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Abstract

This study investigates a neural networks approach to portfolio choice. Lin-
ear regression models are extensively used for prediction. With the return as
the output variable, one can come to understand its relation to the explana-
tory variables the linear regression is built upon. However, if the relationship
between the output and input variables is non-linear, the linear regression
model may not be a suitable choice. An Artificial Neural Network (ANN)
is a non-linear statistical model that has been shown to be a “good” ap-
proximator of non-linear functions. In this study, two different ANN models
are considered, Feed-forward Neural Networks (FNN) and Recurrent Neu-
ral Networks (RNN). Networks from these models are trained to predict
monthly returns on asset data consisting of macroeconomic data and market
data. The predicted returns are then used in a long-short portfolio strat-
egy. The performance of these networks and their corresponding portfolios
are then compared to a benchmark linear regression model. Metrics such
as average hit-rate, mean squared prediction error, portfolio value and risk-
adjusted returns are used to evaluate the model performances. The linear
regression and the feed-forward model yielded good average hit-rates and
mean squared-errors, but poor portfolio performances. The recurrent neural
network models yielded worse average hit-rates and mean squared prediction
errors, but had outstanding portfolio performances.





Några tillämpningar av neurala nätverk i portföljval

Sammanfattning

Den här studien undersöker portföljval med hjälp av neurala nätverk. Linjära
regressionsmodeller används extensivt vid prediktion. Med avkastning som
responsvariabel kan man ta reda på dess relation med förklaringsvariablerna
som regressionmodellen är byggd på. Men, om förhållandet är icke-linjärt,
kan en linjär regressionmodell vara opassande. Neurala nätverk är en icke-
linjär statistisk modell som har visats vara en god skattare av icke-linjära
funktioner. I den här studien kommer två olika neurala nätverksmodeller
att undersökas, framåtkopplade nätverk och rekurrenta nätverk. Nätverk
från dessa två modeller tränas för att prediktera månatlig avkastning för
data på tillgångar som består av makroekonomisk data samt marknadsdata.
De predikterade avkastningarna används sedan i en “long-short extended
risk parity” portföljstrategi. Prestandan för nätverken samt deras respektive
portföljer undersöks och jämförs med en refrensmodell som består av en linjär
regression. Olika metriker, såsom genomsnittligt träffvärde, genomsnittligt
kvadratiskt fel, portföljvärde och riskjusterad avkastning, används för att
evaluera modellernas prestanda. Den linjära regressionsmodellen samt det
framåtkopplade nätverket gav en god genomsnittligt träffvärde samt ett lågt
genomsnittligt kvadratiskt prediktionsfel, men inte ett bra portföljvärde. De
rekurrenta modellerna gav sämre genomsnittligt träffvärde samt ett lite högre
genomsnittligt kvadratiskt fel, däremot presterade portföljen mycket bättre.
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Chapter 1

Introduction

In the world of quantitative portfolio management, a systematic approach
is often applied to construct asset portfolios by using different statistical
models based on a variety of market data. When constructing portfolios of
financial instruments, managers often rely on estimates of the conditional
expectation of the instruments’ future returns. Thus, it is imperative to
develop statistical models that best predict the available data.

Linear regression models are extensively used for prediction, for example in
the context of portfolio choice. With the price or the return as the output
variable, one can come to understand the linear relation to the explanatory
(or input) variables. However, if the relationship between the output and in-
put variables is non-linear, the linear regression model may not be a suitable
choice.

An Artificial Neural Network (ANN) is a non-linear statistical model that
has been shown to be a “good” approximator of non-linear functions, a sort
of statistical curve-fitting tool (see [13]). Originally, ANNs were designed to
model the human brain, with the aim to emulate brain activity. For that
reason, much of the terminology and structure is reminiscent of its origin.
As the models have evolved, they can nowadays, in theory, approximate any
function. For that reason, ANN are used in a variety of applications, such
as prediction and forecasting (see [16]). It can be shown that the linear
regression model is a special case of an ANN (see [16]), and thus it seems
natural that the next step is to investigate how well ANNs perform when
predicting future returns.

The main objective of this work is to investigate if neural network techniques
can yield a better prediction power compared to linear regression in portfolio
choice. In view of the Kolmogorov’s universal approximation theorem (see
[6]), neural network techniques should be able to give a better fit compared
to the linear regression. However, we would like to know if they can also
yield a better prediction given a certain set of data.
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In this study, we use the dataset provided by Aktie-Ansvar AB. It consists of
monthly returns of 13 different assets A1, . . . , A13. The explanatory variables
of each asset consist of macroeconomic data such as inflation, money supply
and current account, and market data such as foreign exchange, yield curves
and volatilities. The response variable is the corresponding monthly return.

The dataset is taken at the end of each month from January 31, 2004 to
March 31, 2018 (a total of 171 data-points).

We will limit ourselves to only testing two different models of neural net-
works:

• Feed-forward Neural Network (FNN)

• Recurrent Neural Network (RNN)

as well as experimenting with a few hyperparameters related to each model,
which we will elaborate on more thoroughly below. We will compare the
prediction power of these models with that of the linear regression using
various metrics, as well as their performance on a portfolio, which will be
optimized using the obtained predictions.

This work is organized as follows. In Chapter 2, some background theory
regarding neural networks and portfolio theory is presented. In Chapter 3, a
more in-depth presentation of feed-forward network model is given. Chapter
4 contains a more in-depth presentation of the recurrent network model.
In Chapter 5, the methodology for training and selecting the various neural
network models is presented. In Chapter 6, the results are displayed, followed
by a discussion and analysis. Finally, some conclusions and suggestions for
future work are gathered in Chapter 7.
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Chapter 2

Background

2.1 Artificial Neural Networks

2.1.1 The Artificial Neuron

The elementary building blocks of the human nervous system are called neu-
rons. Similarly, the building blocks of ANNs are called neurons (or nodes)
and are based on Rosenblatt’s single-layer perceptron [16]. The neuron con-
sists of a vector of multiple real-valued inputs X = (X1, . . . , Xr)

T and a
single output Y . The connection between a input value Xi and an output
value Y is indicated with a connection weight βi. The output is then ob-
tained by computing the activation value U as the sum of X, with their
respective weights in the vector β = (β1, . . . , βr), and a bias term β0:

U = β0 +
r∑

i=1

βiXi = β0 + XTβ,

and passing it through an activation function f ,

Y = f(U) = f(β0 + XTβ). (2.1)

A visualization is presented in Figure 2.2. We note that selecting the iden-
tity function, f(x) = x, yields a multiple linear regression. Thus, linear
regressions are a special case of neural networks.

The artificial neuron is a primary building block for all ANNs that we will
use in this work.

2.1.2 Activation Functions

From the input to each neuron, an output is generated through a transfer
function known as the activation function (see [6]). Non-linear activation
functions are key parts of what gives a non-linear ANN the ability to model
non-linear functions. These functions can squash an infinite input to a finite
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output. That is, they map IR to a finite interval. A common choice are the so-
called sigmoidal functions, σ(·). Apart from their apparent “S-shape” when
visualized in a plot, sigmoidal functions are functions that are monotonically
increasing and constrained by a pair of horizontal asymptotes as x→ ±∞. If
σ(x) +σ(−x) = 1, then the sigmoidal function is considered symmetric, and
if σ(x) + σ(−x) = 0, then the sigmoidal function is considered asymmetric
(see [16]). Examples of commonly used sigmoidal functions are given in
Figure 2.1 below.

−4 −2 0 2 4

−1

0

1

sign(x)

−4 −2 0 2 4

0

0.5

1

1
1+e−x

−4 −2 0 2 4

−1

0

1

tanh(x)

Figure 2.1. Examples of commonly used sigmoidal activation functions
([16, 6]).

It is worth noting that the hyperbolic tangent tanh : IR→ IR, defined as

tanh(x) :=
e2x − 1

e2x + 1
, (2.2)

is a linear transformation of the logistic function σ : IR→ IR, defined as

σ(x) :=
1

1 + e−x
(2.3)

such that
tanh(x) = 2σ(2x)− 1. (2.4)

However, as shown in Figure 2.1, they generate two different output ranges.
Thus, one can tailor the selection of activation functions based on the desired
output. If, for example, the desired output is a probability (which take values
between zero and one), then the logistic sigmoidal is the preferred choice.
Furthermore, these functions are easily differentiable, a property that we
will see is very useful to possess when training ANNs. Network training
(or learning) is a process in which the connection weights of a network are
adjusted in accordance with the input values (see [8] for further details).

2.1.3 Network Architecture

In general, the architecture of an ANN consists of multiple neurons (or nodes)
that are connected with weights βij . Depending on how one connects the
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neurons, one can obtain many different network structures. In a fully con-
nected network, βij 6= 0, for all i, j. If there exists a βij = 0, the network
is considered partially connected. In Figure 2.2 below, an example of the
simplest of ANN, a single-layer perceptron, is visualized ([16]).

Σ f

X1

X2

X3

X4

Y1

β
0

X0 = 1

β
1

β2

β3

β4

Figure 2.2. A model of a single-layer perceptron with, r = 4 input variables
and one output variable. The βs are weights attached to the connections
between nodes, β0 is a bias term, and f is the activation function. (source
[16])

There are several different models of ANNs. As mentioned in [6], the most
popular ones can be categorized into Feed-forward Neural Networks (FNN)
and Recurrent Neural Networks (RNN). The main difference between the
two models is in terms of information flow. In FNNs, the signals travel from
input to output, without any information going in between nodes in the same
layer. However, in RNNs, the signals are travelling in both directions and
between nodes in the same layer.

2.2 Learning Methods

The process of calibrating or fitting an ANN to data is often referred to as
learning (or training). Algorithms are used to set weights and other network
parameters. These algorithms are called learning algorithms. One complete
run of a learning algorithm is called an epoch ([6]).

Typically, the learning methods are split into three categories:

• Supervised learning: This method is a closed-loop feedback system,
where the network parameters are adjusted by minimizing the error
function, which generally is some variation of the difference between
the network output and the desired output. Supervised learning is
used in e.g. regression ([6, 5]).

• Unsupervised learning: This method involves no target values. In-
stead, it attempts to draw information from the input data using
correlation-detection to find patterns or features without a teacher.
Unsupervised learning is used in e.g. clustering ([6, 5]).
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• Reinforcement learning: This method specifies how an artificial
agent should operate and learn from the given input data, using a set
of rules aimed to maximize the reward. Reinforcement learning is used
in e.g. artificial intelligence ([6, 5]).

2.3 Generalization

The goal of training ANNs is to be able to use the network on unseen data.
This is called the generalization capability (or the prediction capability) of a
network.

Overfitting happens when the network is overtrained for too many epochs
or the network has too many parameters. The result may be acceptable
for the training data, but when applying the network on new data it will
yield poor results. This is due to the network fitting the noise in the data
rather than the underlying signal, which is an indication of poor general-
ization capability. We end up with a bias-variance trade-off (or dilemma),
where the requirements for the desirable small bias and small variance are
conflicting. The best generalization performance is achieved by balancing
bias and variance (see [6]).

There are several methods for controlling and regulating generalization. One
way is to stop the training early, meaning you limit the number of epochs
the network is trained. Another way is regularization, which in the context
of supervised learning, modifies the error function by penalization to make
the network prefer smaller connection weights, similar in principle to ridge-
regression ([16, 6]).

2.4 Training Artificial Neural Networks

So far, the training of ANNs has consisted of passing forward an input set of
data and receiving an output set. However, there is no guarantee that one
epoch will yield optimal connection weights and a minimal prediction error.
Adjusting the connection weights in the network can be made using a super-
vised learning approach. Since there exists a desired output for every input,
the error can be computed. The error signal is then propagated backwards
into network and the weights can be adjusted by a gradient-descent-based
algorithm. Thus, a closed-loop control system is achieved, analogous to ones
in automatic control (cf. [16, 6, 5]).
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2.4.1 Loss Function

For supervised learning problems, a typical choice of error function is the
squared error (SE)

SE =
N∑
i=1

(yi − ŷi)2, (2.5)

where yi is the actual output and the ŷi is the predicted output from the
network. The SE is computed each epoch and the learning process is ended
when the error is sufficiently small or a failure criterion is met ([6]).

When combining the generalization technique of regularization with the error
function (2.5), we get

E = SE + λcEc,

where Ec is a constraint term, which penalizes poor generalization, and λc is
a positive valued penalization parameter that balances the trade-off between
error minimization and smoothing ([6]).

In this thesis, we restrict our attention to the loss function L as

L(W) :=
N∑
i=1

‖yi − ŷi‖2 + λc

M∑
j=1

W2
j , (2.6)

where yi is the vector of actual outputs, ŷi is the vector of predicted outputs
from the network, (λc > 0) is the penalization parameter and W is the
matrix of weights in the network. If ŷ is linear in x, then L is the loss
function for the well known ridge regression problem. To minimize the loss
function, a gradient-descent procedure is usually applied.

2.4.2 Gradient-Descent Methods

The simplest algorithm for finding the nearest local minimum of a function,
with a computable first derivative, is the steepest descent method ([16, 2]).

Algorithm 1 Steepest Descent
1: Select an initial estimate, x0, for the minimum of F (x).
2: Select a learning parameter, η.
3: repeat for k = 0, 1, 2, . . .
4: set pk = −∇F (xk)
5: set xk+1 = xk + ηpk
6: until ‖∇F (xk+1)‖ is sufficiently small.

The learning parameter η specifies how large each step should be in the
iterative process, i.e. how fast we should move toward a local minimum.
As with many things in statistics, there is a trade-off with the selection of
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η. If η is too large, the gradient will descend toward a local minimum at
a rapid rate. However, this can cause oscillations which can overshoot the
local minimum. If η is too small, the gradient will descend toward a local
minimum slowly, and the computations can take a very long time ([16]).

Note that the steepest descent Algorithm 1 is not a particularly efficient
minimization approach. This is because, although proceeding along a neg-
ative gradient works well for near-circular contours, the reality is that in
many applications this may not be the case. Here, there is a need for more
sophisticated methods (see [2]).

The literature for alternative gradient-descent algorithms is quite extensive,
with possible alternative methods such as Adam (see [17]), Adagrad and
RMSprop (see [21]) for optimizing the gradient-descent.

Gradient descent is a generic method for continuous optimization. If the
objective function F (x) is convex, then all local minima are global, meaning
that the gradient descent method is guaranteed to find a global minimum.
However, in the case where F (x) is non-convex, the gradient-descent method
will converge to a local minimum or a saddle point.

The reasons for selecting gradient descent methods in non-convex problems
are:

1. Speed. Gradient descent methods are fast and heavily optimized algo-
rithms are available.

2. A local minimum may be sufficient.

For most neural network configurations, except for the linear regression case,
the loss function will not be convex in the weights.

Gradient methods are most efficiently computed using automatic differenti-
ation.

2.4.3 Automatic Differentiation

As noted earlier, the function to which the gradient-descent method is ap-
plied has to be differentiable. In the context of ANNs, this means that the
activation functions have to be differentiable. For that reason, the selection
of activation functions is of great importance.

The way the differential of the function is computed is also of great impor-
tance. The methods for computing derivatives in computer programs can be
classified into four categories (cf. [3]):

1. Manual derivation and coding in the results

2. Numerical differentiation using finite difference methods

8



3. Symbolic differentiation

4. Automatic differentiation

From [3], there are some downsides for many of these methods that are too
important to ignore, especially when dealing with neural networks:

1. Manual differentiation is a time consuming and error prone endeavour.

2. Numerical differentiation is simple to implement, but can yield highly
inaccurate results to due the rounding and truncation which introduces
approximation errors. It is also costly to compute in many cases.

3. Symbolic differentiation tackles the weaknesses of both the manual and
numerical methods, however it generally yields complex and cryptic
expressions plagued with the problem of “expression swell”.

The solution to the problems stated above is automatic differentiation.

Automatic differentiation consists of two modes, forward and reverse. For
a function f : IRn → IRm, if the operation count to evaluate f is denoted
by O(f), then the time it takes to compute a m× n Jacobian is n · c · O(f)
using the forward mode and m · c · O(f) using the reverse mode, where c is
a constant guaranteed to be c < 6 (see [10]). In the case of neural networks,
scenarios where n � m is what generally will occur. For that reason, only
the reverse mode is presented in this thesis.

Reverse mode automatic differentiation is represented by the following for-
mula:

∂f

∂x
=
∑
g∈Nf

∂f

∂g

∂g

∂x
(2.7)

where Nf is parent nodes of the function node f(g1(g2(· · · gn(x)))).

A well known application of automatic differentiation is the backpropagation
algorithm for feed-forward networks, which we will elaborate more on in
Chapter 3.

2.5 Portfolio Choice

2.5.1 Long-Short Extended Risk Parity

The reason for predicting the returns, be it with a linear regression or with
a neural network, is to aid in the process of selecting the best portfolio for
the assets available. In this work, the portfolio selection method we will use
is a modified version of the Long-Short Extended Risk Parity portfolio opti-
mization method of [1]. This strategy looks to distribute the total portfolio
risk (volatility) equally across the portfolio constituents.
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maximize
wt

Nt∑
i=1

|µit| log |wi
t|

subject to
√

wT
t Ωtwt ≤ σTGT,

wi
t > 0, if µit > 0,

wi
t < 0, if µit < 0,

(2.8)

where, for asset i at time t, µit is the predicted return, wi
t is the weight on

the asset, Ωt is the dispersion matrix, Nt is the number of assets and σTGT
is the volatility target.

In order to best use (2.8), an adjustment on the input vector of predicted
returns µt = (µ1t , . . . , µ

Nt
t ) is made. We multiply it by

sign(µt) = (sign(µ1t ), . . . , sign(µNt
t )),

which leads to µt having the same sign and the optimization problem be-
comes a bit easier to solve as the problem will only contain a one sided
constraint on the weights. After the weights wt are determined, they are
readjusted with sign(µt), allowing for long and short positions.

2.5.2 Portfolio Performance Measures

To compare the portfolios selected with the optimization method in eq. (2.8),
we use different performance measures, which we review below.

Empirical Value-at-Risk

Let X be the value of a financial portfolio at time 1, say X = V1, then the
loss variable is L = −X. Consider samples, L1, . . . , Ln of independent copies
of L, then we estimate VaR at level p by

V̂aRp(X) = L[np]+1,n, (2.9)

where we have sorted the samples of L as follows: L1,n ≥ · · · ≥ Ln,n. The
bracket indicates the floor function ([15]).

Empirical expected shortfall

The empirical expected shortfall (ES) is simply obtained by inserting the
empirical VaR into the definition of ES ([15]). We get the following:

ÊSp(X) =
1

p

(
[np]∑
k=1

Lk,n

n
+
(
p− [np]

n

)
L[np]+1,n

)
. (2.10)
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Sharpe Ratio

An often-used risk-adjusted performance measure for an investment with the
return R is the Sharpe ratio SSharpe where

SSharpe =
E [R]√
Var(R)

. (2.11)

The ratio measures the excess return per unit of deviation in an investment
asset [15]. This measure is to be used in relation to other Sharpe ratios and
not independently. The higher the ratio is, the better.

Sortino Ratio

The Sortino ratio is a modification of the Sharpe ratio but uses downside
deviation rather than standard deviation as the measure of risk, i.e. only
those returns falling below a user-specified target are considered risky. The
Sharpe ratio penalizes both upside and downside volatility equally, which
may not be as desirable considering positive return is almost exclusively
desired (cf. [20]).

The Sortino ratio is defined as

SSortino =
R− R̄
TDD

, (2.12)

where R is the return, R̄ is the target return and TDD is the target downside
deviation defined as

TDD =

√
1

N
ΣN
i=1(min(0, Ri − R̄))2,

where ri is the i:th return, N is the total number of negative asset returns
and T is the same target return as before. The definition is notably very
similar to the standard deviation.

This measure is to be used in relation to other Sortino ratios and not inde-
pendently. The higher the ratio, the better performance.
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Chapter 3

Feed-forward Neural Networks

A Feed-forward Neural Network (FNN) consists of neurons connected with
each other in only one direction, from input to output. In it, the neurons
are organized in layers such that there is no connection between the neurons
belonging to the same layer. A hidden layer is a computational layer of
neurons that is neither part of the input nor the output neurons. The most
common type of FNN is the multi-layer FNN, also known as the Multi-Layer
Perceptron (MLP) ([6]).

3.1 Network Architecture

An MLP maps the input variables X = (X1, . . . , Xr)
T non-linearly to the

output variables Y = (Y1, . . . , Ys)
T . The number of output variables depends

on the goal under consideration. In the regression context, one output vari-
able would be similar to a multiple regression, while two or more variables
is equivalent to a multivariate regression ([16]).

An MLP with one hidden layer is called a “two-layer network”. For N hidden
layers, the MLP is called “(N+1)-layer network” ([16]). In Figure 3.1 below,
a we present a model of a two-layer network.

13
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Figure 3.1. A model of a multi-layer perceptron with one hidden layer,
r = 4 neurons in the input layer, s = 2 neurons in the output layer and
t = 2 neurons in the hidden layer. The αs and βs are weights attached to
the connections between nodes, and f and g are activation functions (source
[16]).

3.1.1 Universal Approximation Theorem

Kolmogorov’s universal approximation theorem is an important result used
to motivate the usefulness of ANNs (see [6]). It shows that ANNs are a very
powerful tool for the approximation of arbitrary continuous functions.

Theorem 3.1 Any continuous real-valued function f(x1, . . . , xn) defined on
[0, 1]n, n ≥ 2, can be represented in the form

f(x1, . . . , xn) =
2n+1∑
j=1

hj

(
n∑

i=1

gij(xi)

)
(3.1)

where gij and hi are continuous functions of one variable, and gij are mono-
tonically increasing functions independent of f .

This means that it is theoretically possible for an FNN, with at least a single
hidden layer, to approximate any continuous function, provided the network
has a sufficient amount of hidden nodes ([16]).

3.1.2 Single Hidden Layer

Consider a two-layer network consisting of r input nodes X = (X1, . . . , Xr)
T ,

s output nodes Y = (Y1, . . . , Ys)
T and a single layer of t hidden nodes

Z = (Z1, . . . , Zt)
T . Let βij be the weight of the connection Xi → Zj with
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bias β0j and let αjk be the weight of the connection Zj → Yk with bias α0k.
Set Uj := β0j + XTβj , where βj = (β1j , . . . , βrj) and Vk := α0k + ZTαjk,
where αj = (α1k, . . . , αtk). Then

Zj = fj(Uj), j = 1, . . . , t, (3.2)

where fj(·) is the activation function for the hidden layer and

νk(X) = gk(Vk), k = 1, . . . , s, (3.3)

where gk(·) is the activation function for the output layer. Thus, we can
express the value of the output node by combining (3.2) and (3.3) as

Yk = νk(X) + εk, (3.4)

where εk is an error term that could be considered Gaussian with mean zero
and variance σ2k ([16]).

3.1.3 Multiple Hidden Layers

For N hidden layers, the (N + 1)-layer network would be expressed, using
matrix notation, in the following way:

ν(X) = g(α0 + Af(β0 + BX)), (3.5)

where ν = (ν1, . . . νs)
T ; B = (βij) is a (t× r)-matrix of weights between the

input nodes; B = (βjk) is an (s × t)-matrix of weights between the hidden
layer and the output layer; β0 = (β01, . . . β0t)

T and α0 = (α01, . . . α0k)T are
the bias vectors; f = (f1, . . . ft)

T and g = (g1, . . . gk)T are the vectors of
activation functions ([16]).

Similar to the single-layer perceptron, when the activation functions f(·) and
g(·) are equal to the identity function, then, (3.3) collapses into a multivariate
reduced rank regression ([16]).

3.2 Training Feedforward Neural Networks

3.2.1 The Backpropagation-of-Errors Algorithm

The industry standard for training FNNs is the backpropagation-of-errors
(BP) algorithm. As mentioned earlier in Chapter 2 the BP-algorithm is
essentially a special case of automatic differentiation and gradient-descent
(see [16]).

The BP-algorithm efficiently computes the first derivatives of an error func-
tion with regards to the connection weights. Later, the derivatives are used
in iterative gradient-descent methods to adjust the connection weights by
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minimizing the chosen error function. In order to implement the algorithm
on a FNN, the activation functions have to be continuous, nonlinear, mono-
tonically increasing and differentiable ([16, 6]).

In the following part, for simplicity, we apply the BP-algorithm on the two-
layer network visualized in Figure 3.1 following the instructions in [16]. The
process can be applied for other kinds of ANNs.

The set of r input nodes is denoted by I, the set of s output nodes is denoted
by K and the set of t input nodes is denoted by J . As such, i ∈ I indexes
an input node, k ∈ K indexes an output node and j ∈ J indexes a hidden
node. The current epoch is indexed by l, such that l = 1, 2, . . . n.

Starting at the k-th output node, the error signal that has been propagated
back after the forward sweep is denoted by

el,k = yl,k − ŷl,k, k ∈ K (3.6)

where yl,k is the desired output and ŷl,k is the actual network output, at
node k during epoch l.

The optimizing criterion, in this example, is the Error Sum of Squares (ESS),
which is defined as

El =
1

2

∑
k∈K

(yl,k − ŷl,k)2 =
1

2

∑
k∈K

e2l,k. (3.7)

The supervised learning problem is to minimize the MSE with regards to the
connection weights in the network, in this case {αjk} and {βij}.

We let
vl,k =

∑
j∈J

αl,jkzl,j = αl,0k + zTl αl,k, k ∈ K, (3.8)

where zl,0 = 1, zl = (zl,1, . . . , zl,t)
T and αl = (αl,1, . . . , αl,t)

T . The output
generated from the network is

ŷl,k = gk(vl,k), k ∈ K, (3.9)

with gk(·) being a differentiable activation function.

After every epoch, the weights αl,jk = (αl,1, . . . ,αl,s) = (αl,jk) are updated
using the gradient-descent method. Letting αl be the ts vector of all the
hidden-layer-to-output-layer weights at the l-th iteration, the update rule
becomes

αl+1 = αl + ∆αl, (3.10)

where
∆αl = −η ∂El

∂αl
=

(
−η ∂El

∂αl,jk

)
= (∆αl,jk) . (3.11)
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Similar update rules applies to the bias term αl,0k as well.

Applying the chain rule to (3.11) yields

∂El

∂αl,jk
=

∂El

∂el,k
·
∂el,k
∂ŷl,k

·
∂ŷl,k
∂vl,k

·
∂vl,k
∂αl,jk

= el,k · (−1) · g′(vl,k) · zl,j .
= −el,kg′(αl,0k + zTl αl,k, )zl,j

(3.12)

It is possible to express this in terms of the sensitivity (or local gradient) of
the l-th epoch, at the k-th output node. Thus,

∂El

∂αl,jk
= −δl,kzl,j (3.13)

where
δl,k :=

∂El

∂ŷl,k
·
∂ŷl,k
∂vl,k

= el,kg
′(vl,k). (3.14)

This means that the gradient-descent update for αl,jk is

αl+1,jk = αl,jk − η
∂El

∂αl,jk
= αl,jk + ηδl,kzl,j . (3.15)

This process is now repeated for the connection weights between the i-th
input node to the j-th hidden node.

For the l-epoch, we let

ul,j =
∑
i∈I

βl,ijxl,i = βl,0j + xT
l βl,j , j ∈ J , (3.16)

where xl,0 = 1, xl = (xl,1, . . . , xl,r)
T and βl,j = (βl,1j , . . . , βl,rj)

T .

The output generated from the network is

zl,j = fj(ul,j), j ∈ J , (3.17)

with fj(·) being a differentiable activation function, at the j-th hidden node.

After every epoch, the weights βl,ij are updated using the gradient-descent
method. Letting βl be the rt vector of all the hidden-layer-to-output-layer
weights at the l-th iteration, the update rule becomes

βl+1 = βl + ∆βl, (3.18)

where
∆βl = −η∂El

∂βl
=

(
−η ∂El

∂βl,ij

)
= (∆βl,ij) . (3.19)
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Similar update rules applies to the bias term βl,0j as well.

Applying the chain rule to (3.19) yields

∂El

∂βl,ij
=
∂El,j

∂zl,j
·
∂zl,j
∂ul,j

·
∂ul,j
∂βl,ij

, (3.20)

where
∂El,j

∂zl,j
=
∑
k∈K

el,k ·
∂el,k
∂zl,j

=
∑
k∈K

el,k ·
∂el,k
∂vl,k

·
∂vl,k
∂zl,j

= −
∑
k∈K

el,k · g′(vl,k) · αl,jk

= −
∑
k∈K

δl,kαl,jk.

(3.21)

Thus, (3.20) becomes

∂El

∂βl,ij
= −

∑
k∈K

δl,kαl,jkf
′(βl,0j + xT

l βl,j)xl,i. (3.22)

Similar to (3.14), we can set

δl,j := f ′(ul,j)
∑
k∈K

δl,kαl,jk. (3.23)

This means that the gradient-descent update for βl,ij is

βl+1,ij = βl,ij − η
∂El

∂βl,ij
= βl,ij + ηδl,jxl,i. (3.24)

The training of a FNN consists of a forward pass and a backpropagation
pass. After setting an error function and selecting the initial weights of the
network, the backpropagation algorithm is used to compute the necessary
corrections (3.15) and (3.24). The backpropagation algorithm reads:
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Algorithm 2 Backpropagation
1: Initialize the connections weights β0 and α0

2: Calculate the error function E.
3: for each epoch l = 1, 2 . . . , n do:
4: Calculate the error function El.
5: if the error El is less than a threshold then return
6: end if
7: for each input xk,ij , i = 1, 2, . . . r do
8: procedure Forward pass(Inputs enter the node from the left

and emerge from the right of the node.)
9: Compute the output node using (3.17) and then (3.9).

10: end procedure
11: procedure Backpropagation pass(The network is run in re-

verse order, layer by layer, starting at the output layer.)
12: Calculate the error function El.
13: Update the connections weights, between the output and the

hidden layer that is to the left of it, using (3.15).
14: Update the connections weights, between the hidden and input

layer that is the left of it, using (3.24).
15: end procedure
16: end for
17: end for

This iterative process is repeated until some suitable stopping time (cf. [16,
6, 7]).

19



20



Chapter 4

Recurrent Neural Networks

ANNs are modeled after the human brain. But humans do not throw out all
memory and start thinking from scratch every time. In fact, human thoughts
have some persistence in the brain. The brain possesses a strongly recurrent
connectivity. This is one of the shortcomings of FNN. It lacks a recollection
functionality. As it has a static structure, going only from input to output, it
cannot deal with sequential or temporal data. A proposed solution to these
problems is the Recurrent Neural Network (RNN) (see [6]).

In principle, an RNN is capable of mapping the entire history of previous
inputs to each output. This recollection functionality allows previous in-
put data to persist in the network, which can thereby influence the output,
similar to a human brain ([8]).

4.1 Network Architecture

When running temporal data through a neural network, one has to run the
data for each time step through parallel neural networks as visualized in
Figure 4.1.
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Figure 4.1. A model of parallel MLPs, A, that looks at some input xt and
outputs a value xt for t = 0, 1, 2, . . . , t.
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Figure 4.2. Model of an unfolded recurrent neural network where A is
a neural network, that looks at some input xt and outputs a value yt for
t = 0, 1, 2, . . . , t.

In short, one could draw an RNN in the following way

A
xt yt

Input Network Output

1

Figure 4.3. A model of a recurrent neural network.

22



All RNNs have the form of a chain of repeating modules (or blocks) of neural
network, with each network passing information to the next. In basic RNN,
this repeating module will have a very simple structure, such as a node with
a single activation function. A visualization is presented in Figure 4.4. The
visualization is based on a similar design presented in [19].

A A

x t−
1 x t x t+

1

y t−
1 y t y t+

1

ft

Figure 4.4. Repeating module of a basic recurrent neural network.

Using the notation in [9], e have an input sequence x = (x1, . . . , xt), a
hidden vector sequence h = (h1, . . . , ht) and an output vector sequence y =
(y1, . . . , yt), which the RNN computes. For time t, the RNN module has the
following composition:

ht = ft(Wihxt +Whhht−1 + bh) (4.1)
yt = gt(Whoht + bo) (4.2)

where the W terms denote weight matrices (e.g. Wih is the input-hidden
weight matrix), the b terms denote bias vectors (e.g. bh is the hidden bias
vector) and ft is the hidden layer activation function.

Basic RNNs are not very useful in practice. The problem is typical of deep
neural networks in that the gradients of a given input on the hidden layer,
and therefore on the network output, either decays or blows up exponentially
as it cycles around the network’s recurrent connections. This effect is known
as the vanishing gradient problem or the exploding gradient problem (see
[8, 11]).
As a result, there are a few modified RNN models available. Among them the
Long Short-Term Memory Networks (see [14]), and Gated Recurrent Units
(see [18]).
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4.2 Long Short-Term Memory Networks

Proposed in [14], the Long Short-Term Memory (LSTM) network architec-
ture was explicitly designed to deal with the long-term dependency problem
and to make it easy to remember information over long periods of time until
it is needed ([11]).

The basic RNN module consisted of only an activation function. The LSTM
module has a more complex structure. The architecture is presented in
Figure 4.5.

x t

y t

σ σ tanh σ

× +

× ×

tanh

ht−1

ct−1 ct

ft

it ot

ht

ht

Figure 4.5. Repeating module of a long short-term memory neural network.

Instead of having a single activation function, the LSTM module has four
(see [22, 11, 19]).

1. Cell state: The key feature is the cell state, Ct which remembers
the information over time. Gates modulate the information flow, by
regulating the amount of information that goes in to the cell state.

2. Forget gate: To decide what information should remain or be dis-
carded from the cell state, a forget gate is used. It is a sigmoid which
uses ht−1 and xt, and returns a value between zero (forget) and one
(remember).

3. Input gate: The LSTM module receives inputs from other parts of
as well. The input gate, it is a sigmoid that decides which values are
going to be updated.

4. Output gate: Lastly, a decision is made regarding what the LSTM
module should output. This output is based on a filtered version of the
cell state information. Firstly, a sigmoid activation function ot decides
which parts of the cell state the LSTM module will output. Then, the
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cell state is passed through a tanh activation function and multiplied
with the output of the sigmoid gate ot. The result ht is passed on to
the rest of the network.

Following the implementation in [9], the components in the LSTM module
have the following composition:

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bi) (4.3)
it = σ(Wxixt +Whiht−1 +Wcict−1 + bf ) (4.4)
ct = ft � ct−1 + it � tanh(Wxc +Whcht−1 + bc) (4.5)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (4.6)
ht = ot � tanh(ct) (4.7)

where σ is the logistic sigmoid function, and i, f, o and c are respectively the
input gate, forget gate, output gate and cell state vector, all of which are
the same size as the hidden vector h. The weight matrix subscripts have
the obvious meaning, for example Whi is the hidden-input gate matrix, Wxo

is the input-output gate matrix etc. The weight matrices from the cell to
gate vectors (e.g. Wci) are diagonal, so element m in each gate vector only
receives input from element m of the cell vector. For each gate, there is a
bias terms b. The � operator represents element-wise multiplication.

4.3 Gated Recurrent Units

A variant on the LSTM network is the Gated Recurrent Unit (GRU). Pre-
sented in [18], it is an increasingly popular simplified version of the LSTM
network ([19]).

Similar to the LSTM network, a GRU tries to capture the long-term depen-
dency using gating mechanisms. However, there are a few differences, most
notably the lack of memory cell state ct, that is the central feature of an
LSTM module. Instead, the GRU has a reset gate, rt, which determines
how the combination of the previous memory and the new input should be,
and an update gate, zt, which determines how much of the previous memory
the GRU should remember. In Figure 4.6, the network architecture of the
GRU module is presented.
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Figure 4.6. Repeating module of a gated recurrent unit.

Following the implementation in [23], the operations of a GRU are repre-
sented by the following equations:

ht = (1− zt)ht−1 + zth̃t (4.8)
zt = σ(Wzxt + Uzht−1) (4.9)

h̃t = tanh(Whxt + Uh(rt � ht−1)) (4.10)
rt = σ(Wrxt + Urht−1) (4.11)

where the vectors ht is the output from GRU, zt is the update gate, rt is the
reset gate and h̃t is the candidate output. The weight matrices in the GRU
are Wh,Wz,Wr, Uh, Uz and Ur. The biases are omitted.

4.4 Training Recurrent Neural Networks

Similar to the FNN, the scheme used for training RNNs is also backprop-
agation. However, as RNNs have a temporal aspect, a modified version
is required, namely the Backpropagation Through Time (BPTT)-algorithm
(see [12]).

The BPTT-algorithm is simply BP-algorithm applied to an unrolled RNN,
which, as mentioned before, becomes a deep-FNN. The key difference is
that, for RNNs, the loss function depends on the activation of the hidden
layer through both the output layer and the hidden layers at the next time-
step. This is because the RNN share parameters across layers. All neural
networks are just nested functions like f(g(h(x))). The same chain rule
applies to RNNs, with the difference between the FNN and RNN being the
time element. The series of functions will only extend when adding a time
element ([8, 12]).
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Chapter 5

Methodology

In this chapter, we explain how the network selections and portfolio choice
were conducted. We compare the prediction ability and performance of net-
works from three different models (single-layer FNN, basic RNN and GRU)
with the benchmark model (linear regression). This is done on 13 financial
assets A1, . . . , A13, where we use the same network type and parameters on
each asset Ai. Thus, after setting the hyperparameters of a specific network
type, we train 13 networks for the 13 assets.

5.1 Data

For each asset Ai, there is a corresponding monthly return. We aggregate
monthly returns into six month returns, yi,t, and set this data as our response
variable. There are also 16 corresponding input variables x1,i,t, . . . , x16,i,t,
for each asset Ai. These are proprietary explanatory variables that have
been provided by Aktie-Ansvar AB. These variables are believed to best
explain the predicted return. They consist of macroeconomic data such as
inflation, money supply and current account, and market data such as foreign
exchange, yield curves and volatilities. We call the explanatory variables
“indicators”.

Financial data are time series data, which means that the order the appear
in is crucial and the next data point is dependent on the previous. Financial
data is also a very limited commodity. The dataset we have at our disposal
is taken at the end of each month from January 31, 2004 to March 31, 2018
(a total of 171 data-points).

To summarize, the data that goes in to the models are the explanatory
variables x1,i,t, . . . , x16,i,t. The networks will then yield the relation between
response yi,t and the explanatory variables.

The implementation is done in Julia, a high-level, high-performance dynamic
programming language for numerical computing (see [4]).
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5.2 Training the Networks

5.2.1 Loss Function

The loss function L used for all networks is the squared error (SE) with
added regularization

L(W) :=
N∑
i=1

‖yi − ŷi‖2 + λc

M∑
j=1

W2
j , (5.1)

where yi is the vector of actual outputs, ŷi is the vector of predicted outputs
from the network, λc is the penalization parameter and W is the matrix of
weights in the network.

5.2.2 Gradient-Descent Algorithm

The gradient-descent optimization algorithm we use is RMSprop (cf. [21]),
which is defined as follows:

θt+1 = θt −
η√
E [g2]t

gt (5.2)

where gt is the gradient of the loss function at time-step t, θ is the matrix of
network weights and

E
[
g2
]
t

= (1− ρ)E
[
g2
]
t−1 + ρg2t ,

where ρ is the decay parameter, which we set to ρ = 0.02. The decay
determines how much of the old information is retained and how much of
the new information is absorbed.

5.2.3 Hyperparameters

A hyperparameter is a parameter whose value is set before the learning pro-
cess begins. After much experimentation, we decided to vary the learning
rate η, penalization factor λc, the number of epochs, and the network struc-
ture in terms of number of hidden layers and number of nodes. We have set
the number of indicators and signals which determine the number of input
nodes to 16 and output nodes to one.

5.2.4 Training the Networks

For this project, due to the time series nature of the data, we have decided to
not split the data into the classical training, validation and test sets. Instead,
we will proceed as follows: for each time step, we train the network on all
data points available up to that time and use the next data point as a test
set, that is, we will always try to predict one step ahead based on all the
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available information up to that time. For each network, the training that
we perform is called the initial training. For each time step thereafter, the
training is referred to as incremental training. This means that we have 61
overlapping training sets and 60 non-overlapping test sets.

Initial Training

On each network model, we make an initial training on a set of training
data according to the learning methods of each model as described earlier
in the thesis. The initial training set consists of 105 time-steps, representing
one financial cycle (around 8-10 years). In order for the models to be able
to capture the signal in the data (instead of the noise), we need a “good”
amount of data to train the models on. For that reason we use data points
from 105 time-steps and not fewer. Furthermore, having data from an entire
financial cycle increases the chance for exposure to upturns and downturns.

The data that goes in the model are initialized weights (using randomization)
and the explanatory variables x1,i,t, . . . , x16,i,t. The network then predicts a
return ŷi,t which we call a “signal”. Then we compute the loss function and
use backpropagation algorithm to then adjust the weights. This is repeated
for each epoch (lap) until we decide it is time to stop.

The actual return yi,t and the predicted return ŷi,t are returns with a return
period of six months. The reason for using a time horizon of six months
is that macroeconomic data typically describe long term occurrences as op-
posed to short time occurrences like one day or one month. This means that,
for example, ŷi,t will be the six month return from the month of January up
to and including the month of June and ŷi,t+1 will the the six month return
from the month of February up to and including the month of July. This
procedure will reduce the amount of data we will have by six data points.

To evaluate the selection of model (i.e. to determine if the choice of hyper-
parameters is suitable), we look at the in-sample plot of each initial training
run. An example is presented in Figure 5.1. From the plot we look at the
resulting fit and change the hyperparameters accordingly. From the bias-
variance trade-off, we get that if the fit is too good, the prediction ability of
the network will probably be limited as the data contains a lot of noise. Fur-
thermore, if the fit is simply a straight line (i.e. zero), then that is equivalent
to not taking any position at all and we consider that to not be sufficient at
all. What we look for is something in the middle between these two extreme
cases, which is what we consider a “good enough” fit. This is adjusted by
early stopping, meaning we select a number of epochs the network is trained
on.
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Figure 5.1. An example of an in-sample plot

Incremental Training

For each time-step, we add the actual return yi,t to the data set the network
trains on, train the network again, and predict the next time-steps future
return. This means that we test for one time step at a time. For each time
step, the training set increases by one data point.

The weights obtained after each incremental training step are used as the
initial guess for the next incremental training step. The reason for this is
to speed up the training as it is more likely that the next steps weights will
be closer to the previous steps weight than it is to randomized weights. The
incremental training is performed on the remaining 60 data points that are
left when using a return period of six months. The result is then analyzed
using an out-of-sample plot which shows how well the network managed to
predict the future return. An example is presented in Figure 5.2.
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Figure 5.2. An example of an out-of-sample plot

What we look for in an out-of-sample plot is that the predicted returns are
as close to the actual return as possible.

5.3 Evaluating the Networks

After having trained the networks and obtained the resulting predicted re-
turns, we apply several metrics to determine the prediction ability of the
networks and compare that to the prediction ability of the benchmark.

The hit-rate and the mean squared prediction error combined with the out-
of-sample-plot are used to determine the prediction ability of the network.

5.3.1 Hit-Rate

The hit-rate is defined as the number of times the predicted signal’s sign
matches the actual signal’s sign. For each of the 60 test sets, the hit-rate is
computed and accumulated. For each step of the incremental training, we
compute the average hit-rate. We will pay close attention to the final time
step’s average hit-rate.

The motivation for using the hit-rate is that often times, since the data is
quite noisy, predicting the sign of the return may be sufficient when deter-
mining the position one will take on the asset. Furthermore, it is much easier
to predict the sign than it is to predict the actual return. An example of a
plot of the hit-rates is presented in Figure 5.3. A models average hit-rate is
the final time-step’s average hit-rate.
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Figure 5.3. Plot of the average hit-rate for each asset using the benchmark
model.

5.3.2 Mean Squared Prediction Error

The mean squared prediction error (MSPE) is defined as the average of the
squared difference between the predicted signal and the actual signal at each
time step.

MSPE =
1

N

N∑
k=1

(yi,k − ŷi,k)2, (5.3)

where ŷi,k is the predicted value of the signal at time step k and yi,k is the
actual value of the signal at time step k. A models mean squared prediction
error is the average of the final time-steps squared-errors

The mean squared prediction error determines how far the prediction is from
the actual value. The hit-rate only determines whether the predicted sign is
correct, but not how far the prediction is from the actual value.

5.4 Application on a Portfolio Strategy

When the best networks have been selected, we implement the results on
a portfolio strategy and determine the value of the portfolio. That is, we
use the predictions from the models to balance the portfolio using a selected
optimization method. The performance of the portfolio is then used as a
measure for the performance of the network with regards to its prediction
ability over a time horizon equivalent to the length of the test set, which in
this case is 60 months.
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5.4.1 Portfolio Optimization Method

The portfolio optimization method used is an adjusted version of the Long-
Short Extended Risk-Parity method presented in eq. (2.8). Here, the
monthly volatility target is σTGT = 2.89%, which translates to a yearly
volatility of 10%, a realistic value.

5.4.2 Performance Metrics

The performance of the subsequent portfolios will be determined by looking
at the value of the portfolio at the end of the time horizon, the maximum
drawdown, the yearly return, the value-at-risk and expected shortfall at a 5%
level and the Sharpe and Sortino ratios. Since we only possess 60 predicted
monthly returns, the value-at-risk and expected shortfall measures are to
be taken with caution due to the limited number of data used to compute
them.
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Chapter 6

Results

Trial and error yielded the following settings to the penalization term λc
presented in Table 6.1.

Network Gate λc
Feed-forward output-gate 0.0001
Recurrent output-gate 0.0001
Gated-recurrent-unit relevance-gate 0.0001
Gated-recurrent-unit probablility-gate 0.0001
Gated-recurrent-unit output-gate 0.0001

Table 6.1. Penalization values λc for each gate in the networks.

6.1 Benchmark Network

In this section, we present the results obtained from the benchmark model,
which in this thesis is the linear regression model. It is a feed-forward network
with no hidden layers and the identity function as the activation function.

6.1.1 Training the Network

In Table 6.2, the settings for the training of the network is presented.

Training stage Learning rate Epochs
Initial training 0.001 1500
Incremental training 0.0001 500

Table 6.2. Settings for the training of the benchmark network.
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6.1.2 Prediction Performance

In Table 6.3, the prediction performance of the network is presented. In
Figure 6.1, the hit-rate for each asset over time is presented.

Metric Value
Average hit-rate 51.923%
MSPE 0.00132

Table 6.3. Prediction performance of the benchmark network.

Figure 6.1. Plot of the average hit rate for each asset using the benchmark
model.

6.1.3 Portfolio Performance

The performance of the portfolio built on the signals yielded from this model
is presented in Figure 6.2 and Table 6.4.
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Figure 6.2. Performance of the portfolio based on the benchmark model.

Metric Value
Portfolio value V60 118.6444
Yearly return 3.4783%
Maximum drawdown 34.8654%
VaR0.05 6.2485%
ES0.05 10.6543%
Yearly Sharpe ratio 0.1788
Yearly Sortino ratio 1.0478

Table 6.4. Performance and risk measures of the portfolio based on the
benchmark model.

6.2 Feed-Forward Network

In this section, we present the results obtained from the feed-forward net-
work. The best feed-forward network we could train is a feed-forward with
one hidden layer and four nodes with the tanh function as the activation
function.

6.2.1 Training the Network

In Table 6.5, the settings for the training of the network is given.
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Training stage Learning rate Epochs
Initial training 0.001 1500
Incremental training 0.0001 500

Table 6.5. Settings for the training of the feed-forward network.

6.2.2 Prediction Performance

In Table 6.6, the prediction performance of the network is presented. In
Figure 6.3, the hit-rate for each asset over time is presented.

Metric Value
Average hit-rate 50.897%
MSPE 0.00137

Table 6.6. Prediction performance of the best feed-forward network we man-
aged to train.

Figure 6.3. Plot of the average hit rate for each asset using the best feed-
forward model we managed to train.

6.2.3 Portfolio Performance

The performance of the portfolio built on the signals yielded from this model
is presented in Figure 6.4 and Table 6.7.
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Figure 6.4. Performance of the portfolio based on the best feed-forward
model we managed to train.

Metric Value
Portfolio value V60 99.0061
Yearly return −0.1996%
Maximum drawdown 37.2025%
VaR0.05 7.8255%
ES0.05 11.9826%
Yearly Sharpe ratio −0.009529
Yearly Sortino ratio −0.05763

Table 6.7. Performance and risk measures of the portfolio based on the best
feed-forward model we managed to train.

6.3 Recurrent Network

In this section, we present the results obtained from the recurrent network
with a basic unit (which we will refer to as the recurrent network). The best
recurrent network we could train is one with a single hidden layer with three
nodes with the tanh function as the activation function.

6.3.1 Training the Network

In Table 6.8, the settings for the training of the network is presented.
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Training stage Learning rate Epochs
Initial training 0.001 750
Incremental training 0.0001 1000

Table 6.8. Settings for the training of the recurrent network.

6.3.2 Prediction Performance

In Table 6.9, the prediction performance of the network is presented. In
Figure 6.3, the hit-rate for each asset over time is presented.

Metric Value
Average hit-rate 49.231%
MSPE 0.00429

Table 6.9. Prediction performance of the best recurrent network we managed
to train

Figure 6.5. Plot of the average hit rate for each asset using the best recur-
rent model we managed to train.

6.3.3 Portfolio Performance

The performance of the portfolio built on the signals yielded from this model
is presented in Figure 6.6 and Table 6.10.
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Figure 6.6. Performance of the portfolio based on the best recurrent model
we managed to train.

Metric Value
Portfolio value V60 215.6644
Yearly return 16.6153%
Maximum drawdown 13.6238%
VaR0.05 7.4765%
ES0.05 8.2403%
Yearly Sharpe ratio 0.8572
Yearly Sortino ratio 5.2347

Table 6.10. Performance and risk measures of the portfolio based on the
best recurrent model we managed to train.

6.4 Gated-Recurrent-Unit

In this section, we present the results obtained from the recurrent network.
The best GRU we could train is one with a single layer with three nodes
with the tanh function as the activation function in the output-gate and the
logistic function as the activation function in the reset and update gates.

6.4.1 Training the Network

In Table 6.11, the settings for the training of the network is presented.
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Training stage Learning rate Epochs
Initial training 0.001 750
Incremental training 0.0001 750

Table 6.11. Settings for the training of the gate-recurrent-unit network

6.4.2 Prediction Performance

In Table 6.9, the prediction performance of the network is presented. In
Figure 6.3, the hit-rate for each asset over time is presented.

Metric Value
Average hit-rate 49.231%
MSPE 0.00513

Table 6.12. Prediction performance of the best gate-recurrent-unit network
we managed to train

Figure 6.7. Plot of the average hit rate for each asset using the best gate-
recurrent-unit model we managed to train.

6.4.3 Portfolio Performance

The performance of the portfolio built on the signals yielded from this model
is presented in Figure 6.8 and Table 6.13.
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Figure 6.8. Performance of the portfolio based on the best gate-recurrent-
unit model we managed to train.

Metric Value
Portfolio value V60 172.5088
Yearly return 11.5224%
Maximum drawdown 24.0347%
VaR0.05 8.3692%
ES0.05 10.4780%
Yearly Sharpe ratio 0.5400
Yearly Sortino ratio 3.1788

Table 6.13. Performance and risk measures of the portfolio based on the
best gate-recurrent-unit model we managed to train.

6.5 Discussion

Based on the Sharpe and Sortino ratios, the models that yielded the best
portfolio performance are the recurrent network models. They outperformed
the benchmark regression model, not only in risk adjusted measures, but also
in the portfolio value after 60 months as well as the yearly return. The clear
worst model, in terms of portfolio performance, is the feed-forward model.
We note that the portfolios based on the RNN and GRU networks performed
a lot better compared to the portfolio built on the signals from the benchmark
regression model.

When computing the correlation between the performances (i.e. the monthly
returns) of the different models, a strong correlation is observed between the
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regression and the FNN networks, as well as the RNN and GRU networks.
The correlations are presented in Table 6.14 below.

Model REGRESSION FNN RNN GRU
REGRESSION 1 0.9516 0.4405 0.2149
FNN 0.9516 1 0.4721 0.2149
RNN 0.4405 0.4721 1 0.8224
GRU 0.2149 0.2149 0.8224 1

Table 6.14. Correlation of the monthly returns from the different models.

The correlation matrix in Table 6.14 confirms that there are two clusters of
the models: the benchmark regression model and the FNN are in one group,
while RNN and GRU is in another.

If we compare the regression model and the FNN, we note that they are
only mappings x → y. RNN and GRU, however, depend on information
from previous time-steps as well. Thus, the models grouping together is
nothing out of the ordinary considering they are from two categories where
one looks at the now and the other looks at history.

We believe that the reason that we observe the strong correlation between
the regression model and the FNN model is that the data can be nearly
linear, but the FNN is most likely overfitted. If the data is almost linear,
then the regression and FNN should give the same fit, in the event that the
FNN is not grossly overparametrized. And this phenomenon is also reflected
in the performance of the portfolio. We note that the portfolio value at the
time horizon of the FNN is 99.0 compared to the regression’s 118.6. And this
goes hand in hand with the subject of generalization (or prediction power)
when it comes to neural networks. The resulting generalization capability of
the network is poor because it has more parameters.

As mentioned earlier in the thesis, the regression model is a special case of the
FNN. For this reason, it is not surprising they have a similar performance.
Furthermore, RNN is a special case of the GRU network, and they perform
similarly.

The reason for the disparity in performance between the recurrent network
models and the feed-forward models could be due to the information retain-
ing capability of the recurrent models.

When looking at the selected metrics (average hit-rate and mean squared
prediction error) for determining the prediction power of a network, both
feed-forward models performed much better compared to their recurrent
counterparts. However, the performance of the portfolio was worse for the
feed-forward networks. This leads us to down to three possibilities: either
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the average hit-rate and the mean squared prediction error are poor mea-
sures of prediction power over different model types or they are not suitable
for recurrent network model types or the result is just a fluke stemming from
a small data sample. The answer to the final hypothesis cannot easily be
found without having access to more data. The classical approach of splitting
the data into training, validation and test cannot easily be applied without
violating the time-series nature of the data.

In order to analyze why the portfolios based on signals predicted using recur-
rent network models yielded a better performance, we look at the distribution
of the actual monthly returns when the models predict positive and negative
signals. From there, we compute the expected return and standard deviation
for these two subsets. The results are presented in Figures 6.9 and 6.10 and
in Table 6.15.

Model Regression FNN RNN GRU
Positive expected return 0.000321 0.000218 0.000673 0.000501
Negative expected return -0.000389 -0.000286 -0.000745 -0.000572

Table 6.15. Expected return of the distribution of actual monthly returns
based on positive predicted signal
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(a) Regression (b) FNN

(c) RNN (d) GRU

Figure 6.9. The distribution of actual monthly returns based on positive
signals.
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(a) Regression (b) FNN

(c) RNN (d) GRU

Figure 6.10. The distribution of actual monthly returns based on negative
signals.

We note from the results presented in Table 6.15 that, even though the re-
current models have a worse hit-rate than the feed-forward models, when the
model predicts a positive or negative signal, the expected monthly return has
the same sign and is much larger compared to the feed-forward models. This
result seems to explain why the portfolios based on signals from the recur-
rent models perform much better. It also seems to be a possible explanation
for why the average hit-rate is not a sufficient measure.

Regarding the mean squared prediction error, an explanation for its insuf-
ficiency is seemingly a bit more straight-forward and not model dependent.
Suppose that the actual return of an asset is 0% and the model predicts
a positive return of 10%, then the portfolio optimization will take a long
position in that asset. Compare that scenario to the one where the model
predicts 5% positive return, but the actual return is −5%. In both scenarios,
the average squared error and the average hit-rate will be the same. How-
ever, when trading on those positions, in the one case, the portfolio manager
will not lose much since the actual return is 0%. In the other case, the loss
will be much more severe since the actual return is −5%.
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Chapter 7

Conclusions

In this work, we have tested and selected neural network models from two
different network types:

• Feed-forward networks

• Recurrent networks

and compared their performance with a benchmark regression model.

We trained and tested the models on data provided by Aktie-Ansvar AB and
predicted future returns. Furthermore, we applied the future returns in a
portfolio optimization strategy and obtained results for each model.

Selecting the best model requires a metric that can be used to determine
which model is the best. We have looked at a few metrics that we deemed
relevant and interesting to scenario in hand:

• The average hit-rate.

• The mean squared prediction error.

• The Sharpe and Sortino ratios.

• The portfolio value.

Following the average hit-rate and mean squared-error, the best model is
the benchmark regression model. Following the Sharpe and Sortino ratios as
well as the portfolio value after 60 months, the best model is the recurrent
neural network with a layer consisting of four hidden nodes with an activation
function tanh.

Consequently, it is not easy to determine the best model as this heavily
depends on which criteria are used for valuation.

Furthermore there is room to further selecting even better networks out of
the model types presented in this thesis. This is because the solution space
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is quite large and the problem is non-convex, leading to the existence of
multiple local minima.

These results indicate that the neural networks approach to portfolio choice
has the potential to surpass classical methods. However, there are still many
open questions and plenty of research opportunities.

7.1 Future Work

In this work, we used gradient-descent methods to train the networks. One
could potentially investigate the effect of non-convex optimization methods
and algorithms.

We also used a limited number of neural network models and configura-
tions. There are quite a few other network types that could be interesting
to investigate, among them the LSTM-network.

Furthermore, a more thorough research regarding how to set the hyperpa-
rameters is very interesting since the current method is based on trial and
error.
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