
IN DEGREE PROJECT MATHEMATICS,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2018

Claims Reserving using Gradient
Boosting and Generalized Linear
Models

MARCUS AHLGREN

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ENGINEERING SCIENCES

Claims Reserving using Gradient
Boosting and Generalized Linear
Models

MARCUS AHLGREN

Degree Projects in Mathematical Statistics (30 ECTS credits)
Degree Programme in Applied and Computational Mathematics (120 credits)
KTH Royal Institute of Technology year 2018
Supervisor at Länsförsäkringar AB: Kathrin Vorwerk
Supervisor at KTH: Håkan Andersson
Examiner at KTH: Boualem Djehiche

TRITA-SCI-GRU 2018:234
MAT-E 2018:42

Royal Institute of Technology
School of Engineering Sciences
KTH SCI
SE-100 44 Stockholm, Sweden
URL: www.kth.se/sci

Claims Reserving using Gradient Boosting and

Generalized Linear Models

Abstract

One fundamental function of an insurance company revolves around calculating
the expected claims costs for which the insurer has to compensate its policyhold-
ers for. This is the process of claims reserving which is practised by actuaries
using statistical methods. Over the last few decades statistical learning methods
have become increasingly popular due to their ability to find complex patterns in
any type of data. However, they have not been widely adapted within the insur-
ance sector. In this thesis we evaluate the capability of claims reserving with the
method of gradient boosting, a non-parametric statistical learning method that
has proven to be successful within multiple other disciplines which has made it
very popular. The gradient boosting technique is compared with the generalized
linear model(GLM) which is widely used for modelling claims. We compare the
models by using a claims data set provided by Länsförsäkringar AB which al-
lows us to train the models and evaluate their performance on data not yet seen
by the models. The models were implemented using R. The results show that
the GLM has a lower prediction error. Also, the gradient boosting method re-
quires more fine tuning to handle claims data properly while the GLM already
possesses certain features that makes it suitable for claims reserving without
making as many adjustments in the model implementation. The advantage of
capturing complex dependencies in data is not fully utilized in this thesis since
we only work with 6 predictor variables. It is more likely that gradient boosting
can compete with GLM when predicting more complicated claims.

i

Reservsättning med Gradient Boosting och

Generaliserade Linjära Modeller

Sammanfattning

En av de centrala verksamheterna ett försäkringsbolag arbetar med handlar om
att uppskatta skadekostnader för att kunna ersätta försäkringstagarna. Denna
procedur kallas reservsättning och utförs av aktuarier med hjälp av statistiska
metoder. Under de senaste årtiondena har statistiska inlärningsmetoder blivit
mer och mer populära tack vare deras förmåga att hitta komplexa mönster i alla
typer av data. Dock har intresset för dessa varit relativt lågt inom försäkrings-
branschen till förmån för mer traditionella försäkringsmatematiska metoder. I
den här masteruppsatsen undersöker vi förmågan att reservsätta med metoden
gradient boosting, en icke-parametrisk statistisk inlärningsmetod som har visat
sig fungera mycket väl inom en rad andra områden vilket har gjort metoden my-
cket populär. Vi jämför denna metod med generaliserade linjära modeller(GLM)
som är en av de vanliga metoderna vid reservsättning. Vi jämför modellerna
med hjälp av ett dataset tillhandahålls av Länsförsäkringar AB. Modellerna im-
plementerades med R. 80% av detta dataset används för att träna modellerna
och resterande 20% används för att evaluera modellernas prediktionsförmåga på
okänd data. Resultaten visar att GLM har ett lägre prediktionsfel. Gradient
boosting kräver att ett antal hyperparametrar justeras manuellt för att få en
välfungerande modell medan GLM inte kräver lika mycket korrigeringar varför
den är mer praktiskt lämpad. Fördelen med att kunna modellerna komplexa
förhållanden i data utnyttjas inte till fullo i denna uppsats då vi endast arbetar
med sex prediktionsvariabler. Det är sannolikt att gradient boosting skulle ge
bättre resultat med mer komplicerade datastrukturer.

ii

Acknowledgements

I would like to express my gratitude to my supervisor at Länsförsäkringar AB,
Kathrin Vorwerk, for guiding me through the project. I would also like to thank
Håkan Andersson, my supervisor at KTH, for continuous valuable feedback.

iii

Contents

1 Introduction 1

1.1 Previous Work . 2

1.2 Disposition . 2

2 Theory 3

2.1 Statistical Learning Theory . 3

2.2 Model Selection . 3

2.2.1 Loss Function . 4

2.2.2 Risk Function . 4

2.2.3 Cross-Validation . 6

2.2.4 Bias-Variance Tradeoff . 8

2.3 Generalized Linear Models . 9

2.3.1 Tweedie Distribution . 11

2.4 Maximum Likelihood Estimation 11

2.5 Regularization . 12

3 Tree-Based Models 12

3.1 Introduction to Decision Trees 12

3.2 Tree Terminology . 13

3.3 Constructing the Tree . 14

3.4 Tree Pruning . 17

3.5 Ensemble Methods . 18

iv

3.5.1 Bagging . 18

3.5.2 Random Forests . 19

3.5.3 Gradient Boosting . 21

4 Case Study 24

4.1 Data Preprocessing . 24

4.2 Feature Selection . 27

4.3 GLM . 27

4.4 Gradient Boosting . 28

5 Results 31

5.1 Cross-Validation GLM . 31

5.2 Cross-Validation Gradient Boosting 32

5.3 Overall Performance . 35

5.4 Performance Per Predictor Variable 36

6 Summary and Conclusions 42

6.1 Future Work . 43

v

1 Introduction

The interest in statistical learning methods has grown immensely over the last
few years due to a combination of a drastic increase in both data availability and
computing power. The insurance sector is fundamentally reliant on statistical
methods and the vast amount of available data gives actuaries a great oppor-
tunity to take advantage of statistical learning methods. Actuaries have several
different responsibilities. One central task for actuaries is claims reserving. This
originates from the fact that the insurer must have sufficient capital to cover
claims costs. The claims are usually divided into two groups, incurred but not
yet reported claims(IBNR) and incurred claims that have been reported but
are not yet settled(RBNS). For a given date the total loss reserve refers to the
amount that is needed to settle all costs for claims that have already incurred
i.e. both IBNR and RBNS claims. These are handled separately by the insurer
and in this thesis we will only consider the latter. For RBNS claims there is a
delay between the report date and the settle date. Thus, the insurer must make
an estimate of the future claim costs in order to setup a capital reserve to cover
these liabilities. In this thesis we will restrict the modelling to RBNS reserves.

In order to ensure that insurance companies can cover their liabilities there are
certain requirements that need to be fulfilled. Within EU insurers must follow
the Solvency 2 directive. This directive can be categorized into three different
pillars and the capital reserves requirements goes under Pillar 1. More specif-
ically, the solvency capital requirement(SCR) requires the insurers to reserve
capital such that the probability of not being able to cover their losses is less
than 0.5%. It is therefore essential to have well-functioning methods for claims
reserving.

Since the cost of a claim at settlement is not deterministic one needs to esti-
mate this amount in order to reserve a sufficient amount of capital. This is
typically done using a set of relevant predictor variables together with a suit-
able model. A traditional method used for modelling claims is the generalized
linear model(GLM), a generalization of linear regression. GLM requires certain
assumptions of the variable dependencies to be fulfilled in order to provide a
valid model. Therefore, it is vital to have a good understanding of the data
structure. As the complexity and dimensionality of the data grows this task
becomes increasingly difficult. In this thesis we compare claims reserving with
GLM and a statistical learning method, decision trees. Decision trees has its
main advantage in interpretability but in its simplest form the model perfor-
mance can be rather limited. However, in combination with ensemble methods
such as random forests and gradient boosting the performance can be improved
remarkably. Additionally, decision trees require no prior knowledge of the data
structure.

1

This thesis is written for Länsförsäkringar AB who also provided the data set
used to analyze the aforementioned models. Due to integrity some of the infor-
mation in this data set can not be disclosed.

1.1 Previous Work

There has been several studies where statistical learning methods such as deci-
sion trees have been compared to GLM in claims modelling. In 2017 the study
Case Reserving in Non-Life Practice using Individual Data and Machine Learn-
ing was conducted[2]. It tested the ability of several statistical learning methods
including gradient boosting and random forests. The study was performed us-
ing vehicle claims. The results suggest that both tree based methods have great
potential compared to more traditional methods such as GLM, especially when
it comes to find intricate dependencies in the data. This is crucial to predict
rare claims such as very severe claims. However, for regular claims the GLM
performed better and thus performed better overall. It is therefore emphasized
that statistical learning methods are not always better because they are more
flexible. For data which fulfills the assumptions for traditional regression these
are often superior. They are also more convenient to implement since they
don’t need as much tuning. More flexible methods such as decision trees should
therefore be used in cases where the data set is very large and the dependencies
are complex. This is where decision trees shine as they can naturally handle
interactions between predictor variables, something that has to be implemented
manually with GLMs.

1.2 Disposition

In section 2 we will begin with introducing some basic concepts within statistical
learning theory to give a better understanding of what factors need to be taken
into consideration when working with statistical models using any type of data.
We first introduce GLM and then, in section 3 move on to decision trees and tree-
based ensemble methods such as bagging, random forests and gradient boosting.
In section 4 we present the the data set and the methodology. Finally, we present
the results in section 5. A summary concludes the thesis.

2

2 Theory

2.1 Statistical Learning Theory

The framework of statistical learning has developed in order to build mod-
els and algorithms based on data in order to make predictions. A data point
(X, Y) 2 Rp ⇥ R consists of the random independent variables X1, ..., Xp

and
the dependent variable Y . The independent variables are also commonly re-
ferred to as predictors or features while the dependent variable is referred to as
response variable. Statistical learning can be divided into two main branches,
supervised learning and unsupervised learning. The difference is that for the
latter the dependent variable associated with a data point is not known. Only
supervised learning methods will be used in this thesis why we from now on
only consider labeled data i.e. data where the response variable is known. It
is assumed that there is a relationship between the predictors and the response
which we write as:

Y = f(X) + ✏. (1)

The function f is deterministic but unknown and the aim of supervised learning
methods is to estimate this function. ✏ is an error term s.t.

E[✏] = 0, V ar(✏) = �

2
.

✏ and X are also assumed to be independent. The error term can be interpreted
as random noise that accounts for the effects on Y which are not captured by
the predictors.

The data points used to estimate f is comprised in a training set L = {(x
i

, y

i

)}n
i=1.

Thus, the problem boils down to finding a function ˆ

f(x,L) that approximates
f(X). Random variables such as X will be denoted in upper case while real-
izations of random variables will be written in lower case. Approximations of
functions f will furthermore be denoted as ˆ

f . For notational convenience the L
can be dropped as ˆ

f is a function of the training set by implication.

2.2 Model Selection

In order to decide which model to use one needs to take different factors into
account such as accuracy and interpretability. These will be discussed in this
section.

3

2.2.1 Loss Function

To choose a model that is well suited for prediction it is central to evaluate
the predictive ability of the model. This leads us to introduce a loss function.
The loss function L(y,

ˆ

f(x)) quantifies the prediction error i.e. the discrepancy
between the prediction ˆ

f(x) and the actual value y. The loss functions could
in theory be of any form but they’re commonly restricted to certain features.
Typically the loss function is real-valued(often restricted to the non-negative
reals) and convex. It is designed to capture that higher discrepancy leads to
higher loss. The two arguably most common loss functions for regression and
classification are respectively:

L(y,

ˆ

f(x)) = (y � ˆ

f(x))

2 (2)

L(y,

ˆ

f(x)) =

(
1 y 6= ˆ

f(x)

0 y =

ˆ

f(x).

2.2.2 Risk Function

The ultimate goal in supervised learning is to find a model that is trained on
past observations i.e training data and is able to generalize and make accurate
predictions on previously unseen data. That is, we want to minimize the ex-
pected loss with respect to ˆ

f 2 F where F is a class of functions, often referred
to as the function space. We call the expected loss the risk function[11](or
simply risk) and define it and its minimizer ˆ

f

⇤ as:

R(

ˆ

f) = E[L(Y,

ˆ

f(X))]

ˆ

f

⇤
= argmin

f̂2F
R(

ˆ

f(X))

(3)

for some loss function L(Y,

ˆ

f(X)).

The risk measures how much loss we can expect on average but since the distri-
bution of Y is unknown neither R(

ˆ

f) nor ˆ

f

⇤ can be directly computed. However,
at our hand we have a training set L = {(x

i

, y

i

)}n
i=1 of n i.i.d samples from Y .

Thus, we can compute the empirical risk ˆ

R

n

(

ˆ

f) which is defined by:

4

R

n

(

ˆ

f(x)) =

1

n

nX

i=1

L(y

i

,

ˆ

f

n

(x

i

)). (4)

All quantities involved are known why we can compute the minimizer ˆ

f

⇤ defined
as:

ˆ

f

⇤
n

= argmin

f̂2F
R

n

(

ˆ

f). (5)

It remains to establish how the empirical risk and true risk are related. Since
ˆ

f

⇤ and ˆ

f

⇤
n

are minimizers of R and R

n

respectively it must hold that:

R(

ˆ

f

⇤
n

)�R(

ˆ

f

⇤
) �0

R

n

(

ˆ

f

⇤
)�R

n

(

ˆ

f

⇤
n

) �0.

(6)

If we add these inequalities together we get:

0 R(

ˆ

f

⇤
n

)�R(

ˆ

f

⇤
) +R

n

(

ˆ

f

⇤
)�R

n

(

ˆ

f

⇤
n

)

=R(

ˆ

f

⇤
n

)�R

n

(

ˆ

f

⇤
n

) +R

n

(

ˆ

f

⇤
)�R(

ˆ

f

⇤
)

 sup

f̂2F
(R(

ˆ

f)�R

n

(

ˆ

f) +R

n

(

ˆ

f

⇤
)�R(

ˆ

f

⇤
))

(7)

From the law of large numbers it follows that for any fixed function ˆ

f :

R

n

(

ˆ

f)

P�! R(

ˆ

f) as n ! 1. (8)

Pick ˆ

f as ˆ

f

⇤ and we note that the second half of the last line of (7) will converge
to 0 in probability. Furthermore, it would be neat if we also could show that
the empirical risk converges uniformly to the true risk i.e.:

sup

f̂2F
(R(

ˆ

f)�R

n

(

ˆ

f))

P�! 0 as n ! 1 (9)

since if this holds true it would imply that the left hand sides of (6) also converges
to zero which would motivate the use of R

n

(

ˆ

f) and ˆ

f

⇤
n

as replacements for R(

ˆ

f)

5

and ˆ

f

⇤. It turns out that this holds true for certain classes of F , decision trees
being one of these. This was shown by Vapnik[12] in 1982.

One might ask why it’s necessary to restrict the optimization of the risk w.r.t
a certain class of functions. Let us remove this condition and allow all possible
functions to be fitted to the training data. Then we could in theory choose
a model that fits the training data in every single point and we would get
empirical error equal to zero. However, this is not ideal since it implies that the
model captures the noise in the data and is thus too sensitive. This will likely
cause the model to not predict new unseen data very well. The phenomenon
of low error on training data but high error on test data is called overfitting.
Avoiding overfitting is essential when working with statistical learning methods.
Therefore, one should restrict the minimization of the risk to a class of functions
F that can generalize to unseen data. Some examples of such methods are
support vector machines(SVM), neural networks and decision trees[12].

2.2.3 Cross-Validation

When working with statistical learning methods one should separate the data
into training set, test set and validation set in order to not evaluate the model
on the same data as was used in the learning process. This is usually done by
simply setting aside a piece of the available data for model evaluation. This is
called the holdout method. However, sometimes the available data is limited why
it can be problematic to both have enough data for training and evaluating the
model. This is where the method of cross-validation can be used. An alternative
to the holdout method is to repeatedly partition the observations into training
sets and test sets and compute the model accuracy for each partition, thus,
cross-validating the model performance. This approach is especially suitable
when the number of observations is low. Validation and test sets are similar in
the sense that they are not used to fit the model. However, validation sets are
used to evaluate model performance in order to tweak the model. This could
for instance be tuning of hyperparameters such as the depth in a decision tree.
Test sets however are used for assessing performance of a final model that will
not be altered.

As it is often not computationally reasonable to consider all possible partitions
some partitioning procedures have become more popular than others. One of
them is k-fold cross-validation where the data is randomly divided into k differ-
ent sets of equal size, {D}k

i=1. For a given iteration, i, D
i

is set aside as test set
while the remaining observations are used as training set.

6

The model is then fitted on the training set and the empirical risk is then
evaluated on the i:th set and can thus be written as:

R

(i)
(

ˆ

f

i

(x)) =

1

|D
i

|
X

(x,y)2Di

L(y,

ˆ

f

i

(x)) (10)

where |D
i

| denotes the number of elements in the i:th set. Below we see a
an illustration of how the observations are partitioned into different formations
of training and test sets for 3-fold cross-validation, each iteration yielding a
different model and a different loss calculated on the test set.

Figure 1: Example of 3-fold cross-validation with 9 observations.

7

Often the squared error is used as loss function. Once the empirical risk has
been evaluated for all k sets we can finally compute the cross-validation error
defined as:

CV

k

=

1

k

kX

i=1

R

(i)
(

ˆ

f

i

(x)). (11)

The special case where k = n is often used and has been given its own name,
leave-one-out-cross-validation(LOOCV).

2.2.4 Bias-Variance Tradeoff

When choosing a model one adjusts the model to fit the training data. However,
the ultimate goal is to find a model that generalizes to perform well on unseen
data. In other words, we seek models which yield small loss. Let us here
consider the most common loss function squared loss, applied on a fixed set X
The expected loss the model will yield can be decomposed into one reducible
part and one irreducible part. This decomposition can be written as[9]:

E[(Y � ˆ

f(X))

2
] = Bias(

ˆ

f(X))

2
+ V ar(

ˆ

f(X))| {z }
reducible error

+ �

2
|{z}

irreducible error

(12)

where

Bias(

ˆ

f(X)) = E[

ˆ

f(X)� f(X)]

V ar(

ˆ

f(X)) = E[

ˆ

f(X)

2
]� E[

ˆ

f(X)]

2
.

8

Proof.

E[(Y � ˆ

f(X))

2
] = E[Y

2 � 2Y

ˆ

f(X) +

ˆ

f(X)

2
]

= E[Y

2
]� 2E[Y

ˆ

f(X)] + E[

ˆ

f(X)

2
]

= E[Y

2
]� 2E[Y]E[

ˆ

f(X)] + E[

ˆ

f(X)

2
]

= V ar(Y) + E[Y]

2 � 2E[f(X) + ✏]E[

ˆ

f(X)] + E[

ˆ

f(X)

2
]

= �

2
+ E[f(X)]

2 � 2f(X)E[

ˆ

f(X)] + E[

ˆ

f(X)

2
]

= �

2
+ f(X)

2 � 2f(X)E[

ˆ

f(X)] + E[

ˆ

f(X)

2
]� E[

ˆ

f(X)]

2
+ E[

ˆ

f(X)]

2

= �

2
+ (f(X)� E[

ˆ

f(X)])

2
+ E[

ˆ

f(X)

2
]� E[

ˆ

f(X)]

2

= �

2
+Bias(

ˆ

f(X))

2
+ V ar(

ˆ

f(X))

where we used the facts that Y and ˆ

f(X) are independent and E[f(X)] = f(X)

since f(X) is deterministic.

From equation (12) it is seen that the model should be chosen such that the bias
and variance in the model is minimized. Often it is not possible to minimize
them simultaneously and we refer to this issue as the bias-variance tradeoff. The
error term �

2 can not be reduced since it arises from noise in the data which
the model doesn’t account for. The error due to bias arises when one uses a
simple model that is not able to capture more complex structures in the data.
Approximating a non-linear function with linear regression exemplifies this.

The expected error due to variance stems from the fact the model yields differ-
ent predictions based on what training data was used in the learning process.
This error can be minimized by choosing a robust model that doesn’t change
much when using different training sets. The dilemma when minimizing the ex-
pected test error is that generally a flexible model with low bias tends to yield
a higher error due to variance and vice versa. Therefore, the tradeoff between
low variance and low bias must be considered when selecting the model.

2.3 Generalized Linear Models

Generalized linear models(GLM) are an extension from the classically used linear
models. Recall that in the scope of linear regression we use a model of the form:

Y = X� + ✏ (13)

where the dependent variable Y is an n⇥ 1 vector, X is an n⇥ p matrix and �

is a p⇥ 1 vector. Furthermore, it is assumed that the mean of the error term ✏

9

is zero and the components of Y are independent normally distributed random
variables with equal variance i.e.

Y

i

= N(µ

i

,�

2
)8i

E[Y] = µ = X�

Let us now introduce a new variable X� = ⌘ which is called the linear predictor
of the model[7]. For the classical linear model the relationship between the linear
prediction and the mean is modeled as:

µ = ⌘.

GLM generalizes the linear model by allowing a more complex relationship be-
tween µ and ⌘. We introduce the link function g(·) that links them together
through:

⌘

i

= g(µ

i

) (14)

g may be any monotone and differentiable function. The linear model in (13)
for instance uses the identity link. Moreover, GLM allows the components of Y
to take on more distributions than just the normal distribution. We now allow
any probability distribution of the form:

f

Yi(yi; ✓i,�) = exp

✓
y

i

· ✓
i

� b(✓

i

)

a(�)

+ c(y

i

,�)

◆
(15)

for some functions a, b and c and parameters ✓,�. ✓ is specifically called the
canonical parameter. The mean and variance related to this distribution are:

E[Y

i

] = b

0
(✓

i

) = µ

i

V ar(Y

i

) = b

00
(✓

i

)a(�)

(16)

where b

00
(✓

i

) = µ

0
= V (µ) is called the variance function. This function plays

an important role which is summarized[6] in the following theorem:

Theorem 2.1. Within the class of distributions of the form (15), the distribu-
tion is uniquely determined by its variance function.

10

Thus, characterizing model is equivalent to selecting the variance function. For
instance, V (µ) = 1 yields the normal distribution.

Different choices of link functions can be made but some are more suitable than
others. Often times the canonical link is used which is defined by:

g(µ

i

) = b

0
(✓

i

)

�1

)g(µ

i

) = ✓

i

=

pX

i=1

x

ij

�

i

.

This choice of link function ensures that µ
i

stays within the range of the outcome
variable y

i

[10].

2.3.1 Tweedie Distribution

The Tweedie distributions are a family of distributions which are characterized
by the variance function:

V (µ) = µ

p

. (17)

This family of distributions include distributions such as the normal distribution(p =

0), Poisson distribution(p = 1) and Gamma distribution(p = 2)[6]. The Tweedie
distributions are commonly used in the context of insurance claims since they
have proven to provide good fits for certain choices of p.

2.4 Maximum Likelihood Estimation

The method of maximum likelihood estimation is a method used to choose
a model from a family of distributions f(x|✓), ✓ 2 ⇥ by maximizing the
likelihood function[1]. Given a set of i.i.d observations {x

i

}n
i=1 we define the

likelihood function as:

L(✓) =

nY

i=1

f(x

i

|✓). (18)

11

Furthermore, we define the maximum likelihood estimate(MLE) as:

ˆ

✓ = argmax

✓ 2⇥
L(✓). (19)

Maximum likelihood estimation can for instance be used with GLMs to derive
the parameter values.

2.5 Regularization

Regularization is a technique used to prevent overfitting by penalizing the loss
function with a shrinking quantity. The principle is the same for all loss func-
tions but we use the maximum likelihood described above for demonstration
purposes. The regularized objective function would be written as:

L(✓) =

nY

i=1

f(x

i

|✓) + �k✓k
p

(20)

where � is the shrinking parameter and k✓k
p

is the p-norm. By introducing
this penalizing term features that are not significant will have their coefficients
forced to zero. The bigger the value of � the more we penalize insignificant
features. The special case of the p-1 norm is called LASSO regularization and
for the p-2 norm we refer to ridge regularization[9].

3 Tree-Based Models

3.1 Introduction to Decision Trees

In this section we present the idea behind decision trees and how they are gen-
erated from a training set of observations in order to be used for prediction.
The type of decision trees to be introduced are classification and regression
trees(CART) which are two of the most commonly used tree-based models.
Classification trees are used to predict categorical response variables while re-
gression trees predict their continuous counterpart. The ideas presented in this
section are based on the content on decision trees in the book The Elements of
Statistical Learning [9].

12

Consider now the case where we are interested in predicting a response variable
Y 2 R which is a function of X 2 Rp consisting of p predictors which can be a
mixture of both categorical and continuous variables. We denote the predictor
space i.e. the set of all possible predictors by X ✓ Rp. At our hand we have a
training set L = {(x

i

, y

i

)}N
i=1 consisting of N i.i.d samples from (X, Y). The

idea is now to form regions in X such that homogeneous groups of observations
are divided into these regions. New observations will then be predicted based
on which region in the predictor space they fall into.

These groups are formed by partitioning the predictor space into non-overlapping
regions R1, ..., RJ

covering the whole predictor space. In theory these regions
could be of any shape but only multidimensional boxes(hypercuboids) will be
considered. The partitioning is done in a sequence of binary splits which means
that each step splits a region into two new regions. This yields a tree where
each node has exactly two branches except the terminal nodes which has zero
branches. The idea is that each split should yield two new regions that are more
pure than their composition. Thus, a new observation x 2 R

j

can be predicted
using only characteristics of the observations in the j:th region.

The model derived from the tree is a piecewise constant function which can be
expressed as:

f(x) =

JX

j=1

ĉ

j {x2Rj} (21)

where is the indicator function which is equal to 1 for observations in the
j:th region and 0 otherwise. Thus, ĉ

j

is the value predicted for observations
falling into the j:th region. In the regression setting c

j

is simply the mean of the
observations in the j:th region and conversely c

j

is set as the mode of the j:th
region for a classification tree. To give a more precise algorithm of constructing
the model we must first define some technicalities such as impurity measure that
measures the impurity in the regions as well as splitting rules for partitioning
the predictor space. However, first we will introduce some terminology used
with decision trees.

3.2 Tree Terminology

A decision tree is comprised of structures called nodes. Each node is connected to
other nodes via branches. Trees are grown downwards graphically by convention.
Nodes directly connected to a node downwards are called its child nodes and
nodes connected upwards are called its parent nodes. For a binary tree a split

13

at a node yields branches to two new child nodes. Thus, for this type of tree
each node has exactly zero or two child nodes. Nodes that have no children are
referred to as external nodes(terminal nodes) or leaves. These nodes are located
at the bottom of the tree while the top node of the tree is called the root. Nodes
with at least one child are called inner nodes.

Each inner node is associated with a splitting rule that tells us whether we
should choose the left or right branch from the node given an observation. The
splitting is based on one variable at each node which is called the splitting
variable, x

i

. The splitting rule at the k:th node can be formulated as:

x

jk

< t

k

) left branch

x

jk

� t

k

) right branch

t is the splitting point and x

jk

indicates that the j:th predictor is used at k:th
node to split. Following these splitting rules down from the root each observation
lands at a terminal node which corresponds to a region(hypercuboid) in the
predictor space. At this stage no more splitting is done and each observation
is given a prediction ĉ

j

corresponding to the j:th region/terminal node. For a
regression tree ĉ

j

is defined to be the mean of all n
j

observations in the j:th
region i.e.

ĉ

j

=

1

n

j

X

xi2Rj

y

i

.

For a classification tree ĉ

j

is the mode, i.e. the value that appears most often,
of the observations in the region instead of the mean.

3.3 Constructing the Tree

In order to construct the tree one must choose the splitting points t

k

as well
as when to stop the splitting and declare a node as terminal. The aim is to
select the splitting points such that the set of training observations are divided
into homogeneous groups. Quantitatively we express this as minimizing a loss
function. We here consider the squared loss:

L(y,

ˆ

f(x)) =

JX

j=1

X

xi2Rj

(y

i

� ˆ

f(x

i

))

2 not.

=

JX

j=1

Q

Rj . (22)

14

By minimizing the loss we find regions such that the responses y

i

are close
to the region mean, thus forming homogeneous groups. Minimizing the loss
by considering all possible partitions of the predictor space is computationally
unfeasible. Therefore, an algorithm for systematic minimization is needed. The
procedure of binary splitting is commonly used for this task. This algorithm
can be described as following:

1. Select one region ˜

R

i

in X and consider the split into two new regions R1 and
R2 defined as follows:

R1(j, t) = {x 2 ˜

R

i

: x

j

< t}, R2(j, t) = {x 2 ˜

R

i

: x

j

� t}

2. Minimize

Q

R1(j, t) +Q

R2(j, t)

w.r.t. j and t. That is, select the splitting variable j and the splitting point t

such that the sum of the loss in R1 and R2 is minimized.

3. Repeat step 1. and 2. for each region in X. The region that decreases the
overall loss the most is chosen to be split.

4. Repeat the above procedure until a stopping rule is fulfilled. A typical
stopping rule is to stop splitting once the number of observations in each region
is below a pre-set threshold value.

It is clear that the algorithm of binary splitting is greedy in the sense that it only
searches locally for optimal splits and does not guarantee that the tree reaches
a global minimum of the loss. Procedures for improving the tree construction
are discussed in section 3.4. Below is an example of a decision tree and its
corresponding partitioning of the predictor space.

15

Predictor 2 < 8

Predictor 1 < 5

Predictor 1 < 9

284861701 22884 8655

Figure 2: Decision tree example.

8

95
Predictor 1

Pr
ed
ic
to
r 2

Figure 3: Partitioning of predictor space corresponding to the tree in figure 2.

16

In figure 2 we see a decision tree with three splits resulting in four leaves. By
using the splitting rules and following the branches an observation can be put
into one out of the four leaves. The splitting could in theory continue until
there is exactly one leaf per observation which would yield a total loss equal to
zero! However, this is not desired since an overfit tree doesn’t generalize well to
unseen observations which we want to predict.

3.4 Tree Pruning

The procedure described above does not take model complexity into considera-
tion and could therefore suffer from overfitting. A model too complex will not
perform well on unseen data due to high variance, recall the variance term in
equation (12). A natural way to tackle the problem would be to penalize the
complexity of the tree to find a good balance between variance and bias in the
model. Thus, instead of only considering the the squared loss when fitting the
model we modify the loss L to be:

L =

|T |X

j=1

X

xj2Rj

(y

j

� f(x

j

))

2
+ ↵|T | (23)

where ↵ is a tuning parameter and |T | is the number of leaves in the tree,
thus penalizing more complex trees. For ↵ = 0 we get the full tree but as ↵

increases more and more nodes will be forced out eventually leaving us only with
the root. Having only the root would of course yield a model with very high
bias. It is therefore necessary to choose a suitable value for ↵ to get a balanced
model. This is typically done using K-fold cross-validation. The process can be
described as follows:

1. Split the training data into K-folds.

2. For k = 1, ...,K using every fold except the kth:

a) Construct a sequence of trees {T}n
i=1 as a function of ↵.

b) Compute the loss on the kth fold. The loss will in turn depend on ↵.

c) Compute the average loss for each value of ↵ using the K trees. Pick the ↵

that minimizes the loss.

17

3.5 Ensemble Methods

There are numerous ways to enhance the performance of a tree-model. The most
common way is to combine several models and use the aggregated information
stored in these models to get better predictions than what would be possible
using a single model. The method of combining multiple models is known as
ensembling and is commonly used with decision trees. In this section we will
go over a few different ensembling methods. The method of gradient boosting
which will be used in the case study is described in 3.5.3.

3.5.1 Bagging

Recall from section 2.2.4 that the expected prediction error one can expect from
a model can be decomposed as:

E[(Y � ˆ

f(X))

2
] = �

2
+Bias(

ˆ

f(X))

2
+ V ar(

ˆ

f(X)).

In order to reduce the variance term the method of bagging(bootstrap aggregating)
can be used. It can be applied to a variety of statistical learning methods, and
it is particularly useful in the context of trees. The method is a way of utilizing
multiple training sets to refine the model. Assume we are given a set of training
sets {L

b

}B
b=1 where each set is independently drawn from the same probability

distribution. For each set L
b

a model ˆ

f

b

(x) is fit. Having several models instead
of a single one it is natural to form the aggregated predictor as the average of
these. By the law of large numbers the average of the models converge to the
expectation of ˆ

f(x) as b approaches infinity[3]. We write this as such:

ˆ

f

agg

(x) = lim

b!1
1

B

BX

b=1

ˆ

f

b

(x) = E[

ˆ

f(x)] (24)

The use of the aggregated predictor can be motivated as follows. The mean-
squared prediction of errors of the aggregated and non-aggregated predictors
are defined as:

e = E[(Y � ˆ

f(x))

2
]

e

agg

= E[(Y � ˆ

f

agg

(x))

2
]

We will now show that e � e

agg

.

18

Proof.

e = E[(Y � ˆ

f(x))

2
]

= E[Y

2
]� 2E[Y]E[

ˆ

f(x)] + E[

ˆ

f(x)

2
]

= E[Y

2
]� 2E[Y]E[

ˆ

f

agg

(x)] + E[

ˆ

f(x)

2
]

� E[Y

2
]� 2E[Y]E[

ˆ

f

agg

(x)] + E[

ˆ

f(x)]

2

= E[(Y � ˆ

f

agg

(x)

2
] = e

agg

where we used the facts that Y and ˆ

f(x) are independent and the inequality
follows from Jensen’s inequality.

Thus, we can conclude that the aggregated predictor produces predictions at
least as accurate as the non-aggregated predictor. In reality one doesn’t have
access to an infinite amount of training sets L

b

. This is where the method of
bootstrap comes in. From our single training set we draw samples with replace-
ments which we form into B different training sets. The b:th bootstrapped
training set then yields a model ˆ

f

b

(x). We now form the function ˆ

f

bagg

(x) to
approximate ˆ

f

agg

(x). We define it as:

ˆ

f

bagg

(x) =

1

B

BX

b=1

ˆ

f

b

(x) (25)

There is no clear rule for how many bootstrap sets should be used but the more
the better since:

lim

b!1
ˆ

f

bagg

(x) =

ˆ

f

agg

(x) = E[

ˆ

f(x)].

3.5.2 Random Forests

The random forests approach of building a tree model is very similar to bagging
but it improves the model by reducing the correlation between the trees in the
ensemble { ˆf

b

(x)}B
b=1[4]. We will first establish how the correlation between the

trees affects the prediction error, specifically the variance term.

19

V ar(

ˆ

f

bagg

(x)) = V ar

1

B

BX

b=1

ˆ

f

b

(x)

!

=

1

B

2

BX

i=1

BX

j=1

Cov(

ˆ

f

i

(x),

ˆ

f

j

(x))

=

1

B

2

BX

i=1

0

@
BX

j 6=i

Cov(

ˆ

f

i

(x),

ˆ

f

j

(x)) + V ar(

ˆ

f

i

(x))

1

A

=

1

B

2

BX

i=1

�
(B � 1)⇢�

2
+ �

2
�

=

B(B � 1)⇢�

2
+B�

2

B

2

= ⇢�

2
+ �

2 1� ⇢

B

(26)

where we have assumed that all combination of trees share the same correlation
⇢ and the variance �

2 of the individual trees ˆ

f(x) are equal since the boot-
strapped training sets are identically distributed. By increasing the number of
trees B we can reduce the second term in (26). The first term can be decreased
by decorrelation of the trees. The difference from the bagging method is that
for random forests one does not consider all p predictor variables when choosing
which variable to split. Instead m p randomly selected predictors are consid-
ered at each split. The motivation for this can be described as follows. Since
binary splitting searches locally for the best splitting variable the most influen-
tial variables will be at the top of the tree thus making all trees very similar. If
we instead only are allowed to choose from a subset of predictors at each split
the trees will be less correlated. m is a tuning parameter but it is often set to
m =

p
p. In the special case where m = p we get the bagging process which we

described earlier.

20

3.5.3 Gradient Boosting

Gradient boosting/gradient boosting machine(GBM) is the method of combining
multiple relatively weak learning models into an ensemble that can produce
accurate predictions. In order to derive the gradient boosting method we first
need to introduce some concepts in optimization on which GBM is founded.

Parametric Numerical Optimization

When working with optimization problems it is common to optimize a parametrized
function F (x;✓) with respect to the parameters in ✓. For a minimization prob-
lem we write this as:

min
✓

F (x;✓). (27)

In practice these problems rarely have analytical solutions. Hence, we need to
find an approximate solution using numerical methods. Next we introduce the
method of gradient descent which can be used to numerically find minima or
maxima of multivariate objective functions.

Gradient Descent

Gradient descent utilizes the fact that a function F (✓) differentiable in a neigh-
borhood of a point a decreases the fastest by going in the direction of the
negative gradient evaluated at the point a, �rF (a)[8]. By iteratively taking
sufficiently small steps ⇢ in the direction of the negative gradient we can make
F (x;✓) approach local minima. The estimates of ✓ are updated as:

✓

n+1 = ✓

n

� ⇢

n

rF (✓

n

) = ✓

n

� ⇢

n

g

n

(✓

n

)

where the algorithm is initialized with the starting guess ✓0. The step sizes ⇢

n

can be found by:

⇢

n

= argmin

⇢

F (✓

n�1 � ⇢rF (✓

n�1)). (28)

This is called line search and chooses the step size such that F (✓) is minimized
in the direction of the negative gradient.

21

The iterations continue until a stopping criterion is fulfilled.The following is
commonly used:

|rF (✓

n

)| tolerance.

The resulting solution after n iterations can thus be written as:

✓

⇤
= ✓

n

(29)

Numerical Optimization in Function Space

Recall that the aim of any statistical learning method is to find a function that
minimizes the risk function i.e. we want to solve the problem:

min
F2F

R(F (X)) = E[L(y, F (X))] = E

⇥
E[L(y, F (x))|X = x]

⇤
(30)

or equivalently:

min
F2F

R(F (x)) = E[L(y, F (x))|X = x] (31)

for each x.

This is analogous to the parametric optimization problem but the "parameter"
is now the function F (x)[5]. We can search for solutions in the same way using
gradient descent and iteratively update our estimate as:

F

n+1(x) = F

n

(x)� ⇢

n

@E[L(y, F

n

(x))|x]
@F

n

(x)

= F

n

(x)� ⇢

n

E

@L(y, F

n

(x)

@F

n

(x))

|x
�

= F

n

(x)� ⇢

n

g

n

(x)

(32)

where we have assumed sufficient regularity so that differentiation and integra-
tion can be interchanged.

22

The step sizes are found from:

⇢

n

= argmin

⇢

E

[L(y, F

n�1(x))� ⇢E

@L(y, F

n�1(x))

@F

n�1(x)
|x
��

. (33)

When the stopping criterion is fulfilled after n steps we obtain the solution:

F

⇤
(x) = F

n

(x). (34)

The problem that we are faced with in practice is the fact that the negative
gradient �g

n

(x) can only be computed at the points {(x
j

, y

j

)}m
j=1 in our train-

ing set L. We attack this problem by approximating g

n

(x) using functions h(x)
from the class of functions H. We call these base learners. The base learners
are fitted to g

n

(x) as:

h

n

(x) = argmin

h2H,�

mX

j=1

(�g

n

(x

j

)� �h(x

j

))

2
. (35)

These base learners are often chosen as decision trees which is also the base
learner of choice in this thesis. The gradient boosting method for fitting func-
tions can thus be summarized as follows:

Algorithm 1 Gradient Boosting

1: ˆ

f0(x) = argmin

⇢

P
m

j=1 L(yj , ⇢)

2: for i = 1, ..., n do
3: g

i

(x

j

) =

@L(y,f̂i�1(xj))

@f̂i�1(xj)
, j = 1, ...,m

4: h

i

(x) = arg min
h2H,�

P
m

j=1(�g

n

(x

j

)� �h(x

j

))

2

5: ⇢

i

= arg min
⇢

P
m

j=1 L(yj ,
ˆ

f

n�1(xj

) + ⇢h

i

(x

j

))

6: ˆ

f

i

(x) =

ˆ

f

i�1(x) + ⇢

i

h

i

(x)

7: return ˆ

f(x) =

ˆ

f

n

(x)

23

Often one introduces an extra factor ⌘ in the algorithm such that:

F

n

(x)� ⇢

n

g

n

(x) ! F

n

(x)� ⌘⇢

n

g

n

(x), 0 < ⌘ 1. (36)

This is called shrinkage and ⌘ refers to the learning rate of the model. By
decreasing the learning rate we get a more conservative fitting algorithm that
is less prone to overfit.

4 Case Study

In this section we will discuss topics on how the analysis was performed in prac-
tice such as data preprocessing and feature selection. The data preprocessing
and modeling was performed using R.

4.1 Data Preprocessing

The unprocessed claims data set consists of roughly 375 000 observations. Out
of these observations approximately 2000 observations had a negative value of
the response variable claims reserve. These cannot be handled by the GLM
with logarithmic link function why they were removed from the dataset. We
also remove a few hundred rows that contained empty values in one or multiple
columns. GBM is able to handle observations with empty categories but GLM
is not why we decide to dismiss these faulty rows. Since the percentage of rows
with missing values is so small we drop these instead of filling in the missing
values.

For training 80% of the data was used while the remaining 20% were used for
final evaluation of the models. In the models there are certain features that can
be modified such as the depth of the decision trees or the number of decision
trees to use in the ensemble. These features are the hyperparameters of the
model. These have a great impact on the performance of the model why they
should be optimized. This leaves us with two choices. Either we could partition
our full data set into three parts such that we have a training, test and validation
set or we can discard the validation set and use cross-validation on the training
set. In this study we use the latter alternative.

From the data set five different predictor variables were chosen as they were
known to be correlated with the response variable from previous experience.
Four out of these five variables are numeric and one is a multilevel categorical
variable with 36 level. The distribution of the categorical variable is very skewed

24

where a very large fraction of the observations is contained in a small number
of categories. If the number of observations in a category is very small it can
be difficult to make accurate prediction. We therefore create a new variable
where we aggregate categories into a new of the categorical variable with only
6 categories. We aggregate the categories such that each new category contains
observations that share certain properties. The figures below are based on the
training data.

Figure 4: Number of observations per category.

As shown in figure 4 the vast majority of observations can be fit into a small
number of levels. However, many categories only contain observations in the
lower hundreds, some even less than 100. The variance within these categories
can therefore be very high. In order to make this problem less severe we aggre-

25

gate levels into 6 categories where each new level contains aggregated levels from
our old categorical. By doing so we can make predictions not only using the
finer division of levels but also the new variable with fewer levels. A histogram
of these are shown in figure 5.

Figure 5: Number of observations per category.

After we aggregated the categories we have 6 levels where the smallest one con-
tains approximately 5600 observations. Lastly the data was split into training
and test set. The test set is not used until the final models for GLM and GBM
are found using the training set. We make no further selections in the data
before using it as input to the models. The predictor variables are summarized
in table 1.

26

Table 1: Predictor Variables

Variable Name Type Notes
Variable 1 Categorical 36 levels
Variable 2 Categorical 6 levels. Aggregated categories of Variable 1
Variable 3 Numeric -
Variable 4 Numeric -
Variable 5 Numeric -
Variable 6 Numeric Represents time since claim occured.

Measured in arbitrary time units.

4.2 Feature Selection

From the raw dataset six different variables were picked as they have been proven
to be essential for this type of modelling from previous experience. In order to
penalize less significant features we include a LASSO penalty when fitting the
GLM, see section 2.5. LASSO regression performs feature selection in the sense
that non-significant features will be biased towards zero and hence not have a
big impact in the model.

For the gradient boosting method the same features are used to give a fair
comparison to the GLM alternative. Tree models are more robust to non-
significant features since the trees are always split by the feature that yields
the highest decrease in the loss function. Thus, the most important feature will
always be split first in the tree. Tree based algorithms therefore performs feature
selection implicitly. The features used in the modelling process are summarized
in the following table.

4.3 GLM

For the GLM we have two choices to make. We need to choose link and vari-
ance function. The variance function is limited to the Tweedie distributions i.e.
V (µ) = µ

p. The typical values used to fit claims data is p � 1. However, for
p = 2 we get the gamma distribution which only has support on the positive
reals and can therefore not be used with the data since it contains zeroes. We
therefore restrict p to the following values.

p = {1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9}.

We use the logarithmic link function as it is the canonical link .The different

27

values for p are evaluated using 10-fold cross validation and the lowest scoring
model is used for final assessment. The coefficients are calculated using the
maximum likelihood method with a LASSO penalty.

4.4 Gradient Boosting

For the gradient boosting method there are several hyperparameters that should
be tuned in order to get a good approximation and prevent overfitting. The
following parameters were tuned:

• nrounds: This parameter sets the number of trees to be used in the
additive tree model. See algorithm 1 in section 3.5.3. The more trees are
used the more complex structures can be captured in the data. However,
too many trees will cause overfitting.

• learning_rate(⌘): This parameter controls the learning rate of the model.
See equation (36). In practise it is always better to use smaller values of ⌘
to prevent overfitting but it also requires more computing time. Thus, in
practice one should use a small value that can fit a model in a reasonable
amount of time. Smaller learning rate requires more trees why nrounds
and ⌘ should be tuned simultaneously.

• max_depth: Sets depth in the tree. The deeper the tree the more
complex structures in the data can be captured. However, it also makes
the model more vulnerable to overfitting.

• min_child_weight: This parameter sets the minimum number of ob-
servations needed in each new node at a split. The lower value we use the
finer splits can be made. Higher values yields a more conservative model.

28

• gamma: Each time a split is considered the resulting decrease in the loss
is calculated. If the loss is very small it is likely that the model is just
adjusting to noise. Only splits that yield a decrease in loss bigger than
gamma will be considered.

• subsample: Denotes the fraction of features considered at each iteration.
See section 3.5.2. The features are selected randomly at each iteration. By
not considering all features in every iteration of the fitting process we can
decrease the correlation between the trees in the sequence. By decreasing
the subsample size we can get a fitting algorithm more robust to noise.

• colsample: Adds randomness to the fitting process just as the subsam-
ple parameter by only considering a fraction of the rows used to fit a new
tree. Usually tuned simultaneously with subsample.

• early_stopping_rounds: Another parameter that is used to prevent
overfitting. If the loss doesn’t decrease within this number of iterations
the procedure is stopped.

The gradient boosting model needs more tweaking than the GLM since there
are more parameters to choose from. The optimal strategy would be to test
combinations of all parameters at once but this would be too time consuming.
Therefore, we will test them sequentially instead. We will start by tuning the
parameters that have the largest influence on the model behaviour and then
tweak the less prominent parameters. The parameter testing can be divided
into the following steps.

1. Fix learning_rate and nrounds.

In general the model performs better the lower ⌘ we use. However, this
requires more trees which in turn requires more computing time. Typical
values for ⌘ are 0.01 and 0.001 but the latter alternative turned out to be
too time consuming why it could not be used. For the nrounds parameter
we should set a value that allows the the cross-validation error to reach a
minimum or at least stabilize. From observations in initial testing we find
that the following values for the parameters were suitable:
learning_rate = 0.1
nrounds = 500
The initial values for gamma, subsample and colsample are 0, 1, 1
respectively. These are the default values which will later be tuned as
well.

29

2. Tune max_depth and min_child_weight.

These two parameters affects the models behaviour the most why we tune
them first. Since we only have six predictor variables we will only consider
smaller values of max_depth. This is also in line with the philosophy
behind gradient boosting that an ensemble of weak learners should be used
together for better predictive capacity. The combinations of the following
values were tested:
max_depth = {1, 2, 3, 4, 5}
min_child_weight {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

3. Tune gamma.

Using the optimal combination of max_depth and min_child_weight
we move on to tune gamma. We restrict ourselves to values in the the
interval [0, 1] which is sufficient for most problems. The following values
were tested:
gamma = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.

4. Lower learning_rate and increase nrounds for the previously found
parameters in order to get better precision in the model and to reduce the
likelihood of overfitting.

The evaluation of the hyperparameters will be done using 5-fold cross-validation
instead of 10-fold as was done with GLM since it’s considered too time consum-
ing. We will use root mean squared error(RMSE) as error metric to compare the
performance of using different combinations of parameters. RMSE is defined as
the square root of the expression in equation (10). When evaluating the results
of the models we will also use relative approximation error or just relative error.
We introduce this metric since it’s more easily interpretable than the RMSE.
This can give us a better feel for how the models behave. The relative error is
defined as:

relative error =

P
n

i=1(ŷi � y

i

)P
n

i=1 yi
. (37)

The relative error allows us to interpret by what percentage our aggregated
estimations differ from the aggregated actual values.

30

5 Results

5.1 Cross-Validation GLM

The best value for the variance power p in the Tweedie distribution was chosen
using 10-fold cross-validation. We evaluate the models based on their RMSE.

Table 2: Cross-Validation of Tweedie Distributions

p RMSE
1 34832

1.1 35140
1.2 35392
1.3 35595
1.4 35761
1.5 35901
1.6 36030
1.7 36212
1.8 36730
1.9 38485

Summary of 10-fold cross-validation using different values of p characterizing
the variance function in the Tweedie models.

The trend we notice in table 2 is that higher values of p seems to decrease the
model score. p = 1 which corresponds to the Poisson distribution yields the
smallest error why this value was chosen for the final GLM model.

31

5.2 Cross-Validation Gradient Boosting

Table 3: Hyperparameter Cross-Validation: max_depth,
min_child_weight

max_depth min_child_weight gamma subsample colsample RMSE
5 9 1 1 1 31934
5 3 1 1 1 32046
5 4 1 1 1 32155
5 10 1 1 1 32186
5 5 1 1 1 32291

Summary of 5-fold cross-validations using different combinations of
max_depth and min_child_weight. Only the five lowest scoring
models are shown in the table.

The result shows that the optimal choice for max_depth is 5. The RMSE
using different values of min_child_weight are very close but ultimately we
go with 9 for further analysis of hyperparameters.

32

Figure 6: Level plot of all tested combinations of max_depth and
min_child_weight using 5-fold cross-validation.

Figure 6 suggests that too small values for max_depth produces very biased
models which can’t utilize all the information provided by the data. As we grow
the trees deeper the models become more complex and can make more accurate
predictions resulting in lower values of the RMSE. Next we interrogate how the
predictive accuracy depends on gamma.

33

Table 4: Hyperparameter Cross-Validation: gamma

max_depth min_child_weight gamma subsample colsample RMSE
5 9 0 1 1 32483
5 9 0.1 1 1 32849
5 9 0.2 1 1 32431
5 9 0.3 1 1 32292
5 9 0.4 1 1 32758
5 9 0.5 1 1 32326
5 9 0.6 1 1 32475
5 9 0.7 1 1 32522
5 9 0.8 1 1 32225
5 9 0.9 1 1 32475
5 9 1 1 1 32841

Summary of 5-fold cross-validations using different values of gamma.

The results for gamma are also very close but the lowest RMSE is produced
when using 0.8 why it will be used in the final model. The observant reader
might notice that the values of RMSE are actually higher than in table 4 and
that the same set of parameters yields different values of RMSE. This is due to
the fact that multithreading was used to compute the models faster. The threads
don’t sync the parameters updates in order to provide the highest efficiency.
Therefore, the results can vary between different trials. This problem doesn’t
arise when only using one thread but will require much more computing time
which is not feasible when testing this many parameters. The setup used is not
optimal but it should guide us in the right direction when choosing values for
the hyperparameters.

Table 5: Hyperparameter Cross-Validation: colsample, subsample

max_depth min_child_weight gamma subsample colsample RMSE
5 9 1 1 0.9 32306
5 9 1 1 0.7 32487
5 9 1 1 0.6 32535
5 9 1 1 0.5 32544
5 9 1 1 1 32786

Summary of 5-fold cross-validations using different combinations of colsample
and subsample. Only the five lowest scoring models are shown in the table.

34

Table 5 shows that the five lowest scoring models used subsample=1 which
suggests that we should always consider all possible features when making a
split. The result also suggests that it is not optimal to consider all observa-
tions in the training set when making splits. The optimal value is found to be
colsample= 0.9 which corresponds to using 90% of the observations.

As we have tuned all parameters we finally need to tweak nrounds for this
set of parameters that we have found. We use early stopping of 10 rounds to
prevent overfitting and find the optimum value of trees which turned out to
be 433. Thus, the final values for the hyperparameters can be summarized as
follows.

max_depth min_child_weight gamma subsample colsample RMSE
5 9 0.8 1 0.9 32483

5.3 Overall Performance

Model RMSE Relative Error
GLM 42473 -0.13
GBM 44371 0.04

Table 6: Model performance on the whole test set

The final assessment of the model performances is summarized in table 6. It is
worth noting that the GLM had the lower RMSE but gradient boosting only
overestimated the total claims reserves by 4% whereas the GLM yielded an
underestimation of 13%. However, this does not mean that gradient boosting
should be preferred over GLM since terms can cancel out in the relative error.
The relative errors should rather be used to give us an intuition of how well the
model performs which can be rather difficult from the RMSE alone. The fact
neither models produces relative errors that deviates too far from 0 suggests
that they can both yield feasible predictions.

35

5.4 Performance Per Predictor Variable

In this section we look more into detail how the models perform for certain
subsets within each predictor variable. This helps us identify if the models are
able to yield reasonable predictions for all types of policyholders. The data is
aggregated to understand how the models predict in certain subsets of the test
set.

36

Table 7: Model performance for predictor variable 2.

Group RMSE RMSE Relative Error Relative Error Observations
GLM GBM GLM GBM

Category 1 13154 12586 0.12 0.02 42123
Category 2 15786 23616 -0.24 0.20 346
Category 3 33136 36394 0.01 0.02 141
Category 4 90853 84497 -0.93 -0.73 82
Category 5 - - - - 0
Category 6 8783 9729 0.22 0.11 788
Category 7 5809 3247 6.79 0.76 291
Category 8 23535 29939 0.24 0.60 225
Category 9 4759 27677 29.23 7.76 181
Category 10 26122 36394 -0.13 -0.23 692
Category 11 12279 31938 11.47 32.35 95
Category 12 7951 7218 0.07 -0.12 1628
Category 13 22619 27638 0.69 1.98 64
Category 14 13421 12801 0.16 0.08 6835
Category 15 99178 92213 -0.42 -0.50 606
Category 16 58778 58396 0.31 0.53 591
Category 17 265313 268302 -0.79 -0.82 523
Category 18 82864 83422 -0.26 -0.24 904
Category 19 100534 108534 -0.48 -0.22 577
Category 20 15474 15332 -0.14 -0.30 2749
Category 21 46184 48912 -0.37 -0.38 699
Category 22 12042 12129 0.11 0.64 134
Category 23 43398 44086 0.24 0.93 417
Category 24 17372 20480 1.25 0.92 1549
Category 25 1975 5135 Inf Inf 41
Category 26 22688 19234 Inf Inf 52
Category 27 27554 217126 0.72 13.90 496
Category 28 26761 26647 0.30 0.18 4836
Category 29 67192 66461 -0.39 -0.43 2563
Category 30 17755 18819 1.01 0.60 324
Category 31 148451 160174 -0.40 0.39 910
Category 32 802338 195269 -0.65 -0.21 25
Category 33 15221 65400 0.35 1.97 53
Category 34 68010 68281 -0.13 -0.20 1406
Category 35 14860 6742 4.58 1.54 91
Category 36 86525 86793 -0.24 -0.15 527

The models produce similar results overall. In some categories we find very
high values of RMSE and relative errors but at we also note that many of these
categories have relatively few observations. Therefore, the models don’t have
very much information to base their predictions on which could explain these
high errors.

37

Table 8: Model performance for predictor variable 2.

Group RMSE RMSE Relative Error Relative Error Observations
GLM GBM GLM GBM

Category 1 13542 13352 0.19 0.09 44436
Category 2 75994 76549 -0.36 -0.34 10181
Category 3 7700 7914 0.73 0.19 4040
Category 4 27041 27922 -0.16 -0.11 1260
Category 5 74385 80792 -0.19 0.31 11231
Category 6 15623 17168 0.05 0.04 2415

The variations in RMSE are very drastic over different categories for variable
2. At the same time, both models produce consistent results over all categories
which suggests that it is not necessarily the models that are ill-tuned. It is
more likely that these observations are difficult to predict solely based on which
category they belong to.

Table 9: Model performance for Variable 3.

Group RMSE RMSE Relative Error Relative Error Observations
GLM GBM GLM GBM

Interval 1 60045 61223 0.31 -0.01 21142
Interval 2 14853 16209 -0.08 0.65 6884
Interval 3 40340 40428 0.08 1.07 8078
Interval 4 27669 34706 0.30 0.42 11318
Interval 5 35611 37590 0.35 -0.56 26141

The performance for both models are comparable overall. The only group where
the models differ substantially is in interval 3 where GLM is able to provide
much more accurate predictions. In interval 3 we see that GBM predicts claims
reserves that are more than twice of the actual value even though both models
score almost identical RMSEs. However, as noted earlier we shouldn’t base the
model validity on the relative error.

38

Table 10: Model performance for predictor variable Variable 4.

Group RMSE RMSE Relative Error Relative Error Observations
GLM GBM GLM GBM

Interval 1 44960 48828 -0.16 0.19 14296
Interval 2 54953 58057 -0.23 0.12 23200
Interval 3 36230 35350 0.14 -0.21 19253
Interval 4 20598 20643 0.56 -0.04 8026
Interval 5 30039 29816 - 0.37 -0.52 3470
Interval 6 19097 19302 -0.33 -0.02 5318

The discrepancy in RMSE is very small between the models for all intervals.
There seems to be a trend where the RMSE decreases in the higher intervals
but

Table 11: Model performance for predictor variable variable 5.

Group RMSE RMSE Relative Error Relative Error Observations
GLM GBM GLM GBM

Interval 1 24187 24756 -0.31 -0.19 8026
Interval 2 42129 48929 -0.15 0.04 38472
Interval 3 58278 49589 -0.14 0.05 14619
Interval 4 31018 34481 0.13 0.30 8229
Interval 5 22629 22162 0.49 0.04 4217

Once again we see similar results between the two models and the relative errors
show no severe over/under-estimations in any categories.

39

Table 12: Model performance for Variable 6.

Group RMSE RMSE Relative Error Relative Error Observations
GLM GBM GLM GBM

Interval 1 124029 123708 -0.34 -0.01 2578
Interval 2 97168 97280 -0.14 -0.04 2750
Interval 3 70550 66254 0.12 -0.13 2868
Interval 4 67935 60899 0.15 -0.24 2860
Interval 5 64120 54320 0.16 -0.26 2807
Interval 6 64514 55441 0.02 -0.21 2781
Interval 7 38527 41673 0.15 -0.26 2698
Interval 9 33422 37785 0.20 -0.09 2655
Interval 10 31976 36543 0.11 -0.01 2567
Interval 11 25292 30624 0.04 0.09 2529
Interval 12 19172 25731 -0.08 0.16 2447
Interval 13 17875 24953 -0.23 0.18 2376
Interval 14 15417 23440 -0.27 0.48 2303
Interval 15 11615 22352 -0.66 1.26 22597
Interval 16 1413 22624 -0.87 42.20 12749
Interval 17 0.16 26788 Inf Inf 3998

The intervals are ordered such that the first interval is closest to the occurence
date of the claims and the last interval contain claims furthest from the oc-
curence date. From table 7 we notice a clear pattern that the RMSE decreases
the more the claim matures. We can also see this in the figure 5 below. This
is a natural behaviour of the models since it is generally known that the major
portion of the total loss of a claim is paid out early on while smaller amounts
might be paid closer to the settlement date. Bigger losses are of course more
difficult to predict than the smaller sums paid closer to the settlement date
which explains why this pattern is detected in the results. This is also shown
in figure 7.

40

Figure 7: Time dependence of average claims reserves.

The value that stands out in table 11 is the second to last element of relative
error for gradient boosting. However, it is worth noting that the average actual
reserve for this development period is 29 SEK while the average reserve for all
observations is 4194 SEK. Such a big relative error does therefore not have a
very big impact on the total claims reserve. If we would find this value in one
of the first intervals we should be more worried since it would imply that the
model can’t predict bigger amounts very well. This in turn would set the claims
reserves very high or very low which is not ideal.

41

6 Summary and Conclusions

In this thesis we have investigated if the method of gradient boosting can com-
pete with the more traditionally used generalized linear model for claims reserv-
ing. To evaluate this we used a claims data set for supervised learning and then
measured their performance on a holdout test set. We have used root mean
squared error as the metric of error since it is suitable for assessing regression
models. The results show that the GLM scores an RMSE of 42473 while gra-
dient boosting yields a value of 44371 which suggests that GLM holds a slight
advantage in terms of pure predictive capacity. Since it can be difficult to get
an intuition of model performance based solely on RMSE we also calculated
the relative error i.e. the ratio of the aggregated predicted loss and the actual
loss. The relative errors were found as 4% and -13% for gradient boosting and
GLM respectively. From this information we can conclude that both models
can provide acceptable levels of claim reserves in a real case scenario.

Since the predictive capability of gradient boosting has a proven track record
for a wide variety of subjects it would not be unreasonable to expect it to
outperform GLM on modelling claims data. However, one possible explanation
that the GLM performed better is the relatively small amount of predictor
variables used. One of the main drawbacks of GLM is that interaction terms
have to be manually included in the model. For more complex models with more
features this becomes increasingly difficult but the gradient boosting algorithm
handles this automatically. Here we used small number of features that are
previously known to have good predictive abilities. Therefore, the strengths of
gradient boosting can not be fully utilized. Modelling complex claims where
more features are needed is where gradient boosting has a better chance to
compete.

Since the discrepancy between the model performances is relatively small we
should further evaluate what desirable properties each model holds. One im-
portant aspect is how easily the models are implemented. In this respect GLM
is clearly favoured. We have shown that a GLM with distribution from the
Tweedie family can provide a valuable model after only tuning one hyperpa-
rameter. Fitting a satisfying gradient boosting model on the other hand is
much more time consuming process. The time spent on fitting the GLM is a
matter of minutes while the search for optimal hyperparameters for gradient
boosting takes many hours. Hence, from a practical point of view the GLM has
a clear advantage, especially if the process has to be iterated for other types of
claims as well.

Lastly, we should note that the interpretability of the models are vastly different.
To describe how the gradient boosting model goes from input to output is not an
easy task why it is often described as a black-box. This is a recurring theme for

42

many statistical learning methods. Neural networks is another popular model
which also suffers from this issue. Thus, one should decide carefully if the
interpretability problem can be outweighed by other factors. GLM on the other
hand provides a model that could easily be described. Since we used a log-link in
the fitting process of the GLM we could use exponentiation to get a model where
the response is described by multiplicative factors for each predictor variable.
This way one can easily interpret how changing the inputs would affect the
response variable.

6.1 Future Work

A natural next step for further studies would be consider other types of claims
than the ones used in this thesis. This way one could see if gradient boosting
would be able to outperform GLM on other types of data. It would also be
interesting to consider a richer data set with a large variety of predictor variables
to validate whether gradient boosting can handle complex dependencies better
than GLM.

In a more extensive study on the subject the focus should be put into improving
the fitting of the gradient boosting model, specifically the process of tuning the
hyperparameters. In this thesis we used a naive approach by sequentially tuning
the hyperparameters. There are more sophisticated methods for optimizing hy-
perparameters in the model such as random search and Bayesian Optimization
as this would probably yield better models in significantly less time which is a
major drawback of the fitting process used for GBM in this thesis. This is a
rather comprehensive subject in itself why it was not considered in this study.

43

References

[1] Gunnar Blom et. al. Sannolikhetsteori och statistikteori med tillämpningar.
Studentlitteratur AB, 2014.

[2] Marco Aleandri. Case Reserving in Non-Life Practice using Individual
Data and Machine Learning. url: http://www.dss.uniroma1.it/it/
system/files/pubblicazioni/NLRes_v3.pdf. (accessed: 22.05.2018).

[3] Leo Breiman. Bagging Predictors. 1994. url: https://www.stat.berkeley.
edu/~breiman/bagging.pdf.

[4] Leo Breiman. Random Forests. 2001. url: https://www.stat.berkeley.
edu/~breiman/randomforest2001.pdf.

[5] Jerome Friedman. Greedy Function Approximation: A Gradient Boost-
ing Machine. 1999. url: https://statweb.stanford.edu/~jhf/ftp/
trebst.pdf.

[6] Esbjörn Ohlsson Björn Johansson. Non-Life Insurance Pricing with Gen-
eralized Linear Models. Springer-Verlag, 2010.

[7] John Nelder Peter McCullagh. Generalized Linear Models. 1989. url:
http://www.utstat.toronto.edu/~brunner/oldclass/2201s11/

readings/glmbook.pdf.
[8] Yaron Singer. Advanced Optimization. 2016. url: https://people.seas.

harvard.edu/~yaron/AM221-S16/lecture_notes/AM221_lecture9.

pdf.
[9] Jerome Friedman Trevor Hastie Robert Tibshirani. The Elements of Sta-

tistical Learning. 2008. url: https://web.stanford.edu/~hastie/

Papers/ESLII.pdf.
[10] Heather Turner. Introduction to Generalized Linear Models. 2008.
[11] Vladimir Vapnik. An Overview of Statistical Learning Theory. 1982. url:

http://math.arizona.edu/~hzhang/math574m/Read/vapnik.pdf.
[12] Vladimir Vapnik. Estimation of Dependencies Based on Empirical Data.

Springer-Verlag, 1982.

44

TRITA -SCI-GRU 2018:234

www.kth.se

	Omslag Ahlgren
	Inlägg framsida Ahlgren
	Inlägg backsida Ahlgren
	Masteruppsats
	Omslag Ahlgren
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

