04
L 5.96E-04 6.42E-04 -4.63E-05
M 1.18E-04 2.14E-04 -9.60E-05

1.96% 1.25% 0.72% 0.90% 0.76%

Table 7.12: Economic capital of multi-factor model on sector level

Although the total amount of name-concentration does deviate somewhat from
the 0.69% found earlier this method offer answers at the correct magnitude. Of
course, there is no point in adjusting the results when a portfolio with no name-
concentration is already obtained. These results serve merely as a measurement on
name-concentration on a sector level while the "granularized" portfolio is used for
further calculations.

The key take away from these test is that the idiosyncratic risk of a sample portfolio
(containing much of it) is efficiently estimated on a portfolio level using an MC
simulation for a single factor model and comparing it to the analytical model. In
contrast, this does not hold when it is divided into a sector level where it was
overestimated and more importantly misguiding in which sectors contain it.

7.2.2 Expected Shortfall Estimator

Following the terminology presented in Section 5.3 the number of loss scenarios, N
is chosen to be 1 000 000 while the sample size in the bootstrap method M is set
to 100 000 which is aligned with the size used in the previous section. Finally, this
number of iterations k is chosen to be 5000 and this is done 2 times in order to

44



observe any fluctuations in the results. To achieve the estimate of economic capital
the EL per sector is subtracted from the VaR. These 2 results are then normalized
(so that they represent the percentage of EC in each sector) and compared to the
normalized expected shortfall (which has the EL subtracted as well).

Sector EC - Bootstrap 1 EC - Bootstrap 2 EC - Expected Shortfall

A 7.9% 7.7% 7.3%
B 10.0% 10.0% 9.6%
C 3.1% 3.1% 3.3%
D 0.9% 0.9% 0.9%
E 5.9% 5.9% 5.9%
F 17.2% 16.9% 17.7%
G 4.6% 4.5% 4.8%
H 5.8% 5.8% 5.6%
I 30.3% 30.7% 31.0%
J 2.6% 2.7% 2.4%
K 4.9% 4.9% 4.7%
L 5.1% 5.1% 5.1%
M 1.7% 1.7% 1.7%

Table 7.13: Economic capital per sector (name-concentration excluded)

The two trials with the bootstrap method yield similar results and on sector level
the maximum difference is 0.4 ppt (percentage points) and the mean difference is
0.08 ppt. This is deemed sufficiently stable to draw conclusions from and with
the reservation that if this was to be used in practice it may have to be more
stable than this. Arbitrarily choosing Bootstrap 2 to compare with the expected
shortfall (it does not make much difference which is chosen) the maximum difference
is 0.80 ppt and the mean difference is 0.24 ppt. This is deemed too inaccurate to
be used further in this section, it is, however, interesting that is does not deviate
more from the bootstrap method. To clarify, henceforth EI MC denotes using the
bootstrap method. Using percentage points and not the percentile difference may
be misleading but the argument for using this is that in the sector with a larger part
of the exposure contribute exponentially more (by definition) then the smaller ones.
Percentage points capture this discrepancy in impact better than the percentile
difference.

7.2.3 Index Performance

Having determined how to calculate EI trough MC simulations the different Indices
discussed in Section 5 can be compared side by side. This is leaning on the argument
made that any index that measures the division of exposure and shares the basic
properties of the Herfindahl-Hirschman Index (i.e. a measurement of the concentra-
tion of exposure) could be used in the SFSA’s mapping. Note that the term exposure
is used somewhat liberally here since the economic capital or risk-weighted assets
are not the same as the exposure. Additionally, no further information is obtained
on the performance of different indices by using SFSA’s mapping (see Section 1.2)
therefore only the HHI or equivalent is shown.

45



Method Index value

HHI 0.204
CI 0.412
ˆCI 0.099
S2 0.183
RI 0.144
EI MC 0.155
EI PY 0.158

Table 7.14: Regulatory add-on

Singling out the non-normalized concentration index all risk-weighted indices are
lower than the HHI indicating that the risk is more diversified according to these
indices. The normalized CI is significantly lower while S2 is the largest one except
for HHI, this shows that the portfolio is more well-diversified in terms of sector
correlations than in terms of sector PD. As is to be expected EI MC and EI PY are
close in their values while RI has the lowest value of this trio (henceforth, capital
indices). Since these three are less abstract than CI or S2 I argue that they are
better suited for a HHI replacement. While S2 produce a result closer to HHI which
does mean the change would be smaller if this was used instead the PD scaling used
in the measurement is somewhat arbitrary while the risk-weighted exposure found
by EC or RWA are already established and in the case of RWA already in use in the
IRB model.

To further compare the effect of the model table 7.15 show the exposure is divided
between the sectors using the different indices.

Sector HHI ˆCI S2 RI EI MC EI PY

A 10.1% 10.6% 10.8% 7.6% 7.9% 7.4%
B 5.1% 3.1% 8.3% 8.7% 10.0% 9.7%
C 2.8% 7.5% 1.6% 2.7% 3.1% 3.1%
D 0.4% 12.4% 0.7% 0.8% 0.9% 1.0%
E 3.7% 8.6% 5.2% 6.2% 5.9% 5.9%
F 9.4% 9.3% 15.5% 15.8% 17.2% 17.9%
G 3.6% 11.0% 2.4% 5.3% 4.6% 4.7%
H 4.8% 1.5% 6.0% 7.1% 5.8% 5.6%
I 39.8% 13.5% 35.7% 29.3% 30.3% 30.9%
J 12.6% 1.7% 2.4% 3.9% 2.6% 2.4%
K 3.3% 7.4% 5.3% 6.0% 4.9% 4.8%
L 3.5% 2.1% 4.2% 4.9% 5.1% 5.0%
M 1.0% 11.2% 1.8% 1.6% 1.7% 1.7%

Table 7.15: Exposure (risk-weighted) per sector in add-on models

It is evident that while the correlations to other sectors are not greater in sector
"F" the PD is and this effect is not mitigated by the effect of LGD since all models
effected by PD show an increase of exposure here. In sector "I" the PD are slightly
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below average as is evident by S2 but the effect of LGD lowers the exposure in the
sector for the capital indices. The effect of sector correlations is apparent in sector
"J" since it is known from table 7.1 that this sector has lower correlations than
other sectors and RI is larger the both EI indices for this sector, in addition, the
normalized CI is significantly lower in this sector. This effect is observed in "H" as
well.

Applying the indices to the high and low correlation matrices points to their depen-
dence on the correlation matrix (only showing indices affected).

Corr. Matrix ˆCI EI MC EI PY

Low 0.102 0.192 0.194
High 0.096 0.149 0.150

Table 7.16: Changing inter-correlation for HHI replacement indices

This test shows a clear dependence on the inter sector correlation for the EI method.
While this is not unexpected it differentiates from the CI method which does not
fluctuate as much. Recall that it is the proportion of EC that is relevant in this
method and as such a high correlation does not equate to a greater EI (while it does
equate to a greater EC). When the intra sector correlation is changed instead the
following results are found:

Intra-corr RI EI MC EI PY

Estimated 0.144 0.158 0.158
Gürtler 0.145 0.159 0.160

Table 7.17: Changing intra-correlation for HHI replacement indices

Evidently, this change does not affect the methods as much. This change should
theoretically be better distributed among all sectors given that their PDs are sim-
ilar which would indicate that in this context the PDs of the sectors are relatively
close.
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8 Conclusion

The purpose of this thesis was to evaluate the multi-factor models and to find a
suitable candidate for a pillar II capital add-on; this two-part question was evaluated
in Section 7.1 and 7.2 respectively.

On the sample portfolio used in this thesis Pykhtin’s analytic calculations accurately
estimated the economic capital when there was no name-concentration present. The
IMF methodology did not deviate much from the Pykhtin results and did similarly
underperform when name-concentration was present. Multi-factor MC simulations
did not clearly converge on the tested range while it did show relatively stable
results.

Using the adjustment to the intra-correlation proposed by Gürtler et al. the sample
portfolio should have its EC increased. Assuming instead that the portfolio was
defined as "well-diversified" the resulting change in intra-correlation was not stable
and no clear replacement for the calculations was found. The diversification factor
model proved to be robust and predicted the EC of the sample portfolio relatively
well. Consequently, by using a replacement intra-correlation it could be adjusted so
that the DF is not bounded.

To isolate the effect of sector risk the name-concentration was removed from the
calculations in two ways. For EC calculations on a portfolio level, it was sufficient
to compare the single factor MC to the multi-factor MC model to accurately measure
(and adjust for) the effect of name-concentration. On a sector level, this was not
found to be accurate and the portfolio was instead "granularized".

This thesis introduced two new indices, RI and EI as alternatives to the Herfindahl-
Hirschman index. Both show the desired effect of an intuitive dependence on the
PD and LGD. Moreover, EI shows a dependence on the inter-sector correlation. In
the sample portfolio, it was clear that the high concentration in one sector could
be (better) justified by these methods when the low average LGD and PD of this
sector was taking into consideration.

While both RI and EI remain relatively stable to changes in intra-sector correla-
tion EI fluctuates when the sector-correlations change. This is not necessarily an
argument against it but it does further cement the fact that this input needs to be
accurate and as discussed in this thesis, this is challenging.
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