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Modeling News Data Flows using Multivariate
Hawkes Processes

Abstract

This thesis presents a multivariate Hawkes process approach to model flows
of news data. The data is divided into classes based on the news’ content
and sentiment levels, such that each class contains a homogeneous type of
observations. The arrival times of news in each class are related to a unique
element in the multivariate Hawkes process. Given this framework, the mas-
sive and complex flow of information is given a more compact representation
that describes the excitation connections between news classes, which in turn
can be used to better predict the future flow of news data. Such a model
has potential applications in areas such as finance and security. This thesis
focuses especially on the different bucket sizes used in the discretization of
the time scale as well as the differences in results that these imply. The
study uses aggregated news data provided by RavenPack and software im-
plementations are written in Python using the TensorFlow package.

For the cases with larger bucket sizes and datasets containing a larger number
of observations, the results suggest that the Hawkes models give a better fit
to training data than the Poisson model alternatives. The Poisson models
tend to give better performance when models trained on historic data are
tested on subsequent data flows. Moreover, the connections between news
classes are given to vary significantly depending on the underlying datasets.
The results indicate that lack of observations in certain news classes lead to
over-fitting in the training of the Hawkes models and that the model ought
to be extended to take into account the deterministic and periodic behaviors
of the news data flows.
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Modellering av Nyhetsdataflöden med Multivariata
Hawkesprocesser

Sammanfattning

Detta examensarbete presenterar en multivariat hawkesprocess som modell
för flöden av nyhetsdata. Den givna datan delas upp i klasser baserat på
nyheternas ämnen och sentimentnivåer. På sådant sätt ges att varje klass
innehåller en mer homogen typ av datapunkter. Ankomsttiden för nyhe-
terna inom varje klass relateras till ett unikt element i den multivariata
hawkesprocessen. Givet denna modell ges det massiva och komplexa infor-
mationsflödet en mer kompakt representation som beskriver kopplingarna
mellan nyhetsgrupperna och som kan användas för att bättre predicera det
framtida flödet av nyheter, vilket är av intresse inom områden som säkerhet
och finans. Arbetet fokuserar framförallt på de olika storleksordningar som
används vid diskretisering av tidsskalan, samt de skillnader i resultat som
dessa implicerar. Studien använder aggregerad nyhetsdata från RavenPack
och implementationen skrevs i Python med hjälp av TensorFlow.

För testerna med större tidsskalor och dataset som innehåller större mängd
observationer ger resultaten att hawkesmodellerna anpassas bättre till trä-
ningsdata än de enklare poissonmodellerna. Dock tenderar poissonmodeller-
na ge bättre prestanda när modellerna som tränats på historiska data se-
dan testas på efterföljande nyhetsdataflöden. Dessutom fås att kopplingarna
mellan nyhetsklasserna varierar avsevärt beroende på underliggande data-
set. Resultaten tyder på att bristen på observationer i vissa nyhetsgrupper
leder till överpassning i träningen av hawkesmodellerna och att modellen bör
utvidgas för att bättre ta hänsyn till de fenomen i nyhetsdataflödet som är
deterministiska och periodiska.
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Chapter 1

Introduction

In some applications it is of importance to quickly gather information and
react to events around the world. This is the case in areas such as security,
health and finance. However, it can often be both costly and time-consuming
to gather information from primary sources. In such a case, it may be easier
or even necessary to rely on reports from secondary sources such as news
articles. This opens up the question if it is possible to automatically extract
relevant information from news as well as how to model and react to the
news data flows. Historically, news has been a widespread and important
way of communicating information. This has been done through numerous
channels of communication, such as radio, television, newspapers and online
news sources to only name a few. Even though news from these sources are
different in structure and availability, most news types share some important
properties that are central to this study.

To begin with, an important characteristic of news in general is the clustering
of data about specific topics around certain time points. For instance, if the
news category of interest is earthquakes, it is unlikely that there will be a
uniform distribution of earthquake news over longer time periods. Instead, it
is more likely to observe clusters of news about earthquakes around specific
time points. Generally, this occur due to real-world events that causes the
increase and cluster of news about the specific topic. That is, if an earthquake
has just occurred there will most likely be a lot of news coverage about the
event within the near future. In a similar way, an absence of news data
points about the topic can often be explained by the fact there have not
been any relating events for some time, for example if the latest earthquake
took place several months or years earlier.

With this insight about the structure of news data flows, mathematical meth-
ods that take the clustering characteristics into account could be suitable
candidates to model the flow of news data. Here, the times of occurrence
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CHAPTER 1. INTRODUCTION

and the extracted contents of the news data are useful attributes that can
be used to model a stochastic environment that represents the flow of news
data. However, to incorporate the clustering characteristic introduced above
it is of interest to use a model that can adapt to this property. One such
model is the Hawkes process model.

In short, the Hawkes process is a generalization of the Poisson process in
the sense that its intensity depends on the history of the process. More
specifically, the intensity function is self-exciting, which means that observ-
ing points from the process increases the intensity in the near future, thus
providing a model for the clustering phenomenon. Formal mathematical
definitions of these concepts are presented in Chapter 3.

1.1 Related Work

Analysis and prediction of news data have gained increased interest in recent
years. This is partially due to the attention from the financial sector, but also
from news providers, social media channels and other organizations looking
to optimize their user experience, marketing efforts and other operations.
The spectrum of analysis is rather wide and involves many different stages,
e.g. natural language processing to interpret the text, data mining to handle
large sets of information as well as a range of statistical methods to model
data flows. The paragraphs below presents a selection of related works that
is relevant to the background of this thesis project.

The topic of news analytics as a method in the financial sector is discussed
extensively in the book "The handbook of news analytics in finance" [1],
which presents several techniques in handling news data as well as its po-
tentials and risks in predicting financial assets. Similarly, the articles "News
vs. sentiment: predicting stock returns from news stories" and "Stock price
prediction using financial news articles" [2, 3] both deal with prediction of
stock prices using news data. The first article presents a support vector
machine approach using features extracted from financial news articles and
historic stock prices, whereas the second article examines the prediction ac-
curacy of neural networks for stock returns. Finally, the article "Applications
of a multivariate Hawkes process to joint modeling of sentiment and market
return events" [4] explores the use of point processes and Hawkes processes
to model events in financial markets. More specifically, the study analyzes
how positive and negative sentiments in news events connect to positive and
negative returns in the context of multivariate Hawkes processes.

Another related area is that of modeling and prediction of events on social
media, e.g. how content goes viral and spreads on different channels as well
as how it can be used to predict events outside social media platforms. The
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CHAPTER 1. INTRODUCTION

article "Predicting the future with social media" [5] uses data from Twitter
to forecast the revenues of box-office movies. In addition, the article "A
survey of prediction using social media" [6] discusses several topics within
the subject, such as marketing, information validity and prediction of election
outcomes. Lastly, the article "A tutorial on Hawkes processes for events in
social media" [7] provides an introduction to the concept of Hawkes processes
and the self-exciting properties, with a focus on social media events.

In addition to the financial applications introduced above, the Hawkes pro-
cess has been used in for example earthquake forecasting as well as modeling
epidemic outbreaks. The common characteristic in these areas is the self-
exciting property. For instance, for epidemic diseases it may be reasonable
to suggest that observing a case of the disease in a certain area will increase
the risk, i.e. the intensity, to observe more cases in that region within the
near future, thus making the Hawkes process model a suitable candidate.
One such study is "A recursive point process model for infectious diseases"
[8], which uses Hawkes process as well as another type of point process to
model measles occurrences between 1906 and 1956. Another relevant article
is "Assessment of point process models for earthquake forecasting" [9], which
reviews the Hawkes process among other model alternatives for earthquake
forecasting.

1.2 Scope, Objectives & Limitations

The general objective of this thesis project is to build and evaluate a multi-
variate Hawkes process model for the flow of news data. More specifically,
given the sets of aggregated news data, the goal of this study is to formulate
a multivariate Hawkes model to describe the news data flow as well as to
implement this framework into software. This implementation uses numeri-
cal methods to estimate the models’ parameters given the input data. The
performance of the trained models is assessed and compared using statistical
evaluation methods, such as the likelihood and BIC measure. In addition,
this study focuses especially on testing different bucket sizes used to dis-
cretize the time scale of news arrival times and compares the results from
the different settings, e.g. by identifying the connections between different
news classes, as provided by the Hawkes model.

For the scope of this project, the underlying quality of data, e.g. how well the
aggregated news data actually represents the original news articles, will not
be analyzed. Moreover, due to limitations in computational power, some
resolution in the original data has to be removed to simplify calculations.
Likewise, in order for the model training process to converge in reasonable
time, there is some limitations in the size of the input datasets. Finally, in
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CHAPTER 1. INTRODUCTION

formulating the multivariate Hawkes model, the news data is divided into
classes. Though this can be done in arbitrarily many ways and levels of
granularity, this study focuses on one particular composition that is used
throughout the analysis.

1.3 Report Outline

This part gives an overview of the disposition of this report and the main
content of each chapter. To begin with, Chapter 2 deals with news data
and presents some information about aggregated news data. This part also
explains the structure of the specific dataset used throughout this study.
Chapter 3 presents the relevant mathematical models and algorithms. This
includes some basic theory about stochastic processes and an introduction to
Hawkes processes, the specific models used to describe the news data flows
as well as optimization algorithms utilized in the software implementations.
Next, Chapter 4 outlines the methods used in the project and focuses on
the software implementation, practical handling of data and setup for the
results presented in the study. Chapter 5 presents the obtained results from
the analysis and Chapter 6 contains the discussion section, which ties back to
the results presented in the previous part. The discussion also reflects back
on the model selection, methods and implementation as well as the validity
and consequences of the obtained results. Lastly, Chapter 7 presents the
conclusions and summarizes the major findings of the study.
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Chapter 2

News Data

A central part of this study is that of news data. This chapter first provides
some general information about the characteristics of aggregated news data.
Thereafter, an overview of the structure and characteristics of the specific
RavenPack dataset used in this study is presented.

2.1 Aggregated News Data

For the scope of this study, the term aggregated news data is used to refer
to news data that has been processed or altered from its original form in
one way or another, typically to obtain a more compact form. For example,
a text article may have been processed in a text interpretation system to
extract its preamble, which can be more compactly stored in a database.
This point stored in the database is then referred to as an aggregated news
data point, which reflects or summarizes the content of the original article,
however no longer contains all information. In addition, there exists different
of of aggregated news data. These forms depend on the original shape of
the data as well as the intended use of the aggregated information. For in-
stance, a text can be filtered using text mining techniques to extract specific
fields of information, sound can be interpreted using speech recognition to
be converted into text and the important events in a video can be identified
by image processing methods.

There are numerous potential uses and advantages of aggregated news data.
For one, the form and framework of the aggregated data can be pre-specified
such that all information after filtering is given on a common form. This in
turn typically makes it easier to store the data in databases, sort and filter
the information based on user requirements as well as to use it for statistical
analysis.
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CHAPTER 2. NEWS DATA

2.2 The RavenPack Data

For this study, the aggregated news data is provided by RavenPack. The
dataset contains news data from January 1st 2000 until February 28th 2017.
Even though the original source of each data point is an actual article or
press release, i.e. news in text format, the information available in the dataset
has been processed to have a more compact representation. That is, each
original news piece is first processed by RavenPack and translated into their
standardized framework. In this framework, each point is represented as a
vector with a set of specified fields, some of which are numerical values and
some categorical.

2.2.1 Dataset Overview

Before using the data in the calculations, it is important to carefully study
the structure of the data as well as identify potential flaws or problems that
may affect the results. To begin with, Table 2.1 below presents a list of some
of the most important fields with corresponding descriptions.

Table 2.1: RavenPack dataset: important fields

TIMESTAMP_UTC
A date-time string on the form YYYY-MM-DD-hh:mm:ss.sss indi-
cating when the news data was received by the interpreting system.
HEADLINE
The headline text of the original news article.
RP_STORY_ID
Unique ID for each data point in the system.
ENTITY_TYPE
The type of identified entity, which can be either Commodity, Com-
pany, Currency, Nationality, Organization, People, Place, Product
or Sports teams.
ENTITY_NAME
The name of identified entity, e.g. the name of a company or currency.
COUNTRY_CODE
Two-character string with the ISO-3166 country code associated with
the news data point, e.g. US, CH, CA.
RELEVANCE
A score taking integer values between 0 - 100 which specifies how
strongly related the identified entity is to the original article, where
0 means it was passively mentioned and 100 means it was considered
central to the story.
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CHAPTER 2. NEWS DATA

EVENT_SENTIMENT_SCORE
The sentiment score states how positive or negative a related event is.
More specifically, it is a score between -1.00 and 1.00 with 2 decimal
places that represents the news sentiment where -1.00 is very negative
and 1.0 is strongly positive.
EVENT_RELEVANCE
An integer score taking values 0 - 100 that indicates the relevance
of the identified event. A score of 100 means that it is important
and stated in the headline, whereas a lower score means it was less
central and stated further down in the article.
PROVIDER_ID
The ID of the provider of the news content, e.g. AN for Alliance
News and DJ for Dow Jones Newswires.

In addition to these fields, RavenPack has a hierarchical taxonomy system
to classify the content of the news data points. This particular subset of
fields enables categorization and filtering on different levels of granularity.
The layers in this hierarchical structure are presented in Table 2.2.

Furthermore, a key observation from the data is the existence of an event
and how it affects the structure of the corresponding data point. More
specifically, the data can broadly be separated into two categories; points
with an identified event and points without. The points without an event
contain substantially less information and lack both sentiment score as well
as the hierarchical field structure given in Table 2.2. Out of the total amount
of data points, 8.4% contain such an event and the related information. For
this study, the points without an event are deemed to contain too little
information and are therefore left out of the analysis. That is, only points
containing an event and the related information are used in order to perform
the desired calculations.
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Table 2.2: RavenPack dataset: fields in the hierarchical taxonomy

TOPIC
Highest order in the classification, which can take either of the 5
labels: economy, business, society, politics or environment.
GROUP
Second level classifier, which has a total of 56 possible values, e.g.
interest-rates, war-conflict, acquisition-mergers and earnings.
TYPE
Third level classifier with 495 different labels. For instance, the
GROUP war-conflict has TYPE labels military-action, bombing etc.
SUB_TYPE
A further subdivision of the TYPE attribute. For instance, the
GROUP war-conflict has SUB_TYPE labels threat, exercise etc.
PROPERTY
An attribute of the event, such as a role or entity. For instance, the
GROUP war-conflict has PROPERTY labels attacker, location etc.
CATEGORY
The most detailed level, combining SUB_TYPE and PROPERTY.

2.2.2 Visualizations of Important Fields

In this part, a number of visualizations are presented to provide a better in-
sight into the data characteristics and the distributions of important fields.
Firstly, Figure 2.1 presents a histogram with the number of news data points
from the 20 countries with the largest news flows. The countries are repre-
sented by their two-figure country code, as described in Table 2.1. One im-
portant realization here is the large over-representation of news with country
code US. In addition, a total of 253 distinct country codes are present in the
data set, out of which some have a very small appearance frequency.

8
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Figure 2.1: Number of observations for the 20 country codes with largest data flows.

Next, Figures 2.2 and 2.3 show pie charts for the distributions of RELE-
VANCE and EVENT_RELEVANCE fields respectively. As stated in Table
2.1, all values are here given as integers.

Figure 2.2: Relevance R

Red: 0  R  79,
Cyan: 80  R  89,
Green: 90  R  99,
Blue: R = 100.

Figure 2.3: Event Relevance ER

Red: 0  ER  79,
Cyan: 80  ER  89,
Green: 90  ER  99,
Blue: ER = 100.

The size of the news data flow over time is examined in Figure 2.4, which
presents a histogram with the yearly amount of news. Here, it is noticed that
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the number of news data points increases over the years. One explanation
for this is the increased availability of online news and thus, an increase in
providers to the RavenPack system input. Here, it is also noted that the
year 2017 only contains data points from January and February.

Figure 2.4: Number of observations per year for years 2000 - 2017.

Other properties can be seen when examining smaller time scopes. Figure
2.5 shows the daily amount of news for the month of December in 2014.
Here, a seasonality phenomenon can be seen, where the news data flow is
substantially smaller during weekends in comparison to that during the week
days. Additionally, the flow of news is seen to decrease over the Christmas
holidays.

10
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Figure 2.5: Number of observations per day in December 2014.

Next, Figure 2.6 shows the count of news data points for a selection of
labels in the GROUP field. It can be seen that there are quite noticeable
difference in the amounts, where labels like stock-prices have substantially
higher number of observations than for instance pollution.

Lastly, Figure 2.7 shows the distribution of the EVENT_SENTIMENT_SCORE
field. Note that this field only takes values between �1.00 and 1.00 with a
granularity of two decimal places, as described in Table 2.1. Here, 26% takes
the value 0.00. In addition to this, there are two clusters of points roughly
around sentiments �0.50 and 0.50 respectively.
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Figure 2.6: Number of observations for 20 GROUP labels.

Figure 2.7: EVENT_SENTIMENT_SCORE distribution with interval range 0.05.
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Chapter 3

Mathematical Background

In this chapter, a formal mathematical background to the models utilized in
this study is given. To begin with, some theory about stochastic processes is
presented. In particular, this part focuses on presenting the Hawkes process,
its important properties as well as how it is different from more simple mod-
els. Thereafter, the models for the news data flows are formalized, which
ties back to both the data structure presented in Chapter 2 as well as the
stochastic process theory provided in the first section of this chapter. Here,
the distinct classes model is the one most central to the scope of this thesis.
However, a second model with overlapping classes is also introduced. Though
this model is not tested in this study, it provides a generalization that could
be useful for future works. The chapter also provides some background the-
ory on the optimization algorithms and parameter estimation procedures
used in the implementation. Lastly, some theory on evaluation of statistical
models and model selection is provided.

3.1 Stochastic Processes

This part provides some important mathematical background on stochastic
processes and the Hawkes process in particular, which is the essential part of
modeling the news data flow in this thesis project. However, prior to defining
the Hawkes process model, some more basic concepts are outlined.

3.1.1 Basic Stochastic Processes

Firstly, the topic of point processes is an important concept in probability
theory and is especially central in modeling spatial data. In the setting of
news data flow, a point process can intuitively be thought of as the random
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variables describing the news arrival times. The formal definition of a point
process [10, 11] is stated below.

Definition 3.1 (Point process)
A sequence of real-valued non-negative random variables T = {T1, T2, . . . }
on a probability space (⌦,F ,P) is a point process if

(i) P(0  T1  T2  . . . ) = 1,

(ii) The number of points in a bounded region of [0,1) is finite almost
surely, i.e. P

⇣
lim

n!1
Tn =1

⌘
= 1.

In many cases, a point process has a corresponding count process that de-
scribes the cumulative count of arrivals. The definition of the counting pro-
cess is presented below.

Definition 3.2 (Counting process)
A stochastic process N : [0,1) ⇥ ⌦ ! N0 on a probability space (⌦,F ,P),
with Nt : ⌦ ! N0 such that Nt(!) = N(t,!) 8 ! 2 ⌦, is a counting process
if

(i) P(N0 = 0) = 1,

(ii) P(Nt <1) = 1, 8 t 2 [0,1),

(iii) it holds that N is a non-decreasing and right-continuous step function
with increment size 1.

Furthermore, a useful concept related to the point- and counting processes is
the history sigma algebra. That is, for each time t 2 [0,1), the history sigma
algebra Ht of a counting process N is given as Ht = � ({Nu : 0  u  t}).
Consequently, the sequence H = {Ht}t2[0,1) is a filtration on the measurable
space (⌦,F). How a counting process depends on its related filtration is of
great significance in many applications. Its importance for this study will be
presented later. An important counting process with some special properties
is the Poisson process [12]. In the parts below, the definitions of both its
homogeneous and inhomogeneous forms are given.

Definition 3.3 (Homogeneous Poisson process)
A counting process N : [0,1)⇥⌦! N0 on a probability space (⌦,F ,P) is a
homogeneous Poisson process with intensity � � 0 if for arbitrary t 2 [0,1)

it holds for all h � 0 that

P (Nt+h �Nt = m) =

8
><

>:

1� �h+O(h), m = 0,

�h+O(h), m = 1,

O(h), m > 1,

(3.1)

where O signifies some function o : [0,1)! R with the property
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lim

h&0

o(h)

h

= 0, (3.2)

which also implies that o(0) = 0. This definition in turn gives that non-
overlapping intervals of N are independent random variables, i.e. for all
t 2 [0,1) it holds that the increment Nt+h �Nt is independent of Ht. Fur-
thermore, all increments are stationary and have the property such that
Nt+h �Nt ⇠ Po(�h). The term homogeneous specifies that there is no time
dependency in the intensity, However in some situations it may happen that
the intensity is not a constant but instead varies with time, e.g. with some
linear increase or seasonal oscillations. In such a case, an inhomogeneous
Poisson process is obtained. The definition of such a process is presented
below.

Definition 3.4 (Inhomogeneous Poisson process)
A counting process N : [0,1)⇥⌦! N0 on a probability space (⌦,F ,P) is an
inhomogeneous Poisson process with intensity function � : [0,1)! [0,1) if
for arbitrary t 2 [0,1) it holds for all h � 0 that

P (Nt+h �Nt = m) =

8
><

>:

1� �(t)h+O(h), m = 0,

�(t)h+O(h), m = 1,

O(h), m > 1,

(3.3)

where as in the homogeneous case, O signifies some function o : [0,1)! R
satisfying the property in Equation 3.2. For this case, it is given that

Nt+h �Nt ⇠ Po

0

@
t+hZ

t

�(u) du

1

A
, t 2 [0,1). (3.4)

3.1.2 The Hawkes Process

Now, it is time to formally introduce the Hawkes process. The Hawkes
process is in some ways a generalization of the Poisson process, however
where the process is self-exciting. This means that every observed arrival
in the process causes an increase in the value of the intensity function, thus
also increasing the probability of observing more arrivals in the future. In
addition, this implies that the intensity does not only vary with time, but
also depends on the history sigma algebra generated by the process up until
the current time point. The definition of the Hawkes process [10] is presented
below.
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Definition 3.5 (Hawkes process)
A counting process N : [0,1)⇥⌦! N0 on a probability space (⌦,F ,P) with
associated filtration H is a Hawkes process if for arbitrary t 2 [0,1) it holds
that

(i) for all h � 0

P (Nt+h �Nt = m |Ht) =

8
><

>:

1� �

⇤
(t)h+O(h), m = 0,

�

⇤
(t)h+O(h), m = 1,

O(h), m > 1,

(3.5)

(ii) the conditional intensity function �

⇤ is given as

�

⇤
(t) = b+

tZ

0

⌫(t� u) dNu, t 2 [0,1) (3.6)

where b � 0 is defined as the background intensity and ⌫ : [0,1)! [0,1)

is defined as the excitation function.

As before, O signifies some function o : [0,1) ! R satisfying the property
in Equation 3.2. Here, the conditional intensity function is an important
difference from the previous Poisson process since it depends on the history
of the process and so its future values are not deterministic given the current
information. In a more general context, the conditional intensity function
�

⇤ can be defined as

�

⇤
(t) = lim

h&0

E[Nt+h �Nt |Ht]

h

, t 2 [0,1). (3.7)

Furthermore, the choice of excitation function ⌫ may vary between applica-
tions and used data. One choice that has been used in for example seismo-
logical modeling is a function, also called Omori’s law, on the form

⌫(t) =

k

(c+ t)

p
, t 2 [0,1), (3.8)

where k, p � 0 and c > 0 are constants. Another common option is an
exponential kernel on the form

⌫(t) = V e

��t
, t 2 [0,1), (3.9)
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where V, � are some non-negative constants. It can be noted that if it holds
that ⌫(t) = 0 8 t 2 [0,1), the Hawkes process becomes identical to the ho-
mogeneous Poisson process. Also, for an observed sequence of arrival times
t = {t1, t2, . . . } of the process during a time interval [ta, tb] ⇢ [0,1), the con-
ditional intensity function presented in Equation 3.6 can be written as

�

⇤
(t) = b+

X

tl2t:
tl<t

⌫(t� tl), t 2 [ta, tb]. (3.10)

An illustration of a Hawkes process with excitation function of the form in
Equation 3.9 is given below in Figure 3.1. For this example, a time sequence
t = {1.0, 3.0, 3.5, 4.0, 6.0} is observed during the time interval [0, 10] and the
Hawkes parameters are set to b = 0.1, V = 1 and � = 1. The upper plot
shows the counting process of cumulative arrivals and the lower plot presents
the conditional intensity function over the interval.

Figure 3.1: Example of a Hawkes process and its conditional intensity function.

Consequently, the likelihood function and corresponding log-likelihood func-
tion of such a realization can be written as

L(t) =
 
Y

tl2t
�

⇤
(tl)

!
exp

0

@�
tbZ

ta

�

⇤
(u) du

1

A
, (3.11)
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logL(t) =
X

tl2t
log (�

⇤
(tl))�

tbZ

ta

�

⇤
(u) du. (3.12)

The proof for deriving this likelihood is left out of this report, however a
derivation of the expression can be found in the literature reference [10].
Next, the Hawkes process can be extended to the case where multiple count-
ing processes are considered. In such a case, the processes can have both
self- and mutually-exciting properties. Such a scenario can be modeled using
the multivariate Hawkes process, which is defined below.

Definition 3.6 (Multivariate Hawkes Process)
Consider a collection of n counting processes N = {N (1)

, . . . , N

(n)} on a
probability space (⌦,F ,P) with associated filtration H. Then N is a multi-
variate Hawkes process if for each i 2 {1, . . . , n} it holds that

(i) for all h � 0

P
⇣
N

(i)
t+h �N

(i)
t = m |Ht

⌘
=

8
><

>:

1� �

⇤
i (t)h+O(h), m = 0,

�

⇤
i (t)h+O(h), m = 1,

O(h), m > 1,

(3.13)

(ii) the conditional intensity function �

⇤
i corresponding to N

(i) can be writ-
ten on the form

�

⇤
i (t) = bi +

nX

j=1

0

@
tZ

0

⌫ij(t� u) dN

(j)
u

1

A
, t 2 [0,1), (3.14)

where bi � 0 is the background intensity and ⌫ij : [0,1) ! [0,1) is
the excitation function from N

(j) to N

(i).

As before, O signifies some function o : [0,1) ! R satisfying the property
in Equation 3.2. Next, consider an observed sequence of arrival times t with
t

i
= {ti1, ti2, . . . } corresponding to each counting process N

(i)
, i 2 {1, . . . , n}

during a time interval [ta, tb] ⇢ [0,1). The conditional intensity function �

⇤
i

for each i can thus be written as

�

⇤
i (t) = bi +

nX

j=1

X

tjl2t
j :

tjl<t

⌫ij(t� t

j
l ), t 2 [ta, tb], (3.15)
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with the likelihood function and corresponding log-likelihood taking the
forms

L(t) =
nY

i=1

0

@

0

@
Y

til2ti
�

⇤
i (t

i
l)

1

A
exp

0

@�
tbZ

ta

�

⇤
i (u) du

1

A

1

A
, (3.16)

logL(t) =
nX

i=1

0

@
X

til2ti
log

�
�

⇤
i (t

i
l)
�
�

tbZ

ta

�

⇤
i (u) du

1

A
, (3.17)

i.e. the total likelihood is a product over terms similar to those presented
in Equation 3.11. Additionally, the exponential excitation function intro-
duced in Equation 3.9 can be extended to the multivariate case to model the
excitation from N

(j) to N

(i) using the form

⌫ij(t) = Vije
��jt

, t 2 [0,1), (3.18)

where Vij , �i are non-negative constants, which inserted in Equation 3.14
gives the conditional intensity function for each i to take the form

�

⇤
i (t) = bi +

nX

j=1

X

tjl2t
j :

tjl<t

Vije
��j(t�tjl )

, t 2 [ta, tb] (3.19)

Here, Vij can be thought of as elements in an excitation amplitude matrix
V = {Vij}ni,j=1. Similarly, the parameters bi and �i and can be thought of as
elements in vectors b = {bi}ni=1 and � = {�i}ni=1 respectively. This is the form
of the conditional intensity function that is used in this study. Of course,
alternative expressions for the excitation function can also be proposed, e.g.
by stating a non-stationary model where the parameters can vary with time.
For instance, by redefining the background intensity constant bi as a function
bi : [0,1)! [0,1) a case similar to the one with the inhomogeneous Poisson
processes presented in Definition 3.4 is obtained. This can be thought of as
an inhomogeneous Hawkes process. A practical approach to this is presented
in Section 4.3.3.
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3.2 Modeling News Data

This section provides a description for how the news data is modeled through-
out this study. To begin with, every news data point observed during some
time interval [ta, tb] ⇢ [0,1) is represented by a point yi such that

yi = (ti, xi) 2 [ta, tb]⇥ X , (3.20)

where ti is time stamp at which the piece of news was observed, xi is the
spatial attributes of the point and X is the attribute space. For instance,
if the data point is described with m real-valued numerical attributes it is
obtained that xi 2 X ✓ Rm. In this study however, there is a mixture of both
real-valued numerical attributes as well as categorical attributes associated
with each data point. The attribute space can therefore be written as

X = X (real) ⇥ X (cat)
, (3.21)

where X (real) and X (cat) represent the real-valued and categorical dimensions
of the attribute space.

Next, the sequence of observed data is defined by y = {y1, y2, . . . } with as-
sociated arrival times and spatial attributes defined as t = {t1, t2, . . . } and
x = {x1, x2, . . . } respectively. This data sequence includes the whole set of
observed news data points, i.e. there is no sorting process based on the con-
tent of news. However, in order to properly apply the multivariate Hawkes
process model, the aggregated news data ought to be partitioned into classes
where each class is characterized by containing homogeneous types of news.
In this study, the model for partitioning the news flow into classes have two
different versions; distinct classes and overlapping classes. Here, the distinct
classes model is the one most central to the scope of this study whereas the
overlapping classes model is seen as an extension. In short, distinct classes
means that the attribute space X is divided into distinct subsets, where each
subset corresponds to a class, whereas overlapping classes means that each
class is represented by a probability density over the whole attribute space.
Illustrations of these two concepts are presented below in Figures 3.2 and
3.3. Both of these two model alternatives are outlined more in detail in the
next subsections.

20



CHAPTER 3. MATHEMATICAL BACKGROUND

Figure 3.2: Distinct classes. Figure 3.3: Overlapping classes.

3.2.1 Distinct Classes

In this first model it is assumed that the attribute space X is separated
into disjoint classes. That is, if there is a total of n classes it is assumed
that

X =

n[

i=1

Xi, Xi \ Xj = ;, i 6= j, (3.22)

where Xi is the part of the attribute space corresponding to class i. With
this assumption, the flow of news data from each class i is denoted as the
sequence y

i
= {yi1, yi2, . . . } with associated time sequence t

i
= {ti1, ti2, . . . }

and attribute sequence x

i
= {xi1, xi2, . . . }, similarly as in the general model

but here separated by class, i.e. yi
= {yj 2 y : xj 2 Xi}.

Here, the flow of news data is modeled with a multivariate Hawkes process
N = {N (1)

, . . . , N

(n)}, as presented in the previous section, such that each
class i is represented by a counting process N

(i) modeling the arrival times
and cumulative count of news data points in that specific class. Furthermore,
by using the likelihood expression stated in Equation 3.16 as well as the
generalized exponential excitation function for multivariate Hawkes processes
introduced in Equation 3.18 with the parameters b, V, � in the conditional
intensity functions, the likelihood for the arrival times t of an observed news
data sequence y during the time interval [ta, tb] is given by

p(t|b, V, �) =
nY

i=1

0

@

0

@
Y

til2ti
�

⇤
i (t

i
l|b, V, �)

1

A
exp

✓
�
Z tb

ta

�

⇤
i (t|b, V, �) dt

◆1

A
,

(3.23)
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where �

⇤
i (t|b, V, �) indicates the function in Equation 3.19 with the specific

parameter choice b, V, �. Likewise, p(t|b, V, �) is used to denote L given in
Equation 3.16 with the parameters b, V, �.

Next, the spatial attributes of a news data points generated in class i is
determined by a probability density function fi : Xi ! [0,1). Since there
is a mixture of categorical and real-valued numerical attributes, this density
can for instance be partitioned into a product of multinomial densities for
the categorical variables and truncated normal distribution densities for the
real-valued attributes. For each class i, the multinomial parameters can be
denoted by ⇢i, which represents the point-wise probabilities in the categori-
cal domain. Similarly, the parameters of the truncated normal distribution
are given by its mean µi and covariance ⌃i. Here, the truncated normal dis-
tribution density fT N for the real-valued numerical attributes taking values
in X (real)

i , which represents the real dimensions of Xi in the same manner as
in Equation 3.21, is given by

fT N (x|µi,⌃i) =
fN (x|µi,⌃i)R

x02X (real)
i

fN (x

0|µi,⌃i) dx
0 , x 2 X (real)

i , (3.24)

where fN is the density function of a normal distribution such that if it is
given that X (real) ✓ Rm where m 2 N, then

fN (x|µi,⌃i) =
1p

(2⇡)

m
det(⌃)

exp

✓
�1

2

(x� µi)
T
⌃

�1
i (x� µi)

◆
, x 2 Rm

.

(3.25)

Using this density model for the spatial attributes, the likelihood for an
attribute sequence x corresponding to an observed news data sequence y

can be written as

p(x|⇢, µ,⌃) =
nY

i=1

Y

xi
l2xi

fi(x
i
l|⇢i, µi,⌃i), (3.26)

where µ = {µi}ni=1 and ⌃ = {⌃i}ni=1. In the same way, it can be defined
that ⇢ = {⇢i}ni=1. Next, it is modeled that the prior distribution for the
parameters b, V, �, ⇢, µ,⌃ can be factorized such that
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fbV �⇢µ⌃(b, V, �, ⇢, µ,⌃) = fbV �(b, V, �)f⇢µ⌃(⇢, µ,⌃). (3.27)

Finally, given the parameterization of the time- and space factors for the news
data flow as well as the factorization of the parameters’ prior distribution,
the likelihood function for the observed news data sequence y also factorizes
and can be written as

p(y|b, V, �, ⇢, µ,⌃) = p(t|b, V, �)p(x|⇢, µ,⌃). (3.28)

This gives the posterior distribution over the parameters to be

p(b, V, �, ⇢, µ,⌃|y) = p(y|b, V, �, ⇢, µ,⌃)fbV �⇢µ⌃(b, V, �, ⇢, µ,⌃)

p(y)

=

p(t|b, V, �)fbV �(b, V, �)

p(t)

p(x|⇢, µ,⌃)f⇢µ⌃(⇢, µ,⌃)
p(x)

.

(3.29)

From this expression, it can be concluded that the distinct class model with
the presented properties yields the time- and attribute aspects to be sepa-
rated in the posterior distribution, which in turn means that the time pa-
rameters and attribute parameters can be optimized independent of each
other.

3.2.2 Overlapping Classes

A generalization of the first model would be to no longer require the attribute
space to be separated into disjoint classes. In such a case, the conditional
intensity function related to the Hawkes process is redefined as a function
�

⇤
: [0,1)⇥ X ! [0,1) such that for a sequence of data y = {y1, y2, . . . }

observed during the time interval [ta, tb] it is given that

�

⇤
(t, x) = b(x) +

X

yl2y:
tl<t

⌫(t� tl, x, xl), t 2 [ta, tb], x 2 X . (3.30)

In this setting, how much the news flow at a point x 2 X is influenced by
other observations is determined by functions gi : X ! [0,1), i 2 {1, . . . , n},
such that each g

i is a density function that represents a class in this new
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setting, which ties back to the structure introduces in Figure 3.3. Taking the
sum over these densities, a function g : X ! [0,1) is defined such that

g(x) =

nX

i=1

g

i
(x), x 2 X . (3.31)

Furthermore, it is modeled that the terms in the conditional intensity func-
tion take the forms

b(x) =

nX

i=1

big
i
(x), x 2 X , (3.32)

and

⌫(t� t

0
, x, x

0
) =

nX

i=1

nX

j=1

Vijg
i
(x)

g

j
(x

0
)

g(x

0
)

e

��j(t�t0)
,

t 2 [0,1), t

0 2 [0, t], x, x

0 2 X ,

(3.33)

where bi, Vij , �i are non-negative constants. Each element in the first sum
can be interpreted as how a point x in class i is affected by an observed data
point x0, weighted by the probability gj(x0)

g(x0) that point a x

0 is in class j.

As shown in Figure 3.3, a point in the attribute space can be contained in
several classes with different probabilities. This probability will in a general
context depend on both real and categorical variables such that for each i it
holds that

g

i
(x) = f(x|⇢i, µi,⌃i), x 2 X . (3.34)

where ⇢ = {⇢i}ni=1 represents the multinomial parameters describing the
distribution over the categorical variables and µ = {µi}ni=1,⌃ = {⌃i}ni=1
represent the parameters of the truncated normal distribution used to model
the distribution over the real variables. It can be noted that this setup
is the same as in the distinct classes model. However, even though the
overlapping and distinct models show similarities when written this way,
there are important differences. A significant difference is that the spatial
and time dependent parts of the likelihood no longer are independent. The
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likelihood p(y|b, V, �, ⇢, µ,⌃) for an observed news data sequence y observed
during the time interval [ta, tb] has to be written in the full form as

 
Y

yl2y
�(tl, xl|b, V, �, ⇢, µ,⌃)

!
exp

0

@�
tbZ

ta

Z

x2X

�(t, x|b, V, �, ⇢, µ,⌃) dx dt

1

A
,

(3.35)

and the posterior distribution of the parameters is obtained to be

p(b, V, �, ⇢, µ,⌃|y) = p(y|b, V, �, ⇢, µ,⌃)fbV �⇢µ⌃(b, V, �, ⇢, µ,⌃)

p(y)

. (3.36)

3.3 Optimization & Parameter Estimation

A central part of this thesis study is to estimate the parameters in the math-
ematical expressions that model the news data flow. More specifically, given
the observations in the provided dataset and the underlying model, the like-
lihood function for the observed sequences can be formulated. Having stated
this function, the parameters can be estimated by maximizing the likelihood
with respect the these parameters in a maximum-likelihood or maximum-a-
posteriori manner. However with the complex models used throughout this
study, closed-form solutions for the parameters can not be formulated. In
addition, many parameters need to be estimated simultaneously and the size
of the input data is generally very large. Dealing with big datasets as well as
high-dimensional parameter spaces is therefore of vital importance. Hence,
iterative methods are used to numerically optimize the likelihood and esti-
mate the desired parameters. This section provides some information about
these numerical methods used to estimate the parameters. The most central
concept here is the ADAM algorithm, which can be seen as an extension of
the Gradient Descent algorithm presented below

3.3.1 Gradient Descent

The gradient descent method [13] is one of the most basic methods in numer-
ical optimization. Consider the problem of minimizing an objective function
F : Rm ! R, m 2 N. That is, the goal is to identify an optimal solution
w

⇤ 2 Rm such that F (w

⇤
)  F (w), 8w 2 Rm. Note that this is analogous

to maximizing �F . In general, a closed-form solution for w

⇤ can not be
derived. In such a case, the gradient descent algorithm can be used to find
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an estimate for w

⇤. This algorithm requires F to be differentiable and can
be described by the steps given in 1.

Algorithm 1 Gradient Descent Algorithm
1: Define convergence criteria
2: Define learning rate ⌘t

3: Initialize w0

4: t 0

5: while not converged do:
6: t t+ 1

7: wt  wt�1 � ⌘trF (wt�1)
return wt

Here, the learning rate ⌘t can be defined as a function of t. This rate is
of importance and has to be tuned to the specific problem in question in
order to produce a solution that converges to the optimal value. For a
suitable choice of the learning rate, the solution is guaranteed to converge
to a local minimum. However, the objective function F is in general not
convex, which means that the local minimum is not necessarily the global
minimum. Consequently, the obtained solution will often heavily depend on
the prior guess w0.

3.3.2 ADAM

In some problems it is useful to adapt the algorithm to the problem-specific
geometry in order to achieve faster convergence. An example of such an
algorithm is ADAM [14], which can be seen as an extension to gradient
descent that uses a cumulative gradient as well as an estimate for the second
moment. Note that as in the gradient descent case, the aim is to minimize
a differentiable objective function F : Rm ! R, m 2 N and find a point w

⇤

such that F (w

⇤
)  F (w), 8w 2 Rm. The procedure can be described by the

steps given in Algorithm 2 below.
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Algorithm 2 ADAM Algorithm
1: Define convergence criteria
2: Define step-size ↵

3: Define constants �1,�2 2 [0, 1)

4: Initialize for w0

5: m0  0 (First moment)
6: v0  0 (Second moment)
7: t 0

8: while not converged do:
9: t t+ 1

10: gt  rF (wt�1)

11: mt  �1mt�1 + (1� �1)gt

12: vt  �2vt�1 + (1� �2)g
2
t

13: bmt  mt

1��t
1

14: bvt  vt
1��t

2

15: wt  wt�1 � ↵

bmtp
bvt+✏

return wt

Similar to the scenario in the gradient descent algorithm with the learning
rate ⌘t, the parameters �1,�2 and ↵ defined in the ADAM algorithm have
to be tuned to fit the specific problem in question.

3.4 Statistical Model Evaluation

Evaluation of statistical models is a central topic in the field of statistics.
This includes both assessment for how well a specific model fits provided
data as well as comparison of hierarchical models. Typically, this becomes a
trade-off between choosing a more complex model, which can adapt to the
data more flexibly but may cause computational issues and overfitting, or
choosing a simpler model, which may be more easily handled but provide
a worse fit. This is an important part of this study. Hence, this section
provides some mathematical background to the statistical evaluation tests
that were utilized to compare the mathematical models.

Firstly, perhaps the most fundamental concept in this area is the likelihood
function [15], which has been used earlier in this report, e.g. in Equations
3.11 and 3.16. That is, given the suggested underlying model and a set
of observations, the likelihood function can be stipulated. Consider a col-
lection of parameters ✓ for a suggested underlying model. Let the random
variables X1, . . . , Xk have a joint density function p(X1, . . . , Xk|✓) based on
this model. For a given sequence of observations X1 = x1, . . . , Xk = xk the

27



CHAPTER 3. MATHEMATICAL BACKGROUND

likelihood function L is given as

L = L(x1, . . . , xk) = p(x1, . . . , xk|✓). (3.37)

This means that L is the likelihood of the observations given that the model
is true. Using this formulation, L can be thought of as a function of ✓ and
thus maximized with respect to these parameters. Note that maximizing the
likelihood function L is analogous to maximizing logL by the monotonicity
of the logarithmic function, or likewise to minimize � logL. However, the
maximized likelihood function bL is not necessarily the best measure of as-
sessment and can not always be used to compare different models. This is
the case since a larger model has more flexibility and will therefore always
yield a larger likelihood for the same set of data than that given by a model
containing a subset of the parameters in the original model. For such a case,
the likelihood function says nothing about overfitting. Hence, regulariza-
tion terms can be introduced to take this into account when evaluating the
statistical models.

One such measure is the Bayesian information criteria, BIC [16], which takes
the number of estimated parameters into account and can be used as a
method for model selection. Here, an arbitrary dataset containing k ob-
servations and a model with q parameters can be considered. Given the
maximized likelihood function bL obtained from the optimization step, the
BIC measure is defined as

BIC = �2 log bL+ log(k)q. (3.38)

Thus, if several models are tested on the same dataset, their BIC values can
be compared to select the model that by the BIC measure gives the best
fit to the underlying data. That is, to identify which of the models that
provide the smallest BIC value. In the context of this study, the negative
log-likelihood and BIC measures will be the primary statistics for assessment
and selection of models.
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Methods

In this chapter, the methods of this thesis study are presented. This in-
cludes the bucketing procedure used in this study, the implementation of the
discrete classes model and setup for the training of the Hawkes models.

4.1 Bucketing

In order to computationally go through the massive amount of data, the
estimation of the parameters has to be done very efficiently. As introduced
in Chapter 2, the data comes at a resolution of milliseconds, which means
that there are over 10

10 unique time stamps for the whole dataset spanning
over almost 20 years.

The behavior of the Hawkes processes is by definition dependent on the
history of the process. Because of this, the implementation in this thesis
uses recursive computations. However, even though this recursive method is
used, looping over previous observation for every new arrival is unavoidable.
Therefore, every iteration of the loop has to be done in sequence. This makes
parallelism of the whole program impossible and thus, the program quickly
becomes very time consuming. For this study, the proposed solution to this is
to lower the resolution of the data. More specifically, if the chosen resolution
is defined as 1 day, all points observed in the same day are assigned with the
same time stamp. Lowering the resolution and bucketing the data in this
manner thus make it possible to speed up computations.

What happens when observations are put in the same bucket is that exci-
tation phenomena between these points are neglected. For instance, with a
bucket size of 1 day, interactions that are faster than 1 day are erased in an
artificial way. This means that for applications such as high-frequency trad-
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ing where interaction typically occur on smaller time scales, such a bucketing
procedure would likely erase a lot of useful information

With this bucket method, a given time interval [0, T ] becomes a grid with
intervals of increment size �t. In addition, M is denoted as the total number
of buckets. Thus in this setting, every observation will be on one of the grid
points. Likewise, this means that every grid point, or bucket, can store
several events. The input time sequence t is projected on the grid according
to

tG = projG(t) = {projG(t1), projG(t2), . . . }, (4.1)

where tG is the projected time sequence and projG is the operator which
projects the observed time sequence onto the discretized grid of equidistant
points, i.e. G = {tM,1, . . . , tM,M}. More specifically, the projection is done
such that for an observed time tl 2 t it holds that

projG(tl) = sup

k2{1,...,M}
{tM,k : tM,k  tl} . (4.2)

Here, the number of observations in class i and grid point with index k is
denoted by n

i,k
G . Note here that given an original time interval [0, T ] it holds

that tM,1 = 0 and tM,M+1 = T . An illustration of the projection procedure
is given in Figure 4.1 with the original observation times on the upper axis
projected using M = 5. Here, the filled bullets indicate the bucket points
and the red number next to each them indicates the number of observations
from the original axis that is contained in that particular bucket.

Figure 4.1: Discretized grid and bucketing procedure.
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4.2 Implementation of Distinct Classes Model

Given the bucketing procedure described in the previous section and the
projected sequence of times tG , the integral term in the log-likelihood of the
multivariate Hawkes process stated in Equation 3.16 can be written as

TZ

0

�

⇤
i (u) du =

MX

k=1

tM,k+1Z

tM,k

�

⇤
i (u) du. (4.3)

Consequently, the total log-likelihood of the projected time sequence tG be-
comes

logL(tG) =
nX

i=1

0

B@
MX

k=1

n

i,k
G log (�

⇤
i (tM,k))�

MX

k=1

tM,k+1Z

tk

�

⇤
i (u) du

1

CA . (4.4)

Here, it is convenient to write the intensity as a recursive sum. For each i

and for all k 2 {2, . . . ,M + 1} it holds that
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(4.5)

Likewise, for the point where k = 1 it holds that �

⇤
i (t1,M ) = �

⇤
i (0) = bi.

In addition, for arbitrary u 2 (tM,k�1, tM,k], k 2 {2, . . . ,M + 1} it holds
that

�

⇤
i (u) = bi +

nX

j=1

�

⇤,b,+
ij (tM,k�1)e

��j(u�tM,k�1)
. (4.6)
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Here, the exponent label + indicate that it is to the right of the discontinuity.
Similarly, the exponent label b indicates that the base intensity has been left
out. The last equality comes from the definition that

�

⇤,b,+
ij (tM,k) = Vijn

j,k
G + �

⇤,b
ij (tM,k), k 2 {1, . . . ,M}. (4.7)

Because of the time discretization, the excitation jumps only occur at the
grid points. Hence, the integral in Equation 4.4 will simply be an exponential
decay scaled with �

⇤,b,+
ij (tM,k). It is here obtained that
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By rearranging the sums the expression above, the last terms is given by

nX

i=1

MX

k=1

nX

j=1
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⇤,b,+
ij (tM,k)

1� e

��j�t

�j
. (4.9)

This means that every time step, i.e. for each term in the middle sum, a
summation over the classes j has to be done. When the number of classes n
increases, this whole process becomes very time consuming. Hence, a faster
version is to rearrange the summation in the following manner

nX

i=1

nX

j=1

MX

k=1

�

⇤,b,+
ij (tM,k)

1� e

��j�t

�j
. (4.10)
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It is recalled that the only i-dependence in �

⇤,b,+
ij is in Vij . Now, taking out

the factor Vij and defining �

⇤,b,V,+
j such that

�

⇤,b,+
ij (tM,k) = Vij�

⇤,b,V,+
j (tM,k), k 2 {1, . . . ,M}, (4.11)

the summation sequence then becomes
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��j�t

�j
, (4.12)

which is more well-suited for parallel computations. With this, the final
algorithm can be formulated. Also, using the results from Equation 3.28
that time and space attributes are separated in the distinct classes model, the
total log-likelihood for an observed news data sequence y can be obtained by
adding the space part of the log-likelihood at the end. Some more methods
on the spatial part of the log-likelihood is presented in Section 4.3. The
final algorithm is presented in Algorithm 3 below, here using b = {bi}ni=1,
V = {Vij}ni,j=1 and � = {�i}ni=1 as well as bold symbols for other vectors, e.g.
defining �⇤,b,V,+

(tM,k) = {�⇤,b,V,+
j (tM,k)}nj=1. For these, operations are done

element-wise, except in the cases with matrix multiplication with V. This is
the algorithm that is implemented in the TensorFlow framework.

Algorithm 3 Discrete Classes log-likelihood with Bucketing Approximation
1: procedure LogLike

2: tG  projG(t)
3: �t T

M

4: I�t  1�e���t

�
5: k = 0

6: �⇤,b,V,+
(tM,0) 0

7: while k < M do:
8: �⇤,b,V

(tM,k) �⇤,b,V,+
(tM,k)e

���t

9: llog(tM,k) nt+1
G log (b+ V �⇤,V,b

(tM,k))

10: �⇤,b,V,+
(tM,k) �⇤,b,V

(tM,k) + nk+1
G

11: k  k + 1

12: log p(tG|b, V, �) sum
✓
�bT +

MP
k=1

llog(tM,k)� V

MP
k=1

(�⇤,b,V
(tM,k)I�t)

◆

13: Calculate log p(x|⇢, µ,⌃)
14: log p(y|b, V, �, ⇢, µ,⌃) log p(tG|b, V, �) + log p(x|⇢, µ,⌃)
15: return log p(y|b, V, �, ⇢, µ,⌃).

33



CHAPTER 4. METHODS

Given this algorithm, the negative log-likelihood is obtained by switching
signs and can thereafter be used in the ADAM optimization procedure. How-
ever, since it is required that all parameters in the Hawkes process are posi-
tive, it is in practice easier to minimize over variables ˜bi, ˜Vij , �̃j such that for
all i, j 2 {1, . . . , n} it holds that

bi =
˜

b

2
i , Vij =

˜

V

2
ij , �i = �̃

2
i . (4.13)

These new variables can take values over the whole real domain. Note that
this is analogous to a maximum-a-posteriori procedure with prior distribu-
tion 1 for all these new parameters over the whole parameter space.

4.3 Setup

4.3.1 Construction of Classes

Prior to performing the calculations using the distinct classes model, the
provided dataset has to divided into classes in order to obtain the structure
introduced in Section 3.2. However, the construction of these classes will
of course influence the quality and interpretability of the results. It is of
interest to construct these classes such that homogeneous types of news end
up in the same class, thus making the content of each class and connections
between classes clearer.

Firstly, news data is partitioned using the GROUP field in the RavenPack
framework. This level in the hierarchical taxonomy stated in Table 2.2 con-
tains 56 unique labels, which is deemed an appropriate level of partitioning
for the scope of this study.

Secondly, it is of interest to make distinctions between negative, neutral and
positive news. For instance, news with GROUP label interest-rates and with
positive or negative sentiment may be very different and connect to other
categories of news in separate ways. Thus, the dataset is also partitioned
based on the EVENT_SENTIMENT_SCORE field. Provided the origi-
nal distribution presented in Figure 2.7, this is done by defining the senti-
ment score intervals for negative, neutral and positive news as [�1.00,�0.30],
[�0.29, 0.29] and [0.30, 1.00] respectively. This partitioning is illustrated in
Figure 4.2 below.
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Figure 4.2: Partitioning of EVENT_SENTIMENT_SCORE into negative, neutral
and positive intervals.

Given this construction using both the EVENT_SENTIMENT_SCORE
and GROUP fields to define the news classes, the total number of classes is
obtained to be 3 · 56 = 168. This construction is used throughout the rest of
the study in all calculations. Here, the classes are sometimes referred to by
their ID, spanning from 1 to 168. A full list of class IDs and corresponding
news classes is given in Appendix A.

4.3.2 Spatial Distribution

For the spatial part of the likelihood, truncated normal distributions intro-
duced in Equation 3.24 are used to describe the distribution of the sentiment
score withing sentiment interval. The distribution over each of the sentiment
intervals is used over all GROUP labels. That is, for an observed sequence of
sentiments, here denoted x = {x1, x2, . . . } since its the only spatial attribute
used for the likelihood expression, it is obtained that the spatial likelihood
p(x|µ,�) becomes

Y

xl2x:
xl2neg

fT N (xl|µneg,�neg)

Y

xl2x:
xl2neu

fT N (xl|µneu,�neu)

Y

xl2x:
xl2pos

fT N (xl|µpos,�pos),

(4.14)
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where � = {�neg,�neu,�pos} and µ = {µneg, µneu, µpos} denote the one di-
mensional distribution parameters. In the optimization, the scale parameters
� are only allowed to take values between 0.01 and 1 to improve algorithm
stability. Here, neg, neu and pos denote the negative, neutral and positive
sentiment intervals [�1.00, 0.30], [�0.29, 0.29] and [0.30, 1.00]. Also, each
truncated normal distribution is defined only on its corresponding sentiment
interval.

4.3.3 Inhomogeneous Extension

As an extension of the original multivariate Hawkes process model, a inho-
mogeneous version is introduced. More specifically, some non-stationary and
periodic behavior in the data can be observed in Figures 2.4 and 2.5. This
data structure causes issues in the original, homogeneous, Hawkes model
in the sense that the excitation may primarily model the periodicity rather
than more interesting connections. To handle this, an inhomogeneous back-
ground intensity is introduced, i.e. rather than describing the background
intensity with constants bi, these are in this case considered to be functions
bi : [0,1) ! [0,1) parametrized with respect to the time t. In this study,
this function is for each i 2 {1, . . . , n} assumed to take the form

bi(t) = bi Wday(t) + b

(weekend)
i Wend(t) + b

(t)
i t+ b

(amp)
i sin

⇣
wt+ b

(angle)
i

⌘
,

(4.15)

for all t in the interval of interest [0, T ]. Here, bi, b
(weekend)
i , b

(t)
i , b

(amp)
i and

b

(angle)
i are parameters that have to be estimated from data. In addition,
w =

4·2⇡
365.25·24·60 min�1 is a fixed constant that corresponds to the quarter

frequency and helps modeling the economic news with periodic reporting.
An example of such a news class is the GROUP label earnings, as seen in
Appendix C. Also, Wday and Wend are the indicator functions for times
during week days and weekends respectively, i.e.

Wend(t) =

(
1, if t during weekend,
0, otherwise

, t 2 [0, T ], (4.16)

where weekend is referred to as the days Saturday and Sunday. Also it
holds that Wday(t) = 1 � Wend(t) for all t. The same parametrization is
implemented for an inhomogeneous Poisson process, which is used to test
and compare the performance of the Hawkes process models. In terms of
implementation, this inhomogeneous extension only requires changing the
constant b in Algorithm 3 to a function of time on the form given above.
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4.4 Settings & Test Scenarios

In this part, the specific settings and scenarios used in testing the algorithm
are presented. The news class partitioning stated in Appendix A is used
throughout all calculations. Moreover, to use datasets with observations that
correspond to the stated content with a higher certainty, all data is filtered
such that both RELEVANCE and EVENT_RELEVANCE must take the
maximum value 100.

Furthermore, a moving average tolerance level is used to define the conver-
gence criteria and parameters are initialized using uniform random variables
of suitable order of magnitude. In addition, all cases uses the same ran-
dom seed to get the same initializations. The hyper-parameters used in the
ADAM are stated in Table 4.1 below

Table 4.1: ADAM algorithm hyper-parameters.

Parameter Value
↵ 1e-3
�1 0.9
�2 0.999
✏ 1e-8

The next chapter presents the results from a variety of different tests. Here,
three different bucket sizes are tested; 1 day, 1 hour and 5 minutes. That
is, these are the �t values used to construct the time grid presented above
in Section 4.1. For these, the total time frames that the datasets span over
are 1 year, 1 month and 1 day respectively. For instance, in the case with a
bucket size of 1 day and a dataset spanning over 1 year, a total of 365 (or
366 in the case of leap year) buckets are given. Here, the yearly datasets
span over the years 2012 to 2016, the monthly datasets span over the months
January to May of 2015 and the daily datasets span over the days 1st - 7th
March of 2015.

Moreover, for each of these settings, two types of datasets are tested; one
filtered on RavenPack’s COUNTRY_CODE field to only contain Canadian
news and one without any such filtering, thus containing data points from all
over the world. These cases are referred to as Canada case and World case
respectively. Also, in the setting with bucket size of 1 day, the inhomoge-
neous background intensity extension introduced in the previous subsection
is tested. For this bucket size, some more in-depth examples and visual-
izations of the algorithm convergence are provided. In all cases, both the
multivariate Hawkes process model and Poisson model baseline are tested.
It is here noted that the a Poisson model can be trained using Algorithm 3
by fixing V = 0.
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In addition, each case presents the number of observations k in each dataset,
optimized negative log-likelihoods as well as the obtained BIC value. Here,
the BIC values are calculated using the expression in Equation 3.38. For
the homogeneous models it is given that qPoisson = 174, i.e. including the
168 process intensities and the six spatial parameters, and qHawkes = 28566,
i.e. the parameters b, V, � as well as the six spatial parameters. Similarly, in
the homogeneous case it is given that qPoisson = 846 and qHawkes = 29238,
where another 672 parameters are added to the models. Also, each case tests
the performance of the trained models on subsequent datasets and compares
these results.

Lastly, the connections between classes are presented. More specifically,
given the trained models from the Hawkes cases, the excitation amplitudes
given in the V matrices are used to illustrate how the news classes relate
to each other in each trained model. These connections are then compared
across the different datasets and bucket sizes. Here, a filtering procedure
is used to only show the largest excitations and obtain more interpretable
illustrations.
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Results

This chapter presents the obtained results of the study. Here, news classes
are sometimes referred to by their given ID. A list of all ID numbers and
their corresponding class of news is presented in Appendix A. In addition,
lists with the number of observation in each dataset for all news classes can
be found in Appendix B-D. The negative log-likelihood values, sometimes
denoted � log

bL, refer to the value obtained from Algorithm 3 with switched
signs. All values are presented with four significant figures.

5.1 Bucket Size: Day

In this section, the results for the bucket size of 1 day are presented. That
is, each likelihood maximization procedure is performed on a dataset span-
ning over the time interval of a specific year, out of the years 2012 to 2016.
Calculations are performed using both the homogeneous and inhomogeneous
model. The results from each of these are provided in the subsections be-
low. A list of the number of observations in each dataset can be found in
Appendix B.

5.1.1 Homogeneous Model

Firstly, the results for the homogeneous case are presented, i.e. where homo-
geneous Poisson processes and multivariate Hawkes processes with constant
background intensity are used. For this setup, the results for the Canadian
news case are presented first. Thereafter, the results for the World case are
given.
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Canada Case

The results presented in this part include those where homogeneous models
were tested on datasets filtered for Canadian news were used. In Table 5.1
below, the number of data points k as well as the minimized negative log-
likelihood and corresponding BIC values are given for each of the yearly
datasets stated in the left column.

Table 5.1: Results for homogeneous models on yearly Canadian news with bucket
size 1 day.

Year k � log

bLPoisson � log

bLHawkes BICPoisson BICHawkes

2012 374968 1.563e6 1.517e6 3.128e6 3.401e6
2013 379130 1.579e6 1.529e6 3.160e6 3.425e6
2014 390248 1.557e6 1.504e6 3.117e6 3.376e6
2015 377274 1.520e6 1.455e6 3.042e6 3.277e6
2016 357837 1.520e6 1.458e6 3.042e6 3.282e6

From the results presented in this table, it can be concluded that the Hawkes
process model provides a better likelihood for all datasets, but that all its
corresponding BIC values are larger than those given by the Poisson model.
From this result, the Poisson model is therefore to be favored by the BIC
measure.

Next, the performances of the trained models are tested using the subsequent
years’ sets of test data. For Tables 5.2 and 5.3 below, the calculated negative
log-likelihood values are presented for all such combinations using both the
Poisson and Hawkes models. The years for the dataset used for training
are stated in the left columns and the years corresponding to the datasets
used for testing are specified in the upper row. For the values presented on
the diagonals, the dataset for training and testing are identical. Therefore,
these negative log-likelihood values match the ones presented in Table 5.1
above.

Table 5.2: Negative log-likelihood values using homogeneous Poisson model on yearly
Canadian news with bucket size 1 day.

Test Year
Year 2012 2013 2014 2015 2016
2012 1.563e6 1.589e6 1.573e6 1.552e6 1.566e6
2013 1.579e6 1.569e6 1.540e6 1.569e6
2014 1.557e6 1.532e6 1.578e6
2015 1.520e6 1.565e6
2016 1.520e6
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Table 5.3: Negative log-likelihood values using homogeneous Hawkes model on yearly
Canadian news with bucket size 1 day.

Test Year
Year 2012 2013 2014 2015 2016
2012 1.517e6 1.833e6 1.671e6 1.672e6 3.281e6
2013 1.529e6 1.693e6 1.596e6 1.722e6
2014 1.504e6 1.738e6 1.959e6
2015 1.455e6 1.969e6
2016 1.458e6

From these tables above it is seen that the values on the diagonal provides
the best likelihood values. This is expected as these models are trained on
the same dataset as the set used for testing. In addition, it is seen that the
Poisson process yields better negative log-likelihood values in all cases where
the training and test sets are distinct. For the Poisson model, it is given that
for each year used for test data, the model trained on the closest previous
year always gives the best fit. However, no other general structure can be
identified regarding whether any specific year is better or worse in the fit for
the subsequent years.

Figures 5.1 and 5.2 below show the daily flow of news during the year 2015
for the news classes with ID 1 and 51 (i.e. negative acquisition-mergers and
positive earnings) respectively, here shown in blue. The intensity functions
given by the model trained on the data from the same year are plotted in
red. In addition, the intensity functions generated by the observed data from
2015, but using the parameters from the model trained on data from 2014
are plotted in black. This procedure is conducted for the Poisson model,
seen in the left subplots, as well as for the Hawkes model, which is seen in
the right subplots. All intensity curves are scaled to the unit day�1.
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Figure 5.1: Daily flow of negative acquisition-mergers news for 2015 (blue), gener-
ated intensity function from the homogeneous 2015 model (red) and generated in-
tensity function from the homogeneous 2014 model (black) for: (a) Poisson model,
(b) Hawkes model.

Figure 5.2: Daily flow of positive earnings news for 2015 (blue), generated inten-
sity function from the homogeneous 2015 model (red) and generated intensity func-
tion from the homogeneous 2014 model (black) for: (a) Poisson model, (b) Hawkes
model.

For the Hawkes model it is observed that the red line fits the observed data
sequence quite well whereas the black line provides a worse fit and has jumps
in the excitation that seem rather arbitrary. In addition, the black intensity
curve fails to properly adapt to periodic behavior in the news flow for the
earnings case. Since the black curve is generated by the model trained on
data from the previous year, this visualization may indicate over-training
of the model, which would give an explanation for the drastic jumps in the
excitation.
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World Case

In this part, the results for the World case are presented. Similar to the pre-
vious case, Table 5.4 below presents the number of observations k, the given
negative log-likelihood values and the BIC values for each of the datasets,
whose related years are stated in the left column of the table.

Table 5.4: Results for homogeneous models on yearly World news with bucket size
1 day.

Year k � log

bLPoisson � log

bLHawkes BICPoisson BICHawkes

2012 6518977 1.188e7 1.145e7 2.376e7 2.336e7
2013 6534078 1.179e7 1.140e7 2.358e7 2.325e7
2014 6699944 1.158e7 1.117e7 2.317e7 2.278e7
2015 7143068 1.217e7 1.165e7 2.435e7 2.374e7
2016 6740835 1.261e7 1.189e7 2.521e7 2.424e7

From this table of results it is concluded that the Hawkes process model
provides better log-likelihood values as well as smaller BIC values. Thus, for
this case where no filtering was done on basis of country code, the Hawkes
process model is the favored one by the BIC measure.

Lastly, the trained models and estimated parameters are tested on sets of
test data from subsequent time intervals. In Tables 5.5 and 5.6, the years
in the left column state the year of the dataset for which each model was
trained and the years in the upper row state the year of the dataset for which
each model was tested against. Here, the values on the diagonals match the
negative log-likelihoods presented in Table 5.4 above since the datasets for
model training and testing are identical in these cases.

Table 5.5: Negative log-likelihood values using homogeneous Poisson model on yearly
World news with bucket size 1 day.

Test Year
Year 2012 2013 2014 2015 2016
2012 1.188e7 1.188e7 1.181e7 1.251e7 1.320e7
2013 1.179e7 1.170e7 1.243e7 1.321e7
2014 1.158e7 1.227e7 1.318e7
2015 1.217e7 1.302e7
2016 1.261e7
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Table 5.6: Negative log-likelihood values using homogeneous Hawkes model on yearly
World news with bucket size 1 day.

Test Year
Year 2012 2013 2014 2015 2016
2012 1.145e7 1.262e7 1.264e7 1.392e7 1.748e7
2013 1.140e7 1.278e7 1.232e7 1.359e7
2014 1.117e7 1.287e7 1.576e7
2015 1.165e7 1.273e7
2016 1.189e7

Here, the diagonal values always provide the best fit to the given sets of
test data, which confirms the fact that the corresponding models are trained
to give the best possible fit to these datasets. However, for the scenarios
where training and test data are distinct, other results can be identified. As
in the Canada case presented earlier, each yearly dataset used as test data
is best fitted by the model trained on the previous year in the case of the
Poisson model. This is however not always the case for the Hawkes process
model alternative, where it is difficult to identify any general pattern in the
results. One noticeable thing though is that the model trained on the year
2012 seems to provide a significantly worse fit to the years 2015 and 2016
than on 2014, which may indicate that it has become more outdated at this
point. Finally, it is given that the Hawkes process model provides better
log-likelihood values than the Poisson model in 2 out of the 10 cases where
test and training datasets are distinct.

5.1.2 Inhomogeneous Model

With the results for the homogeneous models given in the previous subsec-
tion, it is now time to also present the results provided by the inhomogeneous
models. Here, inhomogeneous Hawkes processes with background intensity
functions stated on the form presented in 4.3.3 as well as inhomogeneous
Poisson processes with intensity functions defined on the same form are used.
In the same manner as used for the homogeneous case, the results presented
in the first part below correspond to the case where datasets were filtered to
only contain Canadian news. Thereafter, the results for the case with news
from all over the world are presented.

Canada Case

To begin with, the results for the Canada case are presented here. In Ta-
ble 5.7 shown below, the number of observations k, the optimized negative
log-likelihood values and BIC values are stated for each dataset and corre-
sponding year specified in the left column. It is noted that the numbers of
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observations here are the same as those in Table 5.1 since the used datasets
are the same.

Table 5.7: Results for inhomogeneous models on yearly Canadian news with bucket
size 1 day.

Year k � log

bLPoisson � log

bLHawkes BICPoisson BICHawkes

2012 374968 1.455e6 1.441e6 2.922e6 3.258e6
2013 379130 1.470e6 1.455e6 2.951e6 3.286e6
2014 390248 1.444e6 1.427e6 2.900e6 3.230e6
2015 377274 1.410e6 1.386e6 2.831e6 3.148e6
2016 357837 1.425e6 1.401e6 2.861e6 3.175e6

From Table 5.7 above it is given that the Poisson process model gives smaller
BIC values even though the negative log-likelihood values of the Hawkes al-
ternative are smaller. Thus, for the inhomogeneous cases when using the
sets with Canadian news data, the Poisson model is to be favored by the
Bayesian information criteria. Furthermore, since the results presented in
Tables 5.1 and 5.7 have the same underlying datasets, the table values can
be compared. From this, the results indicate that the inhomogeneous Pois-
son process model gives better log-likelihood values than the homogeneous
Hawkes process model. In addition, the inhomogeneous Poisson process
model also give the smallest BIC values and is therefore the favored model
in this sense among the four tested model alternatives. Lastly, between the
homogeneous and inhomogeneous Hawkes model alternatives, the inhomo-
geneous one provides the smallest BIC values and is thus the favored choice
by the BIC measure.

Next, Tables 5.8 and 5.9 below present the cases where the trained inho-
mogeneous models are tested against sets of test data. That each, for each
model and estimated parameters trained on the datasets whose correspond-
ing years are given in the left column, the negative log-likelihood values of
the datasets whose years are stated in the upper row are presented. For the
diagonal element values, the datasets for training and testing are therefore
identical.

Table 5.8: Negative log-likelihood values using inhomogeneous Poisson model on
yearly Canadian news with bucket size 1 day.

Test Year
Year 2012 2013 2014 2015 2016
2012 1.455e6 1.484e6 1.463e6 1.441e6 1.514e6
2013 1.470e6 1.459e6 1.435e6 1.498e6
2014 1.444e6 1.429e6 1.523e6
2015 1.410e6 1.507e6
2016 1.425e6
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Table 5.9: Negative log-likelihood values using inhomogeneous Hawkes model on
yearly Canadian news with bucket size 1 day.

Test Year
Year 2012 2013 2014 2015 2016
2012 1.441e6 1.611e6 1.510e6 1.490e6 1.813e6
2013 1.455e6 1.525e6 1.472e6 1.516e6
2014 1.427e6 1.474e6 1.621e6
2015 1.386e6 1.774e6
2016 1.401e6

For each set of test data, the diagonal elements shown in Tables 5.8 and
5.9 corresponding to the model trained on the same set of data give the
best log-likelihood values. It is also given that the Poisson model alternative
provides the best log-likelihood values in the cases where training and test
data are distinct. Furthermore, it is possible to compare the results from
these tables with the results in Tables 5.2 and 5.3 obtained from the tests with
the homogeneous model. From this, it is obtained that the inhomogeneous
Poisson model provides the best likelihood in all cases where training and test
data are distinct. In addition, the inhomogeneous Hawkes model sometimes
provides better results than the homogeneous Poisson model, though not in
all cases. The homogeneous Hawkes model proves to perform the worst out
of the four model alternatives.

Moreover, Figures 5.3 and 5.4 here below shows the daily flow of news data
in 2015 for the news classes with ID 1 and 51 respectively, here plotted in
blue. The generated intensity functions given from the model trained on the
data from year 2015 are plotted in red and the generated intensity functions
given from the model trained on data from year 2014 are plotted in black,
both for the Poisson model shown to the left and for the Hakes model shown
to the right. The unit of the intensity curves are here scaled to the unit
day�1.
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Figure 5.3: Daily flow of negative acquisition-mergers news for 2015 (blue), gen-
erated intensity function from the inhomogeneous 2015 model (red) and generated
intensity function from the inhomogeneous 2014 model (black) for: (a) Poisson
model, (b) Hawkes model.

Figure 5.4: Daily flow of positive earnings news for 2015 (blue), generated intensity
function from inhomogeneous 2015 model (red) and generated intensity function
from inhomogeneous 2014 model (black) for: (a) Poisson model, (b) Hawkes model.

As in the homogeneous case it can be observed that for the Hawkes model it
is given that the red line fits the observed flow of news data well. However,
it is seen that the black line provides a worse fit. It seems to not adapt to
the periodicity of the earnings news and also has jumps in the excitation
that seem out of place. As previously, this is likely due to overfitting of the
model generating the black line.

World Case

This part presents the results for the inhomogeneous models when tested
on datasets where there is no filtration on country code. Similar to the
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earlier part, Table 5.10 below states the number of observations k, optimized
negative log-likelihood values and BIC values for the five different datasets.
The datasets’ corresponding years are stated in the left column.

Table 5.10: Results for inhomogeneous models on yearly World news with bucket
size 1 day.

Year k � log

bLPoisson � log

bLHawkes BICPoisson BICHawkes

2012 6518977 1.033e7 1.029e7 2.067e7 2.103e7
2013 6534078 1.024e7 1.020e7 2.050e7 2.086e7
2014 6699944 1.007e7 0.9982e7 2.015e7 2.042e7
2015 7143068 1.053e7 1.045e7 2.107e7 2.137e7
2016 6740835 1.117e7 1.103e7 2.236e7 2.251e7

The result table above gives that Hawkes process model has better log-
likelihood values, however its BIC values are larger than those given by
the Poisson model. Thus, the Poisson model is to be favored in this case
by the BIC measure values. In addition, since the used datasets behind
the numbers shown in Tables 5.4 and 5.10 are equivalent, its results can be
compared. As in the case with Canadian news, the inhomogeneous Poisson
model provides the best performance by the BIC measure. It is also seen
that the inhomogeneous Poisson model gives a smaller negative log-likelihood
than the homogeneous Hawkes model. Between the two Hawkes model al-
ternatives, the inhomogeneous model gives the best performance by the BIC
measure.

Next, Tables 5.11 and 5.12 give the results for the procedure of testing trained
models against sets of test data from subsequent years, i.e. the negative log-
likelihood values of different datasets are calculated for a range of trained
models. The years of the dataset used for training are stated in left columns
and the years of the dataset used as test data are stated in the upper rows.
Hence, the values on the diagonals correspond to using the same datasets
for training and testing. Therefore, these values match the ones presented
in Table 5.10 above.

Test Year
Year 2012 2013 2014 2015 2016
2012 1.033e7 1.036e7 1.032e7 1.091e7 1.192e7
2013 1.024e7 1.021e7 1.083e7 1.200e7
2014 1.007e7 1.067e7 1.334e7
2015 1.053e7 1.174e7
2016 1.117e7

Table 5.11: Negative log-likelihood values using inhomogeneous Poisson model on
yearly World news with bucket size 1 day.
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Table 5.12: Negative log-likelihood values using inhomogeneous Hawkes model on
yearly World news with bucket size 1 day.

Test Year
Year 2012 2013 2014 2015 2016
2012 1.029e7 1.066e7 1.053e7 1.148e7 1.341e7
2013 1.020e7 1.029e7 1.093e7 1.201e7
2014 0.9982e7 1.098e7 1.259e7
2015 1.045e7 1.176e7
2016 1.103e7

For the cases where training and test data are distinct, the inhomogeneous
Poisson process model provides the best likelihood values in all cases apart
from the one where the set for test data is from the year 2016 and the
training of the model is done on the data from 2014, in which case the
inhomogeneous Hawkes process model performs better. In addition, it can
be seen that the Hawkes model trained on 2012 provides the worst fit for
all subsequent years. It also of possible to compare these results with those
obtained with the homogeneous models and the data given in Tables 5.5
and 5.6, since the underlying datasets used in each setting are the same.
Examining these cases, it is clear that the inhomogeneous Poisson alternative
gives the best likelihood in all cases with test data being different from the
data used for training of the model. In addition, the inhomogeneous Hawkes
model outperforms the homogeneous Poisson model in all cases but one.
Finally, as in the case with only Canadian news data it is obtained that the
homogeneous Hawkes model provides the overall worst performance.

5.1.3 Algorithm Convergence

In addition to the results presented in the subsections above, this part
presents examples of how the parameter estimates and likelihood values con-
verged in the ADAM optimization procedure. Here, Canadian news data
from 2015 is used for all examples. Hence, these scenarios correspond to the
results shown in Tables 5.1 and 5.7. For the parameter convergence plots,
the class with ID1 is used as an example. This is the class for negative
acquisition-mergers news and has a flow as presented in Figure 5.1. In Table
5.13 below, the parameters given at convergence of the algorithm are pre-
sented. The hat symbols signifies that these are the optimized parameter
estimates, the term stated in brackets is the parameters unit (where ⇠ is
used to indicate unitless measure) and an empty slot indicates no such value
is present in the corresponding model.
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Table 5.13: Examples of estimated parameters

Value [Unit] Model
Hom.Pois Hom.Hawk Inhom.Pois Inhom.Hawk

� log

bL [⇠] 1.520e6 1.455e6 1.410e6 1.386e6
bb1 [min�1] 114.9e-5 0 85.27e-5 5.177e-5
b�1 [min�1] 7.715e-05 9.262e-05
bV11 [min�1] 9.538e-19 7.705e-32
bV21 [min�1] 1.701e-05 1.091e-46
bµneg [⇠] -0.5867 -0.5867 -0.5867 -0.5867
b�neg [⇠] 0.1173 0.1173 0.1173 0.1173
bb(weekend)
1 [min�1] 3.067e-20 1.125e-20

bb(t)1 [min�2] 0 1.282e-34
bb(amp)
1 [min�1] 5.405e-4 1.120e-27

bb(angle)
1 [⇠] 3.127 0.3506

Next, Figure 5.5 illustrates the convergences of the negative log-likelihood
values for 50000 iterations of the ADAM algorithm. It can be seen that the
curves converge to the values stated in Table 5.13 above. It can also be seen
that the inhomogeneous models show more instability in the loss function
convergence. Furthermore, Figure 5.6 shows the convergence of the stated
parameters in the case of the homogeneous Hawkes process model. Once
again, the plots show the updates in the parameters over 50000 iterations
from initialization.

Lastly, Figure 5.7 shows the convergence of the parameters in the case of
the inhomogeneous Hawkes process model using a similar setup as for the
homogeneous case. Here, differences in convergence and instability between
the two models can be examined. As in the case with the convergence of the
negative log-likelihood, the convergence of the parameters in the inhomoge-
neous model is more instable. Also, it can be seen that the parameters µneg

and �neg converge in a similar manner as in the homogeneous case. This
is also reflected in that the given optimized parameters presented in Table
5.13 are the same in all model cases. An example of the obtained fit to the
news data is presented in Figure 5.8, showing both the empirical distribu-
tions given from the observed data, as well as the three truncated normal
distributions, uniquely described by the µ and � parameters, corresponding
to each sentiment interval.
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Figure 5.5: Negative log-likelihood convergence in ADAM optimization the for
the four model alternatives using Canadian news data with bucket size 1 day:
(a) Hom.Pois, (b) Hom.Hawk, (c) Inhom.Pois, (d) Inhom.Hawk.

Figure 5.6: Parameter convergence in ADAM optimization for homoge-
neous Hawkes model on 2015 Canadian news data with bucket size 1 day;
(a) b1, (b) �1, (c) V11, (d) V21, (e) µneg, (f) �neg.
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Figure 5.7: Parameter convergence in ADAM optimization for inhomoge-
neous Hawkes model on 2015 Canadian news data with bucket size 1 day;
(a) b1, (b) �1, (c) V11, (d) V21, (e) µneg, (f) �neg, (g) b

(weekend)
1 , (h) b

(t)
1 ,

(i) b

(amp)
1 , (j) b

(angle)
1 .
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Figure 5.8: Empirical distributions of negative, neutral and positive news together
with estimated truncated normal distributions using Canadaian news data from
2015.

5.2 Bucket Size: Hour

This sections provides the results for the cases where a time bucket size of
1 hour is used. Each dataset spans over a time interval of 1 month, which
depending on the number of days in the specific month yields 672 to 744
time axis buckets. A total number of 5 datasets are used, where each dataset
corresponds to a specific month between January 2015 and May 2015. A list
of the number of observations in each dataset can be found in Appendix
C.

The calculations are performed on two types of datasets. The first type is
filtered using the COUNTRY_CODE label to only contain Canadian news
data points. The second type has no such filtering and thus includes news
data from all countries. Each type case is presented separately in the parts
below.

Canada Case

Firstly, the results for the cases with datasets containing only Canadian
news are presented. Each row in Table 5.14 corresponds to a dataset with
its corresponding month stated in the left column. Furthermore, the number
of observations k, the minimized negative log-likelihood values as well as the
BIC values for both the Poisson and Hawkes models are presented for each
separate dataset.
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Table 5.14: Results for homogeneous models on monthly Canadian news with bucket
size 1 hour.

Month k � log

bLPoisson � log

bLHawkes BICPoisson BICHawkes

Jan 25789 1.177e5 0.963e5 2.371e5 4.828e5
Feb 38147 1.352e5 1.100e5 2.723e5 5.213e5
Mar 37468 1.409e5 1.167e5 2.837e5 5.343e5
Apr 32974 1.287e5 1.053e5 2.593e5 5.078e5
May 41568 1.387e5 1.114e5 2.793e5 5.266e5

By inspecting the values presented in Table 5.14 it is seen that the Hawkes
process gives better log-likelihood values, but that its larger number of pa-
rameters causes the BIC-values to be larger than those obtained from the
Poisson model. Thus, in this setting the Poisson model is preferred over the
Hawkes model using the Bayesian information criteria.

Next, the fit of the trained models when applied to sets of test data is
evaluated. More specifically, the negative log-likelihood values are calculated
using the trained models on test data from subsequent months. Each row in
Tables 5.15 and 5.16 below corresponds to the same trained model obtained
using the dataset from the month stated in left column. Moreover, each
separate column corresponds to a set of test data, with the related month
stated in the upper row. Thus, for the elements on the diagonal, the sets for
training and test data are identical. It should therefore be noted that these
values are the same as the negative log-likelihood values presented in Table
5.14 above.

Table 5.15: Negative log-likelihood values using homogeneous Poisson model on
monthly Canadian news with bucket size 1 hour.

Test Month
Month Jan Feb Mar Apr May
Jan 1.177e5 1.679e5 1.590e5 1.427e5 1.634e5
Feb 1.352e5 1.454e5 1.379e5 1.418e5
Mar 1.409e5 1.349e5 1.441e5
Apr 1.287e5 1.450e5
May 1.387e5

Table 5.16: Negative log-likelihood values using homogeneous Hawkes model on
monthly Canadian news with bucket size 1 hour.

Test Month
Month Jan Feb Mar Apr May
Jan 0.9632e5 1.718e5 1.898e5 1.682e5 1.748e5
Feb 1.100e5 1.505e5 1.691e5 1.754e5
Mar 1.167e5 1.716e5 1.890e5
Apr 1.053e5 1.423e5
May 1.114e5
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The diagonal elements always provide the best fit since its corresponding
model is already trained on the test data. In the Poisson case, the model
trained on the month of January provides the worst fit to all subsequent
datasets. For the Hawkes case, the model trained on the data from March
also provides a slightly worse fit to the test data and the model trained on
April yields a significantly better likelihood value than the other models for
the subsequent set of test data. To conclude, in all cases apart from the one
with a model trained on data from April and tested on the dataset May, the
Poisson model provides better likelihood values when training and test sets
distinct.

Below, Figures 5.9 and 5.10 present the hourly flow of negative news in classes
with ID 1 and 51 plotted in blue. These also present the generated intensity
functions from the model trained on the March 2015 data are shown in red
and the intensity functions given from the model trained on February 2015
are shown in black. These intensity curves are scaled the unit hour�1. The
procedure is done for the both the Poisson case and the Hawkes case.

Figure 5.9: Hourly flow of negative acquisition-mergers news for March 2015 (blue),
generated intensity function from the inhomogeneous March 2015 model (red) and
generated intensity function from the inhomogeneous February 2015 model (black)
for: (a) Poisson model, (b) Hawkes model.
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Figure 5.10: Flow of positive earnings news for March 2015 (blue), generated
intensity function from the inhomogeneous March 2015 model (red) and gener-
ated intensity function from the inhomogeneous February 2015 model (black) for:
(a) Poisson model, (b) Hawkes model.

Here, it is of interest to take a closer look at the conditional intensity func-
tions given in the Hawkes case. From these plots it is observed that the red
curves gives the overall best fit. However, the black plots also provide quite
good adaptation to the observed news data flow, except from a large jump
around index 600 in Figure 5.10. The model generating the black curve here
seems to be able to adapt to the periodicity of the earnings news class, in
contrast to the case with bucket size of 1 day. This may indicate that the res-
olution given with the bucket size of 1 hour provides some more information
that is important to the training of the Hawkes model.

World Case

In this part, the results for the World case are presented. Similar as in the
Canada case earlier, Table 5.17 below presents the number of observations k
in each dataset, the optimized negative log-likelihood values and BIC values
for both the Poisson and Hawkes models. Each row represents a distinct set
of news data, with its corresponding month is stated in the left column.

Table 5.17: Results for homogeneous models on monthly World news with bucket
size 1 hour.

Month k � log

bLPoisson � log

bLHawkes BICPoisson BICHawkes

Jan 575145 1.033e6 0.7806e6 2.069e6 1.940e6
Feb 732552 0.8292e6 0.5363e6 1.661e6 1.458e6
Mar 604761 1.046e6 0.8051e6 2.095e6 1.991e6
Apr 658002 0.9954e6 0.7415e6 1.993e6 1.866e6
May 685282 1.002e6 0.7326e6 2.006e6 1.849e6
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From this table it can be concluded that the Hawkes process yields better
log-likelihood values as well as smaller BIC values when comparing it to the
Poisson model. Thus, for this case where no filtering on country code was
performed, the Hawkes process model is preferred over the Poisson process
model when using the BIC measure.

Lastly, the obtained models are tested against sets of test data from the
months following the one it was trained on. In the same way as was used
in the Canada case, Tables 5.18 and 5.19 present the negative log-likelihood
values for the datasets corresponding to months stated in the upper rows
using the parameters estimated from the datasets from the months stated in
the left columns. This means that for the values presented on the diagonal,
the training dataset is the same as the test dataset and thus, the negative
log-likelihood values on the diagonal match the values presented above in
Table 5.17.

Table 5.18: Negative log-likelihood values using homogeneous Poisson model on
monthly World news with bucket size 1 hour.

Test Month
Month Jan Feb Mar Apr May
Jan 1.033e6 0.9831e6 1.078e6 1.041e6 1.080e6
Feb 0.8292e6 1.158e6 1.073e6 1.043e6
Mar 1.046e6 1.058e6 1.056e6
Apr 0.9954e6 1.047e6
May 1.002e6

Table 5.19: Negative log-likelihood values using homogeneous Hawkes model on
monthly World news with bucket size 1 hour.

Test Month
Month Jan Feb Mar Apr May
Jan 0.7806e6 0.8384e6 0.9711e6 0.9794e6 1.145e6
Feb 0.5363e6 1.133e6 1.137e6 1.326e6
Mar 0.8051e6 1.111e6 1.174e6
Apr 0.7415e6 1.042e6
May 0.7326e6

As before, the diagonal elements always provide the best fit to the test data.
From the scenarios where the set of data points for testing is distinct from
the set of training data, the Hawkes process gives a better likelihood than
the Poisson model in 5 out of 10 cases. Thus, here it may be that the Hawkes
model has been trained to some useful behavior in the data that causes it to
be the favored model in 50 % of the cases, which is better than that given
in most other settings.
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5.3 Bucket Size: Minute

In this section, the results related to the calculations using a bucket size
of 5 minutes are presented. More specifically, the likelihood optimization is
performed on datasets with a total time span of 1 day, which with a bucket
size of 5 minutes gives 288 time axis buckets. A total number of 7 news
datasets are tested. Each such dataset corresponds to a date during the first
week in March 2015, i.e. from the 1st to the 7th. Here it can be noted that
the 1st of March 2015 is a Sunday, as is reflected on the smaller news flows
during the 1st and 7th, i.e. during the weekend, and larger flows during the
other days. As in the previous sections, the optimization is done for news
datasets with country code filtering for Canada as well as for datasets where
no filtering on country code was done, which corresponds to news from all
over the world. The full list of observations in these datasets can be found
in Appendix D.

Canada Case

Here, the results for the Canadian news datasets are presented. In Table
5.20 below, each row corresponds to a specific dataset from a certain date
as denoted in the left column. Each row presents the number of data points
k, the minimized negative log-likelihood values for the Poisson baseline case
and the Hawkes case respectively as well as the BIC values for both the
Poisson and Hawkes cases.

Table 5.20: Results for homogeneous models on daily Canadian news with bucket
size 5 minutes.

Date k � log

bLPoisson � log

bLHawkes BICPoisson BICHawkes

1 24 0.1372e3 0.1033e3 0.8275e3 90.99e3
2 1882 5.728e3 3.135e3 12.77e3 221.7e3
3 1798 5.918e3 3.877e3 13.14e3 221.8e3
4 1988 5.445e3 3.462e3 12.21e3 223.9e3
5 2517 5.792e3 3.824e3 12.95e3 231.3e3
6 1556 5.193e3 3.605e3 11.66e3 217.2e3
7 87 0.3932e3 0.3061e3 1.564e3 128.2e3

From this table it can be seen that though the Hawkes alternative gives a
smaller value for the negative log-likelihoods, its corresponding BIC values
are significantly larger for all datasets. This indicates that with the use of
the BIC measure, the Poisson model is to be preferred. Here it should also be
noted that the number of observations is sometimes smaller than the number
of estimated parameters, particularly in the Hawkes process case.

Next, the performance of the obtained parameters from each date is tested
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on the news data flows of the subsequent dates. That is, the negative log-
likelihood values are calculated using these parameters and are presented
below in Tables 5.21 and 5.22 below for the Poisson and Hawkes cases re-
spectively. Each row corresponds to the same set of trained parameters
obtained from the dataset of the date stated in left column. In addition,
each column corresponds to the same set of test data from the date stated in
the upper row. This means that for the elements in the diagonal, the train-
ing and test datasets are the same and thus, the same values as presented
above in Table 5.20 are given in the diagonals.

Table 5.21: Negative log-likelihood values using homogeneous Poisson model on daily
Canadian news with bucket size 5 minutes.

Test Date
Date 1 2 3 4 5 6 7

1 0.1372e3 63.68e3 60.81e3 76.75e3 98.02e3 55.48e3 2.838e3
2 5.728e3 12.03e3 13.23e3 13.08e3 8.185e3 4.495e3
3 5.918e3 10.07e3 11.62e3 10.46e3 4.161e3
4 5.445e3 8.712e3 9.528e3 3.014e3
5 5.792e3 11.96e3 3.632e3
6 5.193e3 7.515e3
7 0.3932e3

Table 5.22: Negative log-likelihood values using homogeneous Hawkes model on daily
Canadian news with bucket size 5 minutes.

Test Date
Date 1 2 3 4 5 6 7

1 0.1032e3 41.80e3 45.76e3 56.60e3 70.25e3 41.51e3 3.057e3
2 3.135e3 26.08e3 47.47e3 25.74e3 32.85e3 7.158e3
3 3.877e3 13.54e3 13.17e3 12.73e3 1.938e3
4 3.462e3 11.93e3 15.24e3 2.985e3
5 3.824e3 14.46e3 3.540e3
6 3.605e3 2.523e3
7 0.3061e3

From the tables above, it can be concluded that the diagonal elements, i.e.
the negative log-likelihoods with training and test data being the same, al-
ways provide the best value. For the cases where the training and test
datasets are different, it is obtained that the parameters trained on the
dataset from the 1st of March 2015 provides the worst fit on the 2nd to
6th of March, however it does perform better on the 7th. Moreover, apart
from the Poisson case with test data as Friday the 6th of March, the model
trained on the dataset from the 2nd of March performs quite poorly on the
subsequent dates, especially for the Hawkes process case. The Poisson pro-
cess generally provides the best test data performance, except for the model
trained on the 1st of March, in which case the Hawkes process gives a better
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fit in 5 out of the 6 cases. The Hawkes process also provides a better perfor-
mance when using the dataset from the 7th of March as test data for 4 out
of the 6 trained models.

Lastly, Figures 5.12 and 5.11 show news data flow on the 4th of March 2015
for the negative acquisition-mergers and positive earnings respectively, here
shown in blue. The generated intensity functions from the model trained on
data from the 4th of March 2015 are shown in red and the generated intensity
functions from the model trained on data from the 3rd of March 2015 are
shown in black. The left subplots show the cases for the Poisson process
and the right subplots show the cases for the Hawkes process. The index on
x-axes is the index of the 5-minute intervals throughout the datasets and the
intensity functions are scaled to the unit of (5 min)�1.

Figure 5.11: Flow per 5 minute interval of negative acquisition-mergers news on
the 4th of March 2015 (blue), generated intensity function from homogeneous 4th
of March 2015 model (red) and generated intensity function from inhomogeneous
3rd of March 2015 model (black) for: (a) Poisson model, (b) Hawkes model.
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Figure 5.12: Flow per 5 minute interval of positive earnings news on the 4th March
2015 (blue), generated intensity function from homogeneous 4th of March 2015
model (red) and generated intensity function from inhomogeneous 3rd of March
2015 model (black) for: (a) Poisson model, (b) Hawkes model.

In the plots corresponding to the Hawkes model in Figures 5.11 and 5.12
above it is difficult to draw any general conclusions. The red curves seem
to fit a little bit better to the observed data sequence, though this is not
entirely clear from visual inspection.

World Case

Next, the results for the World case are presented. As previously in the
Canada case, each row in Table 5.23 below corresponds to a specific dataset
from a certain date as denoted in the left column. Each row presents the
number of data points k, the minimized negative log-likelihood values for
the Poisson baseline cases and the Hawkes cases as well as the BIC values
for both the Poisson and Hawkes cases.

Table 5.23: Results for homogeneous models on daily World news with bucket size
5 minutes.

Date k � log

bLPoisson � log

bLHawkes BICPoisson BICHawkes

1 3446 1.003e4 0.6609e4 2.148e4 24.59e4
2 30451 3.191e4 1.656e4 6.562e4 32.80e4
3 31605 3.245e4 1.919e4 6.670e4 33.44e4
4 33025 2.950e4 1.801e4 6.081e4 33.33e4
5 32147 3.212e4 2.104e4 6.605e4 33.85e4
6 24220 3.495e4 2.534e4 7.166e4 33.91e4
7 4343 1.175e4 0.9397e4 2.450e4 25.81e4

From this table, it can be concluded that the Hawkes model provides a
better log-likelihood value. Though, its larger amount of parameters causes
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the BIC-values for the Hawkes process to be significantly larger. Hence by
the BIC value, the Poisson process is to be preferred here.

Moreover, the obtained parameters for each trained model are tested on the
subsequent news data flows, using the same procedure as in the Canada case.
The negative log-likelihood values are calculated using these parameters and
are presented below in Tables 5.24 and 5.25 for the Poisson and Hawkes cases
respectively. Each row corresponds to the same set of trained parameters
obtained from the dataset of the date stated in left column. In addition,
each column corresponds to the set of test data from the date stated in the
upper row. As before, this means that for the elements in the diagonal,
the training and test datasets are the same. Consequently, the negative log-
likelihood values presented above in Table 5.23 are also given in the diagonals
here.

Table 5.24: Negative log-likelihood values using homogeneous Poisson model on daily
World news with bucket size 5 minutes.

Test Date
Date 1 2 3 4 5 6 7

1 1.003e4 22.51e4 28.09e4 26.13e4 23.70e4 19.38e4 3.125e4
2 3.191e4 4.601e4 5.304e4 4.422e4 4.877e4 5.040e4
3 3.245e4 10.96e4 9.041e4 6.005e4 6.086e4
4 2.950e4 4.522e4 5.200e4 4.422e4
5 3.212e4 9.277e4 4.349e4
6 3.495e4 3.481e4
7 1.175e4

Table 5.25: Negative log-likelihood values using homogeneous Hawkes model on daily
World news with bucket size 5 minutes.

Test Date
Date 1 2 3 4 5 6 7

1 0.6609e4 29.21e4 34.44e4 33.42e4 35.12e4 28.09e4 5.290e4
2 1.656e4 32.15e4 82.91e4 39.34e4 89.33e4 22.26e4
3 1.919e4 6.676e4 12.51e4 7.738e4 4.380e4
4 1.801e4 5.824e4 7.271e4 5.760e4
5 2.104e4 5.630e4 4.067e4
6 2.534e4 2.848e4
7 0.9397e4

From these results it can once again be noted that the values on the diagonal,
i.e. the cases where training and test data are the same provide the best fit.
In addition, the models trained on the 1st of March provides a significantly
worse fit on all sets of test data, except for the one on March 7th. In the
Hawkes case, the models trained using the dataset from the 2nd of March
gives a worse fit on most sets of test data in comparison to those obtained
by the other models. This phenomena is not obtained for the same training
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date in the Poisson case. Moreover, in the Hawkes case it is always given that
for each test day, the parameters trained on the closest previous date gives
the best performance. In general, the Poisson models give better likelihood
values on the sets of test data, with the exception of the test data from
the 7th of March for which the Hawkes process performs better in half the
cases.

5.4 Connections Between Classes

An important concept in this study is the connection between the classes.
That is, to identify the excitation connection from one class of news to
another, which is done by examining the estimated excitation matrix V .
Using this excitation matrix, graph networks are constructed such that each
node in the network represents a class of news data and each directed edge
between two nodes represents the excitation from one to the other. For the
results presented in this section, all examples consider the cases where the
sets of data have been filtered on country code to only contain Canadian
news. In each case, a filtering process is done such that only the largest
excitation amplitudes are illustrated. In all networks, yellow nodes represent
classes that have excitation to them and blue nodes represent classes that
have excitation from them. Also, green nodes are used to represent classes
that have excitation both ways.

Firstly, Figure 5.13 below shows the excitation connections in the case of
the homogeneous Hawkes models when trained on yearly sets of data. The
plots show the obtained graphs from the models trained on data from year
2015 and 2016 respectively. Filtering is done such that the edges have cor-
responding excitation values larger than 25 day�1. It is observed that the
news classes with ID 40,50 and 51 have a lot of excitation to them. Also, in
the left subplot the class with ID 4 excite a lot of other classes, however has
no excitation effect in the right subplot.

Next, Figure 5.14 shows the excitation connections using the same sets of
data, but in the case of the inhomogeneous Hawkes model. Filtering is done
in the same manner as before such that only the largest excitations are
shown in the image. It can be seen that Figures 5.13 and 5.14 are similar
but that the latter has somewhat fewer edges than the former. This would
indicate that the excitation amplitude values are similar, but smaller, in the
inhomogeneous model.
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Figure 5.13: Connections for homogeneous Hawkes model on yearly Canadian
data filtered for excitation amplitude values larger than 25 day�1 for years:
(a) 2015, (b) 2016.

Figure 5.14: Connections for inhomogeneous Hawkes model on yearly Cana-
dian data filtered for excitation amplitude values larger than 25 day�1 for years:
(a) 2015, (b) 2016.

A similar example is given in the case for the homogeneous Hawkes models
trained on monthly data and is presented below in Figure 5.13. The two
plots show the obtained graphs from the models trained on data from months
March and April of 2015 respectively. The filtering here is more restrictive
than in the two earlier cases and only excitation values larger than 100 day�1

are shown. This is also tested for the daily data from 3rd and 4th of March
2015, as can be seen in Figure 5.16. Here, filtering is done with threshold
value 250 day�1. Noticeable differences in excitation can be seen between the
two subplots. It is also observed that the news class with ID 9 has excitation
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both ways.

Figure 5.15: Connections for homogeneous Hawkes model on monthly Canadian
data filtered for excitation amplitude values larger than 100 day�1 for the months:
(a) March 2015, (b) April 2015.

Figure 5.16: Connections for homogeneous Hawkes model on daily Cana-
dian data filtered for excitation values larger than 250 day�1 for the dates:
(a) 3rd of March 2015, (b) 4th of March 2015.

It is also of interest to examine the average excitation values over the dif-
ferent datasets. In this case, the excitation elements are filtered such that
each element must have a value above some threshold value for all utilized
datasets. More specifically, if the condition holds for all models in the spe-
cific scenario, the empirical mean value is calculated for that element in the
excitation matrix. Otherwise, the element value is set to zero. This is first
done for the case with the homogeneous Hawkes model trained on yearly
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data for the years 2012 - 2016 and is presented in Figure 5.17. Here, filtering
is done such that each excitation must be larger than 0.001 day�1 for each of
the five datasets. It can be examined that only three edges remain; ID13 to
ID60, ID114 to ID126 and ID143 to ID44. The same procedure is conducted
for the case with inhomogeneous Hawkes model trained on yearly data for
the years 2012 - 2016 and is presented in Figure 5.18 Filtering is done as
earlier, i.e. such that each excitation must be larger than 0.001 day�1 for
each yearly dataset. For this scenario, only the edge ID13 to ID60 remain
after filtering.

Figure 5.17: Average connections for homogeneous Hawkes model trained on yearly
Canadian data from 2012 to 2016 filtered for excitation values larger than 0.001
day�1 for each year.

Finally, the excitation average is taken for the case with homogeneous mod-
els trained on monthly news data from Jan-May 2015 and is shown in Figure
5.19. Filtering is done using the threshold excitation value 0.1 day�1. For
this setting it is given that the news class with ID 47 has excitation to several
other classes. It is also noted that the class with ID 85 has self-excitation. For
the case with models trained on daily news data, no connections remained
after filtering even when using a threshold value as low as 1e-5 day�1. There-
fore, no excitation average plot is given for this setting.
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Figure 5.18: Average connections for inhomogeneous Hawkes model trained on
yearly Canadian data from 2012 to 2016 filtered for excitation values larger than
0.001 day�1 for each year.

Figure 5.19: Average connections for homogeneous Hawkes model trained on
monthly Canadian data from January to May 2015 filtered for excitation values
larger than 0.1 day�1 for each month.
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Discussion

This chapter presents the discussion of the analysis and obtained results.
That is, the validity, consequences, flaws and alternatives of improvement
are discussed. This also includes returning to the study objectives presented
in Section 1.2 as well as stating suggestions for future works in the area.

6.1 Discussion of Results

In the cases with a bucket size of 1 day and yearly datasets, as presented in
Section 5.1, the Hawkes process provided better performance by the BIC
measure only in the case with the homogeneous model tested on World
data. In addition, the inhomogeneous Poisson model alternative provided
the overall best performance, both on training and test data in both the
Canada and World cases. Also, in the case with Canadian data, the Pois-
son models tended to perform better than the Hawkes models in both fit to
training and test data. However, in the case with World data, it is obtained
that the inhomogeneous Hawkes model does provide better BIC values and
better performance on test data for subsequent years in comparison to the
homogeneous Hawkes model. From this, it can be argued that there seem to
be some deterministic periodicity in the data that is best described by the
inhomogeneous models. Likewise, this periodicity seem to cause the homo-
geneous models to over-adapt to these phenomena, such that the observed
connections may not in fact be actual excitations between news classes, but
rather a consequence of the way that the algorithm compensates for the pe-
riodic behavior. Here, it can also be argued that alternative forms of the
parametrization in the background intensity function could be formulated,
so as to better account for this phenomenon.

Next, the setting with bucket size of 1 hour and monthly datasets was pre-
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sented. Here, the results for training data fit using the BIC measure indi-
cated that the Hawkes model performs better in the case with World data,
but that the Poisson model is preferable in the case with Canadian data.
Additionally, in the Canada case the Poisson model also gives the overall
best performances on test data from subsequent months. In the World case
however, the Hawkes model gave the best performance on test data in half
the attempted cases. This may indicate that the larger dataset size of the
World data is important in training the Hawkes model, however also that
there may be some granularity in these datasets, which may be important to
identify Hawkes process excitations for news data and that may have been
lost in the setting with bucket size of 1 day, even though these datasets con-
tained more observations. Additionally, a natural extension here would be to
implement a similar inhomogeneous model as in the setting with bucket size
of 1 day. This may further improve the performance and predictive usability
of the models.

For the bucket size of 5 minutes, the BIC values for the Hawkes model
were substantially larger than those given by the Poisson model, both in
the Canada case and the World case. In testing the fit of trained models
to data from subsequent dates, the Hawkes model did perform better than
the Poisson model for some combinations. However, the results varied a lot
and indicated on instability due to the small number of observations in the
training data. Also, it could be seen that models trained on weekend days
gave worse performance than models trained on week days. Likewise, the
models trained on week days yielded bad performance on the weekend tests.
Furthermore, for the Hawkes models it was in most cases seen that for each
test day, the model trained on the closest previous day provided the best
performance. This may indicate that the model has learned some charac-
teristic in the news data flow that remains similar the next day but then
changes, thus lowering the model’s performance as time goes by. However,
it is difficult to draw any certain conclusion on this given the conducted
tests.

A general conclusion throughout these tests seem to be that due to the
Hawkes process model’s much larger amount of parameters, datasets with
a large amount of observations are required for the trained models to be
useful. Hence, given the limitations in computational power and the buck-
eting procedure, this naturally becomes a trade-off between the size of the
buckets and the time span over which the dataset stretches. To conclude,
further optimization of the software implementations or use of high perfor-
mance computing hardware could allow for the use of larger datasets with
increased data resolution or with larger time frames, which in turn may pro-
vide better results. Moreover, another solution could be to lower the amount
of parameters in the model, e.g. by requiring the excitation matrix to be of
a lower rank.
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For the results with the connections between news classes, large variations
between datasets was seen and little similarities could be identified. This
is partly seen in that the subplots in the figures comparing separate years
and months tend to be quite different, with the largest excitation in one
graph sometimes being absent in the other. Thus, a case of over-fitting due
to lack of observations in some news classes can be identified, which is also
seen in that the news classes that in these figures have large excitation effect
typically have very few observations, as can be seen in the lists in Appendices
B - D. The same phenomenon can be observed in that the order of magnitude
of the excitations in the plots filtered and averaged over several datasets is
substantially lower than the ones observed in each separate dataset.

6.2 Returning to Scope & Objectives

The first goals of the study was to formulate and implement a multivariate
Hawkes approach to model the flow of news data. This is deemed to have
been accomplished quite successfully as the mathematical framework takes
both arrival times and news content into account and also makes it possible
to relate different categories of news to each other.

In terms of methods and implementation, this was something that, even
though it consumed a lot of the time throughout the project, was performed
successfully and rigorously. Though some resolution in the data is lost in the
bucketing procedure, this was a necessary step in speeding up computations
and to be able to use datasets of suitable sizes. Furthermore, the use of the
ADAM optimization algorithm and the TensorFlow framework in Python
have been suitable for the scope of this thesis. However, to further optimize
computations, implementation in for instance C or C++ could be useful.
Another approach would be to test a transfer learning methodology, i.e.
where the model is iteratively trained on larger and larger datasets and
where the parameters’ initial values in each step are defined as those given
from the previous iteration.

Moreover, the evaluation of the models’ fit was presented. Here, both the
negative log-likelihood and BIC measure are used to take both the fit and
complexity of the models into consideration. In addition, for the distinct
classes cases, the models’ fit to both training data and test data was evalu-
ated. Also, assessment of the connections between news classes in the trained
models was conducted and even though these provided indications of model
over-fitting, this is an important realization that can be of use for future
studies.
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6.3 Future Work

In conclusion, this study has given an introduction to the usage of Hawkes
processes the field of news data analytics. This includes both the handling
and filtering of data, specification of mathematical models, extensive im-
plementation and computational methods as well as the obtained results
presented in this report. However, there is also room for further analysis
and testing within the field. Therefore, this section presents a selection of
extensions that at the end of this thesis project were suggested as interesting
topics of future works.

Testing of the Overlapping Classes Model

Even though this study provides an explanation for the mathematical back-
ground of the overlapping classes model, no implementations or results for
this model are presented in this thesis report. Hence, it would be of interest
to continue working with this to get a clearer understanding of the model
and how it compares to the distinct classes model in terms of results and
performance.

News Flow Connection to External Factors

One important, yet perhaps questionable, assumption in the Hawkes model
of the news data flows in this study is that the flow is only affected by
itself. That is, the intensity functions of the stochastic processes are at its
most complex parameterized with respect to time and influenced by previous
observations of the processes. This means that no outer factors, such as the
state of the real world, has any direct impact on the news flow model, even
though an increase in news about a certain topic in reality is most likely
caused by a real-world event. Likewise, the news data flow is assumed to
have no effect on the state of the outer world.

Though this assumption gives a simpler model, it could be of interest to
extend the model and incorporate the states of outer world in order to get a
more complete understanding of the nature of news data flows. This could
for instance be done by modeling the state of the world as latent variables
that connects to the flow of news articles, which are the observable vari-
ables.
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Using the Trained Models for Prediction of Financial Assets

This study focuses exclusively on modeling the news data flow itself. How-
ever, an interesting continuation would be to investigate what information
could be used to for instance predict price movements for financial assets.
Such a study could for instance include using neural networks with the
trained Hawkes process models and the flow of news data as inputs.
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Conclusions

In this thesis study, a multivariate Hawkes process approach has been used
to model flows of news data. The aggregated news data was partitioned
into news classes based on subject and sentiment level, such that each class
contained a similar type of news observations. With the arrival times of the
news being represented by a unique element in the Hawkes process, the flow
of information was given a more compact representation and connections be-
tween news classes could be formulated. A time scale discretization approach
was implemented to speed up computations and special attention was paid
to the bucket sizes used in constructing this grid as well as the differences in
results that these implied.

Tests were conducted on several different dataset setups and the perfor-
mance of the trained Hawkes processes were compared with that of Poisson
processes. The results indicated that the Hawkes process gives better per-
formance only in cases with datasets containing a lot of observations, due
to its large amount of unknown parameters that have to be estimated from
training data. In the majority of the analyzed cases, the Poisson model
provided better performance when the trained models are tested on subse-
quent news data flows. However, the Hawkes model showed slightly better
test data performance in the setting with bucket size 1 hour, where it was
the preferable model in 50 % of the attempted tests. Also, it was obtained
that the connections between the news classes varied substantially between
datasets and that cases of overfitting occurred due to lack of observations in
some of these classes. This in turn lead to models with lower performance
on test data. Finally, it was suggested that a future model also ought to
better account for the periodicity and deterministic behaviors in the news
data flows.
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Appendix A

List of IDs and News Classes

Table A.1: ID numbers and corresponding news classes with GROUP label and
EVENT_SENTIMENT_SCORE interval.

ID GROUP label (EVENT_SENTIMENT_SCORE interval)

ID1 acquisitions-mergers (negative)

ID2 acquisitions-mergers (neutral)

ID3 acquisitions-mergers (positive)

ID4 aid (negative)

ID5 aid (neutral)

ID6 aid (positive)

ID7 analyst-ratings (negative)

ID8 analyst-ratings (neutral)

ID9 analyst-ratings (positive)

ID10 assets (negative)

ID11 assets (neutral)

ID12 assets (positive)

ID13 balance-of-payments (negative)

ID14 balance-of-payments (neutral)

ID15 balance-of-payments (positive)

ID16 bankruptcy (negative)

ID17 bankruptcy (neutral)

ID18 bankruptcy (positive)

ID19 business-activity (negative)

ID20 business-activity (neutral)

ID21 business-activity (positive)

ID22 civil-unrest (negative)

ID23 civil-unrest (neutral)

ID24 civil-unrest (positive)

ID25 commodity-prices (negative)

ID26 commodity-prices (neutral)

ID27 commodity-prices (positive)

ID28 consumption (negative)

ID29 consumption (neutral)

ID30 consumption (positive)

ID31 corporate-responsibility (negative)

ID32 corporate-responsibility (neutral)

ID33 corporate-responsibility (positive)

ID34 credit (negative)

ID35 credit (neutral)

ID36 credit (positive)

ID37 credit-ratings (negative)

ID38 credit-ratings (neutral)

ID39 credit-ratings (positive)

ID40 crime (negative)

ID41 crime (neutral)

ID42 crime (positive)

ID43 dividends (negative)

ID44 dividends (neutral)

ID45 dividends (positive)

ID46 domestic-product (negative)

ID47 domestic-product (neutral)

ID48 domestic-product (positive)
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ID49 earnings (negative)

ID50 earnings (neutral)

ID51 earnings (positive)

ID52 economic-union (negative)

ID53 economic-union (neutral)

ID54 economic-union (positive)

ID55 elections (negative)

ID56 elections (neutral)

ID57 elections (positive)

ID58 employment (negative)

ID59 employment (neutral)

ID60 employment (positive)

ID61 equity-actions (negative)

ID62 equity-actions (neutral)

ID63 equity-actions (positive)

ID64 exploration (negative)

ID65 exploration (neutral)

ID66 exploration (positive)

ID67 foreign-exchange (negative)

ID68 foreign-exchange (neutral)

ID69 foreign-exchange (positive)

ID70 foreign-relations (negative)

ID71 foreign-relations (neutral)

ID72 foreign-relations (positive)

ID73 government (negative)

ID74 government (neutral)

ID75 government (positive)

ID76 health (negative)

ID77 health (neutral)

ID78 health (positive)

ID79 housing (negative)

ID80 housing (neutral)

ID81 housing (positive)

ID82 indexes (negative)

ID83 indexes (neutral)

ID84 indexes (positive)

ID85 industrial-accidents (negative)

ID86 industrial-accidents (neutral)

ID87 industrial-accidents (positive)

ID88 insider-trading (negative)

ID89 insider-trading (neutral)

ID90 insider-trading (positive)

ID91 interest-rates (negative)

ID92 interest-rates (neutral)

ID93 interest-rates (positive)

ID94 inventory (negative)

ID95 inventory (neutral)

ID96 inventory (positive)

ID97 investor-relations (negative)

ID98 investor-relations (neutral)

ID99 investor-relations (positive)

ID100 labor-issues (negative)

ID101 labor-issues (neutral)

ID102 labor-issues (positive)

ID103 legal (negative)

ID104 legal (neutral)

ID105 legal (positive)

ID106 marketing (negative)

ID107 marketing (neutral)

ID108 marketing (positive)

ID109 migration (negative)

ID110 migration (neutral)

ID111 migration (positive)

ID112 natural-disasters (negative)

ID113 natural-disasters (neutral)

ID114 natural-disasters (positive)

ID115 order-imbalances (negative)

ID116 order-imbalances (neutral)

ID117 order-imbalances (positive)

ID118 partnerships (negative)

ID119 partnerships (neutral)

ID120 partnerships (positive)

ID121 pollution (negative)

ID122 pollution (neutral)

ID123 pollution (positive)

ID124 price-targets (negative)

ID125 price-targets (neutral)

ID126 price-targets (positive)

ID127 production (negative)
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ID128 production (neutral)

ID129 production (positive)

ID130 products-services (negative)

ID131 products-services (neutral)

ID132 products-services (positive)

ID133 public-finance (negative)

ID134 public-finance (neutral)

ID135 public-finance (positive)

ID136 public-opinion (negative)

ID137 public-opinion (neutral)

ID138 public-opinion (positive)

ID139 regulatory (negative)

ID140 regulatory (neutral)

ID141 regulatory (positive)

ID142 revenues (negative)

ID143 revenues (neutral)

ID144 revenues (positive)

ID145 security (negative)

ID146 security (neutral)

ID147 security (positive)

ID148 social-relations (negative)

ID149 social-relations (neutral)

ID150 social-relations (positive)

ID151 stock-picks (negative)

ID152 stock-picks (neutral)

ID153 stock-picks (positive)

ID154 stock-prices (negative)

ID155 stock-prices (neutral)

ID156 stock-prices (positive)

ID157 taxes (negative)

ID158 taxes (neutral)

ID159 taxes (positive)

ID160 technical-analysis (negative)

ID161 technical-analysis (neutral)

ID162 technical-analysis (positive)

ID163 transportation (negative)

ID164 transportation (neutral)

ID165 transportation (positive)

ID166 war-conflict (negative)

ID167 war-conflict (neutral)

ID168 war-conflict (positive)
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Observations per News Class
for Yearly Datasets

Table B.1: Number of observations per news class in each yearly dataset for years
2012 - 2016.

ID

Canada Data World Data

2012 2013 2014 2015 2016 2012 2013 2014 2015 2016

ID1 699 459 730 604 491 7450 7239 10710 10318 9469

ID2 2845 2160 1945 1851 2475 26456 22950 22425 23207 45436

ID3 20369 18446 20511 19785 15264 195453 189639 240258 253684 191032

ID4 7 1 1 0 3 890 624 500 281 629

ID5 0 0 0 0 0 0 0 0 0 0

ID6 36 99 34 4 51 1384 2106 2910 1978 1898

ID7 3361 2372 1604 2173 3994 68680 49302 33914 45077 76976

ID8 1679 1252 1179 1299 4426 54997 42890 37160 39346 64923

ID9 3370 2810 2382 2605 6801 72551 60169 49096 54397 103906

ID10 1350 1414 1030 1066 842 21390 18811 18271 22646 18793

ID11 1636 1265 1863 1653 1093 14072 12783 15113 13991 11890

ID12 3046 2633 2509 2043 1697 60234 57077 58775 57924 42518

ID13 227 220 171 350 205 16173 12553 10234 11663 11535

ID14 225 161 192 167 133 9572 7697 7080 6594 5766

ID15 216 255 274 252 244 16705 14575 13462 13332 11070

ID16 56 54 34 150 78 2894 1651 2030 3366 3561

ID17 0 0 0 0 0 0 0 0 0 0

ID18 0 0 0 0 0 310 310 83 104 248

ID19 21 10 6 6 5 562 377 646 541 518

ID20 0 1 0 0 0 94 39 87 81 85

ID21 8 25 1 1 12 508 788 609 603 518

ID22 467 553 249 292 475 26034 28391 34328 34723 42133

ID23 31 103 17 47 76 4041 4843 4926 4037 4771

ID24 0 0 0 0 0 9 3 26 5 3

ID25 3086 3776 2401 3462 1845 112327 108067 114203 132561 81430

ID26 5201 5892 4491 3414 3008 105236 117851 106139 95202 72109

ID27 2370 2402 2180 1801 1760 99699 99946 74740 73721 75758

ID28 197 227 333 221 215 8640 8856 8847 10528 8966

ID29 511 461 578 498 447 15804 13446 15194 14662 12210

ID30 218 205 187 160 219 7846 8077 8893 9696 7762

ID31 0 0 0 0 0 0 0 0 0 0

ID32 310 638 295 262 249 3020 3207 2611 2703 2476

ID33 12 10 17 25 21 196 209 288 258 274

ID34 736 418 226 559 505 26368 17193 12626 14736 12940

ID35 3019 2678 2735 2263 2307 70134 56317 53012 53683 43320

ID36 2003 2119 2022 1970 1663 35063 29149 25576 25926 19424

ID37 3448 2435 1629 2206 4000 73515 54891 37141 47416 78986

ID38 3791 3213 3138 2729 5747 87846 70815 61589 61968 82226

ID39 5089 4662 4163 4278 8212 95434 79991 64664 71095 116412

ID40 145 63 46 63 136 7048 7348 11815 15090 14342

ID41 644 550 1591 756 1344 27926 33773 41344 60244 73158

ID42 0 14 1 2 47 1527 1715 2350 2584 2362
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ID43 346 307 329 620 611 7475 7144 6612 8182 8000

ID44 10333 12007 14073 13217 9382 69923 75205 79572 86995 64193

ID45 1882 1837 1776 1544 1333 31218 33743 35541 35082 29619

ID46 308 191 130 512 379 18489 12142 13362 13827 11130

ID47 755 799 761 737 670 15253 13895 13857 13611 14727

ID48 321 444 319 267 190 10479 12768 11121 11147 8902

ID49 24139 22771 21599 24602 26039 387231 359949 373442 421509 432966

ID50 42786 42991 48041 43822 38700 381552 370553 396688 401893 348092

ID51 30373 27211 30278 28571 29542 539031 530154 573626 623000 603753

ID52 0 0 0 0 0 764 771 265 839 8613

ID53 0 0 0 0 0 0 0 0 0 0

ID54 0 0 0 0 0 443 700 655 290 1450

ID55 1 0 1 3 0 2182 796 1306 3334 6106

ID56 47 88 73 304 53 11165 8485 10981 13052 20496

ID57 72 101 126 534 48 19802 11397 15610 16861 53519

ID58 146 131 213 196 203 6418 6293 4690 5071 4397

ID59 188 176 210 148 165 4926 4935 6175 5551 4774

ID60 359 464 394 305 353 9130 10878 14084 11903 10813

ID61 4800 6925 7812 10418 8890 29225 37099 30110 35668 70510

ID62 5811 5367 6437 4694 6078 46564 47019 48369 45259 73738

ID63 18402 19540 21940 21514 17972 104058 109808 111233 113171 102999

ID64 63 30 83 50 19 2401 1622 1547 1513 840

ID65 0 0 0 0 0 12 22 2 11 1

ID66 5728 3357 3149 2071 1932 9125 5920 5843 3776 3343

ID67 2098 2346 2255 2817 1964 56554 54643 50567 63551 51396

ID68 244 269 251 168 98 4924 4682 4676 5953 4299

ID69 2424 2012 2482 2458 2579 74104 75520 79743 96574 84120

ID70 2098 2346 2255 2817 1964 56562 54646 50941 63683 52885

ID71 10499 11741 13717 14927 12762 104816 104020 120861 153944 139323

ID72 2429 2016 2482 2459 2582 74493 75982 82390 97382 84326

ID73 116 208 229 357 175 15571 17001 20407 17460 26790

ID74 274 434 387 700 290 19582 21462 24312 23114 30958

ID75 717 1006 844 1060 1095 36713 43590 48692 54611 57092

ID76 82 100 428 178 65 3447 5183 13379 8459 9215

ID77 0 0 3 2 11 37 143 638 262 999

ID78 0 0 0 0 0 0 0 0 0 0

ID79 291 174 95 179 233 2286 1520 2894 2642 1942

ID80 164 239 242 187 124 1568 1403 1820 1535 1593

ID81 269 394 509 336 411 3502 6057 5296 5329 5199

ID82 0 0 2 0 1 43 100 30 23 48

ID83 6 0 0 0 0 15 42 45 57 44

ID84 19 60 77 102 46 1420 1955 1752 2475 1340

ID85 963 2942 1527 1580 1250 35975 57304 54375 73848 81657

ID86 71 94 59 31 49 1588 1933 3166 3706 4083

ID87 5 1 0 1 1 1205 1918 2333 1839 1768

ID88 390 552 742 634 767 77998 117162 108111 95299 103047

ID89 73 94 105 101 108 21429 22454 22742 22834 22231

ID90 339 384 373 673 816 31091 35481 42076 45099 49666

ID91 110 80 38 2 16 1079 2179 4519 9820 6140

ID92 395 429 496 539 633 8923 8046 8761 12330 12593

ID93 50 36 41 745 120 7374 6214 5095 10794 5936

ID94 3 1 9 3 0 2621 2417 2414 2770 2703

ID95 0 0 0 1 0 1499 1239 1875 899 818

ID96 16 2 3 7 7 2955 2484 2200 2791 2593

ID97 30 2 46 4 5 2039 2314 2348 3370 5671

ID98 10255 11472 13466 14759 12664 99913 99380 116191 148006 135067

ID99 275 159 496 322 680 20316 25711 34889 44509 39479

ID100 5401 6594 5508 5376 3785 72971 68982 65613 74458 63898

ID101 57 84 90 50 58 666 584 625 535 647

ID102 17506 16718 19334 13308 10678 141815 151338 164164 160611 110549

ID103 1909 1832 2375 2265 2386 90337 86452 116269 101480 113032

ID104 34 71 64 47 42 5092 6072 7952 9994 8137

ID105 690 828 783 572 807 20206 20138 20389 18199 20966

ID106 0 0 0 0 0 0 0 0 0 0

ID107 7443 6366 7303 7694 5648 127327 119319 124944 132829 93837

ID108 53 108 144 111 104 2848 3160 2846 3124 2335

ID109 0 0 0 3 30 65 107 114 421 336

ID110 0 21 12 223 65 117 223 395 3845 1750

ID111 6 0 5 6 1 568 411 279 634 1322

ID112 753 1675 839 539 1253 40223 45013 52104 67897 82351

ID113 7 2 17 3 5 457 443 742 775 567

ID114 16 32 25 21 8 316 139 214 248 339

ID115 545 399 0 0 0 26140 15053 0 0 0

ID116 0 0 0 0 0 0 0 0 0 0

ID117 567 331 0 0 0 23409 12544 0 0 0

ID118 37 50 83 29 38 1205 1692 1412 1306 1002

ID119 0 0 0 0 0 0 0 0 0 0

ID120 3727 4134 3970 4220 3034 75393 78529 86423 91072 71163

ID121 3 16 1 3 3 196 977 729 1511 1063
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ID122 3 2 0 3 0 3 6 7 9 32

ID123 0 1 0 1 0 3 67 56 22 5

ID124 1176 175 95 296 1514 12049 3451 4562 10169 14869

ID125 13 78 12 10 2790 225 854 314 336 26189

ID126 961 289 220 278 3875 15718 9876 8163 12655 23761

ID127 36 31 54 75 50 4616 4161 5479 6019 4764

ID128 14 30 26 33 8 3158 3222 3029 3433 3273

ID129 37 46 49 60 59 5137 6251 6242 6588 5706

ID130 1313 1273 1036 1048 563 39876 40052 48288 40502 45331

ID131 1996 2809 2494 2096 1428 36242 37439 37196 37227 30123

ID132 21826 22630 21910 17339 13814 356582 355715 348340 318959 249815

ID133 43 81 34 22 31 1874 1895 1215 1636 1152

ID134 15 30 51 26 28 5746 5481 5331 6311 5769

ID135 100 80 101 54 27 1562 1676 1653 1798 1399

ID136 43 81 34 22 31 1874 1895 1215 1636 1152

ID137 15 30 51 26 28 5746 5481 5331 6311 5769

ID138 100 80 101 54 27 1562 1676 1653 1798 1399

ID139 233 141 173 174 182 7685 7100 7175 8605 8785

ID140 243 374 350 282 223 6319 5983 6039 6066 6175

ID141 3 0 17 4 0 569 463 399 403 492

ID142 2860 3041 2580 2827 3164 61599 61690 53175 61111 67311

ID143 3819 3656 3943 3671 3485 73310 65753 68003 71179 62965

ID144 5935 5435 5356 4986 4393 127138 120981 122299 121771 106996

ID145 223 352 240 464 307 19354 27779 26967 35468 46354

ID146 0 0 0 0 0 0 0 1 6 7

ID147 22 34 15 13 7 1018 1170 2110 4478 3049

ID148 30 2 46 4 5 2039 2314 2348 3370 5671

ID149 10255 11472 13466 14759 12664 99913 99380 116191 148006 135067

ID150 275 159 496 322 680 20316 25711 34889 44509 39479

ID151 3086 3775 2401 3452 1847 71597 73815 70736 79542 42131

ID152 5200 5891 4497 3422 3009 100241 112891 101102 90152 66804

ID153 2434 2444 2243 1869 1784 55120 70172 48499 47228 41546

ID154 3096 3784 2408 3463 1856 112585 108267 114397 132735 81660

ID155 5202 5892 4497 3422 3010 105313 117955 106394 95294 72268

ID156 2439 2463 2247 1872 1831 101500 102066 77190 76281 77776

ID157 0 0 1 0 0 290 450 231 339 129

ID158 15 10 14 29 4 1149 1655 798 682 699

ID159 13 10 9 13 3 717 761 668 623 662

ID160 4405 5988 6644 6479 5310 175383 218379 235500 221478 161198

ID161 1505 1892 1856 1292 1815 87623 105949 85960 80888 78693

ID162 4977 6359 6850 6656 5212 218180 250924 270849 260004 196341

ID163 100 55 145 111 58 2621 3056 5587 7977 6257

ID164 0 0 0 0 0 0 0 0 0 0

ID165 0 0 0 0 0 14 24 56 23 26

ID166 125 286 719 441 448 83071 89338 126957 169890 159820

ID167 4 57 23 20 10 1403 1531 2568 2763 2977

ID168 30 165 23 19 147 4990 6996 11664 11365 15860
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Appendix C

Observations per News Class
for Monthly Datasets

Table C.1: Number of observations per news class in each monthly dataset for
months Jan - May 2015.

ID

Canada Data World Data

Jan Feb Mar Apr May Jan Feb Mar Apr May

ID1 55 16 130 9 3 404 458 547 2004 800

ID2 72 159 133 111 128 1912 1499 2130 1664 1967

ID3 1848 1623 1679 1483 1525 16919 19467 21674 21467 21853

ID4 0 0 0 0 0 20 5 12 2 70

ID5 0 0 0 0 0 0 0 0 0 0

ID6 0 0 0 1 3 96 178 144 493 156

ID7 302 206 158 227 149 4890 4447 3665 4207 3304

ID8 226 83 151 99 123 2559 2961 3813 3465 3852

ID9 205 167 196 239 210 3775 3254 4168 4582 4756

ID10 215 100 118 160 62 2261 2651 1976 1919 1645

ID11 111 98 123 132 51 1211 829 1162 1080 948

ID12 115 167 194 236 178 3934 4106 5042 5474 4316

ID13 25 35 53 21 58 828 1026 972 1164 1061

ID14 12 21 50 13 13 750 500 816 555 441

ID15 4 9 10 57 32 1289 1294 1267 1366 1033

ID16 5 33 1 12 30 689 571 275 129 224

ID17 0 0 0 0 0 0 0 0 0 0

ID18 0 0 0 0 0 9 11 2 10 16

ID19 0 0 0 0 0 29 31 32 34 67

ID20 0 0 0 0 0 8 4 1 7 8

ID21 0 0 0 1 0 59 82 73 37 40

ID22 56 24 52 43 21 3940 2289 2728 3968 3060

ID23 0 22 9 4 2 441 369 371 527 392

ID24 0 0 0 0 0 1 0 1 0 2

ID25 273 178 351 146 244 15502 9792 12914 9390 9313

ID26 390 284 283 329 283 8138 7456 8368 9209 8874

ID27 218 163 130 154 192 6371 7354 6882 7621 6729

ID28 5 23 34 25 10 1187 870 1292 959 982

ID29 61 38 37 24 44 1689 1529 1373 1169 1255

ID30 22 9 13 29 20 1231 902 919 854 675

ID31 0 0 0 0 0 0 0 0 0 0

ID32 11 4 13 55 12 99 102 182 291 300

ID33 0 10 0 0 0 18 13 11 48 2

ID34 62 59 52 60 25 1274 1550 1014 1426 1135

ID35 364 158 317 219 177 3740 5002 5921 4908 5460

ID36 180 142 208 169 126 2828 1921 2901 2323 2178

ID37 302 207 158 227 158 5029 4707 3839 4375 3575

ID38 402 198 351 269 223 4284 5460 6571 5599 5983

ID39 322 281 393 393 322 6073 4501 6128 5927 6076

ID40 14 3 4 5 2 1810 1822 770 946 1156

ID41 161 47 107 50 22 5864 4810 4981 4248 4703

ID42 1 0 0 0 0 386 117 144 300 118
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ID43 46 66 83 35 79 507 1921 1159 553 1074

ID44 850 1423 1177 1006 1274 5817 9866 7410 7072 10525

ID45 164 282 175 67 260 3240 6790 3090 3600 4842

ID46 52 16 34 37 29 1610 793 896 1429 1663

ID47 65 39 70 75 76 1227 1135 1283 1187 1369

ID48 3 9 55 26 23 1005 1675 989 847 1101

ID49 465 3880 3308 1780 3820 23058 78452 37099 36845 58992

ID50 1528 4329 4436 3772 7078 27391 47432 26887 42803 44683

ID51 955 4636 3723 1991 4456 44197 109084 45702 66109 76915

ID52 0 0 0 0 0 54 30 165 30 80

ID53 0 0 0 0 0 0 0 0 0 0

ID54 0 0 0 0 0 33 9 3 48 12

ID55 0 0 0 0 0 132 401 72 59 231

ID56 3 3 12 0 2 951 503 1062 1360 1122

ID57 2 1 12 1 6 1691 535 2130 895 1636

ID58 30 8 34 11 19 382 499 435 434 473

ID59 21 4 22 11 14 497 340 553 507 594

ID60 5 41 8 33 14 1406 813 1024 1026 849

ID61 631 976 940 1042 1145 2310 4218 3541 2942 3605

ID62 296 392 416 477 513 3608 4109 4228 4082 4479

ID63 1282 1989 2250 2301 2246 8208 11378 11475 9270 10357

ID64 21 0 0 0 0 194 121 136 132 80

ID65 0 0 0 0 0 0 0 0 0 11

ID66 200 231 224 186 121 405 352 395 410 246

ID67 421 228 210 158 243 6937 5297 6808 5628 5281

ID68 24 12 23 11 7 444 452 407 263 364

ID69 115 259 229 363 253 8436 7820 9088 8566 9902

ID70 421 228 210 158 243 6939 5299 6812 5722 5281

ID71 931 1358 1011 1734 1785 14645 11991 7637 20967 10311

ID72 115 259 229 363 253 8457 7841 9098 8582 9929

ID73 6 204 12 8 30 2212 1269 1497 1089 1331

ID74 3 174 15 19 23 2612 1564 1306 1565 1959

ID75 20 68 49 173 37 4122 4554 3889 4330 5188

ID76 19 58 25 26 18 843 914 800 815 596

ID77 0 2 0 0 0 21 39 93 3 18

ID78 0 0 0 0 0 0 0 0 0 0

ID79 70 32 5 6 12 360 364 204 194 200

ID80 14 20 7 14 17 129 146 147 144 114

ID81 40 8 23 51 30 469 333 406 480 391

ID82 0 0 0 0 0 0 0 1 1 6

ID83 0 0 0 0 0 0 0 13 0 0

ID84 0 0 0 0 0 85 35 388 66 45

ID85 105 93 259 79 49 4564 6629 8362 4130 6689

ID86 6 1 2 0 1 438 284 261 204 295

ID87 0 0 0 0 0 131 98 268 222 233

ID88 34 60 103 58 76 6593 10894 12985 6672 11025

ID89 16 17 14 4 18 2583 4820 3574 1401 1706

ID90 21 27 82 28 70 3119 5694 5167 2404 4227

ID91 0 0 0 0 0 391 442 834 350 494

ID92 28 23 51 85 81 642 620 1000 1007 644

ID93 350 35 35 16 3 1545 943 1700 437 1027

ID94 0 0 0 0 0 285 316 185 190 249

ID95 0 0 0 0 0 69 83 99 103 58

ID96 0 1 0 0 0 291 292 208 249 188

ID97 0 0 0 4 0 100 379 538 797 151

ID98 907 1346 988 1723 1778 14205 11539 7230 20704 9947

ID99 2 19 12 120 85 3518 3282 3844 3881 4939

ID100 614 528 510 344 523 6385 5781 5307 5246 5921

ID101 9 2 3 0 0 77 128 111 56 24

ID102 1125 1139 1315 1079 1291 13625 13562 14039 14010 12769

ID103 131 153 186 108 103 8540 8046 8723 8212 8599

ID104 0 3 0 0 3 654 1348 712 1171 1348

ID105 24 58 117 61 15 1426 1495 1388 1611 1674

ID106 0 0 0 0 0 0 0 0 0 0

ID107 746 1036 1007 252 589 9166 18532 9876 5046 20109

ID108 17 2 2 11 34 206 348 366 284 241

ID109 0 1 0 0 0 24 23 25 14 10

ID110 5 0 1 9 0 15 8 15 82 250

ID111 2 0 0 0 0 62 16 71 17 15

ID112 83 33 43 39 59 3063 3511 3665 7313 10063

ID113 0 3 0 0 0 81 16 43 99 124

ID114 0 1 0 0 3 5 45 7 27 43

ID115 0 0 0 0 0 0 0 0 0 0

ID116 0 0 0 0 0 0 0 0 0 0

ID117 0 0 0 0 0 0 0 0 0 0

ID118 0 24 0 0 0 25 178 126 114 190

ID119 0 0 0 0 0 0 0 0 0 0

ID120 314 303 528 334 319 7036 6449 8898 7786 7481

ID121 0 0 0 0 0 76 29 116 49 6
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ID122 0 0 0 0 0 0 0 0 3 0

ID123 1 0 0 0 0 7 0 0 9 0

ID124 13 10 15 14 10 754 632 607 520 548

ID125 0 2 1 2 2 33 35 37 55 29

ID126 18 41 25 25 34 1148 1188 1440 1435 1124

ID127 10 16 9 8 1 411 477 573 547 595

ID128 1 1 3 3 1 269 209 230 320 296

ID129 4 3 7 4 8 610 701 755 499 513

ID130 251 170 56 85 65 3925 2554 3413 3831 2942

ID131 303 128 119 251 204 3021 2545 2768 3829 3006

ID132 1319 1532 1911 1854 1342 26227 24000 30309 27913 23183

ID133 0 0 8 0 0 177 173 138 176 82

ID134 0 0 1 16 2 357 817 136 660 591

ID135 7 14 2 2 2 155 141 429 196 90

ID136 0 0 8 0 0 177 173 138 176 82

ID137 0 0 1 16 2 357 817 136 660 591

ID138 7 14 2 2 2 155 141 429 196 90

ID139 3 9 24 19 1 412 889 616 768 730

ID140 2 17 18 27 8 236 587 416 626 490

ID141 0 1 0 0 0 31 11 62 46 16

ID142 75 302 416 165 464 3866 8658 4566 5686 8026

ID143 242 332 352 290 504 6117 8362 4551 7091 7150

ID144 152 881 696 393 612 10054 18656 8848 12175 14582

ID145 3 7 17 35 4 2828 2516 2140 2117 1449

ID146 0 0 0 0 0 0 1 0 0 0

ID147 0 1 0 0 0 307 81 223 350 104

ID148 0 0 0 4 0 100 379 538 797 151

ID149 907 1346 988 1723 1778 14205 11539 7230 20704 9947

ID150 2 19 12 120 85 3518 3282 3844 3881 4939

ID151 272 178 347 145 245 6128 5128 8062 6188 6722

ID152 390 284 283 329 283 7583 7167 7973 8944 8479

ID153 225 163 135 159 199 4174 4391 4510 4731 4110

ID154 273 178 351 146 245 15511 9806 12929 9414 9326

ID155 390 284 283 329 283 8147 7462 8374 9216 8882

ID156 225 164 135 159 200 6550 7482 7141 7790 6918

ID157 0 0 0 0 0 24 36 44 40 18

ID158 1 18 0 0 1 58 98 63 39 49

ID159 1 8 1 0 1 11 81 44 73 150

ID160 568 514 604 517 557 18712 18583 20068 20038 19371

ID161 84 151 193 103 177 6437 7208 10481 9584 8422

ID162 564 624 575 632 548 21990 22726 22637 23081 21868

ID163 5 5 0 6 11 568 331 500 615 346

ID164 0 0 0 0 0 0 0 0 0 0

ID165 0 0 0 0 0 0 0 12 0 0

ID166 74 13 75 95 3 13769 12686 13114 12906 12726

ID167 1 1 0 4 9 127 165 474 246 271

ID168 0 6 2 1 1 778 1494 611 2141 1159
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Appendix D

Observations per News Class
for Daily Datasets

Table D.1: Number of observations per news class in each daily dataset for dates
1st - 7th of March 2015.

ID

Canada Data World Data

1 2 3 4 5 6 7 1 2 3 4 5 6 7

ID1 0 0 0 10 0 0 0 0 0 15 11 0 7 0

ID2 0 11 3 1 4 2 0 5 52 102 103 68 127 6

ID3 2 237 46 31 27 59 2 71 2735 1096 573 1119 363 38

ID4 0 0 0 0 0 0 0 0 0 0 0 0 6 0

ID5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID6 0 0 0 0 0 0 0 4 0 0 2 2 0 0

ID7 0 23 5 7 12 15 0 6 277 204 167 174 155 1

ID8 0 6 3 0 1 4 0 0 125 249 214 199 160 1

ID9 0 17 2 14 11 13 0 5 170 152 169 182 259 6

ID10 0 12 3 0 0 0 0 11 168 22 49 72 26 11

ID11 0 23 31 1 1 0 0 3 87 58 76 27 23 2

ID12 0 1 0 0 2 21 0 49 162 280 276 229 306 20

ID13 0 18 0 0 0 32 1 35 59 24 19 24 65 2

ID14 0 0 3 1 0 4 0 3 20 30 6 13 99 1

ID15 0 2 0 0 0 3 0 23 49 29 30 23 91 4

ID16 0 0 0 0 0 0 0 0 3 28 8 0 14 2

ID17 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID18 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID19 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID20 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID21 0 0 0 0 0 0 0 0 0 8 0 0 0 0

ID22 1 1 3 2 0 1 0 209 137 69 62 27 45 47

ID23 0 0 0 0 0 0 4 5 11 11 4 8 24 8

ID24 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID25 1 11 14 13 10 23 0 17 514 542 554 400 557 35

ID26 0 10 19 6 14 17 0 4 441 379 290 442 274 10

ID27 0 2 6 3 5 4 0 23 262 332 224 263 254 8

ID28 0 0 0 0 0 0 0 1 71 48 6 42 37 1

ID29 0 0 0 2 0 0 0 4 69 44 22 46 24 0

ID30 0 0 0 0 0 0 0 1 88 87 42 16 37 0

ID31 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID32 0 0 0 13 0 0 0 0 8 0 14 5 0 0

ID33 0 0 0 0 0 0 0 1 0 0 0 0 0 0

ID34 0 19 0 0 1 2 0 0 52 73 34 70 56 1

ID35 0 4 8 0 1 4 0 2 234 349 392 326 229 3

ID36 0 11 34 3 0 0 0 5 101 104 94 324 173 4

ID37 0 23 5 7 12 15 0 6 293 221 173 180 174 1

ID38 0 6 9 0 1 4 0 2 253 387 418 343 252 3

ID39 0 25 36 17 11 13 0 5 232 231 216 455 308 8

ID40 1 0 0 0 0 0 0 14 23 12 17 43 8 55

ID41 0 0 1 0 1 1 9 64 146 106 155 60 165 310

ID42 0 0 0 0 0 0 0 5 12 2 0 16 13 25
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ID43 0 1 3 0 12 6 0 6 11 44 71 60 63 14

ID44 0 73 45 30 85 65 0 4 364 389 359 465 341 3

ID45 0 5 17 12 29 7 0 9 80 179 202 196 215 47

ID46 0 0 5 2 0 0 0 4 46 13 30 146 8 0

ID47 0 1 21 3 1 3 0 8 38 52 100 116 41 10

ID48 0 0 42 1 0 0 0 3 29 110 36 143 31 4

ID49 0 33 121 332 379 168 6 98 1305 1942 3011 2646 1702 493

ID50 0 168 185 248 360 146 0 10 1690 1447 1946 1965 892 46

ID51 0 61 136 326 390 148 9 79 1312 2784 4163 3606 2184 455

ID52 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID53 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID54 0 0 0 0 0 0 0 0 0 3 0 0 0 0

ID55 0 0 0 0 0 0 0 11 5 8 0 4 16 0

ID56 0 8 0 0 0 0 0 19 12 10 5 1 4 7

ID57 0 8 0 0 0 0 0 84 79 20 41 27 14 31

ID58 0 0 0 0 0 0 0 0 4 2 7 139 16 3

ID59 0 0 0 0 1 0 0 4 20 4 3 29 91 7

ID60 0 0 0 0 0 0 0 0 58 22 58 36 295 8

ID61 0 91 66 34 54 31 0 4 179 252 225 206 110 13

ID62 0 26 13 1 3 37 2 6 149 191 215 195 162 5

ID63 0 181 112 153 139 59 2 57 617 613 698 520 380 34

ID64 0 0 0 0 0 0 0 0 30 16 12 1 0 0

ID65 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID66 0 28 1 14 0 2 0 0 33 2 20 10 7 0

ID67 0 16 8 6 13 17 0 7 207 237 345 538 324 69

ID68 0 0 1 0 0 1 0 0 18 21 18 35 23 3

ID69 0 5 31 24 10 4 0 167 516 418 385 317 384 87

ID70 0 16 8 6 13 17 0 7 207 237 345 538 324 69

ID71 0 42 24 38 100 55 0 9 301 317 437 577 305 27

ID72 0 5 31 24 10 4 0 167 520 418 387 317 384 87

ID73 0 0 6 0 0 1 0 10 59 44 13 18 37 20

ID74 0 0 5 0 0 0 0 32 75 26 11 39 14 18

ID75 0 0 0 9 2 0 0 65 120 141 93 138 62 69

ID76 0 0 0 0 0 0 0 22 36 34 18 47 22 7

ID77 0 0 0 0 0 0 0 2 0 0 0 0 0 1

ID78 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID79 0 0 0 0 1 0 0 8 33 4 2 20 0 0

ID80 0 0 0 0 0 0 0 1 11 5 0 8 1 0

ID81 0 0 0 1 0 0 0 0 34 9 4 8 14 3

ID82 0 0 0 0 0 0 0 0 0 1 0 0 0 0

ID83 0 0 0 0 0 0 0 0 0 1 0 0 0 0

ID84 0 0 0 0 0 0 0 1 1 0 6 0 189 14

ID85 0 0 0 19 20 0 25 20 99 130 490 293 445 112

ID86 0 0 0 0 0 0 0 1 3 5 5 19 52 12

ID87 0 0 0 0 0 0 0 1 1 9 196 20 2 1

ID88 0 0 6 6 4 8 2 0 354 586 883 696 633 152

ID89 0 6 1 0 0 4 0 0 195 609 321 196 196 17

ID90 0 4 1 5 2 6 0 0 274 522 481 339 293 19

ID91 0 0 0 0 0 0 0 1 5 88 36 28 51 2

ID92 0 1 1 44 0 1 0 0 13 113 55 151 11 0

ID93 1 2 8 14 3 0 0 53 449 75 462 46 7 4

ID94 0 0 0 0 0 0 0 0 1 6 28 3 2 0

ID95 0 0 0 0 0 0 0 0 2 1 12 0 6 0

ID96 0 0 0 0 0 0 0 0 0 6 36 6 0 0

ID97 0 0 0 0 0 0 0 0 0 0 2 2 12 48

ID98 0 42 23 38 100 54 0 9 283 296 419 542 282 24

ID99 0 0 0 0 2 0 0 131 259 151 108 62 82 64

ID100 0 17 1 3 13 7 0 16 190 219 241 140 152 17

ID101 0 0 0 1 0 2 0 0 2 0 2 0 3 1

ID102 0 130 70 41 99 30 18 11 913 909 636 609 463 33

ID103 0 1 0 1 5 7 2 40 261 606 240 355 398 256

ID104 0 0 0 0 0 0 0 4 9 4 10 11 26 52

ID105 0 21 0 0 0 1 0 2 42 47 54 44 37 5

ID106 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID107 0 52 33 20 56 67 0 0 1583 1587 1096 820 550 8

ID108 0 1 0 0 0 0 0 4 22 8 4 6 25 0

ID109 0 0 0 0 0 0 0 0 0 2 0 0 0 0

ID110 0 0 0 0 0 0 0 0 6 0 0 0 5 2

ID111 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID112 0 0 3 4 0 0 0 78 118 342 120 154 80 23

ID113 0 0 0 0 0 0 0 0 0 1 0 0 0 0

ID114 0 0 0 0 0 0 0 0 1 0 0 0 0 0

ID115 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID116 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID117 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID118 0 0 0 0 0 0 0 0 8 2 0 1 2 0

ID119 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID120 1 64 27 14 28 20 0 145 681 578 446 284 145 21

ID121 0 0 0 0 0 0 0 1 0 2 7 0 0 6
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ID122 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID123 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID124 0 0 1 0 0 0 0 7 33 30 19 9 23 0

ID125 0 0 0 0 0 0 0 0 0 0 1 4 2 0

ID126 0 4 0 1 4 0 0 10 85 87 99 50 63 2

ID127 0 7 0 0 0 0 0 32 92 10 22 5 9 0

ID128 0 1 0 0 2 0 0 1 65 13 51 3 0 0

ID129 0 0 2 0 5 0 0 46 165 47 116 10 53 2

ID130 0 1 4 12 0 2 0 40 95 93 104 146 94 73

ID131 0 0 0 0 25 5 0 23 132 156 77 91 108 20

ID132 8 134 188 95 76 66 0 507 2287 1667 1480 1298 770 80

ID133 0 0 0 0 0 0 0 1 14 5 6 15 8 2

ID134 0 0 0 0 0 0 0 0 0 2 3 0 0 0

ID135 0 0 0 0 0 0 0 6 7 0 162 114 8 1

ID136 0 0 0 0 0 0 0 1 14 5 6 15 8 2

ID137 0 0 0 0 0 0 0 0 0 2 3 0 0 0

ID138 0 0 0 0 0 0 0 6 7 0 162 114 8 1

ID139 0 0 0 0 2 0 0 0 21 6 33 11 14 0

ID140 0 0 0 0 0 0 0 0 35 2 11 47 19 0

ID141 0 0 0 0 0 0 0 0 2 1 0 27 17 2

ID142 0 0 10 50 39 21 3 12 104 223 346 283 226 67

ID143 0 3 29 23 40 7 0 1 199 310 286 440 222 14

ID144 0 12 27 56 72 27 1 28 252 729 691 697 470 78

ID145 1 0 0 0 0 0 0 7 178 31 179 132 37 101

ID146 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID147 0 0 0 0 0 0 0 0 34 30 0 2 0 21

ID148 0 0 0 0 0 0 0 0 0 0 2 2 12 48

ID149 0 42 23 38 100 54 0 9 283 296 419 542 282 24

ID150 0 0 0 0 2 0 0 131 259 151 108 62 82 64

ID151 1 11 14 13 10 23 0 8 348 384 373 219 369 3

ID152 0 10 19 6 14 17 0 4 414 349 287 427 262 7

ID153 0 2 6 4 6 5 0 2 167 199 175 195 153 3

ID154 1 11 14 13 10 23 0 18 518 543 554 400 557 35

ID155 0 10 19 6 14 17 0 4 441 379 291 442 274 10

ID156 0 2 6 4 6 5 0 23 278 341 235 275 263 9

ID157 0 0 0 0 0 0 0 1 1 0 0 0 0 2

ID158 0 0 0 0 0 0 0 1 1 0 0 0 10 4

ID159 0 1 0 0 0 0 0 2 2 4 0 0 0 0

ID160 6 30 50 31 21 44 0 126 1220 1104 926 930 959 0

ID161 0 6 29 8 3 8 0 47 431 605 445 408 483 0

ID162 0 24 53 23 18 17 0 141 1144 1268 1043 1017 958 0

ID163 0 0 0 0 0 0 0 12 1 6 6 9 41 17

ID164 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID165 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID166 0 0 18 0 0 0 1 96 242 269 195 454 387 492

ID167 0 0 0 0 0 0 0 51 27 16 4 66 11 0

ID168 0 0 0 0 0 0 0 38 26 28 29 50 12 13
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