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Abstract

The aim of this thesis is to investigate the hedging error in Credit Value Adjustment
(CVA) produced by using a model for the simulation of the risk factors di�erent from
the one used in the pricing of the derivative contract. The hypothesis is that this
inconsistency between simulation and pricing models a�ects the CVA leading to an
error in the hedging of credit counterparty risk. When computing the CVA, market
factors are simulated forward in time and the portfolio is priced in each scenario to
obtain the Expected Positive Exposure (EPE). To hedge the market risk of CVA we
use a dynamic Delta-hedging strategy. We investigate the hedging error for a default
free portfolio and for its CVA and how it is a�ected by the mismatch between the
models.

Keywords: Hedging Error, Counterparty Credit Risk, Model Mismatch, Credit Value
Adjustment, Expected Positive Exposure, Monte Carlo.





Hedging fel i CVA
E�ekten av missanpassning mellan simulerings- och prissättingsmodeller

Sammanfattning

Denna studie ämnar att analysera hedgingfelet i kreditvärdesjustering (CVA) som
uppstår när simuleringsmodellen för riskfaktorerna är annorlunda än den som används
för derivatets prissättning. Hypotesen är att diskrepansen i modellerna påverkar CVA
och leder till en hedgingportfölj med ett avvikande värde från det egentliga som krävs
för att optimalt hedga motpartens kredit-risk. För att beräkna CVA simulerar vi
marknadsfaktorerna framåt i tiden och portföljen är prissatt i varje scenario för att
beräkna förväntade positiva exponeringen (EPE). För att hedga marknadsrisken av
CVA använder vi en dynamisk Delta hedging strategi. Vi undersöker hedgingfelet
för en portfölj utan och med kreditrisk och hur det påverkas av diskrepansen mellan
modellerna.
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0.1 Notation

Symbol Description Value
r Risk-free yearly return 0.05
µ Mean of the log-return of the risky asset 0.06
‡ Volatility ≠

‡H Volatility used in the pricing model ≠
‡S Volatility used for the simulation ≠
‡P Volatility used to simulate in the pricing model ≠
T Maturity of the financial contract (in years) 1
Z Standard normally distributed random variable ≠
Wt Wiener process at time t ≠
Nt Poisson process at time t ≠
St Geometric Brownian Motion, Risky asset at time t ≠
S0 Initial value of the underlying 100
K Strike price of the European Option 100

D(t, T ) Stochastic Discount Factor ≠
B(t, T ) Expected value of the stochastic discount factor ≠
P (t, T ) Default Probability ≠
P̂ (t, T ) Survival Probability ≠

fi Recovery Rate 0.4
⁄, h Intensity of the Poisson Process 0.03

· Default time ≠
QD(t) Cumulative distribution function of the default time · ≠

�t Time interval used in the time discretisation ≠
P Real world probability ≠
Q Risk neutral probability ≠
1{·} Indicator function ≠
V (t) Portfolio value at time t ≠

Vrf (t) Risk free portfolio value at time t ≠
N Number of Monte Carlo simulations ≠

Nout Number of Monte Carlo simulations (outer loop) ≠
n Number of time intervals ≠
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0.2 Abbreviations

Description
a.s. almost surely
BM Brownian Motion
BS Black-Scholes

CCR Credit Counterparty Risk
CDS Credit Default Swap
CI Confidence Interval

CVA Credit Value Adjustment
DVA Debit Value Adjustment
EPE Expected Positive Exposure
GBM Geometric Brownian Motion

i.e. id est
i� if and only if

LGD Loss Given Default
MC Monte Carlo

OTC Over The Counter
P&L Profit and Loss
SDE Stochastic Di�erential Equation
s.t. such that

STD Standard Deviation
VaR Value at Risk
w.r.t. with respect to





Chapter 1

Introduction

There are di�erent theories of the etymological origin of the word risk. Some declare that
the word risk comes from the Greek, either from "tò rizikó", which means destiny, fate,
or from "riza" which means cli� and is related to the fact that cli�s have always been
considered a great danger for sailors. Another idea is that it comes from the Ancient
Roman word "resecare" which meant to swim against the tide referring to the ones who
dared to challenge the sea and embrace adventure. Or maybe from the Arab word "risq"
which is something divine from which you can make a profit. Generally speaking, a risk
can be seen at the same time as a danger and as an opportunity. Most human actions can
be considered risky as they generate more or less unpredictable e�ects. That’s the way it
is in finance, a field where the word risk mainly refers to the possibility of loosing some or
all of the original investment. Financial risk can be divided into many components and the
more of them a financial institution manages to handle, the safer it will be. Completely
avoiding taking risks is not considered a good strategy so financial institutions usually
hedge and protect themselves against the most risky events they are likely to face, such
as changes in the market factors or a default of a counterparty.

Before the year 2008 financial institutions mainly focused on Market Risk, which is
the risk of portfolio losses resulting from movements in the market prices. The fact that
a counterparty could default was considered almost impossible and financial institutions
had little incentives to invest money and time into a risk that was considered small, hard
to compute and expensive to manage. However the default cascade experienced in 2008
proved that anyone can potentially default: even if your counterparty is triple-A rated,
you take counterparty and related risks. The bankruptcy of Lehman Brothers and of in-
stitutions that were considered too big to fail gave rise to the need of quantifying these
risks and taking them into consideration when pricing OTC derivatives (for more see [2]).

This is where the Credit Value Adjustment (CVA) comes into play. The CVA is an
adjustment to the fair value (or price) of derivative instruments to account for Counter-
party Credit Risk (CCR): it is considered as the price of this risk. CCR is the risk that
the counterparty (the entity with whom we have stipulated a financial contract) will not
be able to fulfill its side of the contractual agreement because it defaults. It looks like an
option on the residual value of the portfolio, with a random maturity given by the default
time of the counterparty. If the counterparty defaults and the present value of the portfo-
lio is positive to the surviving party, this one only gets a recovery fraction of the portfolio
value from the defaulted entity. If instead the present value is negative to the surviving
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CHAPTER 1. INTRODUCTION 2

party, the surviving party has to pay it in full to the liquidators of the defaulted entity.
This generates an asymmetry that suggests that the value of the deal under counterparty
risk is the value without counterparty risk minus this positive adjustment, called CVA.

But what happens from the point of view of the risky counterparty? Let us suppose
that a default risk-free bank and a risky counterparty make a deal. The bank will compute
the CVA to account for the possible default of the counterparty, subtracting it from the
risk-free price while the counterparty itself will add it. This means that the CVA of the
bank is the Debit Value Adjustment (DVA) for the risky counterparty. This is a positive
quantity added to the default risk-free price in order to consider that an early default of
the client itself would imply a "discount" on the client payment obligations. This is in a
certain way a gain for the client, who marks a positive adjustment over the risk-free price
by adding a positive amount called DVA ([15]). For the purpose of this thesis, we will
focus only on the CVA.

After the year 2008 the industry began to realise the importance of treating the CVA
seriously. As a matter of fact, two thirds of the losses that the banks su�ered during the
financial crisis did not come from counterparty defaults but from fair value adjustments on
derivatives. Under the Basel II market risk framework (2004), firms were required to hold
capital against the variability in the market value of their derivatives in the trading book,
but there was no requirement to capitalise against variability in the CVA. In the year
2006 the value of OTC derivatives started to account for CCR and finally in 2011 Basel
III introduced a CVA-VaR capital charge and increased the CCR charge. The accounting
standards now require to report in the balance sheet both asset and liabilities sides of
CVA which, as a consequence, can produce fluctuation in the balance sheet as long as the
CVA changes.

To reduce the risk the CVA is carrying and to have a stable balance sheet, it is now
common practice for each financial institution to have a so called CVA Desk, with the
purpose to handle that risk. A financial institution usually tries to minimise the capital
charge but must at the same time fulfill the rules settled by the Basel committee. This
trade-o� suggests that it is very important to be precise when computing the CVA, even
if these calculations often are computationally heavy.

In this thesis we will act as a CVA Desk of a financial institution. First we will compute
the CVA: this computation is itself challenging since we have to simulate the risk factors
forward in time and evaluate the portfolio in each scenario, in each time instant, to obtain
the Expected Positive Exposure (EPE). Then, since we also want to hedge the CVA, we
need another Monte Carlo loop that generates di�erent sample paths, and in each time
instant of each path we will hedge both the market and the credit component of the CCR.
For the market risk, we need to compute the CVA sensitivity to hedge out the described
risk, so a new MC loop is started in each time instant, whereas for the credit part we can
rebalance the portfolio so that we hold a suitable amount of a Credit Default Swap (CDS)
contract each time (as explained in Chapter 3), however the main focus will be on the
market risk carried by the CVA.

In practice, it can happen that a financial institution is pricing and simulating (in the
inner MC loop) with a model that actually doesn’t reflect the real movements of the un-
derlying. This first type of hedging error could be for instance due to a calibration error.
Secondly, it is interesting to analyse the error produced when banks consciously use one
model (reflecting the real movements of market prices) to price and hedge the portfolio,
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but a less advanced model for the simulation of the market factors. We will analyse these
examples in Chapter 6.

For the purpose of this thesis we have not calibrated the parameters from the market.
We have instead changed them within a range of reasonable values analysing each case.
All the code was written in C++ and the plots were created with Gnuplot. The work was
carried out at TriOptima.

After a mathematical background (Chapter 2), the definition of the CVA (Chapter 3)
and a description of the methods used in this thesis (Chapter 4), we analyse the impacts of
inconsistency between simulation and pricing models in hedging error for a chosen portfolio
(Chapter 5) and present some comments and conclusions (Chapter 6).



Chapter 2

Mathematical Background

This chapter introduces the main mathematical tools for the development and understand-
ing of this thesis. For more on stochastic calculus or probability theory see respectively
[4], [6] and [12].

2.1 Stopping Times and the Poisson Process
In mathematical finance you must often deal with Counterparty Credit Risk (CCR). For
this purpose it is useful to model a random point in time with a random variable ·

representing the time of the default of a certain counterparty. In the range of possible
values for · we will include infinity in order to model events that may never occur. But
this is not enough. It is also very important to link this random variable with the filtration
of interest, as we can see in the following definition.

Definition 2.1.1. Let (Ft)tœT be a filtration. A random variable · : � æ T fi {Œ} is a
stopping time if ’t œ T, {· Æ t} œ Ft.

Intuitively, this means that it is not enough just to have the random variable · , we
must be sure that at time t it should be possible to say whether · Æ t or not. For instance
the first time on which a Wiener process ([4]) comes out of an open set is a stopping time.
On the other hand the last time of visit of the Wiener process on an open set is not a
stopping time since we would also need to know its future positions.

A very useful tool in credit modeling is the so called hazard rate, which intuitively can
be seen as an odds ratio, i.e. the (expected) number of events divided by the (expected)
number of non events. Mathematically:

Definition 2.1.2. Let · be a stopping time and F (T ) := P[· Æ T ] its distribution function.
Assume that F (T ) < 1 for all T , and that F (T ) has density f(T ). The hazard rate

function h of · is defined as:
h(T ) := f(T )

1 ≠ F (T ) . (2.1)

At later points in time t > 0 with · > t, the conditional hazard rate is defined as:

h(t, T ) := f(t, T )
1 ≠ F (t, T ) , (2.2)

4



CHAPTER 2. MATHEMATICAL BACKGROUND 5

where F (t, T ) := P[· Æ T |Ft] is the conditional distribution of · given the information at
time t, and f(t, T ) is the corresponding density ([3]).

The conditional distribution function of · , in function of the hazard rate h(t) is

F (t, T ) = 1 ≠ e

≠
s T

t
h(t,s)ds

. (2.3)

Thus the hazard rate helps us to define the default probability. In this thesis we will
consider a constant hazard rate, thus the default probability between t and T simply
becomes

P (t, T ) = 1 ≠ e

≠h(T ≠t)
.

It is interesting to see how the survival probability can be derived using the homogeneous
Poisson process with parameter ⁄. We will see that this parameter takes the role of the
hazard rate h just described.

The Poisson process is an important example of point process, which means that
any sample path of the process consists of a set of separate points. Observe that the
Poisson process is connected to the Poisson distribution in the same way as the Wiener
process is connected to the normal distribution: namely as the distribution of independent
increments ([12]). A process N(t) representing the number of occurrences of some event
in a certain period (0, t] (i.e. it has non-negative integer values) is commonly referred to
as counter process. Mathematically:

Definition 2.1.3. N = {N(t)|t Ø 0} is a Poisson process with parameter ⁄ > 0 if

• N(0) = 0.

• For all partitions 0 = t0 Æ · · · Æ tn = T , the increments N(tk) ≠ N(tk≠1) are
independent and Poisson distributed with parameter ⁄(tk ≠ tk≠1).

We now define the memoryless property that will help us in the computation of the
default probabilities. Intuitively it usually refers to the cases when the distribution of
a "waiting time" until a certain event, does not depend on how much time has elapsed
already. Mathematically:

Definition 2.1.4. A random variable X with P(X > 0) = 1 has the so called Memoryless

Property if for every x Ø 0 and t Ø 0,

P(X > t + x) = P(X > x)P(X > t).

Exponentially distributed random variables all satisfy the memoryless property and
this fact can be used to derive the distribution for the first jump of a Poisson Process.
This is of big interest for this thesis since it help us to model the default event of a
counterparty. Tn, i.e. the sum of the jump times, was defined as a sum of independent
exponentially distributed random variables (all with parameter ⁄), so if we consider �t

su�ciently small then the probability to have a jump in (t, t+�t) is ⁄�t. Let us compute
the survival probability P̂ (t, T ) between t and T for a generic intensity ⁄t. Considering
constant time intervals �t = (T ≠ t)/n, we get

P̂ (t, T ) =
nŸ

i=1
(1 ≠ ⁄(t)�t) = e

qn

i=1 ln (1≠⁄(ti)�t)
,
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which for a very small time interval, considering the Taylor expansion, can be written as

P̂ (t, T ) = e

≠
qn

i=1 ⁄(t)�t
.

Letting �t go to zero we get the following default probability

P (t, T ) = 1 ≠ P̂ (t, T ) = 1 ≠ e

≠
s T

t
⁄(s)ds

.

Getting back to our constant intensity, we have

P (t, T ) = 1 ≠ e

≠⁄(T ≠t)
, (2.4)

which corresponds to what we previously computed with the hazard rate.

2.2 The Geometric Brownian Motion (GBM)
Most models used in financial engineering can be described through a Stochastic Di�er-
ential Equation (SDE). An example of a stochastic process satisfying an SDE is the so
called geometric Brownian motion (GBM) (also known as exponential Brownian motion),
i.e. a continuous-time stochastic process in which the logarithm of the randomly varying
quantity follows a Brownian motion with drift. If it starts from a positive value we are
sure this price process stays positive through time and this is one of the reasons why
it is suitable to model prices. In the Black–Scholes it is used to model the price of the
underlying asset as we will see in section 2.3. Mathematically:

Definition 2.2.1. A stochastic process S = (�, F , (Ft)tœ[0:T ], (St)tœ[0:T ], P ) is said to
follow a GBM if it satisfies the following SDE

dSt = µStdt + ‡StdWt, (2.5)

where Wt is a Wiener process and µ and ‡ are constants.

It can easily be shown that a stochastic process satisfies a GBM i�

St = S0 exp
33

µ ≠ 1
2‡

2
4

t + ‡Wt

4
. (2.6)
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Figure 2.1: One simulated path of the Geometric Brownian Motion with n = 10000
intervals over a time horizon of one year.

Note that it is very rare to be able to solve an SDE in an explicit manner so the GBM
represents a very nice exception within the family of stochastic di�erential equations.

2.3 The Black-Scholes Framework
Let us assume that the following conditions are satisfied:

• Perfect liquidity: it is possible to purchase or sell any amount of stock or options or
their fractions at any given time (also short positions are allowed).

• Infinite liquidity of cash: we can borrow or lend any amount of cash whenever we
want at the risk-free rate.

• Frictionless market: no commissions or transaction costs for buying or selling options
and stocks.

• Gaussian asset returns: the underlying evolves according to a geometric Brownian
motion.

• Risk-free rate: there are assets out there that are risk free, that is they will deliver
a rate of return r (i.e. the risk-free rate) for sure, without uncertainty.

• No arbitrage: a portfolio of riskless assets always returns the risk-free rate.

Let W = (�, F , (Ft)tœ[0,T ], (Wt)tœ[0,T ],P) be a Brownian Motion w.r.t. the natural filtra-
tion Ft (i.e. intuitively the filtration that reflects all the available information up to time
t). Let us consider a financial market consisting only in one risky asset with price process
St following a GBM with constant parameters µ and ‡ as in definition (2.2.1) and a risk-
free savings account with a continuously compounded interest rate r for riskless borrowing
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and lending (i.e. the risk-free rate). Everything takes place in the interval [0, T ]. Then

dBt = rtBtdt, B(t0) = 1,

dSt = µStdt + ‡StdWt, S(t0) = S.

Note that a great di�erence between the risk free asset and the stock price is that the first
one is locally deterministic in the sense that at time t we have complete knowledge of the
return by simply observing the value of the short rate r while St has a stochastic rate of
return.

In the given framework, i.e. the so called Black-Scholes (BS) setting, the price �t of a
European Call Option with strike price K and time to maturity T is given by the formula
�t = C(t, St), where

C(t, s) = s�[d1(t, s)] ≠ e

≠r(T ≠t)
K�[d2(t, s)] (2.7)

�(·) is the cumulative distribution function for the standard normal distribution N (0, 1)
and

d1(t, s) = 1
‡

Ô
T ≠ t

3
ln s

K

+
3

r + 1
2‡

2
4

(T ≠ t)
4

,

d2(t, s) = d1(t, s) ≠ ‡

Ô
T ≠ t.

The Put Option can be computed via the Put-Call parity

P (t, St) ≠ C(t, St) = St ≠ Ke

≠r(T ≠t) (2.8)

or by using the Black-Scholes Put formula

P (t, s) = e

≠r(T ≠t)
K�[≠d2(t, s)] ≠ s�[≠d1(t, s)] (2.9)

where d1(t, s) and d2(t, s) are the same as in (2.7).

Black-Scholes hedging strategy. The idea of the BS setting is that we can replic-
ate any derivative contract by buying and selling the underlying assets and by borrowing
money at the risk-free rate. In this way we can build a portfolio made by the derivative
and its hedging positions that doesn’t fluctuate in value regardless the fluctuations of the
underlying. Furthermore the price of the derivative contract is equal to the cost of creating
the hedging positions since, if not, it would be possible to create an arbitrage by selling
that portfolio at the wrong price and hedging it, making a return higher than the risk-free
rate without any risk. This is called risk neutral valuation framework.

Pricing under the risk-neutral measure Q. Statistical properties of random ob-
jects such as future losses, mean and variance, depend on the probability measure we are
using so it is important to point out the probability measure with respect to which the
expectations are taken. P usually refers to the historical or physical probability measure,
also called real world probability measure under which we do historical estimation of fin-
ancial variables. This measure reflects the true value of the financial quantities. When
we simulate the financial variables up to the risk horizon we use this measure. But if we
want to price a financial product, we want to use the so called risk neutral framework,
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which means we take expectations of the discounted future cashflows under the risk neut-
ral measure Q. This is the measure associated with the locally risk-free bank account
numeraire Bt, evolving according the risk-free rate rt

dBt = rtBtdt, B0 = 1 (2.10)

Under this measure all tradable assets divided by Bt are martingales (see [6] for more
details).

In practice the choice of measure influences how the underlying is simulated and, in
the case of a geometric Brownian motion (i.e. in the Black-Scholes setting) it a�ects how
the drift parameter µ should be chosen. In pricing under risk neutral measure basically
we discount a payo� to be received at time t back to time 0 by dividing by B(0, t) = e

rt

(we have considered a constant interest rate r in this thesis). In a risk neutral world,
investors would not demand a higher rate of return for holding risky assets which implies
that all assets would have the same average rate of return, so the drift parameter of the
underlying is r, i.e.

dSt = rStdt + ‡StdWt.

The two measures are not in conflict, they just represent di�erent things.
Now, since the CVA is a price, when we compute it we simulate the market factors under
risk neutral measure Q. But when we simulate the hedging strategy, we simulate the
possible scenarios of our portfolio with the probability measure P.



Chapter 3

Credit Value Adjustment

After a brief introduction to Credit Counterparty Risk (CCR) we present the mathematical
concepts of CVA and the derivation of a formula for the hedging error due to a mismatch
in the models for simulation and pricing.

As said in the introduction, the CVA is a positive quantity to be subtracted from
the risk-free price in order to account for the counterparty default risk in the valuation.
Its computation consists in pricing the risk that a counterparty defaults before the final
maturity of the deal. Since we are dealing with pricing, when we compute the CVA we
work under the risk neutral probability measure Q. As already pointed out, we will focus
on the unilateral counterparty risk case, so the investor can consider itself to be default
free, and the defaultable counterparty agrees with that. For more see [15].

3.1 Counterparty Credit Risk
In the introduction we said that counterparty credit risk (or simply counterparty risk)
is the risk that the counterparty will not be able to fulfill its side of the contractual
agreement because it defaults. CCR is not a trivial area to deal with since it involves the
most complex financial instruments, derivatives, and is driven by the intersection of some
of the di�erent financial risk components that we briefly review next.

• Market risk is the risk that comes from the (short-term) movement of market prices.
It can arise from an exposure to the direction of movement of underlying variables
such as stock prices, interest rates, foreign exchange rates, commodity prices or
credit spreads. But it can also come from the exposure to market volatility. To
hedge against market risk one can take opposite financial positions in regards to the
original opening position. If these contracts are written with other counterparties
this generates a counterparty credit risk [2].

• Credit risk is the risk that a counterparty may be unable or unwilling to make a
payment or fulfill contractual obligations. This may be characterised in terms of an
actual default which may result in an actual and immediate loss or, less severely, it
may be characterised by deterioration in a counterparty’s credit quality (i.e. credit
migration) [2]. Even if credit and counterparty risk are highly related, they are not
the same. The first di�erence is that while credit risk is one sided, counterparty risk
is taken by both parties, i.e. it is bilateral (and can be positive or negative). The
second is that while the credit risk is typically known at transaction, counterparty

10
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credit risk is stochastic and can’t be estimated directly since we do not know how
much we could potentially loose during the lifetime of the contract.

• The concept of Liquidity risk includes the risk that a transaction cannot be executed
at market prices, perhaps due to the size of the position and/or relative illiquidity
of the underlying and for instance the ability of a financial institution to meet its
operational and debt obligations (such as collateral obligations) without incurring
severe losses or defaulting. Even if collateralization1 is used to reduce CCR it may
lead to liquidity risk if the collateral has to be sold at some point due to a credit
event.

• Operational risk arises from people, systems, internal and external events. It includes
human error, model risk such as inaccurate or badly calibrated models, fraud and
legal risk. Some techniques to mitigate counterparty risk, such as collateralization
give rise to operational risks (for more see [2]).

Thus counterparty risk represents mainly an interaction between credit risk, which
represents the counterparty’s credit quality, and market risk, which reflects the exposure
(i.e. the potential value of the contract(s) with that counterparty at the point at which
the credit quality deteriorates).

To model counterparty we will focus on three main building blocks:

• B(t, ti) = Et[D(t, ti)], i.e. the expected value of the stochastic discount factor.

• The recovery value fi: it models the recovery risk which represents the uncertainty
of severity of the losses if a default occurs. It is the amount (usually expressed in
percentage) we can get back from our counterparty even if it has defaulted. In this
thesis we have considered a constant recovery fi = 40%.

• The survival probability P̂ (t, T ) = E[1·>T ]: it represents the probability that the
counterparty will survive between t and T . In the notation · represents the default
time of the counterparty. Thus the default probability will simply be P (t, T ) =
1 ≠ P̂ (t, T ), and is obviously related to the credit quality of a company over the
entire lifetime of transactions with that counterparty. Future default probabilities
will in general have a tendency to decrease due to the fact that the more time passes,
the more likely it is that the default event already happened. Thus the fact that
the default probability usually decreases with time doesn’t necessary mean that the
company is becoming more credit-worthy but simply that it is unlikely to survive
until that period. Furthermore a counterparty with an expectation of deterioration
of credit quality will have an increasing default probability over time even if the
phenomenon just written might reverse it. Finally if on the other hand we expect
our counterparty to become more credit-worthy its default probability will decrease
both for this reason and the first phenomenon pointed out [3].

1
Collateral management is used to reduce CCR and begun in the 1980s with Bankers Trust and Salomon

Brothers taking collateral against credit exposures. The fundamental idea is that cash or securities are

passed form one counterparty to another as security for a credit exposure. For more see [2].
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3.2 Mathematical Definition of CVA
Let (�, G, Gt,Q) be a filtered probability space. This space is endowed with a right-
continuous and complete sub-filtration Ft representing all the observable market quantities
but the default events. Mahematically Ft ™ Gt := Ft ‚ Ht, where Ht = ‡(· Æ u : u Æ t) is
the right-continuous filtration generated by the default event. Intuitively Gt is the filtra-
tion modelling the market information up to time t whereas Ft contains the default-free
market information. We set Et := E[·|Gt] ([15]).

Suppose that at time t we have a portfolio of derivative contract with a risky coun-
terparty up to maturity T . Let · be the stopping time modelling the default event of the
counterparty. To derive the CVA we follow this structure:

• If · > T there is no default by the counterparty during the life of the product and
the counterparty will fulfill its obligations repaying the investors.

• If · Æ T the counterparty cannot repay its investors and the Net Present Value (V)
of the residual payo� until maturity is computed:

– If this V is negative for the investor it is completely paid by the investor.
– If it is positive for the investor, only a recovery fraction fi of the V is received

by the investor.

In an arbitrage-free complete financial market, if we follow a risk-neutral valuation ap-
proach and denoting a future claim of a derivative at time ti in the portfolio by Xti , the
value of the portfolio at time t is

V (t) =
ÿ

tiœ(t,T ]
EQ

t [D(t, ti)Xti ], (3.1)

where D(t, ti) is the stochastic risk-free discount factor between t and ti.

A useful quantity to define when dealing with the CVA is the Credit Exposure (or
simply exposure), which is the loss in the event of a counterparty defaulting assuming zero
recovery value. The most common measure to quantify credit exposure is the Expected
Positive Exposure (EPE), i.e. the average of the positive exposure at a particular
time ti (computed at t). This quantity is, as we will see, very related to the CVA and is
computed mathematically as follows

EPE(ti) = EQ[V (ti)+|Ft]. (3.2)

Let fi the constant recovery rate. Then at time t the discounted loss is

L(t) = 1{·ÆT }(1 ≠ fi)D(t, ·)[V (·)]+. (3.3)

The CVA is then the risk-neutral expectation of the loss

CVA(t) = EQ
t [1{·ÆT }(1 ≠ fi)D(t, ·)(V (·))+]. (3.4)

As explained in the Introduction, counterparty risk thus adds an optionality level to the
original payo�. This makes the counterparty risky payo� model dependent even when the
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original payo� is model independent. This implies, for example, that while the valuation
of swaps without counterparty risk is model independent, requiring no dynamical model
for the term structure (no volatility and correlations in particular), the valuation of swaps
under counterparty risk will require an interest rate model. This implies that quick fixes
of existing pricing routines to include counterparty risk are di�cult to obtain ([15]).

After the CVA computation we can write

V (t) = Vrf (t) ≠ CVA(t), (3.5)

where Vrf (t) is the value of the derivative at time t, assuming a default-free framework,
whereas V (t) is the value of the contract taking into consideration counterparty credit
risk. It is interesting to notice that the risk free price and the CVA can be seen as two
distinct quantities that are computed separately. This means that they can also be hedged
separately. As a matter of fact, as we describe in the next section, the CVA desk acts as
a separated entity and deals with this challenge.

Let us now rewrite Equation (3.4) conditioning the expected value on the default
time (using the so called "Tower property" of conditional expectation, see [12] for more),
using the risk neutral cumulative distribution function for the default time · denoted
by QD(t) = Q(· Æ t) and assuming independence between the credit exposure and the
default probability. We get

CVA(t) = EQ
t [1{·ÆT } EQ

· [(1 ≠ fi)D(0, ·)(V (·))+]]

=
⁄ T

t
EQ[(1 ≠ fi)D(t, s)(V (s))+|· = s]dQD(s)

(3.6)

By assuming constant recovery rate fi and constant short rate r one can simplify Equation
(3.6) with

CVA(t) = (1 ≠ fi)
⁄ T

t
B(t, s)EQ[(V (s))+|Ft]dQD(s)

= (1 ≠ fi)
⁄ T

t
B(t, s)EPE(s)dQD(s),

(3.7)

where B(t, s) = Et[D(t, s)] is the expected value of the stochastic discount (i.e. the price
of a zero cupon bond). When computing this value numerically it is necessary to discretise
the time interval of interest and choose a suitable quadrature rule to solve the integral as
shown in Section 4.1.

3.3 Hedging strategy
As described in the introduction financial institutions have started to take very seriously
the problems related with CVA and work to hedge this quantity. Basically the CVA desk
aims at having a zero P&L so it takes responsability for the counterparty credit risk in
the book of OTC derivatives in the organization and it hedges it out, so that at each time
instant the losses from CVA corresponds to profits from the hedge and vice versa [16].
Hedging counterparty risk has two components:

• Cash Hedging, which is the hedging of actual default events. That is, we do something
so when one of our counterparties defaults, our losses are limited or in the best case
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we do not su�er any loss. This can be done using some so called credit derivatives
(in this thesis we have used a basket of Credit Default Swaps (CDSs) with di�erent
maturities, i.e. a Contingent CDS). This type of financial contract is a derivative
security that has a payo� which is conditioned on the occurrence of a credit event.
If the credit event has occurred, the default payment has to be made by one of the
counterparties. Besides the default payment a credit derivative can have further
payo�s that are not default contingent [3].

• Paper Hedging: This type of hedging consists in hedging the market price of potential
future default events. As a matter of fact, since CVA is a price to a risk, like any
other price that is marked periodically it will fluctuate and give a P&L. To hedge
this part one can follow a Delta hedging strategy rebalancing the portfolio in each
time instant. This is the type of hedging we have put the biggest focus on in this
thesis.

In this thesis we have hedged both the market and the credit risk. For the first hedging
we have followed a dynamic delta hedging strategy while to hedge against credit risk we
have used a basket of CDS.

3.4 Hedging the market risk
Let us consider a contingent claim V (t, St) with maturity T . Assuming a Black-Scholes
(BS) setting, the underlying St follows a Geometric Brownian Motion with constant drift
and di�usion. We want to hedge our portfolio against the movements of the market factors
(which in our case is just the underlying St). In a BS setting (as described in section 2.3),
if the hedger knows the future volatility of the stock and hedges continuously, he can
replicate the option payo� by rebalancing his portfolio with the underlying stock and the
bank account. On one hand, it is impossible to hedge continuously, so the hedger is forced
to rebalance the portfolio only in some discrete time instants, which implies that the final
P&L can take values di�erent from zero (here we will not focus on this discretisation error
but we will analyse it a bit in the numerical results section). On the other hand, it is
interesting to investigate what happens due to a mismatch between the real model used
for the simulation of the underlying and the one used for hedging and pricing. Supposing
we are short in the claim V (t, St), we can write the final hedging error at maturity as

Final P&L = B-S hedge at T - payo�

In section 3.4.1 we derive the hedging error generated by the mismatch in the models,
supposing that we are able to hedge continuously.

3.4.1 Hedging error for a contingent claim V (t, St)

Theorem 3.4.1. Consider a portfolio where we are short in one unit of a square integrable
claim V (t, St) with maturity t = T . Let r be the risk free interest rate and �t = ˆ2Vt

ˆx2 (t, St)
the second order Greek of our claim. Suppose that we sell the claim at the price computed
considering a volatiliy ‡H and that we are able to hedge continuously with a delta hedging
strategy using a model for the underlying with drift µH and di�usion ‡H . Suppose that the
underlying St actually evolves lognormally but with drift µS(t) and di�usion ‡S(t), i.e. it
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has a di�erent dynamic from the one supposed when hedging. Then the hedging error due
to the mismatch in the models is given by

ZT ≠ Z0e

rT =
⁄ T

0
e

r(T ≠t) 1
2S

2
t �t(‡2

H ≠ ‡S(t)2)dt.

Proof. Note that V (t, St) is the process representing the considered claim and V (t, x) is
the corresponding function.
If we assume

dSt = µHStdt + ‡HStdWt, dBt = rBtdt

then we can show, using some basic stochastic calculus, that the price of the claim at time
t satisfies the PDE

ˆV

ˆt

+ rx

ˆV

ˆx

+ 1
2‡

2
Hx

2 ˆ

2
V

ˆx

2 ≠ rV = 0 (3.8)

with boundary condition V (T, x) = VT . Following a Black-Scholes Delta hedging strategy,
i.e. choosing to rebalance the portfolio such that at every time t we hold ˆV

ˆSt
units of

the underlying, we can get a perfect hedge. Basically this means that if the underlying
has the same parameters µH and ‡H we have used to hedge the position, and we follow a
delta hedging strategy we can find a portfolio that follows perfectly the movements of our
contingent claim.

Now, according to the hypothesis we suppose that the underlying follows a di�erent
price process with parameters µS(t) and ‡S(t) (not necessarily constant in time) and that
Xt is the self-financing hedging portfolio (i.e. there is no infusion or withdrawal of money,
so the purchase of a new asset must be financed by the sale of an old one, or by the money
put into the bank account).

The value of Xt at time t is given by X0 = V (0, S0) and

dXt = ˆV

ˆx

(t, St)dSt +
3

Xt ≠ ˆV

ˆx

(t, St)St

4
r dt. (3.9)

Thus the hedging error Zt = Xt ≠ Vt of our portfolio follows the equation

dZt = ˆV

ˆx

(t, St)dSt +
3

Xt ≠ ˆV

ˆx

(t, St)St

4
r dt ≠ dV. (3.10)

Using Itô’s formula we get that the claim V (t, St) satisfies

dV =
3

ˆV

ˆt

(t, St) + µS(t)St
ˆV

ˆx

(t, St) + 1
2‡S(t)2

S

2
t

ˆ

2
V

ˆx

2 (t, St)
4

dt + ‡S(t)St
ˆV

ˆx

(t, St)dWt

=
3

ˆV

ˆt

(t, St) + 1
2‡S(t)2

S

2
t

ˆ

2
V

ˆx

2 (t, St)
4

dt + ˆV

ˆx

(t, St)dSt.

Thus hedging error Zt satisfies

dZt =
3

Xt ≠ ˆV

ˆx

(t, St)St

4
r dt ≠

3
ˆV

ˆt

(t, St) + 1
2‡S(t)2

S

2
t

ˆ

2
V

ˆx

2 (t, St)
4

dt (3.11)

Since we are hedging with a wrong model for the underlying, we are actually assuming
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that the claim V satisfies the B-S equation (3.8). We can therefore use the equality
≠ˆV

ˆt (t, St) ≠ rSt
ˆV
ˆx (t, St) = 1

2‡

2
HS

2
t

ˆ2V
ˆx2 (t, St) ≠ rV (t, St), in Equation (3.11) getting that

dZt = (Xt ≠ Yt)r dt + 1
2S

2
t �t(‡2

H ≠ ‡S(t)2) dt

= Ztrdt + 1
2S

2
t �t(‡2

H ≠ ‡S(t)2) dt,

(3.12)

where �t = ˆ2V
ˆx2 (t, St). To solve (3.12) we can use the general formula for linear SDEs or

simply notice that

d

dt

(e≠rt
Zt) = ≠re

≠rt
Zt + e

≠rt
dZt

= 1
2e

≠rt
S

2
t �t(‡2

H ≠ ‡S(t)2)

Integrating between 0 and T we get

e

≠rT
ZT ≠ Z0 =

⁄ T

0
e

≠rt 1
2S

2
t �t(‡2

H ≠ ‡S(t)2)dt.

We obtain the following formula for the hedging error at maturity T

ZT ≠ Z0e

rT =
⁄ T

0
e

r(T ≠t) 1
2S

2
t �t(‡2

H ≠ ‡S(t)2)dt.

(3.13)

Remark 3.4.1. In our case we have constructed the hedging portfolio s.t. Z0 = 0, so
Equation (3.13) becomes

ZT =
⁄ T

0
e

r(T ≠t) 1
2S

2
t �t(‡2

H ≠ ‡S(t)2)dt.

(3.14)

Remark 3.4.2. If we assume that also the volatility used in the true model ‡S is constant,
(3.13) becomes

ZT = (‡2
H ≠ ‡

2
S)

⁄ T

0
e

r(T ≠t) 1
2S

2
t �tdt.

(3.15)

Remark 3.4.3. If for example the claim V (t, St) is a European Put Option, using that
‹t = ‡H(T ≠ t)S2

t �t (where ‹t = ˆV
ˆ‡H

(t, St)) (3.15) becomes

ZT = ‡

2
H ≠ ‡

2
S

‡H

⁄ T

0

1
2(T ≠ t)e

r(T ≠t)
‹tdt.

(3.16)

In the put case, which implies �t > 0, the hedger is lucky if ‡

2
H > ‡

2
S since it means he

is making a profit with probability one even though the true price model is di�erent from
the assumed one. On the other hand if ‡

2
H < ‡

2
S the hedger will loose money for sure.

This doesn’t mean we are creating an arbitrage, since we have assumed that we have sold
the claim at the "hedging price", not at the price computed using the dynamics of the
underlying with parameters µS and ‡S .
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This suggests that if there is the possibility to use the correct model in the hedging
strategy, one should definitively do so but a hedging strategy is still possible if the di�er-
ence in volatility or the convexity � are small.

Hedging Error in CVA. The formula derived in the previous section was for any
derivative contract that is a square integrable contingent claim V (t, St). A typical ex-
ample of contingent claim is a European option but it can be generalised to many others.
For instance, for the purpose of this thesis, it is interesting to apply this formula to the
CVA. As a matter of fact, if we have a long position in a derivative contract, as previously
discussed in the CVA section, this implies we are "short" in the CVA. We can thus directly
apply the computations of section 3.4.1 to this case getting the formula

ZT =
⁄ T

0
e

r(T ≠t) 1
2S

2
t �CV A

t (‡2
H ≠ ‡S(t)2)dt.

(3.17)

where �CV A
t = ˆ2CV A

ˆx2 (t, St). This formula explains the error in the hedging of the market
risk.

3.5 Hedging the credit risk
We now define the credit derivative we use to hedge the credit risk of our portfolio and
explain a bit more of the chosen hedging strategy.

CDS. A Credit Default Swap (CDS) is one of the most used instruments to hedge
against credit risk. As any credit derivative, it is a financial contract that is used to
transfer the credit risk and works as an insurance against the fact that our counterparty
could default. Basically a CDS allows you to get a cash flow in case of default of your
counterparty, equal to the "Loss Given Default" (LGD), i.e. (1≠fi), where fi is the recovery
value as already pointed out. This cash flow is balanced by some periodic cash flows that
the buyer of the CDS has to pay and which are calibrated s.t. the net present value of the
contract at the initial time is zero. This type of contract is usually entered at par so there
are no cash flows in t0. Actually there is also a CCR embedded in CDSs themselves, but
for the purpose of this thesis we have neglected any extra counterparty risk arising from
the usage of a CDS.

Figure 3.1: Cash flows for a CDS contract. The black arrows represent the fixed legs the
buyer of the CDS has to pay in return of the Contingent leg (the Blue arrow), that is paid
to the buyer of the protection in case of default of the counterparty.

Supposing that our default probability is given by Equation (2.4), let us derive the
Jarrow Turnball approximation for the spreads the holder of the CDS is going to pay,
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considering a time grid 0 = t0 < · · · < tN = T with equispaced time intervals �t. Since
we are interested in our discrete time cashflows we consider that case directly but one
could derive the approximation also for a continuous case just by considering the intergral
instead of the summation. Since the contract is entered at par, the problem becomes to
calibrate the CDS spreads s̄ (i.e. black arrows in Figure 3.1) s.t. the net present value of
the contract is 0. For the conditional expectation we have used this notation Et[·] = E[·|Ft].
Let us consider equispaced time intervals �t = (T ≠ t0)/n and the following quantities:

• the survival probability P̂ (t, T ) = Et[1·>T ],

• the expected value of the stochastic discount factor
B(t, T ) = Et[D(t, T )] = Et[e≠

s T

t
rsds],

• the defaultable ZC bond with no recovery B̄(t, T ) = Et[e≠
s T

t
rsds1·>T ]

• e(t, T, T + �T ) = Et[e≠
s T

t
rsds(1·>T ≠ 1·>T +�T )].

Let us start computing the net present value in t of the fee part is

NPV

fee
t = s̄�t

nÿ

i=1
Et[D(t, ti)1·>ti ] = s̄�t

nÿ

i=1
B̄(t, ti). (3.18)

The net present value for the protection leg is

NPV

fi
t = (1 ≠ fi)

nÿ

i=1
Et[D(t, ti)(1·>ti≠1 ≠ 1·>ti)] = (1 ≠ fi)

nÿ

i=1
e(t, ti≠1, ti). (3.19)

One of our key assumptions is the independency between rates and defaults, so

B̄(t, T ) = Et[e≠
s T

t
rsds1·>T ] = Et[e≠

s T

t
rsds]Et[1·>T ] = B(t, T )P̂ (t, T ),

and

e(t, T, T + �T ) = Et[e≠
s T

t
rsds]Et[(1·>T ≠ 1·>T +�T )] = B(t, T )(P̂ (t, T ) ≠ P̂ (t, T + �T )).

Imposing that NPV

fee
t = NPV

fi
t , we get

s̄�t

nÿ

i=1
B(t, ti)P̂ (t, ti) = (1 ≠ fi)

nÿ

i=1
B(t, ti)(P̂ (t, ti≠1) ≠ P̂ (t, ti)),

which, considering as survival probability P̂ (t, T ) = 1 ≠ P (t, T ), where P (t, T ) is given by
Equation (2.4) leads to

s̄�t

nÿ

i=1
B(t, ti)e≠⁄(ti≠t) = (1 ≠ fi)

nÿ

i=1
B(t, ti)e≠⁄(ti≠t)(e⁄�t ≠ 1).

For small values of �t we can use a Taylor expansion and get

s̄�t

nÿ

i=1
B(t, ti)e≠⁄(ti≠t) ¥ (1 ≠ fi)

nÿ

i=1
B(t, ti)e≠⁄(ti≠t)

⁄�t. (3.20)
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so we can conclude that an approximation for the CDS spread s̄ is

s̄ ¥ (1 ≠ fi)⁄, (3.21)

which is one of the most famous thumb rules in finance.

Strategy. Let us consider again the discretised time grid 0 = t0 < · · · < tN = T from
the initial time to maturity. When hedging the credit risk of a portfolio, the challenge is
that in general, parties’ credit exposure in derivative transactions varies on a day-to-day
basis depending on the termination value of those transactions. This means the potential
loss depends on time, so taking a certain position in t0 will not ensure that we are protected
by the potential default of our counterparty, since, to hedge perfectly, we would like to
hold a CDS giving us back an amount that depends on which instant our counterparty
defaults in.

A solution to this problem is to rebalance our portfolio s.t. at each time instant we
pay an amount equal to the average between the present value of the portfolio and the
EPE in the following time instant, i.e. N̄ s̄�t, where N̄(ti+1) = V (ti)+EP E(ti+1)

2 . Assum-
ing that the hypothesis of perfect liquidity hold also for the CDSs, this strategy can be
seen as "holding at each time instant a CDS with a notional that would give us perfect
protection if the default occurred in the coming time instant and rebalance the portfolio
at the following time if the default hasn’t occurred". So it is a dynamic strategy in order
to get time varying cashflows. Alternatively we can interpret it as buying in each time
instant ti a CDS with maturity equal to the following time instant ti+1 of the amount
N̄(ti+1) = V (ti)+EP E(ti+1)

2 . In this way we hold exactly a CDS that expires the time in-
stant after, so basically we are holding n di�erent CDSs along the life of our derivative
instrument.



Chapter 4

Methods

This chapter presents the methods used for the computation of the CVA and its hedging.
It also includes the algorithms followed to replicate the portfolio in the hedging strategies.

4.1 CVA Computation
Scenario Generation. A scenario consists in the realization of the fundamental mar-

ket factors at a predefined set of simulation dates. The risk factors are simulated forward
in time and the portfolio is priced in each scenario to obtain the EPE which allows us
to compute the CVA for each simulated path ([14]). A fundamental assumption is that
we suppose independence between the exposure and the default probability. The risk
factor St is easy to simulate for any increasing sequence of times t0 < · · · < tN = T . We
have considered equispaced time intervals i.e. �t := ti+1 ≠ ti for i = {0, · · · , N ≠ 1} and
simulated under the risk neutral measure Q obtaining at a generic time instant ti+1

Sti+1 = Sti exp
3

(r ≠ ‡

2
P /2)�t + ‡P

Ô
�tX

4

where X is a standard normal, r the short rate, ‡P the volatility we use in the model
chosen for the simulation of the risk factor and St0 = S0 given.

Trapezoidal Quadrature Rule. From Equation (3.7) we know that the CVA can
be written as

CVA(t) = (1 ≠ fi)
⁄ T

t
B(t, s)EPE(s)dQD(s)

where EPE(t) is the expected positive exposure at time t and Xt is the future claim of
the derivative contract, fi is the recovery rate and QD(t) is the cumulative distribution
function for the default time · as pointed out in Section (3.2).
The integral inside the expectation in the CVA formula is a standard Riemann-Stjeltjes
integral. Considering the same equispaced time intervals shown in the scenario generation
(3.7) can be written as

(1 ≠ fi)
nÿ

k=1
B(t, tk)EPE(tk)(QD(tk) ≠ QD(tk≠1)). (4.1)

20
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Using the trapezoidal rule in our discrete time setting, (3.7) becomes

(1 ≠ fi)
n≠1ÿ

k=0

1
2

3
B(t, tk)EPE(tk) + B(t, tk+1)EPE(tk+1)

4
(QD(tk+1) ≠ QD(tk)). (4.2)

Equation (4.2) can be rewritten as

(1 ≠ fi)EQ
t

5n≠1ÿ

k=0

1
2

3
B(t, tk)(V (tk))+ + B(t, tk+1)(V (tk+1))+

4
(QD(tk+1) ≠ QD(tk))

6
,

so to get an estimate of the CVA we compute it for each MC simulation and take the
average using a MC method.

In our case we have considered constant short rate and as default probability the
homogeneous Poisson process with parameter h as explained in Section 3.5. The last
equation thus becomes

(1 ≠ fi)EQ
t

5n≠1ÿ

k=0

1
2

3
B(t, tk)(Vtk

)+ + B(t, tk+1)(Vtk+1)+
4

e

≠h(k�t)(1 ≠ e

≠h�t)
6
. (4.3)

4.2 CVA Hedging
Scenario Generation. When hedging, we need to generate di�erent scenarios of the

possible evolutions of the market factors forward in time, so this is done under the real
world measure P. We consider an equispaced time grid 0 = t0 < · · · < tN = T as described
in Section 4.1 and simulate the underlying in the same way, with the di�erence that we
consider µ as drift instead of r since we are simulating under the real world measure,
obtaining at a generic time instant ti+1

Sti+1 = Sti exp
3

(µ ≠ ‡

2
S/2)�t + ‡S

Ô
�tX

4

where X is a standard normal, µ the drift of the underlying, ‡S the volatility we use in
the model chosen for the simulation of the risk factor and St0 = S0 given.

Finite Di�erences for Sensitivities Computation. As previously remarked, the
hedging of the market price of potential future default events can be done via a dynamic
approach rebalancing the portfolio. Since we have used a delta hedging strategy it is
necessary to compute some risk sensitivities in each time instant. This can be done via a
simple, brute force, bump and revalue mechanism, getting the sensitivities by “bumping”
the risk factors and re-computing the CVA with the bumped risk factors.

Let us consider a sequence of equispaced times t0 < · · · < tN = T on the time
interval [0, T ] as described in Section 4.1. As seen we use a Monte Carlo method to
compute the value of the CVA (we will use the notation u(t, S) = E[CVAú(t, S)] to make
the text cleaner. S refers to the value of the underlying in t, i.e. St). Assuming that
u(t, S) is su�ciently di�erentiable, we can approximate, in each time instant, its first
order partial derivative with respect to the risk factor using for instance with a forward
Euler approximation

ˆu(t, S)
ˆS

----
ti

¥ u(ti, Si + �S) ≠ u(ti, Si)
�S
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or a central di�erence

ˆu(t, S)
ˆS

----
ti

¥ u(ti, Si + �S) ≠ u(ti, Si ≠ �S)
2�S

where we have used the notation Si = S(ti).

Second order sensitivities can be computed via a central di�erence

ˆ

2
u(t, S)
ˆS

2

----
ti

¥ u(ti, Si + �S) ≠ 2u(ti, Si) + u(ti, Si ≠ �S)
�S

2 .

We can compute the approximation errors for these finite di�erences formulae using a
Taylor expansion of u(t, S) as follows

u(ti, Si + �S) = u(ti, Si) + �S

ˆu(t, S)
ˆS

----
ti

+ �S

2

2
ˆ

2
u(t, S)
ˆS

2

----
ti

+ �S

3

6
ˆ

3
u(t, S)
ˆS

3

----
ti

+ · · ·

and

u(ti, Si ≠ �S) = u(ti, Si) ≠ �S

ˆu(t, S)
ˆS

----
ti

+ �S

2

2
ˆ

2
u(t, S)
ˆS

2

----
ti

≠ �S

3

6
ˆ

3
u(t, S)
ˆS

3

----
ti

+ · · ·

we get that
u(ti, Si + �S) ≠ u(ti, Si)

�S

= ˆu(t, S)
ˆS

----
ti

+ O(�S),

u(ti, Si + �S) ≠ u(ti, Si ≠ �S)
2�S

= ˆu(t, S)
ˆS

----
ti

+ O(�S

2)

and

u(ti, Si + �S) ≠ 2u(ti, Si) + u(ti, Si ≠ �S)
�S

2 = ˆ

2
u(t, S)
ˆS

2

----
ti

+ O(�S

2).

To sum up then if X

(j)(t, S + �S), X

(j)(t, S) and X

(j)(t, S ≠ ”S) are the values of
the CVA(t, S) obtained for di�erent MC samples, the central di�erence estimator for
ˆu(t, S)/ˆS is

�̂ = 1
2�S · N

(
Nÿ

j=1
X

(j)(t, S + �S) ≠
Nÿ

j=1
X

(j)(t, S ≠ �S))

and the central di�erence estimator for ˆ

2
u(t, S)/ˆS

2 is

�̂ = 1
�S

2 · N

(
Nÿ

j=1
X

(j)(t, S + �S) ≠ 2
Nÿ

j=1
X

(j)(t, S) +
Nÿ

j=1
X

(j)(t, S ≠ �S)).

Remark 4.2.1. The advantage of finite di�erences is that it is easy to implement, however
it can be computationally expensive since we have to do some extra sets of calculations
(two for central di�erences). Furthermore we will have a significant bias error if the shift
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�S is too large, but a too small �S could decrease numerical performance. To optimise
the numerical performance the size of the perturbation can be exogenously defined. The
resulting sensitivity is then scaled back to a predefined market data perturbation. For the
forward di�erence approximation we get

”u = u(t, S + �S) ≠ u(t, S)
�S

”S

where S is the market factor, �S is the shift used in the calculations and ”S is the
predefined market data perturbation.

Remark 4.2.2. In general we do not have a closed formula to compute the first order
sensitivity for the CVA and this is why the brute force bump approach is very used.
Actually in the European Put Option case (that we consider in the examples of this thesis)
we could directly apply the closed formula for the delta of a Put option in Equation (4.3)
getting

(1 ≠ fi)EQ
t

5n≠1ÿ

k=0

1
2

3
B(t, tk)�P (tk) + B(t, tk+1)�P (tk+1)

4
e

≠h(k�t)(1 ≠ e

≠h�t)
6
,

where �P (tk) = �(d1) ≠ 1 (using the notation of section 2.3). We have checked that, con-
sidering as shift �S = 10≠4, using a second order approximation for the finite di�erences
formula we obtain the same result as the analytical one.

Nested Monte-Carlo simulations. One of the biggest challenges in the hedging of
the CVA is its computational cost. As a matter of fact to hedge the CVA portfolio at
each time instant of our discretisation grid, it is necessary to compute the corresponding
sensitivity, which requires to start a new Monte Carlo (MC) loop to simulate the risk
factors forward in time from the time instant we are in to maturity. This means that if
we consider Nout simulations for the outer loop and N scenarios for each of the inner MC
loops and we discretise the time horizon with n time intervals, we have a total of

Nout(nN + (n ≠ 1)N + · · · + 2N + N) = NoutN

3 nÿ

i=1
i

4
= NoutN

n(n + 1)
2 (4.4)

Monte Carlo simulations which can be very time consuming for a high number of scenarios
or intervals. Taking for instance Nout = N = 1000 and n = 80 (as we do in Chapter 5), it
takes approximately 45 minutes to run the code.

Let us now focus only on the computation of the CVA, not on its hedging (so we do
not have nested MonteCarlo simulations anymore but only one Monte Carlo loop) and
investigate the noise introduced in the computation of the CVA. In general for a set of
Monte Carlo simulations the numerical noise gets reduced with 1Ô

N
where N is the number

of scenarios. This means for instance that if we increase the number of simulations from
1000 to 10000 we are multiplying the computing e�ort by a factor of ten but reducing the
noise only by a factor of around three. This non-linear function of the marginal decrease
of noise per added scenario is clearly a problem ([16]).

Let us fix the rebalancing trades to n = 20 and compute the standard deviation. Here
we have chosen smaller number of intervals than what we use in the final case studies
of Chapter 5 to be able to make our computations faster even if this will introduce a
discretisation error but this will be analysed later. Let us compute the standard deviation
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of the CVA MC estimate. If we use N simulations we need to compute the CVA M times
using N MC simulations and take a mean of the di�erent standard deviations obtained.
To be sure that we actually are considering M di�erent scenario simulations, each time we
assign a seed that is di�erent from the one used in the previous step. The results taking
N = [10, 100, 1000, 10000] are shown in the following figure.
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Figure 4.1: CVA pricing error (Standard deviation of the CVA price over several calcula-
tions) as a function of the numbers of MC simulations used.

From Figure 4.1 and Table 4.1 we can observe the typical non-linear behaviour of
the standard deviation of the Monte-Carlo estimate. As expected, a precise value (low
standard deviation) comes at the expense of computational heaviness.

Nr MC simulations CVA error (bps)
10 24.3
100 8.08
1000 2.50
10000 0.84

Table 4.1: CVA pricing error (Standard deviation of the CVA price over several calcula-
tions) with the corresponding number of MC simulations.
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4.3 Algorithms

Algorithm 1 Delta Hedging of Vt

1: for j = 1 to N do Û MC loop
2: Compute V0 and delta = ˆV

ˆx (t0, S0) Û Price under Q and use ‡H

3: bank = V0 ≠ delta · S0 Û Put the money in the bank account
4: Compute gamma = ˆ2V

ˆx2 (t0, S)
5: Start computing the analytic P&L ZT Û First contribution to quadrature rule
6: for i = 1 to n ≠ 1 do Û Time loop
7: Sample Z from N (0, 1)
8: Sti = Sti≠1 exp ((µS ≠ 0.5‡

2
S)�t + ‡S

Ô
�tZ) Û Simulate under P

9: Compute newdelta = ˆV
ˆx (ti, Sti) Û Price under Q and use ‡H

10: bank = bank · e

r�t ≠ (newdelta ≠ delta) · Sti Û Rebalance the portfolio
11: Compute gamma = ˆ2V

ˆx2 (ti, Sti)
12: Compute the ZT contribution for ti Û Trapez. quadrature rule

return
13: Sample Z from N (0, 1)
14: Stn = Stn≠1 exp ((µS ≠ 0.5‡

2
S)�t + ‡S

Ô
�tZ) Û Simulate under P

15: P&Lj = bank · e

r�t + delta · Stn ≠ payo�
return E[P&L], STD(P&L) and E[ZT ].



CHAPTER 4. METHODS 26

Algorithm 2 CVA Computation
1: for j = 1 to N do Û MC loop
2: for i = 0 to n ≠ 1 do Û Time loop
3: Sample Z from N (0, 1)
4: Sti = Sti≠1 exp ((r ≠ 0.5‡

2
P )�t + ‡P

Ô
�tZ) Û Simulate under Q

5: Compute the shifted S

s1
ti≠1 = Sti≠1 + shift and S

s2
ti≠1 = Sti≠1 ≠ shift

6: Compute the shifted S

s1
ti

= Sti + shift and S

s2
ti

= Sti ≠ shift
7: Compute Vti , Vti+1 and the portfolio values with the shifted underlyings
8: Compute the i-contribution to CVAt0 Û Trap. Quad. Rule
9: Compute the i-contribution to the two shifted CVAs1

t0 and CVAs2
t0return

10: CVA(t0) = CVA(t0) + CVAj(t0)
11: CVAs1(t0) = CVAs1(t0) + CVAs1

j (t0)
12: CVAs2(t0) = CVAs2(t0) + CVAs2

j (t0)
return

13: Take the MC mean and compute CVAt0
14: Compute deltaCVA(t0) = (CVAs1

t0 ≠ CVAs2
t0 )/(2 · shift)

15: Compute gammaCVA(t0) = (CVAs1
t0 ≠ 2CVAt0 + CVAs2

t0 )/(shift2)

Algorithm 3 CVA Hedging for Vt

1: for j = 1 to N do Û MC loop
2: Compute CVA0 and EPE(t0, t1)
3: Compute deltaCVA = ˆCVA

ˆx (t0, S0) and gammaCVA = ˆ2CVA
ˆx2 (t0, S)

4: bank = CVA0 ≠ deltaCVA · S0 Û Put the money in the bank account
5: Start computing the analytic P&L ZT Û First contribution to quadrature rule
6: for i = 1 to n ≠ 1 do Û Time loop
7: Sample Z from N (0, 1)
8: Sti = Sti≠1 exp ((µS ≠ 0.5‡

2
S)�t + ‡S

Ô
�tZ) Û Simulate under P

9: Compute EPE(ti, ti+1)
10: Compute newdeltaCVA = ˆCVA

ˆx (ti, Sti) and gammaCVA = ˆ2CVA
ˆx2 (ti, Sti)

11: cflow= s̄�t(V (ti≠1) + EPE(ti≠1, ti))/2 Û Hedge the Credit Risk
12: bank = bank · e

r�t ≠ (newdeltaCVA ≠ deltaCVA) · Sti - cflow Û Rebalance
13: Compute the ZT contribution for ti Û Trapez. quadrature rule

return
14: Sample Z from N (0, 1)
15: Stn = Stn≠1 exp ((µS ≠ 0.5‡

2
S)�t + ‡S

Ô
�tZ) Û Simulate under P

16: cflow= s̄�t(V (tn≠1) + EPE(tn≠1, tn))/2
17: P&Lj = bank · e

r�t + deltaCVA · Stn ≠ payo�CVA ≠ cflow
return E[P&L], STD(P&L) and E[ZT ].



Chapter 5

Results

This chapter presents some practical case studies where di�erent types of hedging errors
are analysed. First we consider a default free portfolio with one financial derivative then
we hedge its CCR. To hedge from the movements of the underlying we follow a Delta
hedging strategy and to hedge the credit risk we use di�erent CDSs, as already explained.

5.1 Delta hedging of a European Put Option: Discretisation
Error

In this section we investigate the time discretisation error. Let us assume the Black-
Scholes setting described in Section 2.3 and that we are short in a European Put Option.
As we know, the Black and Scholes hedging strategy works perfectly if we suppose to
hedge continuously, assuming we use the same model for simulation and pricing. We have
thus followed the algorithm described in Chapter 4 for di�erent numbers of time intervals
and analysed the Profit and Loss (P&L) distributions generated by the hedging portfolio
in each case.

Table 5.1: P&L statistics summary. Put option value is 5.57353 and ‡S = ‡H = 0.2
Nr Intervals STD % STD Mean E[ZT ] CI0.99

mean
20 1.5153 27.18 -0.005 0 (-0.0224, 0.0148)
80 0.7631 13.69 -0.001 0 (-0.0098, 0.0078)

In Table 5.1 we show the results for n = 20 and n = 80 time intervals. We can observe
that the mean value lies around zero for both cases. What changes with the number of
time steps considered for hedging is the variance. Figure 5.1 shows that, as intuitively
expected, the standard deviation of the P&L decreases as the time grid gets thicker and
we get closer to the ideal case described by Black-Scholes (i.e. continuous hedging).

27
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Figure 5.1: Standard deviation of the P&L as a function of the numbers of intervals used
in the hedging strategy.
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Figure 5.2: P&L of the hedger with N = 50000 MC simulations and ‡S = ‡H = 0.2.

Note that looking only at the mean of the P&L could be misleading: as a matter
of fact even if the mean value is close to zero, we could still have some very large losses
balanced with very large profits, in other words it is important to focus also on the standard
deviation of the P&L. As we can see in the following table and from the distributions in
Figure 5.2, quadruplicating the number of intervals roughly halvs the standard deviation.
This is due to the fact that the standard deviation of the P&L distribution behaves as
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constant · 1Ô
n

(17).
Obviously each of the simulated Monte Carlo paths can look very di�erently and

analysing just one of them can’t be considered a complete treatment of the problem as
plotting a histogram. However it can still be very interesting to have a look at least at
one of them to get a better picture of what our hedging strategy actually does. Figure
5.3 and Figure 5.4 show a generic path for a hedging strategy with respectively 20 and 80
intervals with the corresponding value of the Put (bluish line) we want to hedge: in both
cases we can see how the hedging portfolio follows the dynamics of the Put.
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Figure 5.3: Hedging Strategy over one MC path when ‡S = ‡H = 0.2.
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Figure 5.4: Hedging Strategy over one MC path when ‡S = ‡H = 0.2.
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5.2 Delta hedging of a European Put Option: Model Error
In this section we check what happens due to a model mismatch for the same portfolio
of Example 5.1, comparing the numerical results with the formula derived analytically in
Section 3.4.1.

Fixing the number of intervals we can analyze the hedging error generated by sim-
ulating the underlying with a di�erent volatility ‡S from the one used for hedging, i.e.
‡H . Taking four di�erent values for the volatility parameter and making the computations
both for n = 20 and n = 80 intervals, we get the following results:

Table 5.2: P&L statistics summary. Put option value is 5.57353 and ‡S = 0.3
Nr Intervals STD % STD Mean E[ZT ] CI0.99

mean
20 2.9192 52.38 -3.9858 -3.8951 (-4.0195, -3.9521)
80 2.1385 38.37 -3.9688 -3.9448 (-3.9935, -3.9441)

Table 5.3: P&L statistics summary. Put option value is 5.57353 and ‡S = 0.1
Nr Intervals STD % STD Mean E[ZT ] CI0.99

mean
20 1.2789 22.95 3.8333 3.7008 (3.8185, 3.8481)
80 1.1226 20.14 3.8284 3.7949 (3.8154, 3.8414)

Table 5.4: P&L statistics summary. Put option value is 5.57353 and ‡S = 0.21
Nr Intervals STD % STD Mean E[ZT ] CI0.99

mean
20 1.6016 28.73 -0.4005 -0.3856 (-0.4190, -0.3820)
80 0.8157 14.64 -0.3959 -0.3919 (-0.4053, -0.3865)

Table 5.5: P&L statistics summary. Put option value is 5.57353 and ‡S = 0.19
Nr Intervals STD % STD Mean E[ZT ] CI0.99

mean
20 1.4442 25.91 0.3897 0.3841 (0.3730, 0.4064)
80 0.7403 13.28 0.3917 0.3908 (0.3832, 0.4002)

On the first row of each table we see the case with 20 intervals and on the second the
one with 80 rebalancing trades. As expected by the formula (3.17), if the volatility used
to simulate the underlying is bigger than the one we use for hedging we get a loss, whereas
if we simulate with a lower sigma we get a profit.

The P&L distributions corresponding to the four di�erent cases shown in the previous
tables are shown in the following Figure 5.5. To understand what is happening it can be
useful to take a look at one example of Monte Carlo path for each case (see Figures 5.6 and
5.7). Since the price of an option increases with volatility, if we simulate the underlying
with a ‡S lower (higher) than the ‡P used for pricing, we are hedging assuming that the
Put is worth more (less) than what the simulation model says, and will therefore get a
profit (loss) from the hedging strategy.
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Model error
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Figure 5.5: P&L of the hedger with N = 50000 MC simulations with ‡S = 0.3 (left plots)
and ‡S = 0.1 (right plots).
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Figure 5.6: Hedging Strategy over one MC path when ‡S = 0.1 and ‡H = 0.2.
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Figure 5.7: Hedging Strategy over one MC path when ‡S = 0.3 and ‡H = 0.2.

To summarise, this example shows how the hedging error is influenced by a mismatch
in the models for simulation and pricing in a framework where we consider only market
risk, i.e. where we have supposed a non-defaultable counterparty. We know that this is
actually not a strong assumption anymore and it is important to take into account also
the possibility that a counterparty can default. This is in practice done by computing the
CVA and considering it into the valuation of the portfolio as described in Section (3.2)
and as we will see in the following case study. One may wonder why we included this
example without the CVA into this thesis, if the title states clearly that we want to deal
with hedging error “in CVA”. The answer is that since the CVA is a price, to hedge it
perfectly (or close to it) we must hedge also its market risk, which will be done exactly in
the same way as for the European Put case alone.

In the following example we investigate what happens if we “allow” our counterparty
to default and focus on the CVA hedging, rather than on the hedging of the Put.



CHAPTER 5. RESULTS 33

5.3 CVA Hedging for a European Put: Model Error 1
In this example we assume that the counterparty risk is not negligible. Thus the real price
V (t) is equal to the risk free price minus the credit value adjustment:

V (t) = Vrf (t) ≠ CVA(t).

Let us say we are a CVA desk and want to hedge out both the market and the credit risk
of the CVA. The first type of hedging is done analogously to the previous example: we
consider the portfolio composed only by the CVA and rebalance at each time instant t in
order to hold �CVA(t) units of the underlying, as seen in Section 4.3. However in this case
study, to get a portfolio that shrinks to zero with the CVA one must also hedge against
the credit risk component: this is done using a CDS as described in Sections 3.5 and 4.3.

As done in the first two case studies we present a table with the statistics summary
and a path of a possible scenario to get an idea of what our hedge looks like. From Figure
5.8 we see that, as expected, the CVA shrinks to zero.
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Figure 5.8: Hedging Strategy over one MC path when ‡S = ‡H = 0.2.

Table 5.6: P&L statistics summary. CVA= 0.09939, n = 80 time intervals.
STD % STD Mean E[ZT ] CI0.99

mean ‡S ‡H ‡P

0.0084 8.42 -0.0011 0 (-0.0018, -0.0004) 0.2 0.2 0.2
0.0166 16.71 -0.0380 -0.0385 (-0.0394, -0.0380) 0.3 0.2 0.2
0.0062 6.23 0.0291 0.0310 (0.0286, 0.0296) 0.1 0.2 0.2

From Table 5.6 we can draw similar conclusions as in the previous example as we can
see also from the paths shown in the Figures 5.9 and 5.10: when we use a lower (higher)
volatility in the simulation of the underlying we get a profit (loss) due to the fact that
we are underestimating (overestimating) the value of the put and consequently also of
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the CVA. This corresponds one more time to the analytic formula, i.e. simulating the
underlying with a lower (higher) volatility we get, a profit (loss) that is proportional both
to the di�erence between the two volatilities and the �t of the derivative contract.
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Figure 5.9: Hedging Strategy over one MC path when ‡S = 0.1 and ‡H = 0.2.
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Figure 5.10: Hedging Strategy over one MC path when ‡S = 0.3 and ‡H = 0.2.

Figure 5.11 and 5.12 show the P&L distributions for the hedger in the di�erent cases.
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Figure 5.11: P&L of the hedger with N = 1000 MC simulations (both in the inner and in
the outer loop) with ‡S = ‡H = 0.2.
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Figure 5.12: Hedging Error in CVA using N = 1000 MC simulations (both in the inner
and outer loop) as the volatility ‡S used for the simulation changes.
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Remark 5.3.1. The fact that we don’t get exactly zero as mean value in the P&L when
we use the same models for simulating and hedging (Figure 5.11), can be explained mainly
by the fact that we are considering less MC simulations: N = 1000 for both MC loops
while we had 50000 simulations in the first examples. (We were forced to reduce a bit the
number of simulations due to the computational heaviness of the code). As a matter of
fact, changing the seed for the simulation, we will observe that the mean value of the P&L
distribution oscillates between positive and negative values but still close to zero, which
suggests there isn’t a real bias in the result but it’s just a random error made bigger by
the fact that we use less simulations compared to the previous case.

Remark 5.3.2. For the case of a European Put Option, as in this example, one could
actually have computed the CVA analytically since the Exposure is always positive and
there is only one cash flow at maturity. However this example is very useful since it
allows us to check that our computations are correct and it is a first application of the
mathematical study carried out in this thesis. From here, one could develop many other
interesting examples as suggested in Section 6.3.

Finally, this example shows the error we commit in hedging the CVA if the calibrated
value of the volatility in the pricing model di�ers from the real one that actually reflects
the underlying movements. Basically it is the error the hedger commits when he believes
in a model that is di�erent from the dynamics that the real market factors actually follow.
We get coherent results with the analytic formula as we have shown in Table 5.6 and
analysing the histograms of Figure 5.12.
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5.4 CVA Hedging for a European Put: Model Error 2
Often in a bank, it is common to use a complex model that reflect the real movements
of the market factors for pricing and a di�erent model (often less complicated) for the
simulation. Here we investigate the performance of the hedging strategy when the CVA
Desk, in the pricing loop, simulates with a ‡P that is di�erent from the real ‡H used
when pricing the contract. Since we assume that this last model is the correct one, we
will simulate the outer MC loop with ‡S = ‡H .

As previously done we summarise our results in a table and plot the histograms cor-
responding to when we have a higher ‡S = ‡H and a lower ‡P and viceversa.

Table 5.7: P&L statistics summary. CVA= 0.09939, n = 80 time intervals.
STD % STD Mean CI0.99

mean ‡S ‡H ‡P

0.0084 8.42 -0.0011 (-0.0018, -0.0004) 0.2 0.2 0.2
0.0149 14.99 0.0352 (0.0340, 0.0364) 0.2 0.2 0.3
0.0104 10.46 -0.0314 (-0.0322, -0.0306) 0.2 0.2 0.1

Figure 5.13: Hedging Error in CVA using N = 1000 MC simulations (both in the inner
and outer loop) as the volatility ‡P used for the inner simulation changes.

From these results we see that using a wrong model for the simulation of the market
factors generates an bias in the P&L distribution. This suggests to use the same model
for simulation and pricing (if possible).
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5.5 Extra Case Study: Model Error 3
This final example is presented to analyse the error produced when you use one model to
simulate (both in the inner and outer MC loop), and another one to price the portfolio.
So in this case ‡S = ‡P , where the first sigma is the one used in the outer simulation of
the market factors (to test our hedging strategy), and the second sigma is the one used
when generating the senarios forward in time to price the CVA. The volatility ‡H , i.e. the
"pricing-sigma", di�ers from the other two.

As previously done we summarise our results in a table and plot the histograms cor-
responding to when we have a higher ‡S = ‡P and a lower ‡H and viceversa.

Table 5.8: P&L statistics summary. CVA= 0.09939, n = 80 time intervals.
STD % STD Mean CI0.99

mean ‡S ‡H ‡P

0.0084 8.42 -0.0011 (-0.0018, -0.0004) 0.2 0.2 0.2
0.0183 18.41 -0.0014 (-0.0029, -0.00009) 0.3 0.2 0.3
0.0024 2.41 -0.0008 (-0.0009, -0.0006) 0.1 0.2 0.1
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Figure 5.14: Hedging Error in CVA using N = 1000 MC simulations (both in the inner
and outer loop) as the volatility ‡S used for the simulation changes.

From these results we can see that using the same volatility to simulate the market
factors forward in time (both in the outer and inner MC loop) and a di�erent one to hedge
and price the portfolio doesn’t a�ect the bias in the profit and loss distribution as much
as the other model errors did. The biggest di�erence produced changing ‡S can be found
in the variance of the P&L distribution.
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Discussion

6.1 Summary of findings
When hedging a portfolio we can analyse di�erent types of hedging errors.

First of all we have seen (in Example 5.1) that, as it is impossible to hedge continuously,
we are forced to rebalance the portfolio only at discrete time instants. This generates a
time discretisation error, that decreases as we tend to the ideal continuous case described
by Black-Scholes. The standard deviation of the profit and loss decreases as a constant
times 1/

Ô
n, where n refers to the number of intervals. This nonlinear behaviour of the

error as a function of the number of intervals shows that even if you put a very high e�ort
in increasing the number of time steps, you don’t get the same high benefit in terms of
error reduction. For this thesis we have chosen most of the times a number of intervals
n = 80, which, fixing a time horizon of one year, corresponds to hedging each 4/5 days.
We have not considered transaction costs in this thesis, but rebalancing frequently can
be very expensive in reality, so the number of intervals can’t usually be increased too much.

Analysing the hedging error for a European Put Option (Example 5.2) has been a key
in this thesis, since it was a way to check the analytic formula of the hedging error

ZT =
⁄ T

0
e

r(T ≠t) 1
2S

2
t �t(‡2

H ≠ ‡S(t)2)dt,

derived in Chapter 3. The numerical study confirmed the theoretical formula and its
implications regarding the impacts in hedging error for a derivative instrument due to a
model mismatch. This type of mismatch can arise for instance from a wrong calibration
in the model parameters and leads to a positive (negative) hedging error if the volatility
of the BS model used in the simulation of the underlying is smaller (larger). The volatility
that we use to simulate a�ects also the variance of the P&L distribution, which gets larger
if we increase the volatility used in the simulation model and smaller in the other case.
Actually, we have observed that if the di�erence between the two volatilities is not so big
(for instance 0.21 or 0.19 instead of 0.2), the hedging error is still present, according to the
analytic formula, but is not as large as in the other analysed cases (when we changed the
volatility to 0.3 and 0.1). This suggests that as long as you use a model that is very close to
the real behaviour of the market factors, you could still hedge your portfolio. However it is
recommended to use a correct model when possible since if, on the other hand, you are us-
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ing a model which di�ers more from the real one, the hedging error can be very significant.

It is worth pointing out one more time what we have written in Chapter 3 after the
derivation of the analytic formula: the fact that we get an a.s. positive (negative) hedging
error doesn’t mean we are creating an arbitrage. The point is that, for our purposes of
analysing the e�ect in the model mismatch, we have assumed that we are able to sell
the claim at the "hedging price", not the one computed using the dynamics of the un-
derlying with parameters µS and ‡S . It is not an arbitrage but it is what the hedger
would gain/loose if he managed to sell something at his estimated price on the market
and hedging the position with his model and it shows very well the e�ects of a possible
model mismatch.

The third case study (Example 5.3) represents the core of this thesis and showed that
what we experienced for a derivative contract (in the Put example 5.2) where we con-
sidered only market risk, can be extended to its CVA as well: a model mismatch creates a
bias in the profit and loss distribution of the hedging strategy. As in the previous example,
we observe that the variance of the P&L distribution is reduced (increased) if we hedge
with a model with lower (higher) volatility. However in the CVA case the overall variance
is a bit reduced. This could intuitively be explained with the fact that, when we deal
with CVA computations, we have an extra inner MC loop when we compute its price,
so the MC variance of the outer simulation loop gets reduced as pointed out by Ruiz in
[16]. The impact of the hedging error of the credit part is negligible (note that this could
change if we used dynamic credit models, but the purpose of this thesis was, as previously
remarked, to analyse mainly the error in the market risk hedging).

Example 5.4 is the case study that most stimulates ideas for further research. In prac-
tice it usually happens that banks have complex pricing models (corresponding to the real
evolution of the market factors), but simpler models to carry out the simulations of the
market factors. Here we price the portfolio with a model that we consider to be correct
and simulate with a di�erent one. We observe that, changing the volatility ‡P in the inner
Monte Carlo loop, we obtain a significant bias in the profit and loss distribution, so this
strategy has an impact on the hedging error.

With the final Example 5.5 (that actually represents a case that is not so common in
practice) we see what happens when we use a correct simulation model, but a di�erent one
for the valuation of the portfolio when computing the CVA in each time step. The biggest
di�erence produced by this model mismatch is in the variance of the P&L distribution
and opposite to the results in the previous examples we do not get a significant bias.
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6.2 Conclusions
We can conclude that hedging error, not only when hedging the CVA but also in general,
can arise from di�erent causes.

The discretisation has an impact on the standard deviation of the profit and loss dis-
tribution rather than on its mean. Reducing this error is not always easy. As a matter of
fact, taking more intervals is usually too expensive in practice and it increases a lot the
overall computational time of the code.

Regarding the first type of model error we have analysed, we have observed similar
behaviours both in the case without and with the CVA. Using di�erent models for simu-
lation and hedging causes a bias in the hedging error as expected by the analytic formula.
If the di�erence in the volatility of the two models is small it may still be possible to get
a good hedge, but our results suggest that if we have access to the correct model for the
evolution of the risk factors, it is recommended to use it. Also the case in which we price
with a correct model and simulate with a di�erent one, produces a hedging error that
suggests it is better to use the the correct model if we have it.

When instead the two simulations of the market factors are carried out with the same
model, di�erent from the pricing model (Example 5.5) we do observe an error but not as
significant as the one obtained in the other examples. This could be due to the fact that
the two models we have used in this thesis are very similar (we have only changed the
volatility parameter) so it seems it is still possible to hedge as long as the dynamics for
the simulation is correct. However it is not obvious that we would get the same result if
the models were more complex so further studies are needed for this type of model error.

6.3 Future Research
First of all, since we do not have a general closed formula for the hedging error when using
one model for the simulation and another one to hedge and price the portfolio (Example 5.4
and 5.5), it could be interesting to develop these cases. It would be particularly interesting
to develop the error due to the model mismatch presented in Example 5.4, that represents
a common strategy adopted by the banks. For instance, what would happen if we relaxed
the Black-Scholes assumption of constant volatility and used a stochastic volatility model
for pricing but a BS model in the simulation?

Furthermore one could try to hedge the CVA for a basket of options or for a di�erent
financial derivative.

Naturally it would also be interesting to use real market data or to check for instance
the performance of a real hedging strategy used by a bank, with their models for simulation
and pricing.
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