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Abstract

Advertising on social media, and on Facebook in specific, is a global industry from which the social

media platforms get their biggest revenues. The performance of these advertisements in relation to

the money invested in the advertisement can be measured in the metric cost per thousand impres-

sions (CPM). Various regression modelling strategies combined with statistical learning approaches

for model assessment are explored in this thesis with the objective of finding the model that best

predicts CPM. Using advertisement data for 540 companies in Sweden during 2017, it is found that

the data set comprising of 12 covariates suffers from a high degree of multicollinearity. To tackle

this problem efficiently we apply different shrinkage regression methods. Starting from the Ridge and

Lasso regression methods, combining the two by an elastic net and then finally expanding Lasso to

adaptive Lasso, using cross-validation we find that the elastic net with approximately equal weights

on Ridge and Lasso component is the best performing model. In conclusion, when regressing a met-

ric such as CPM, on a set of variables which suffers from severe problems of multicollinearity, the

shrinkage regression techniques are needed.
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Sammanfattning

Annonsering p̊a sociala medier, och speciellt p̊a Facebook, är en global industri som de sociala me-

dieplatformarna har som största intäktskälla. Hur lyckosamma dessa annonser är i förh̊allande till

hur mycket pengar som investeras i dem kan mätas med nyckeltalet kostnad per tusen intryck (eng:

Cost per thousand impressions, CPM). I den här uppsatsen är olika regressionmodeller av statistisk

inlärning byggda för prediktering av CPM med syftet att hitta den modell som bäst kan prediktera

CPM. Genom att använda 540 företags annonsdata i Sverige under 2017 upptäcks det att de 12 förk-

laringsvariablerna kraftigt samvarierar varav olika shrinkage regressionsmodeller byggs. Genom att

först använda Ridge och Lasso, vilka sen kombineras i ett elastiskt nät och slutligen genom att utvidga

Lasso till elastisk Lasso, upptäcks det att den modell som presterar bäst utifr̊an cross-validation är

det elastiska nätet där ungefärligen lika stora vikter läggs p̊a Ridge och Lasso. Slutsatsen är att för

att regressera ett nyckeltal som CPM, där det är sannolikt att förklaringsvariablerna samvarierar, är

shrinkage regressionsmodeller att föredra.
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Abbreviations

CPC Cost per click

CPI Cost per impression

CPM Cost per thousand impressions

CTR Click through rate

OLS Ordinary least squares

MSE Mean squared error

AIC Akaike information criterion

BIC Bayesian information criterion

VIF Variance inflation factor

PCR Principal component regression

CV Cross-validation

ANOVA Analysis Of variance

SST Sum of squared total

SSR Sum of squared regression

SSRes Sum of squared residual

MST Mean squared total

MSR Mean squared regression
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Notation

A The matrix A.

Aᵀ The matrix A transposed.

A−1 The matrix A inverted, given that the inverse exists.

A � 0 The matrix A is positive definite.

aj The jth column vector of the matrix A.

aij The element on the ith row and jth column of A ⇔ The element on the ith row of aj .

a The vector a.

ai The element on the ith row of a.

a The scalar a.

ln(a) The natural logarithm of the scalar a.

â The estimated value of a from a model.

A The set A.

|A| The number of elements in the set A.

arg min
a
f(a) The value a that minimizes f(a).

E[Z] The expected value of a random variable Z.

Var[Z] The variance of a random variable Z.

SD[Z] The standard deviation of a random variable Z.

mx The arithmetic mean of x.

Sx The standard errror of x.

Z ∼ N (a, b2) The random variable Z is normally distributed with expected value a and variance b2.

Z
d→ N (a, b2) The random variable Z converges in distribution to the normal distribution.

Z ∼ χ2
a The random variable Z is χ2-distributed with a degrees of freedom.

Z ∼ Fa,b The random variable Z is F -distributed with parameters a and b.

Z ∼ ta The random variable Z is Student t’s-distributed with a degrees of freedom.
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1 Introduction

On February 4th 2004, the 20-year-old Harvard student Mark Zuckerberg created one of the world’s

biggest social media platforms, Facebook, with the objective to ”Give people the power to build com-

munity and bring the world closer together”.1 What he at that moment did not know, was that he

had created a social media platform that would continuously change the way people live all over the

world for many years ahead. Facebook contributes to the saying that since social media platforms

were launched, people check their smartphone the first thing in the morning and the last thing in the

evening. As of December 31st 2017 Facebook has 2.13 billion monthly active users, which is equivalent

to 30% of the world’s total population.2 With such many users a big opportunity comes of selling

online advertising space.

Advertising on Facebook and in a broader sense advertising on online social media platforms, is a

global industry that in many countries is bigger than advertising on television according to Chen, Yu,

Guo and Jia (2016) [5]. For Facebook in specific, their primary source of revenue comes from other

companies that advertise on their platform. Because of that, Facebook has their own ads manager

platform that is used in the process of creating advertisements. The advertising companies are asked

when creating advertisements, among many different settings, to provide who their core customers

are and how much they are willing to spend on this advertising campaign. From that, Facebook has

algorithms that optimize the advertisement in order for it to show up for the right target group. Since

the size of the target group can change drastically between different advertisements, key metrics, for

instance cost per click (CPC), cost per impression (CPI), cost per thousand impressions (CPM) and

click through rate (CTR), will vary.

This thesis aims to examine, from a mathematical statistics point of view, the properties of CPM

and what factors contribute to explain that metric. The setup is to explain CPM with different

regression models based on statistical learning and from that assess which regression model that best

explains CPM. The baseline regression model will be the standard multiple linear regression and other

statistical learning models such as Ridge, Lasso, elastic net, adaptive Lasso and principal component

regression (PCR) will be extensions of the multiple linear regression.

1.1 In Cooperation with Whispr Group

This thesis is conducted in cooperation with digital insights and strategy partner Whispr Group.

Whispr Group is a company of data scientists, business analysts and marketing analytics experts

who provide critical digital insights to brand professionals. As of 2018, Whispr Group has offices in

1Facebook Inc, ”Company Info”, 2004
2Facebook Inc, ”Company Info”, 2004
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Stockholm, New York and Oslo and provide their services to multinational clients. The business idea

is to create solid business strategies based on large-size consumer data from digital and traditional

social media.3

1.2 Problem Formulation

This thesis aims to construct statistical models to explain CPM on Facebook. CPM can be considered

as a metric that describe how much online traffic advertisements generate. The results can hopefully

help companies interested in creating awareness for their brand. In the models the dependent vari-

able will be CPM and the covariates include characteristics regarding the advertisement, for instance

CPC, CTR and impressions. In terms of regression modelling, different statistical learning regression

methods will be tested in order to investigate which model is the most appropriate. See the method

section in which this is more explained. The research question is formulated as:

Research question : Which regression model is the best for estimating CPM?

1.3 Purpose

The purpose of this thesis is to create regression models for explaining CPM on Facebook. The data

for advertisements on Facebook is granular and exists for many different companies. Hence, there

is no lack of data. A similar model cannot be found in an academic paper, as far as I am aware.

Furthermore, if the model will be successful, Whispr Group can use it in their daily operations which

will be a service with a potential to outperform their competitors.

1.4 Limitations

This analysis builds upon social media data from the calender year 2017 for a subset of Whispr

Group’s clients. The clients in the data set are those for which Whispr Group have complete data

sets of. It cannot be revealed who these clients are because of confidentiality reasons.

1.5 Outline

The thesis starts with providing the mathematical theory used in the models. For a reader with less

mathematical knowledge a more basic theoretical framework can be found in the appendix section.

The mathematical theory is followed by a literature review in which previous research regarding the

subject is outlined. After that, preprocessing of the data follows and an outline of the model building

is found. Then the results follow, in which the model building is done, and the performance of the

3Whispr Group, ”We deliver actionable insights to optimize marketing PR, product development and investment

activities”, 2015
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different models is tested. The thesis ends with discussion, in which the results are discussed, followed

by concluding remarks.
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2 Mathematical Theory

This section explains the mathematical theory used in this thesis. The theory for the multiple linear

regression model is stated in simpler terms in the appendix for a reader with less mathematical

knowledge.

2.1 Multiple Linear Regression Models

The multiple linear regression model can be written as

y = Xβ + ε, (2.1)

with

y = (y1, . . . , yn)ᵀ ∈ Rn,

X =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
...

...
...

. . .
...

1 xn1 xn2 · · · xnk

 ∈ Rn×p,

β = (β0, β1, β2, . . . , βk)ᵀ ∈ Rp,

ε = (ε1, . . . , εn)ᵀ ∈ Rn,

(2.2)

where p = k + 1. In the ordinary least squares (OLS) approach for estimating β, using the approach

outlined by Montgomery, Peck and Vining (2012) [17], the least-squares function is introduced as

S(β) = εᵀε = (y −Xβ)ᵀ(y −Xβ) = yᵀy − 2βᵀXᵀy + βᵀXᵀXβ. (2.3)

The approach then builds upon finding the β that minimizes S(β). That is, by solving

arg min
β
{S(β)} = arg min

β
{yᵀy − 2βᵀXᵀy + βᵀXᵀXβ}. (2.4)

Using a differentiation approach, we get the so called normal equations

∂S

∂β

∣∣∣∣
β=β̂OLS

= −2Xᵀy + 2XᵀXβ̂OLS = 0,

=⇒ XᵀXβ̂OLS = Xᵀy.

(2.5)

We need to have that the matrix XᵀX is invertible in order to solve equation (2.5) for β̂OLS, which

is equivalent to that the columns of X are linearly independent. That means in practise that no data

point can be a perfect linear combination of the other data points. Assuming that this holds, we get

the OLS-estimate of β as

β̂OLS = (XᵀX)−1Xᵀy. (2.6)

4



Hence, combining equations (2.1) and (2.6) we get

ŷ = X(XᵀX)−1Xᵀy = Hy, (2.7)

where the so called hat matrix is defined as

H = X(XᵀX)−1Xᵀ. (2.8)

Given the Gauss-Markov assumptions, see Hastie, Tibshirani and Friedman (2008) [10], it can be

shown that

E[β̂OLS] = E[(XᵀX)−1Xᵀy] = E[(XᵀX)−1Xᵀ(Xβ + ε)] =

= (XᵀX)−1XᵀX︸ ︷︷ ︸
=I

β + (XᵀX)−1Xᵀ E[ε]︸︷︷︸
=0

= β,
(2.9)

Var[β̂OLS] = Var[(XᵀX)−1Xᵀ(Xβ + ε)] = Var[β + (XᵀX)−1Xᵀε)] =

= (XᵀX)−1XᵀVar[ε][(XᵀX)−1Xᵀ]
ᵀ

= (XᵀX)−1Xᵀ σ2IX︸ ︷︷ ︸
=Xσ2︸ ︷︷ ︸

=σ2I

(XᵀX)−1 = σ2(XᵀX)−1.

(2.10)

Thus β̂OLS is unbiased, if the model is correct, and if the covariates are orthogonal, which gives that

(XᵀX)−1 is a diagonal matrix, then the estimates of βi and βj are uncorrelated. If the covariates

are not orthogonal, which in practise almost always is the case, then the variance of the estimates

increases as the degree of multicollinearity increases. It was shown in Hastie et al. (2008) [10] that

β̂OLS according to equation (2.6) is the unbiased estimate with the smallest variance. Nonetheless,

there are estimators of β with smaller variance that have some bias according to Montgomery et

al. (2012) [17]. This trade-off can be visualized in the mean squared error (MSE) by utilizing the

definition of variance

MSE[β̂] = E[(β̂ − β)2] = Var[β̂ − β] +
(
E[β̂ − β]

)2
= Var[β̂] +

(
E[β̂]− β

)2
︸ ︷︷ ︸
=(bias in β̂)2

.
(2.11)

2.2 Model Improvements

In this section improvements to the OLS regression are described. Improvements are limited to

transformations, analysis of residuals and problems of multicollinearity.

2.2.1 Transformations

A transformation of a covariate might be needed if it turns out that there is not a linear trend of y

with that covariate. The easiest way to spot this is simply by plotting y against xj and from that

5



try to spot the behaviour of a fitted function. For instance, if there is a clear quadratic behaviour of

y with a specific xj and a linear behaviour of y with every other xj , then X in (2.2) is updated to

X =


1 x11 · · · x1(j−1) x21j x1(j+1) · · · x1k

1 x21 · · · x2(j−1) x22j x2(j+1) · · · x2k
...

...
. . .

...
...

...
. . .

...

1 xn1 · · · xn(j−1) x2nj xn(j+1) · · · xnk

 . (2.12)

The conclusion from this is that the only requirement in terms of linearity, is that the model is linear

with the transformed data. If one believes that the true model is not linear but in fact a product of

the covariates, which is in practise quite common, the following transformation is adequate

yi = β0

( k∏
j=1

eβjxij
)
εi,

=⇒ ln yi = lnβ0 +

k∑
j=1

βjxij + ln εi,

(2.13)

and the transformed model is linear. It does of course exist many other linearizations that can be

used by basic calculus as outline by Montgomery et al. (2012) [17].

One of the assumptions for linear regression is that the dependent variable is normally distributed.

There are of course cases where this assumption does not hold and a solution to the problem is needed.

A common solution is the power transformation, in which the dependent variable is taken to a power

λ. Then, the most optimal value of λ can be found from maximizing the likelihood as a function of

λ. However, problems arise when λ = 0 since then all transformed data will be identically = 1. In

Box and Cox (1964) [3], the Box-Cox transformation, named after its founders, was suggested as

y′ =


yλ−1
λ , if λ 6= 0

ln y, if λ = 0,

(2.14)

where λ is a parameter to be determined such that the transformed data obtains the wanted charac-

teristics. Statistical software, as R, has built-in functions to determine λ by maximizing the likelihood

as a function of λ. To assess normality of the data both the original and transformed data can be

plotted in histograms to see which data that fits the normality best.

2.2.2 Influential and Leverage Points

To begin with, we must distinguish between the difference of a leverage point and an influential point.

A leverage point is defined in Montgomery et al. (2012) [17] as a data point that has an unusual

combination of the covariates, or in the case with only one covariate, a very high or low x-value. An

influential point on the other hand is defined as a data point that heavily influences the estimated
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coefficients, and it should consequently be questioned whether that data point is correctly measured.

The difference between leverage and influential point is visualized as:
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Figure 2.1: An example of a leverage point and an influential point. The black dashed line is the fitted curve

without the leverage and influential point. The red and blue dashed lines are with the leverage and influential

point respectively.

Consequently, influential points need to be detected in order to estimate the correct model. The

metric Cook’s Distance D measures the influence of each data point i [17]

Cook’s Distance: Di =

(
β̂(i) − β̂

)ᵀ
XᵀX

(
β̂(i) − β̂

)
p ·MSRes

. (2.15)

An alternative metric that lead to the same conclusion is

DFFITSi =
ŷi − ŷ(i)√
S2
(i)Hii

, (2.16)

where S2 is an estimate of standard error squared and the notation a(i) means that data point i is

excluded in the regression. Di > 1 is usually considered an influential point, whereas according to

Belsley, Kuh and Welsch (1980) [2], if |DFFITSi|> 2
√
p/n then the ith observation needs to be

extra investigated. Observe that Cook’s Distance and DFFITS exist for each of the n data points.

2.2.3 Multicollinearity

It is possible that the covariates included in equation (2.1) suffer from high degree of multicollinearity,

which will lead to an unstable model in the sense that the standard errors are large and a change

in one data point will lead to a large change in the estimate. There exists many ways of testing

for multicollinearity, and variance inflation factor (VIF) is one of them. VIF is calculated by first
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regressing xj against the other covariates. That is, run the regression

xij = β0 +

k∑
j′=1,j′ 6=j

βj′xij′ + εi, (2.17)

and then obtain the R2
j , as equation (8.12) instructs, from that regression. The VIF for covariate j

is then defined as

VIFj =
1

1−R2
j

. (2.18)

If R2
j is high, implying that there is a strong linear relationship of xj with one or many of the other

covariates, VIFj will conversely be large which is an evidence of multicollinearity. According to Mont-

gomery et al. (2012) [17] the model is said to suffer from severe problems of multicollinearity if one

or more VIFs are larger than 10. A cutoff value of 5 can also be used for detection, which will be the

case in this thesis. The model should be adjusted if that is the case, with one option being to exclude

the covariate with the highest VIF and test if the problem of multicollinearity is improved by that

adjustment.

Another sign of the degree of multicollinearity can be found by an analysis of eigenvalues. First, scale

each covariate such that the matrix XᵀX is in correlation form and then find the eigenvalues of XᵀX,

i.e. the roots λ to the equation det(XᵀX−λI) = 0. In the case of high multicollinearity, one or more

of the roots will be small in relation to the largest eigenvalue. Therefore, the condition number κ is

defined as

κ =
λmax
λmin

. (2.19)

The model suffers from a high degree of multicollinearity if κ > 100 according to Montgomery et

al. (2012) [17]. It exists even more metrics and methods to spot high degrees of multicollinearity.

However, this thesis will only incorporate VIF and conditional number to assess whether there is a

problem.

2.3 Method Validation

This section will explain statistical learning methods for validating and choosing the best regression

model.

2.3.1 k-Fold Cross-validated Training and Test Error

When estimating a model and one wants to assess that model in comparison to another similar model,

the performances need to be tested in some way. As described in Hastie et al. (2008) [10], a common

method for that matter is to first shuffle and randomly split the original data in a training set, with

for instance 2/3 of the original data, and a test set, with the remaining 1/3 of the data. The model is
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then estimated only with the use of the training data and its prediction performance is tested on the

test data. The performance metrics can then be compared between the different models to conclude

which model that performs the best. The error metric that will be used in this thesis is mean square

error.

Even though it seems straightforward to randomly split the data in a test and training set, there is a

risk that some models perform better on a certain choices of data set. k-Fold cross-validation (CV)

is a method to avoid such problems. At first, the original data set is randomly divided in k subsets

of data of equal size. Then, k models are estimated using k − 1 subsets as training data and testing

the prediction performance on the last kth subset that function as test data. Consequently k MSEs

are collected, which then are averaged to get the cross-validated MSE of the model.

Of course the parameter k must be decided before. Cross-validation is a computer-intensive statistical

learning method, consequently it is unpractical in terms of implementation if choosing k too large. In

this thesis k will be chosen to 10 throughout.

2.3.2 Variable Selection

Even though having access to a data set of k covariates, the most suitable model in terms of prediction

may not incorporate all available covariates. Also, it may be tedious to interpret a model that includes

all covariates if k is large. Because of these reasons, the best model may not incorporate all available

covariates according to Hastie et al. (2008) [10]. There are in fact 2k−1 combinations of covariates that

could create a model in the case of k available covariates. The term −1 comes from the requirement

of including at least one covariate in the model. If k is large, one relies heavily on the computer’s

power to find the model estimates in order to compare them. Common metrics to compare models in

this analysis are R2
Adj., Akaike information criterion (AIC) and MSE.

2.4 Shrinkage Regression Methods

Shrinkage regression methods are modified versions of the OLS-regression that shrinks the coefficients.

This section starts off from the common shrinkage methods Ridge and Lasso and is then followed by

combinations and extensions of those two.

2.4.1 Ridge

In this case of modelling CPM, with high-dimensional data from many available metrics, a risk of

having high degree of multicollinearity is prevalent. Without loss of generality, assume a linear model

without intercept and two covariates where all covariates are scaled to correlation form. In this case,
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the setup and solution of equation (2.5) is  1 r12

r12 1

β̂1
β̂2

 =

r1y
r1y

 ,

=⇒

β̂1
β̂2

 =
1

1− r212

 1 −r12
−r12 1

r1y
r1y

 ,

(2.20)

with r12 being the sample correlation between covariate 1 and 2. This shows that if there is a high

degree of multicollinearity, or in other words that r12 is large, then using equation (2.9) shows that the

variance increases, giving unstable estimates. Note that this is only an example in the 2-dimensional

case, however the same problem of multicollinearity also prevails in a multidimensional case. Hence,

OLS-regression with presence of high degree of multicollinearity may not be appropriate according to

Montgomery et al. (2012) [17].

Having the bias-variance trade-off from equation (2.11) in mind, an approach that is less penalizing

for the variance is the Ridge regression estimates of β. The estimate arises from solving the modified

normal equation with a chosen λ ≥ 0 according to Hastie et al. (2008) [10], that is

(XᵀX + λI)β̂Ridge = Xᵀy,

=⇒ β̂Ridge = (XᵀX + λI)−1Xᵀy.
(2.21)

Equation (2.21) comes from solving a modified version of equation (2.4) with a bounded feasible region

β̂Ridge = arg min
β

{
yᵀy − 2βᵀXᵀy + βᵀXᵀXβ

}
,

subject to

k∑
j=1

β2
j ≤ d2.

(2.22)

Equation (2.22) is a quadratic optimization program where the feasible region, according to Griva,

Nash and Sofer (2009) [9], can be relaxed using Lagrangian relaxation and the parameter λ ≥ 0. An

equivalent formulation of equation (2.22) is then

β̂Ridge = arg min
β

{
yᵀy−2βᵀXᵀy+βᵀXᵀXβ+λβᵀβ

}
= arg min

β

{
yᵀy−2βᵀXᵀy+βᵀ(XᵀX+λI)β

}
.

(2.23)

To obtain the solution in equation (2.21), a differentiating approach as for solving for the OLS-

estimates is used. The parameter λ is called by many different names, for instance Ridge parameter

and Lagrangian multiplier. There is a relationship between λ and d, which according to Hastie et

al. (2008) [10] is a one-to-one relationship. This implies that there is a unique solution for the

optimization program for each introduction of feasible region and therefore, the Ridge estimate is

uniquely determined by λ. Furthermore, it is easy to see that OLS regression is the special case of
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Ridge regression by letting λ→ 0. The key characteristics with Ridge regression are

E[β̂Ridge] = (XᵀX + λI)−1(XᵀX)β,

Var[β̂Ridge] = σ2(XᵀX + λI)−1XᵀX(XᵀX + λI)−1.
(2.24)

Hence, the Ridge estimate is biased and the variance is smaller than for OLS since λ ≥ 0, because

there is a possibility to obtain a lower MSE. Also, the bias increases and the variance decreases for

larger values of λ. It can be seen from equation (2.21) that

β̂Ridge =(XᵀX + λI)−1Xᵀy = (XᵀX + λI)−1XᵀX (XᵀX)
−1

Xᵀy︸ ︷︷ ︸
β̂OLS

=
(
I + λ(XᵀX)

−1
)−1

β̂OLS.

(2.25)

Equation (2.25) gives two interesting results. The first is that the Ridge estimate is a linear combina-

tion of the OLS-estimate. More importantly, the estimates will shrink in absolute value towards the

origin as λ increases. This is why Ridge regression, and other similar methods, are called shrinkage

regression methods. Furthermore, as λ handles how much shrinkage to include in the model, another

commonly used name of λ is shrinkage parameter. Now, a key feature in Ridge regression is how one

chooses λ. The common way of doing this is to find the k-folded cross-validated mean squared error

as a function of λ. The most suitable λ is the λ that minimizes the mean squared error.

2.4.2 Lasso

Another shrinkage method is Lasso regression, in which Lasso stands for Least Absolute Shrinkage

and Selection Operator. Lasso has shrinkage and variable selection features, as indicated by its name.

The Lasso estimate is found by solving another modification of equation (2.4) in which the feasible

region is of type L1 instead of L2

β̂Lasso = arg min
β

{
yᵀy − 2βᵀXᵀy + βᵀXᵀXβ

}
,

subject to

k∑
j=1

|βj |≤ t.
(2.26)

Equation (2.26) is a nonlinear optimization program with well-defined feasible region and, according

to Griva et al. (2009) [9], it can be equivalently written with a Lagrangian multiplier λ ≥ 0 as

β̂Lasso = arg min
β

{
yᵀy − 2βᵀXᵀy + βᵀXᵀXβ + λ

k∑
j=1

|βj |
}
. (2.27)

Solving equation (2.27) does not provide a closed form expression as for solving equation (2.23).

Instead, one could rely on optimization algorithms for quadratic programming to solve the program

in equation (2.27). However, another algorithm introduced is introduced in Hastie et al. (2008) [10],

called Least Angle Regression with Lasso Modification, in which a complex quadratic program does

not have to be solved:
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1. Set all regression coefficients equal to zero: β̂ = 0. Start with the residual e = y − ȳ.

2. Find the covariate xj that is most correlated with the residual.

3. Increase the coefficient βj in the direction of the sign of the correlation between the residual

and xj and collect new residuals along the way. Continue to increase βj until another covariate

xk correlates equally much with the residual as xj does.

4. Increase the coefficients βj and βk in the direction of their joint least squares coefficient of the

current residual, until another covariate xm correlates equally much with the residual as xj and

xk.

• If a non-zero coefficient passes zero, drop the covariate corresponding to that coefficient

from the active set of covariates and continue the algorithm.

5. Continue until all covariates have entered to the model.

In terms of implementation, the proper way of finding the optimal shrinkage parameter λ is to cross-

validate different values of λ and then finding the λ that minimizes the mean-squared error. λ in Lasso

regression has the same shrinkage interpretation as for Ridge, however the scaling of the parameter

might not correspond. Graphically, estimating Ridge and Lasso from the bias-variance trade off can

be seen as
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Figure 2.2: The green region represents the feasible region for the Ridge and Lasso optimization program

respectively for a regression model with two explanatory variables. The red contours represents different level

curves of the objective function S(β). The estimate of β will be found on the edge of the feasible region, as

expected by optimization theory.

Lasso regression possesses the same penalizing effects of bias, rewarding effects of variance, the one-

to-one relationship between feasible region and shrinkage parameter and similar shrinkage capabilities
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as Ridge regression. However, more and more coefficients will be identically zero in Lasso regression

for increasing values of λ according to Hastie et al. (2009) [10]. According to Griva et al. (2009)

[9], this is because the solution to the optimization program will occur at the extreme points of the

feasible region, which are at the corners of the feasible region in figure 2.2, since the feasible region

is not differentiable at the corners. Thus, Lasso regression also performs inevitable variable selection.

Because of these reasons Lasso regression can be suitable in a case with high degree of multicollinear-

ity and/or high-dimensional data.

Define the true support as

A = {j : j = [1, . . . , k], βj 6= 0}, (2.28)

where each βj is from the true model. Now, assume |A|= k0 < k, or in other words that one or more

of the true predictor coefficients are identically zero. Introduce the support of β̂ as Â = {j : j =

[1, . . . , k], β̂j 6= 0}. Since Lasso performs variable selection, we want the Lasso estimator to perform

the correct estimation. That is, we want

Â = A, (2.29)

with a high probability. This is in practise too ambitious, as Bühlman (2017) [4] showed that very

strong necessary conditions need to be satisfied. The work of Bühlmann (2017) [4] also showed that

when relaxing these strong necessary conditions for obtaining equation (2.29), one instead gets an

effective but not as ambitious property for Lasso stating that

Â ⊇ A. (2.30)

Equation (2.30) tells that Lasso estimation does not set some coefficients to zero when they in fact

should be non-zero. On the other hand, Lasso has the potential drawback of not setting sufficiently

many coefficients to identically zero.

2.4.3 Elastic Net

According to Hastie et al. (2008) [10], both Ridge and Lasso regression can be said to be special cases

of the more general Lq optimization program

β̂q = arg min
β

{
yᵀy − 2βᵀXᵀy + βᵀXᵀXβ + λ

k∑
j=1

|βj |q
}
, (2.31)

where q = 2 and q = 1 are equivalent to Ridge and Lasso respectively and the parameter q ≥ 0. In

terms of a feasible region, the estimate can be found by solving equation (2.4) with feasible region of
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type Lq

arg min
β

{
yᵀy − 2βᵀXᵀy + βᵀXᵀXβ

}
subject to

k∑
j=1

|βj |q≤ t.
(2.32)

Also, if q = 0 then

β̂q=0 =arg min
β

{
yᵀy − 2βᵀXᵀy + βᵀXᵀXβ + λ

k∑
j=1

|βj |0︸ ︷︷ ︸
=k, independent of β

}
=

=arg min
β

{
yᵀy − 2βᵀXᵀy + βᵀXᵀXβ

}
= β̂OLS.

(2.33)

The direct question here is how one should choose q, or in other words how one should define the

feasible region. The following figure shows the feasible region in two dimensions for four different

values of q (which could be generalized to higher dimensions):
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Figure 2.3: The feasible region for the general optimization program of the Lq estimate. The straight red

line is plotted to indicate what values of q that yield convex feasible regions and therefore convex optimization

programs.

A region Ω, as defined by Griva et al. (2009) [9], is convex if x, y ∈ Ω and δx+(1−δ)y ∈ Ω,∀δ ∈ [0, 1].

It can clearly be seen that the red line leaves the feasible region, if choosing δ = 1/2 for q = 0.8 and

q = 0.6. Consequently, as stated in Hastie et al. (2008) [10], concave optimization program arises

for values of q < 1, which are far more complicated to solve than their convex counterparts. q is

for these reasons restricted to q ≥ 1. Finding the appropriate value of q can often be done from the

specific data set, however according to Hastie et al. (2008) [10] ”it is not worth the effort for the extra

variance incurred”. They instead suggest to choose q ∈ [1, 2], i.e. to choose a compromise between
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Ridge and Lasso. In this approach, one should pay attention to how the variable selection features of

Lasso evolves in the case of combining Ridge and Lasso. In fact, the variable selection feature does

completely disappear if q > 1 since the feasible region is then differentiable at all points as stated by

Hastie et al. (2008) [10]. To still have the variable selection feature of Lasso and still combine Lasso

with Ridge the elastic net feasible region was defined by Zou et al. (2005) [22] as:

k∑
j=1

((1− α)β2
j + α|βj |) ≤ d2, α ∈ [0, 1], (2.34)

which can be interpreted as a weighted split between Ridge (α = 0) and Lasso (α = 1). The elastic

net is then used as a penalizing term to obtain the elastic net estimate

β̂Elastic net = arg min
β

{
yᵀy − 2βᵀXᵀy + βᵀXᵀXβ + λ

k∑
j=1

((1− α)β2
j + α|βj |)

}
(2.35)

In this case, one do not need an advanced method to choose a parameter q. What is needed is a

choice of α, i.e. a decision upon how much weight the estimate should put on Ridge in comparison to

Lasso. The following figure shows that for a given choice of 1 < q < 2 in the Lq estimate, the feasible

region can to a large extent be replicated by the elastic net:
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Figure 2.4: The green plots are for the Lq feasible region and black are for the elastic net. The feasible regions

for the upper and lower row respectively appear to be visually similar. However, note the sharp corners in

elastic net due to the variable selection features of Lasso.

Figure 2.4 shows that the Lq feasible region can be replicated by the elastic net and by still keeping

the variable selection features of Lasso. Since the elastic net is not differentiable at the corners of its

feasible region, by recalling for instance that f(x) = |x| is not differentiable at x = 0 as shown in

Persson and Böiers (2010) [18], the variable selection features of Lasso will be kept by all choices of

α.
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2.4.4 Adaptive Lasso

A desirable property for an estimator of β̂(δ) is the support recovery and screening property. In order

to define that property as done in Fan and Li (2001) [8], let the data be mean-centered such that the

intercept for the true model is neglected. Let the Lasso estimate in equation (2.27), as a function of

the number of data points n, be defined as

β̂
(n)

Lasso = arg min
β

{
yᵀy − 2βᵀXᵀy + βᵀXᵀXβ + λn

k∑
j=1

|βj |
}
. (2.36)

That implies, of course, that the Lagrangian multiplier λn is a function of n. Also let An = {j : j =

[1, . . . , k], β̂
(n)
j 6= 0}. The support recovery and screening property, as defined by Fan et al. (2001)

[8], is satisfied by a procedure δ if β̂(δ) satisfies

• limn→∞ P(An = A) = 1, i.e. the model identifies in limit the right subset of coefficients almost

surely,

•
√
n(β̂(δ)− β)

d→ N (0,Σ), where Σ is the covariance matrix for the true model, i.e. the model

has the right convergence rate.

The first condition in this oracle procedure is denoted as that the variable selection is consistent.

Now, without loss of generality assume a linear regression model according to equation (2.1) and that

A = {1, 2, . . . , k0}

, lim
n→∞

1

n
XᵀX = C =

C11 C12

C21 C22

 � 0, C11 ∈ Rk0×k0 .
(2.37)

As shown in Zou and Hastie (2006) [21], a necessary condition for consistency is that there exists a

vector s = (±1, . . . ,±1)ᵀ ∈ Rk0 such that∣∣∣C21C
−1
11 s
∣∣∣ ≤ 1 (Interpreted componentwise). (2.38)

Thus, an estimation procedure is inconsistent if condition (2.38) fails. It was shown in Zou (2006) [21]

that Lasso estimation is an inconsistent variable selection procedure and consequently not an support

recovery and screening procedure. Therefore, Zou (2006) [21] suggested a modified Lasso regression

which is shown to satisfy the support recovery and screening procedure, called adaptive Lasso that is

defined as

β̂
(n)

Adaptive Lasso = arg min
β

{
yᵀy − 2βᵀXᵀy + βᵀXᵀXβ + λn

k∑
j=1

ŵj |βj |
}
, (2.39)

where the vector ŵ is defined as ŵ = 1/|β̂OLS|γ for a chosen γ > 0. For computational matters, in

Efron, Hastie, Johnstone and Tibshirani (2004) [7] the LARS algorithm was suggested for finding the

adaptive Lasso estimate:
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1. Let x′j = xj/ŵj , j = 1, . . . , k.

2. Find the Lasso regression for

β̂
′

Lasso = arg min
β

{
yᵀy − 2βᵀX′

ᵀ
y + βᵀX′

ᵀ
X′β + λ

k∑
j=1

|βj |
}
. (2.40)

3. Compute β̂(Adaptive Lasso, j) = β̂
′

(Lasso, j)/ŵj .

The LARS algorithm contains two parameters that need to be estimated, namely λ and γ. A two-

dimensional cross-validation approach to find the most appropriate choices of coefficients is suggested

here by Zou et al. (2006) [21]. Furthermore, the adaptive Lasso can be slightly modified by choosing

other consistent estimators than β̂OLS. The cross-validation would in that case be three-dimensional

and the computational complexity would increase. In this thesis the OLS will be the only choice of

consistent estimator for finding adaptive Lasso estimates.

2.5 Derived Inputs Regression: PCR

PCR can help to solve the multicollinearity problem, if such a problem would occur, by reducing the

dimension of the covariates as stated by Montgomery et al. (2012) [17]. The idea with PCR is to

derive new covariates as linear combinations of the existing covariates such that the derived data will

be orthogonal which completely remove the problem of multicollinearity.

Montgomery et al. (2012) [17] stated that PCR will yield biased estimates with less covariates included

in the final model, and thus a model easier to interpret. To begin with, let the data in X be mean-

centered. Since XᵀX is a scaled version of Var[X], the matrix XᵀX is symmetric and then according

to the spectral theorem of linear algebra XᵀX is diagonalizable. Let T be the matrix of eigenvectors

and Λ be the diagonal matrix of corresponding eigenvalues to XᵀX such that

Tᵀ(XᵀX)T = Λ. (2.41)

Without loss of generality, arrange the eigenvalues such that Λ =diag(λ1, . . . , λp) with |λ1|≥ |λ2|≥

. . . ≥ |λp| and define T from that. Now, introduce

Z = XT, α = Tᵀβ. (2.42)

From this, introduce the model

y = Zα+ ε, (2.43)

and regress, according to equation (2.6), the OLS-estimate as

α̂ = (ZᵀZ)−1Zᵀy. (2.44)
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Now comes the procedure of choosing what principal components to include in the analysis. It is

suggested in the work of Hult, Lindskog, Hammarlid and Rehn (2012) [11] to regard the quantity∑s
j=1 λj∑p
j=1 λj

, (2.45)

as a function of s. As the quotient is approaching 1, the last eigenvalues and those corresponding

components will be left out of the model. Empirically, it is often the case that the quotient is close to

1 for a relatively small value of s, according to Hult et al. (2012) [11]. A similar quotient is suggested

in Izenman et al. (2008) [12]

1−
∑s
j=1 λj∑p
j=1 λj

, (2.46)

which yields the same results. s is then chosen accordingly and from that α̂ is modified to

α̂PCR = (α̂1, . . . , α̂s, 0, . . . , 0)ᵀ ∈ Rp. (2.47)

It can here be seen that the nonzero elements of α̂PCR will be less than the dimension of β̂OLS,

which implies that PCR reduces the dimension. By using equation (2.47) the estimated regression

coefficients are then calculated as

β̂PCR = Tα̂PCR. (2.48)

Furthermore, another approach of deciding how many components to include in the final model is to

cross-validate the mean squared error for different number of components in the PCR, and from that

choose an optimal number of components.
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3 Literature Review

The current state of knowledge regarding advertising on social media platforms is quite wide, in the

sense that it exists research of a lot of different topics. The research ranges across machine learning

and neural networks to factors for determining a winning advertisement from a business perspective.

Nonetheless, specific models within mathematical statistics for predicting CPM on social media plat-

forms do not yet exist to my knowledge as academic papers..

As explained in the introduction, advertising on social media platforms is done by describing who the

core customer is in order for the advertisement to be shown. As described in Liu, Kliman-Silver, Bell,

Krishnamurthy and Mislove (2014) [15], factors of interest are for example location, gender, age and

relationship status. In that paper, they find critique for the algorithm used by Facebook for finding

the right target group, by stating that the algorithm only uses a small sample of the data. They also

lift the problem that the owners of the data are the social media platforms and not the advertising

companies which makes it hard to verify what is actually successful in campaigns. Regarding metrics

for advertisement, it is explained in Liu et al. (2014) [15] that advertisers can choose the minimum,

median and maximum CPM for the campaign when posting it to Facebook.

Even though advertisers can choose levels of CPM for their campaign it is showed in Kolesnikov,

Logachev and Topinskiy (2012) [13] that it is hard to predict what the outcome of CPM will be. The

factors determining how successful the prediction will be is how many clicks similar ads have gotten.

They found that if similar ads have not got many clicks, the prediction will be estimated with large

confidence intervals. Instead they provide an algorithm for predicting CPM for advertisements with

sparse click history by extending the criteria for what can be considered a similar ad and giving these

ads a smaller weight in the prediction. The model built in Kolesnikov et al. (2012) [13] outperforms

baseline estimate and previous research for estimation.

Predicting CPC is done in Wang and Chen (2012) [20]. They propose various models for predicting

CPC not on social media platforms but for ad words, however not from a statistical point of view.

They found different semantic segments that could be of use when predicting CPC. Nonetheless, they

finish their paper by stating that the segments are hard to generalize to other advertisement forms

than ad words.

Other features of interest for predicting CPM is researched in Cheng, van Zwol, Azimi and Manavoglu

(2012) [6]. They propose that future modelling of CPM should include multimedia features of the

ad, for instance brightness, pixel rate, background colors, number of characters and more. They
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found significant results, for example that ”flash ads with audio generate more clicks than flash ads

without audio” and ”Large background image ads receive less clicks than small background image

ads”. Nonetheless, they point out the problem of finding correct and reliable data for replicating their

results and extend the study by including other multimedia features.

Investigating advertising on search engines, for example Google, was done in Tang, Yang and Pei

(2013) [19] through regression modelling. The dependent variable was the amount of price informa-

tion in an advertisement and the covariates in the model was divided in the three categories query,

ad content and who the advertiser was (by using dummy variables), in order to present the results to

companies and people with conflicting interests. Interesting for this thesis is that they included both

CPC and CPC2 as covariates, since they empirically find a quadratic behaviour of price information

versus CPC. Hence, if regressing CPC or another cost-based metric as CPM, against other covariates

in another setting, it is likely that some transformations of the covariates is needed. On the contrary,

one should note that the modelling in the work of Tang et al. (2013) [19] is done for search engines

and not for social media platforms, where the results can end up differently.

Online advertising from a mathematical point of view is also modelled in Krushevskaja, Simpson and

Muthukrishnan (2016) [14]. They highlight that ”advertisers pay per click (...), but require the aver-

age cost of a conversion to be below some threshold”, and there is therefore a discrepancy between

the advertiser and the social media platforms. They solve this by proposing a dynamic programming

approach to optimize the best response strategy.

A different topic of interest when studying CPM on social media platforms is the problem of click

fraud, having in mind that the cost of advertising is in some sense based on number of clicks. Click

fraud is when the clicks are not done by social media users or that the number of clicks are not mea-

sured correctly. In fact, this is a major problem that according to Google Inc.’s former chief financial

officer George Reyes ”is the biggest threat to the Internet economy”.4 The problem of click fraud is

highlighted in Midha (2009) [16] by finding evidence that ”70 percent of advertisers are worried about

click fraud” and some companies experience a click fraud rate as high as 35 percent. One could handle

the problem of click fraud similar to how missing data points is handled in mathematical statistics.

However, since the click fraud rate is so high as indicated in Midha (2008) [16], the models suggested

will inevitably be affected by click fraud.

Having in mind the problems caused by click fraud, different models other than the CPM-model for

determining the price of an advertisement on social media platforms was suggested in Amirbekian,

4Crawford, K., CNN, 2004
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Chen, Li, Yan and Yin (2012) [1]. The models suggested incorporate the quality of the clicks and by

that try to neglect the effect caused by click fraud. They are created from logistic regression, random

forest modelling and a two-stage regression and all of the three models are in need of less historical

data than other similar models. To sum up, the problems of click fraud that was highlighted by Midha

(2008) [16] in 2008 was solved in 2012 by Amirbekian et al. (2012) [1].
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4 Data and Model Building

This section explains the data used in the thesis and how the models are built.

4.1 Explorative Data Analysis

The data used in this thesis are advertisement data from Whispr Group’s clients. It consists of perfor-

mance metrics of advertisements displayed in Sweden on Facebook from January 1st to December 31st

2017. The data is collected on aggregated level for Whispr Group’s clients and split by the campaign.

Each client can decide through its specific account on Facebook’s ads manager to create advertise-

ments on certain campaigns. Hence, each data point is the aggregated advertisement performance

on Facebook for a specific campaign for one of Whispr Group’s client. The names of the clients and

the campaigns cannot be revealed because of reasons of confidentiality between Whispr Group and

its clients. The data in the data set is (with description defined on Facebook’s Ads manager):

Variable name Description

CPM The average cost for 1000 impressions.

Reach The number of people who saw the advertisement at least once.

Frequency The average number of times each person saw the advertisement.

Impressions The number of times the advertisement was on screen.

Social_reach The number of people who saw the advertisement when it was displayed

with social information of other Facebook friends that have engaged with

the advertisement.

Social_impressions The number of times the advertisement was displayed with social informa-

tion of other Facebook friends that have engaged with the advertisement.

Actions The sum of likes, comments, shares and link clicks on the advertisement.

Amount_spent The total amount of money spent on advertisement and the Facebook page.

Measured in SEK, not taken into account monetary inflation.

Cost_1000_reached The average cost to reach 1000 people.

Page_engagements The sum of likes, comments, shares and link clicks on the Facebook page

that are attributed to the advertisement.

Link_clicks The number of clicks on links shown in the advertisement.

CPC The average cost for each link click.

CTR The fraction of the times people saw your ad and performed a click.

Table I: Description of the dependent variable and the covariates in the data set. The dashed line mark the

distinction between dependent variable and covariates.
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The difference between Reach and Impressions, which in some sense is confusing, can preferably be

explained by the following example: If the same advertisement appears on the same person’s news

feed twice, it has reached that person once but it was on screen twice. Therefore, in this exam-

ple is Reach = 1 and Impressions = 2. The difference between Reach and Social_reach is that

Social_reach is only effected if someone of your Facebook friends have liked that advertisement be-

fore it appears on your news feed. The distinction between Impressions and Social_impressions

is defined in the same manner.

All dependent variables are attributable to the advertisements solely, except for Amount_spent and

Page_engagements. Amount_spent is attributable to a combination of the Facebook page of the

advertising company and the advertisements whereas Page_engagements is attributable to only the

Facebook page of the advertising company.

4.2 Data Preprocessing

The data was cleaned before any statistical modelling could be started. At first, the data set contained

858 data points. The following cleaning was made, in this specific order, which reduced the data set

with (x) data points:

1. Delete data points with Amount_spent = 0. (280)

2. Delete data points with Reach = 0. (6)

3. Delete data points with Reach = ”Cannot be found”. (9)

4. Delete data points with Impressions > 3, 000, 000. (23)

All removals are straightforward, except possibly for number 4 which can be motivated by considering

those data points as outliers. For instance, the maximal of Impressions before the cleaning of the

data was 11.7M which can be related to Sweden’s population of 10M at the time.5 The data contained

no missing values after this cleaning. The scale and spread of the variables after the data cleaning

differs quite a lot, as this summary statistics shows:

5Statistics Sweden, ”Sveriges Folkmängd fr̊an 1749 och fram till idag”, 2018

23



Statistic N Mean St. Dev. Min Max

CPM 540 17.695 29.479 0.260 199.820

Reach 540 190,490.800 271,799.900 8 2,227,066

Frequency 540 2.608 4.348 1.000 58.950

Impressions 540 456,607.200 624,144.600 9 2,997,043

Social reach 540 116,115.700 183,570.700 0 1,980,593

Social impressions 540 261,951.600 394,527.100 0 2,451,203

Actions 540 158,013.200 287,743.400 0 3,287,375

Amount spent 540 4,091.011 9,664.541 0.010 100,566.400

Cost 1000 reached 540 38.598 68.867 0.300 500.600

Page engagements 540 22,051.520 68,466.790 0 742,596

Link clicks 540 3,549.957 7,991.678 0 112,439

CPC 540 2.036 5.401 0.000 73.710

CTR 540 1.794 1.867 0.000 14.760

Table II: Summary statistics for the dependent variable and the covariates in the data set. The dashed line

mark the distinction between dependent variable and covariates.

Table II raises doubt whether the variables should be rescaled to obtain a data set more coherent in

terms of scale. Nonetheless, Facebook Business Manager that provides the data set has no built-in

feature to define new variables. And in order not to require too much analysis of the data before

applying it to the model, it is more convenient to define the model in terms of non-scaled variables.

One could argue here that transformations, if applied to the data, also are methods of rescaling the

data. However, transformations are necessary to obtain a better performing model whereas rescaling

only is a change of interpretation. Hence, transformations will be done if necessary and rescaling will

not be done.

4.3 Model Building Approaches

This section present various model building strategies to be considered and studied. The strategy

follows to some extent the strategy described in Montgomery et al. (2012) [17].

1. A model is fitted without any transformations.

2. All covariates are investigated to see whether any transformations are needed. The dependent

variable is assessed through Box-Cox transformation. A model with the transformed data is

fitted and hereafter is the transformed data used.

24



3. The residuals are assessed to find potential influential and leverage points. Influential points

are deleted and a new model is fitted. The residuals in the obtained model are also assessed.

4. The data set is investigated for multicollinearity, by the metrics VIF and condition number.

5. All possible regression is performed in order to find if any covariates can be excluded out of the

model, and in that case which covariates to exclude.

6. The first shrinkage method is tested, Ridge regression. Cross-validation is performed to find the

optimal λ.

7. Lasso regression is tested. Cross-validation is also here performed to the optimal λ.

8. The combination of Ridge and Lasso, elastic net is tested. Two-dimensional cross-validation is

performed to find the optimal weights for Ridge and Lasso and to find the optimal λ.

9. Adaptive Lasso is tested and compared to regular Lasso. Two-dimensional cross-validation is

also here performed, but in this case to find the optimal γ and λ. Cross-validation using other

estimators than OLS, as suggested in implementation for adaptive Lasso, is not performed.

10. Using derived inputs is PCR performed. The performance for including different number of

principal components are compared.
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5 Results and Analysis

5.1 Standard Regression Modelling

The standard regression model, as defined in the mathematical theory, will be created in this section.

5.1.1 Transformations

Without any transformations, the standard model to be estimated is

CPMi = β0 + β1Reachi + β2Frequencyi

+ β3Impressionsi + β4Social_reachi

+ β5Social_impressionsi + β6Actionsi

+ β7Amount_spenti + β8Cost_1000_reachedi

+ β9Page_engagementsi + β10Link_clicksi

+ β11CTRi + β12CPCi + εi.

(5.1)

Some type of transformations might be required to the data as outlined in the mathematical theory.

Box-Cox transformation of the dependent variable give the following figure:

−2 −1 0 1 2

−
3
0
0
0

−
2
5
0
0

−
2
0
0
0

−
1
5
0
0

λ

lo
g
−

L
ik

e
lih

o
o
d

 95%

(a) −2 ≤ λ ≤ 2

0.00 0.05 0.10 0.15 0.20 0.25 0.30

−
1
5
3
0

−
1
5
2
5

−
1
5
2
0

−
1
5
1
5

λ

lo
g
−

L
ik

e
lih

o
o
d

 95%

(b) 0.0 ≤ λ ≤ 0.3

Figure 5.1: Box-Cox transformation of the dependent variable CPM as a function of the Box-Cox parameter λ.

The three horizontal lines denote the optimal value and the 95% confidence interval.

As suggested in the work of Box et al. (1964) [3] is the Box-Cox parameter λ not chosen exactly

to the λ that maximizes the likelihood, but instead for a λ close to the maximizer such that the
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transformations become easy to interpret. Hence, in this case chosen to λ = 0.1. The non-transformed

and Box-Cox transformed data can then be seen in the histograms:

Original data

CPM

F
re

q
u
e
n
c
y

0 50 100 150 200

0
1
0
0

2
0
0

3
0
0

4
0
0

(a) Original data

Box−Cox transformed: λ=0.1
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(b) Box-Cox transformed data

Figure 5.2: Histogram for the dependent variable CPM, first for the non-transformed data and then for the

Box-Cox transformed data.

As indicated by figure 5.2 the normality assumption of the dependent variable is better fulfilled for

the Box-Cox transformed version of CPM since the histogram in figure 5.2(b) is more similar to the

normal density function. Therefore, hereafter will the transformation

CPMi →
CPM0.1i − 1

0.1
, (5.2)

be used. Each covariate is separately plotted against the (Box-Cox transformed) dependent variable

CPM in order to see if any transformations are needed for the covariates.
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Figure 5.3: Scatter plot for the covariates Reach, Frequency, Impressions, Social_reach,

Social_impressions and Actions. The blue line in each plot denote the linear trend, estimated by OLS.
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Figure 5.4: Scatter plot for the covariates Amount_spent, Cost_1000_reached, Page_engagements,

Link_clicks, CTR and CPC. The blue line in each plot denote the linear trend, estimated by OLS.
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From figures 5.3 and 5.4 it can be seen that some transformations are most likely needed. For instance,

it appears that the square roots of Social_reach and of Actions should be used in the model. One

way to find the most appropriate transformations is to first decide upon certain transformations, fit

a linear trend of the transformed data and the dependent variable and from that model collect a

performance metric, for instance R2. Then, for each covariate, the transformation that maximizes R2

is chosen. It appears that different power of reciprocal transforms are needed, according to figures

5.3 and 5.4. In some sense can ln(·) be considered as the power transformation of order zero, and

that transformation will consequently also be tested. To summarize, the transformations that will be

tested are:
√
x, lnx, x−1, x−

3
2 and x−2. Note that if at least one value is zero in the non-transformed

data will some of these transformations not be defined.

Reach Frequency Impressions Social_reach

x 0.058 0.001 0.065 0.047
√
x 0.077 0.002 0.077 0.062

lnx 0.053 0.001 0.048 N/A

x−1 0.020 0.000 0.018 N/A

x−
3
2 0.000 0.001 0.013 N/A

x−2 0.014 0.000 0.011 N/A

Social_impressions Actions Amount_spent Cost_1000_reached

x 0.047 0.026 0.111 0.536
√
x 0.059 0.072 0.119 0.735

lnx N/A N/A 0.049 0.803

x−1 N/A N/A 0.013 0.235

x−
3
2 N/A N/A 0.007 0.107

x−2 N/A N/A 0.006 0.065

Page_engagements Link_clicks CTR CPC

x 0.008 0.015 0.016 0.229
√
x 0.002 0.052 0.025 0.442

lnx N/A N/A N/A N/A

x−1 N/A N/A N/A N/A

x−
3
2 N/A N/A N/A N/A

x−2 N/A N/A N/A N/A

Table III: Each column is the R2 of a fitted model of the dependent variable CPM and the covariate of the

column. The bold numbers are the maximal R2 for each covariate. N/A = Not Applicable.
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Table III gives indication about how the transformations could be done. These transformations will

be done after maximizing R2 and then subtracting mean and dividing by standard error to set the

covariates on correlation form

Reachi →
√
Reachi →

√
Reachi −m√Reach

S√Reach
,

Frequencyi →
√
Frequencyi →

√
Frequencyi −m√Frequency

S√Frequency
,

Impressionsi →
√
Impressionsi →

√
Impressionsi −m√Impressions

S√Impressions
,

Social_reachi →
√
Social_reachi →

√
Social_reachi −m√Social_reach

S√Social_reach
,

Social_impressionsi →
√
Social_impressionsi →

√
Social_impressionsi −m√Social_impressions

S√Social_impressions
,

Actionsi →
√
Actionsi →

√
Actionsi −m√Actions

S√Actions
,

Amount_spenti →
√
Amount_spenti →

√
Amount_spenti −m√Amount_spent

S√Amount_spent
,

Cost_1000_reachedi → ln Cost_1000_reachedi →
ln Cost_1000_reachedi −mln Cost_1000_reached

Sln Cost_1000_reached

,

Page_engagementsi →
Page_engagementsi −mPage_engagements

SPage_engagements
,

Link_clicksi →
√
Link_clicksi →

√
Link_clicksi −m√Link_clicks

S√Link_clicks
,

CTRi →
√
CTRi →

√
CTRi −m√CTR
S√CTR

,

CPCi →
√
CPCi →

√
CPCi −m√CPC
S√CPC

,

(5.3)

where mx = 1
n

∑n
i=1 xi is the arithmetic mean and Sx =

√∑n
i=1(xi −mx)2 is the standard error.

There is a risk that these transformations are not the most appropriate since it has not been taken

into account how transformations of multiple covariates affect the dependent variable. That means

that the linearity of the dependent variable as a function of multiple covariates could be worsen by

the transformation. Hence it could be the case that transformations of more advanced formulas could

be even better. Nonetheless these transformations are easily interpreted and the model itself will

consequently be easier to interpret. The transformations in equation (5.3) will be used for the data
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hereafter. The updated version of equation (5.1) is

CPM0.1i − 1

0.1
=β1

√
Reachi −m√Reach

S√Reach

+ β2

√
Frequencyi −m√Frequency

S√Frequency

+ β3

√
Impressionsi −m√Impressions

S√Impressions

+ β4

√
Social_reachi −m√Social_reach

S√Social_reach

+ β5

√
Social_impressionsi −m√Social_impressions

S√Social_impressions

+ β6

√
Actionsi −m√Actions

S√Actions

+ β7

√
Amount_spenti −m√Amount_spent

SsqrtAmount_spent

+ β8
ln Cost_1000_reachedi −mln Cost_1000_reached

Sln Cost_1000_reached

+ β9
Page_engagementsi −mPage_engagements

SPage_engagements

+ β10

√
Link_clicksi −m√Link_clicks

S√Link_clicks

+ β11

√
CTRi −m√CTR
S√CTR

+ β12

√
CPCi −m√CPC
S√CPC

+ εi,

(5.4)

where the intercept is taken out of the model since the data is mean-centered. The following regression

results is obtained if estimating the models according to equations (5.1) and (5.4):
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Dependent variable:

CPM

(5.1) (5.4)

Reach −3.990·10−6 (8.405·10−6) 0.012 ∗∗ (0.048)

Frequency 2.757 ∗∗∗ (0.141) −0.308 ∗∗∗ (0.010)

Impressions 2.994·10−6 (3.353·10−6) −0.170 ∗∗∗ (0.047)

Social reach 3.976·10−6 (1.206·10−5) 0.112 ∗∗ (0.047)

Social impressions −3.465·10−6 (5.192·10−6) −0.132 ∗∗∗ (0.045)

Actions −3.458·10−6 (3.466·10−6) −0.035 ∗∗ (0.014)

Amount spent −1.662·10−5 (8.294·10−5) 0.022 (0.013)

Cost 1000 reached 0.404∗∗∗ (9.987·10−3) 0.980 ∗∗∗ (0.011)

Page engagements −1.192·10−5 (1.125·10−5) 0.010 (0.009)

Link clicks −2.233·10−5 (1.154·10−4) −0.025 ∗ (0.013)

CPC 0.373 ∗∗∗ (0.114) 0.061 ∗∗∗ (0.011)

CTR 1.119 ∗∗∗ (0.298) 0.049 ∗∗∗ (0.008)

Constant 7.315 ∗∗∗ (0.994)

Observations 540 540
R2 0.846 0.980
R2
Adj. 0.842 0.980

F0 (df = 12; 527) 240.869∗∗∗ 2,195.213∗∗∗

AIC 4,204.338 −563.584
BIC 4,264.420 −503.502

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table IV: OLS regression without and with transformed covariates, with the standard errors of the estimates

in parenthesis. Note that the interpretation of the coefficients are different between the two models due to

transformations of the data, and thus it is not possible to compare the estimates of the coefficients. Also note

that model (5.4) is defined without intercept.

Table IV shows, as expected, that model (5.4) with transformed data outperforms model (5.1) without

transformed data. This is seen from, for example, that both R2 and R2
Adj. are higher and that AIC

and Bayesian information criterion (BIC) are lower for model (5.4). Also, the model is improved in

the sense that more covariates are statistically significant on high confidence levels, which indicate in

some way that the transformations have contributed to stabilize variances. Consequently, the model is
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improved by using transformed data and henceforth will the transformed data according to equations

(5.2) and (5.3) be used.

5.1.2 Leverage and Influential Points

In this section it will be assessed whether the model suffers from influential points. Any influential

points will be detected and thereafter deleted to see whether the model is improved from the deletion.

The residuals for model (5.4) are:
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Figure 5.5: Residuals plot for model (5.4).

Figure 5.5 shows that some of the residuals are too large in order for the model to function properly.

This can, for instance, be seen in the tails for the normal Q-Q plot where standardized residuals

are too large in absolute vale at the tails. The points in the tails could possibly be influential, and

therefore the DFFITS and Cook’s distance are plotted:
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Figure 5.6: DFFITS for model (5.4). The red threshold level is calculated as 2
√

(k + 1)/n. On top of each

bar is the ordering number.

Figure 5.7: Cook’s distance for model (5.4). The red threshold level is calculated from R as the level at which

the same data points will be considered as influential points. On top of each bar is the ordering number.

Figures 5.6 and 5.7 show that the model do suffer from influential points since the DFFITS and

Cook’s distance for 37 data points exceed the threshold level. A bold solution to this problem is to

simply delete these data points from the model and estimate a new model with consequently less

data. It is reasonable in this case to use such an approach since it is relatively few data points that

are deleted (only 37/540 ≈ 7%). If it would be the case that a larger share of the data points were
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deleted, this approach would not be as suitable. Also, these data points could be questioned whether

they originate from click fraud which Midha (2009) [16] brought up. It can also be seen in figures 5.6

and 5.7 that the influential points are far out of the threshold levels. The performance metrics for

the model with deleted influential points, together with the previous model from table IV, are:

(5.4) (5.4) without influential points
Observations 540 503
R2 0.980 0.994
R2
Adj. 0.980 0.994

F0 2,195.213 (df = 12; 527) 6,722.101 (df = 12; 490)
AIC −563.584 −1,153.242
BIC −503.502 −1,094.154

Table V: Performance metrics of the regression with and with without influential points.

Table V shows, as expected, that the model is improved if deleting the influential points. This can be

seen from both AIC and BIC that decreases at the same time as R2 and R2
Adj. increases. To further

highlight the improvement, the following figure shows that the behaviour of the residuals is improved

if estimating a new model without the influential points.
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Figure 5.8: Residuals plot for model (5.4) without influential points.

Figure 5.8 shows better behaviour of the residuals as the influential points are deleted, however the

residuals are not perfect since the tails for the normal Q-Q plot where the standardized residuals are

too large in absolute vale at the tails.

5.1.3 Multicollinearity

Not all estimates in table IV are statistically significant, which could indicate that the model suffers

from multicollinearity. This could preferably be seen from the VIFs and the conditional number κ.

Here will the VIFs and κ be calculated for model (5.4) and the covariate with the highest VIF will

be taken out of the model if one or more VIFs are > 5. Then the new VIFs will be calculated for the

reduced model. The reduction continues until all VIFs are ≤ 5. The following VIFs are obtained:
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Excluded covariates: 0 1 2 3 4

Reach 72.633745 10.272201 6.275053

Frequency 6.105851 3.978210 2.572427 2.273236 1.520395

Impressions 74.414173

Social_reach 59.169989 29.704821

Social_impressions 56.214911 26.618186 5.614645 4.004432 3.933260

Actions 5.632628 5.511324 4.945328 4.618521 4.616678

Amount_spent 5.034609 5.022805 4.939485 4.509109 3.987790

Cost_1000_reached 5.713651 5.648685 5.526354 5.328202

Page_engagements 2.158267 2.157007 2.139489 2.132290 2.048072

Link_clicks 5.148061 4.946582 4.831011 4.794997 4.743670

CPC 4.845700 4.845599 4.839310 4.839304 2.327109

CTR 2.730614 2.723041 2.719147 2.550512 1.507258

κ 1,331.216 291.395 49.0504 41.03437 30.72596

Table VI: Starting from all covariates are the VIFs calculated and the covariate with the highest VIF is

excluded. The algorithm continues until all VIF≤ 5. For each round, the highest VIF-value is bold and

deleted in the next round. At the bottom of the table is the conditional number.

Table VI shows that the model with all covariates suffers from severe problems of multicollinearity,

with four VIFs > 10 and κ > 100. There is still a problem if excluding two variables according to

analysis of the VIFs, however the analysis of conditional number leads to the conclusion that the

problem is not as severe after excluding two covariates. Furthermore, the problem of multicollinearity

is solved both according to analysis of VIF and conditional number if excluding four covariates. The

covariates to exclude according to this analysis are namely Impressions, Social_reach, Reach and

Cost_1000_reached in order to obtain a model without problem of multicollinearity. Nonetheless, it

should here be taken into account that the problems of multicollinearity are not completely reduced

by this analysis. The VIFs are after the reduction still close to the threshold level of 5.

5.1.4 Variable Selection

If performing an all possible subsets regression, the following performance metrics are obtained as a

function of the number of covariates:
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Figure 5.9: Each black dot correspond to a regression model. The red line in each plot connects the best

performing model for each subset size. The blue dotted line gives how many covariates to include in the model

according to that performance metric.

Figure 5.9 shows that across the three metrics the best model does not incorporate all 12 covari-

ates. R2
Adj. decides upon a model of 11 covariates which excludes the use of Page_engagements

whereas AIC and MSE actually decide upon the same model of 10 covariates that excludes the use of

Page_engagements and Link_clicks. What is interesting is that the analysis of multicollinearity in

table VI leads to a completely different result, namely to exclude Impressions, Social_reach, Reach

and Cost_1000_reached. The following cross-validated mean square error are obtained if comparing

the OLS-models chosen by (I) VIF, (II) R2
Adj. and (III) AIC and MSE:

Covariates excluded 10-fold CV

(I) Impressions, Social_reach, Reach and Cost_1000_reached 0.177845450

(II) Page_engagements 0.006792440

(III) Page_engagements and Link_clicks 0.006799235

Table VII: Cross-validated mean square error of the three models chosen from analyzing the VIF (1) and from

an all possible subsets regression method (2 and 3).

Table VII shows that the two models chosen by the all possible subsets regression clearly outperforms

the model chosen from analyzing the VIFs. If comparing the two models chosen from the all possible

subsets regression, it can be concluded that the performance is worsen if also excluding Link_clicks.

Nonetheless, the difference in 10-fold cross-validated errors is small. Therefore, if one decides to

exclude Page_engagements then Link_clicks should be kept in the model.
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5.2 Shrinkage Regression Methods

In this section shrinkage regression models are created and tested.

5.2.1 Ridge

As outlined in the mathematical theory a solution to the multicollinearity problem, that the model

clearly suffers from, is to instead use Ridge regression. By varying the Ridge parameter, the following

Ridge trace is obtained:
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Figure 5.10: The regression coefficients plotted against lnλ where λ is the parameter in the Ridge regression.

As seen in figure 5.10, the Ridge regression does work as a shrinkage method since the absolute value

of the coefficients decreases for higher values of λ. In order to find the most suitable value of λ a

cross-validation procedure is performed, first with the default scaling of λ built in R and then with a

zoomed in scaling of λ:
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Figure 5.11: 10-fold cross-validated error for varying values of λ in the Ridge regression. The red dots denote

the average of the cross-validated errors and the grey bars denote the errors’ range. The values on top of the

diagram denote the number of non-zero coefficients that the model incorporates.

Figure 5.11 shows that relatively small values of λ is required to get a small cross-validated error. It is

also seen that the cross-validated error is roughly constant when λ is sufficiently small. Even though,

it exists a minimum value for the cross-validated error, which is at lnλ = ln 0.01 = −4.60517. Figure

5.11 is in line with the non-existing variable selection features of the Ridge regression, which is seen

on top of the diagram where all variables are included in the solution for all choices of λ.

5.2.2 Lasso

The other commonly used shrinkage method called Lasso gives the following trace:
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Figure 5.12: The regression coefficients are plotted against lnλ where λ is the parameter in the Lasso regres-

sion.

As for the Ridge trace in figure 5.10 it is clear that Lasso also works as shrinkage parameter. However,

different from Ridge is that Lasso performs variable selection inevitably. It is clear from figure 5.12

that the covariate that is kept longest in the model is Cost_1000_reached followed by CPC. As for

Ridge, in order to find the most suitable value of λ is a cross-validation procedure performed, first

with the default scaling of λ built in R and then with a zoomed in scaling of λ:
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Figure 5.13: 10-fold cross-validated error for varying values of λ in the Lasso regression. The red dots denote

the average of the cross-validated errors and the grey bars denote the errors’ range. The values on top of the

diagram denote the number of non-zero coefficients that the model has.
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Figure 5.13 shows that the cross-validated error decreases and that less variables are kept in the model

for smaller values of λ, where the latter is as expected according to theory and also figure 5.12. The

minimum value of the cross-validated error is obtained for lnλ = ln 0.01 = −4.60517. Pay attention

to the harsh variable selection performed by Lasso since the number of non-zero covariates decreases

drastically for larger numbers of λ.

5.2.3 Elastic Net

Ridge and Lasso can be combined using an elastic net as stated in the theory section. The elastic net

contains the two parameters λ ≥ 0 and α ∈ [0, 1], that in this case will not be decided in advance.

The most optimal combination of these parameters will instead be estimated from the data. By

letting α = 0, 0.01, . . . , 1, a model can be estimated for each value of α. The optimal value of λ for

those models can be found by cross-validating the errors and choosing the λ that minimizes the mean

squared error. It implies to go through the same procedure of Ridge and Lasso as earlier for each value

of α. This method relies on computer power in order to function properly. If doing this algorithm,

for each value value of α, plotted with its optimal combination with λ, the number of covariates in

that model and the mean squared error are obtained:
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Figure 5.14: On the left is the number of non-zero covariates kept for that choice of λ as a function of α. On

the right is the cross-validated mean squared error for α ∈ [0, 1]. The blue dotted line represents the α that

minimizes the cross-validated mean square error.

Recall that α = 0 is equivalent to Ridge and α = 1 is equivalent to Lasso, which in essence gives

that the optimal value of α is found more or less at equal weights of Ridge and Lasso, namely at
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α = 0.48. The mean squared error in figure 5.14 also gives that the elastic net outperforms both the

pure Ridge and pure Lasso in terms of performance. Also, the variable selection features of Lasso is

more prevalent when α is close to 1, i.e. close to Lasso regression, as expected. The trace for α = 0.48

is:
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Figure 5.15: The regression coefficients are plotted against lnλ.

The Ridge, elastic net with α = 0.48 and Lasso regression estimates, using cross-validated optimal

λ’s in each case, are found in the following table:
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Dependent variable:

CPM

Ridge Elastic net (α = 0.48) Lasso

Reach −0.002 0 0

Frequency −0.532 −0.548 −0.561

Impressions 0.020 0 0

Social reach 0.018 0 0

Social impressions −0.039 −0.003 0

Actions −0.040 −0.037 −0.030

Amount spent 0.034 0.014 0

Cost 1000 reached 0.943 0.969 0.999

Page engagements −0.008 0 0

Link clicks −0.014 −0.002 0

CPC 0.122 0.104 0.078

CTR 0.074 0.054 0.033

Constant

Table VIII: The coefficient estimates for Ridge, elastic net and Lasso regression respectively.

Here it is obvious that Lasso have performed variable selection, since the estimates for Reach,

Impressions, Social_reach, Social_impressions, Amount_spent Page_engagements and Link_clicks

are found to be identically zero and left out of the model. Recall table VI where it was found that

Reach, Impressions, Social_reach and Cost_1000_reached was the covariates that should be left

out of the model first. Hence, Lasso regression and the selection of covariates through VIF leads to

similar, but not identical, variable selection. The elastic net regression is similar to Lasso in terms of

variable selection, since Reach, Impressions, Social_reach and Page_engagements are set to zero

in both algorithms. It can also be said that the variable selection features of VIFs and elastic net

lead to very similar conclusion, with the only disagreement being whether Cost_1000_reached and

Page_engagements should be excluded or included.
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5.2.4 Adaptive Lasso

It is problematic that Lasso is not consistent in terms of variable selection, as verified in the math-

ematical theory. In this section will therefore the adaptive Lasso procedure, which is consistent in

variable selection, be performed. As for the elastic net, adaptive Lasso has two parameters γ > 0

and λ > 0 that need to be estimated. By discretizing γ within a predetermined interval, a model

can be fitted for all discrete values of γ. The optimal value of λ for each choice of γ can then be

cross-validated by minimizing the mean squared error. λ as a function of γ is found from this proe-

dure. Then, if cross-validating the models for each choice of γ, in combination with its optimal λ, the

following cross-validated mean square error is obtained:
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Figure 5.16: MSE as a function of γ for two choices of discretizations of γ. The blue dotted line denotes the

γ that minimizes MSE.

Figure 5.16(a) shows that performance is worsen drastically if γ > 26. The discretization in figure

5.16(b) is consequently more useful. That figure shows that the best performing model is obtained by

choosing γ = 1.1. Nonetheless, figure 5.16 shows that the performance of the model obtained if γ → 0,

which is equivalent to Lasso regression, is at similar levels as for γ = 1.1. Thus, the performance is

only slightly improved by updating the Lasso so that it becomes consistent.

To highlight the difference between Lasso and adaptive Lasso, their respective traces are plotted:
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Figure 5.17: Comparison of the traces of Lasso and adaptive Lasso for γ = 1.1 as a function of lnλ.

The traces for Lasso and adaptive Lasso are in this case pretty similar, as indicated by figure 5.17.

5.3 Derived Inputs Regression: PCR

Another solution to the multicollinearity problem, that according to table VI prevails, is to orthogo-

nalize the data and perform a PCR, see mathematical theory for further details. PCR also has the

upside of mitigating the potential drawback of overfitting, as only a few principal components are

chosen in the model. The following validation error and cumulative percentage error are obtained if

performing PCR on model (5.4) using 10-fold cross-validation:

Cross-validated error
Const 1 2 3 4 5 6 7 8 9 10 11 12

CV 0.9644 0.9422 0.4914 0.4344 0.4260 0.2343 0.2308 0.2154 0.2075 0.2019 0.0911 0.0812 0.0805
adjCV 0.9644 0.9419 0.4909 0.4341 0.4251 0.2336 0.2301 0.2143 0.2070 0.2018 0.0909 0.0809 0.0802

Cumulative percentage of variance explained
1 2 3 4 5 6 7 8 9 10 11 12

X 48.67 67.74 78.62 87.10 92.48 95.36 96.77 97.99 98.98 99.71 99.96 100.0
CPM 5.04 74.25 80.16 81.93 94.53 94.70 95.35 95.63 96.03 99.17 99.37 99.40

Table IX: At the top is the 10-fold cross-validated root mean square error of the prediction (CV) and the

bias-corrected cross-validated root mean square error the prediction (adjCV) as a function of the number of

components. At the bottom is the cumulative percentage of the variance explained for the covariates (X) and

for the dependent variable (CPM) as a function of the number of components.

The performance of the PCR can be seen in the following plots:
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Figure 5.18: Performance metrics for the PCR as function of number of components.

All performance metrics are improved by including more components in the model as expected. It

is wanted in the PCR to have a low cross-validated error for a low number of components, and

according to figure 5.18 the mean squared error does not improve anything dramatically if including

more than five components. Therefore, at least five principal components should be included in the

model according to PCR. This is in line with Lasso regression, even though Lasso is not built upon

derived inputs as PCR is.

5.4 Model Suggestion

One can say that 7 models have been suggested in this thesis, namely from (I) VIF, (II) all possible

subset variable selection, (III) Ridge, (IV) Lasso, (V) elastic net, (VI) adaptive Lasso and (VII) PCR.

The following mean squared errors are obtained if cross-validating the performance of these models:
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Model 10-fold CV

(I) VIF 0.177845450

(II) All subsets variable selection 0.006892440

(III) Ridge 0.007018895

(IV) Lasso 0.007105498

(V) Elastic net (α=0.48) 0.006795659

(VI) Adaptive Lasso (γ=1.1) 0.007662462

(VII) PCR (five components) 0.053024914

Table X: 10-fold cross-validated mean square error of the models suggested.

It can be seen in table X that the performance of all subsets possible regression and the shrinkage

models are very similar, whereas the VIF- and PCR-models perform worse. The performance of the

shrinkage models do not differ to a large extent, but it should be noted that the elastic net is the one

that performs the best. The performance of PCR is worse than the shrinkage models, with a possible

explanation of only including five components in the PCR. The performance for PCR would be better

if including more components.
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6 Discussion and Conclusion

This section aims to evaluate the models created and assess the most appropriate type of modelling

for estimating CPM. The section will end with concluding remarks for the models created followed

by some suggestions for future research on this topic.

6.1 Model Building Evaluation

The model building started with quickly realizing that the Box-Cox transformed version of CPM was

more appropriate since the normality assumption was improved by the transformation. Nonetheless,

the transformed data was still considered far from being perfectly normally distributed and the prob-

lems that this cause should be noted. It was primarily the right tail in the histogram that was too

thick, causing the normal Q-Q plot not being perfectly shaped. It was also seen that transformations

of the covariates were needed. Further analysis demonstrated that Page_engagements was the only

covariate that did not transform and the most common transformation for the other covariates was

the square root. To transform the covariates is in line with the work of Tang et al. (2013) [19]. The

Box-Cox and covariates’ transformation clearly improved the performance, since R2, R2
Adj., AIC and

BIC all were improved after the transformation. From this it can be concluded that it is important

to apply transformations of various kinds to a data set that originates from advertisement metrics

on social media platforms. When the residuals were analyzed, 37 data points (or 7% of the data set)

were considered as outliers and removed from the model building. This helped to improve the heavy

tails of the histogram, even though the tails remained heavy. Despite this, the fit was improved from

the removal since R2, R2
Adj., AIC and BIC were all improved.

Since some of the covariates have similar definitions (for instance Reach and Impressions), it was not

far-fetched to suspect a data set with high degree of multicollinearity. This hypothesis was verified

by the VIFs and the conditional number. The problem of multicollinearity was prevalent until four

covariates were excluded from the model. All subsets regression, which only maximizes performance

and neglects problems of multicollinearity, also came to the conclusion of excluding covariates, even

though only one or two covariates depending on according to which metric. From this, one can con-

clude that the data set contained a few covariates that in practise were unnecessary.

Shrinkage regression methods were implemented to solve the multicollinearity problem, first Ridge

and Lasso and then by combining the two in an elastic net. In the present data set it was found that

the optimal shrinkage parameter λ was small for all these three, implying that only a small penalty

term was used. It was also found that the optimal Lasso and elastic net regression performed exten-

sive variable selection as those models excluded seven and four covariates respectively. The adaptive
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Lasso regression was also implemented to not neglect the problems of consistency of Lasso. In terms

of outcome of adaptive Lasso, the optimal value of γ in adaptive Lasso produced similar trace as for

the regular Lasso trace. This implies that adaptive Lasso, even though solving the problem of con-

sistency, did not change extensively the model proposed by the Lasso regression. Thus, all shrinkage

methods concluded that a few covariates did not improve the model, as was the case for all subsets

regression and analysis of multicollinearity.

The PCR do completely solve the problem of multicollinearity by orthogonalizing the data. For

this data, the PCR showed that approximately five components were needed for obtaining a model

of sufficient performance. The performance was of course improved if including more components,

nonetheless the increase was comparably small.

6.2 Concluding Remarks and Recommendations

It is concluded from table X that a shrinkage method is a suitable regression method for regressing

CPM. The reason for this is that many covariates in the original data set were strongly dependent

and should be excluded in models, which was handled by the variable selection features from Lasso.

The best performing model was the elastic net model with α = 0.48. The variables included in

that model was Frequency, Social_impressions, Actions, Amount_spent, Cost_1000_reached,

Link_clicks, CPC, CTR. The remaining covariates, namely Reach, Impressions, Social_reach and

Page_engagements were excluded. If choosing a model with less covariates, the following should be

excluded and in this order: Link_clicks, Social_impressions, Amount_spent.

Also, shrinkage regression methods is suitable from an implementation perspective. It would be im-

possible to use an all possible regression approach if the data set would contain significantly more

variables than 12, since the complexity increases by O(2k). To efficiently shrink a data set with

significantly more variables, which could be the case of choosing other metrics from Facebook’s Ads

manager, the elastic net with two-dimensional cross-validation for tuning of parameters is suitable.

Furthermore, as earlier stated Facebook Ads manager has many other metrics that could be incorpo-

rated in a model. Nonetheless, the analysis in this thesis shows that more metrics are not needed if

the aim is to maximize performance.

6.3 Suggestion for Future Research

The models built in this thesis rely upon advertisement data from Whispr Group’s Swedish clients

during 2017. It could be the case that this data is not significative for advertisement data for other

Swedish companies, during other time periods or at other geographical locations. In the end, adver-
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tisement is linked to consumer behaviour which changes across time and geographies. Having this in

mind, it would be interesting to see whether using models outlined in this thesis on another data set

might lead to other results. Furthermore, it should be taken into account that some data points were

excluded. These include non-complete data points, unreasonably large data points and outliers in the

model. Hence, the models built can be criticized for these deletions.

A substantial part of the model building went to solving the problems of multicollinearity, which

could be traced to that the data set contained too many covariates. It would therefore be interesting

to build a model with less covariates to begin with and see if the results end up differently. Another

similar extension would be to choose a completely different set of covariates. This would be possible

since Facebook Business Manager has even more metrics of advertisement data that could be used

for model building. All models in this thesis are built on a regression framework which is of course

not the only method that could be suitable. For instance machine learning or deep learning models

could lead to even better models.

A factor that contributes to advertisement performance, which is completely neglected in this thesis,

is how the advertisements are formulated. It makes sense, and was also shown in Cheng et al. (2012)

[6], that a well formulated advertisement would outperform a poorly formulated and an advertisement

with an appealing picture would also meliorate performance. Consequently, future work could focus

on modelling from a statistical point of view how advertisement texts should be formulated and what

pictures are suitable in advertisements. Also, recall that this thesis focused on predicting CPM, which

is not the only metric within the field of advertisement data that could be investigated. For instance,

predicting cost for advertising by CPC could also be investigated that most likely would end up in

interesting models. The possibilities within this field is broad with many different variables for which

models can be built.

During the creation of this thesis, it was revealed how political consulting firm Cambridge Analytica

used data from Facebook to help Donald Trump win the presidential election in the United States of

America. The news, which were later rephrased to a data sharing scandal, can shortly be summarized

that Facebook provided a consulting firm with personal data from 87 million Facebook users without

the consent from the users. The scandal led to that Facebook’s founder and CEO Mark Zuckerberg

was heard by the US congress about Facebook’s handling of data. The connection with the scandal

and this thesis may seem somewhat unclear but it has to do with how one can get data from Facebook

in the future. The Cambridge Analytica scandal has forced Facebook to be careful with how they

spread data to other companies, which might make it harder for companies like Whispr Group to

get advertisement data from Facebook. Therefore, the models created in this thesis could be unique
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and could be completely different in the future if Facebook restricts even further how they provide

companies with data.
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8 Appendix

8.1 Extended Mathematical Theory

The theory in this section is referred to the work of Montgomery et al. (2012) [17]. In regression

modelling, the objective is to explain a numerical quantity, denoted y and called dependent variable,

with other numerical quantities, denoted x1, x2, . . . , xk and called covariates or independent variables.

One uses existing data from n data points to estimate the model. That is, for each yi ∈ R, i = 1, . . . , n,

one utilizes the values of xij ∈ R, i = 1, . . . , n, j = 1, . . . , k. This thesis uses multiple regression, in

which the dependent variable is a function of the independent variables. A regression model in its

simplest form is the linear regression model

yi = β0 +

k∑
j=1

βjxij + εi. (8.1)

β0 is called the intercept and βj is called the regression coefficients, which will be estimated from the

data and from a chosen selection criteria, i.e. we want to find the β̂j ’s that best fits the data. With

the regression coefficients chosen from the distribution of βj , the fitted data ŷi satisfies the equation

ŷi = β̂0 +

k∑
j=1

β̂jxij . (8.2)

εi in equation (8.1) is the error term which is the deviation of the observed value from the true value

and is defined as

εi = yi − β0 −
k∑
j=1

βjxij . (8.3)

A common concept is residuals, ei, which is the deviation of the estimated value and observed value

ei = yi − ŷi = yi − β̂0 −
k∑
j=1

β̂jxij . (8.4)

In order for the OLS-approach to work properly are certain criteria, called the Gauss-Markov assump-

tions, imposed which are crucial for OLS-regression:

1. There is a linear relationship, or at least partly linear, between the dependent variable and the

covariates.

2. E[εi] = 0, ∀i = 1, . . . , n, or in other words that the error term is zero on average.

3. Var[εi] = σ2, ∀i = 1, . . . , n, or in other words is the variance of the error term constant for all

data points.

4. corr[εi, εj ] = 0, ∀i 6= j, or in other words that all error terms are uncorrelated.

5. εi ∼ N (0, σ2), ∀i = 1, . . . , n, or in other words are all error terms normally distributed.
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Some performance metrics are preferably calculated in a regression model. These metrics will be

defined in this section. Let ȳ = 1
n

∑n
i=1 yi and it can be shown that

SST =

n∑
i=1

(yi − ȳ)
2

=

n∑
i=1

(ŷi − ȳ)
2

+

n∑
i=1

(yi − ŷi)2 = SSR + SSRes. (8.5)

The mean squared errors are defined as

MSR =
SSR
k

,

MSRes =
SSRes

n− k − 1
.

(8.6)

It can be the case that a covariate included in the model is zero, which is equivalent to that covariate

not contributing to explaining the dependent variable and should hence be left out of the model.

Since it can be shown that

SSR
σ2
∼ χ2

k,

SSRes
σ2

∼ χ2
n−k−1,

(8.7)

it holds that the F -statistic satisfies

F0 =
SSR/k

SSRes/(n− k − 1)
=

MSR
MSRes

. ∼ Fk,n−k−1 (8.8)

This gives that if the F -statistic is large then it is likely that that at least one βj 6= 0. Large in this

case is of course in comparison with values from the Fk,n−k−1-distribution. The main result of the

regression is the coefficient estimates β̂. Nonetheless, since β̂ is drawn from a distribution it could

be the case that the error range of the estimate is large. A measure of the error range for estimate is

the standard error, defined for each βj-coefficient as

se(β̂j) =
√
σ̂2((XᵀX)−1)jj . (8.9)

Using the standard error, it can be shown that the test statistic

t0,j =
β̂j

se(β̂j)
, (8.10)

can be used for testing the hypothesis {
H0: βj = 0

H1: βj 6= 0,
(8.11)

in which the null-hypothesis can be rejected if |t0,j |> tα/2;n−k−1, where α is the confidence level. This

holds since t0 ∼ tn−k−1, ∀j = 1, . . . , k. In this thesis will the estimate together with the standard

error and an indication of the level of the p-value for the hypothesis test (8.11) be reported. Using

the sum of squares as defined in equation (8.5), the metric R2 can be defined as

R2 =
SSR
SST

= 1− SSRes
SST

. (8.12)
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Since equation (8.5) gives that 0 ≤ SSRes ≤ SST , the R2-value for a regression satisfies 0 ≤ R2 ≤ 1.

The interpretation of R2 is that a model can explain 100% of the variation in the data if R2 = 1 and

the model cannot explain the data at all if R2 = 0. Hence, a high R2-value is desirable. Nonetheless,

R2 has the characteristic that it increases if adding another covariate to the model, regardless if the

model in fact gets better from the adjustment. To adjust for this downside of R2 exists R2
Adj. (read

as ”adjusted-R2”) which increases if the the newly added covariate in fact improves the model

R2
Adj = 1− SSRes/(n− k − 1)

SST /(n− 1)
. (8.13)

Other metrics included in the regression results are the AIC and BIC, defined as

AIC = −2 lnL+ 2(k + 1) = {If OLS} = n ln

(
SSRes
n

)
+ 2(k + 1),

BIC = −2 lnL+ p ln (k + 1) = {If OLS} = n ln

(
SSRes
n

)
+ p ln (k + 1),

(8.14)

where L is the estimate of the likelihood-function from the regression. Both AIC and BIC are measures

of the relative quality of the model in comparison to another model. Hence, AIC or BIC does not

contribute with any information of the quality of the model unless it is compared to another AIC-

or BIC-value. For both AIC and BIC is the aim to choose the model with the lowest AIC or BIC.

Nonetheless, the two metrics may decide upon different models as the best. The regression results

will be summarized, together with the p-values for the hypothesis tests in equation (8.11) and the

analysis of variance (ANOVA) information, in the following table:

Dependent variable

y

(Model 1) (Model 2) (Model 3)

x1 x (y)

...

Constant u (v)

Observations
R2

R2
Adj.

F0 (df = ; )
AIC
BIC

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table XI: x and u are regression estimates and (y) and (v) are standard errors for that specific coefficient.
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