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Sammanfattning

Tillämpningen av neurala nätverk i finans har fått förnyat intresse under de
senaste åren. Neurala nätverk har en erkänd förmåga att kunna modellera
icke-linjära förhållanden och har bevisligen visat sig användbara inom områ-
den som bild och taligenkänning. Dessa egenskaper gör neurala nätverk till
ett attraktivt val av model för att studera finansmarknaden

Denna uppsats studerar användandet av rekurrenta neurala nätverk för pre-
diktering av framtida prisrörelser av ett antal futures kontrakt. För att un-
derlätta får analys jämför vi dessa nätverk med en uppsättning av enkla
framåtkopplade nätverk. Vi dyker sedan djupare in i vår analys genom att
jämföra olika målfunktioner för nätverken och hur de påverkar våra nätverks
prestation. Vi utökar sedan den här diskussionen genom att också undersöka
multi-förlust nätverk. Användandet av flera förlust funktioner visar på bety-
delsen av vårt urval av attribut från indatan. Vi studerar ett par simpla och
komplexa attribut och hur de påverkar vår modell. Det hjäper oss att göra
en ytterliggare jämförelse mellan våra nätverk. Avslutningsvis så undersöker
vi vår modells gradienter för att få en utökad förståelse över hur vår modell
agerar med olika attribut.

Resultaten visar på att rekurrenta nätverk utpresterar framåtkopplade nät-
verk, både i uppgiften att maximera sharpe ration och precision. De enkla
attributen visar på bättre resultat när nätverket optimeras för precision. När
vi optimerar för att maximera Sharpe ration fungerar de komplexa attribu-
ten bättre. Tillämpningen av multi-förlust nätverk visade sig framgångsrik
när vårt huvudmål var at maximera sharpe ration. Våra resultat visar på
en signifikant ökad prestation av våra nätverk jämfört med ett par enkla
benchmarks. Genom ensemble metoder uppnår vi en Sharpe ratio på 1.44
samt en precision på 52.77% på test datan.





Abstract

The application of neural networks in finance has found renewed interest in
the past few years. Neural networks have a proven capability of modeling
non-linear relationships and have been proven widely successful in domains
such as image and speech recognition. These favorable properties of the
Neural Network make them an alluring choice of model when studying the
financial markets.

This thesis is concerned with investigating the use of recurrent neural net-
works for predicting future financial asset price movements on a set of fu-
tures contracts. To aid our research, we compare them to a set of simple
feed-forward networks. We conduct further research into the various net-
works by considering different objective loss functions and how they affect
our networks performance. This discussion is extended by considering multi-
loss networks as well. The use of different loss functions sheds light on the
importance of feature selection. We study a set of simple and complex fea-
tures and how they affect our model. This aids us in further examining the
difference between our networks. Lastly, we analyze of the gradients of our
model to provide additional insight into the properties of our features.

Our results show that recurrent networks provide superior predictive perfor-
mance compared to feed-forward networks both when evaluating the Sharpe
ratio and accuracy. The simple features show better results when optimizing
for accuracy. When the network aims to maximize Sharpe, the complex fea-
tures are preferred. The use of multi-loss networks proved successful when
we consider achieving a high Sharpe ratio as our main objective. Our results
show significant improved performance compared to a set of simple bench-
marks. Through ensemble methods, we achieve a Sharpe ratio of 1.44 and
an accuracy of 52.77% on the test set.
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Chapter 1

Introduction

Neural networks have gained immense popularity over the past few years
for their ability to allow modeling without a preconception of an underlying
structure in the data. The financial market is a domain that is notoriously
hard to model using traditional methods. Due to neural networks unsuper-
vised approach to modeling data, it is possible that we could find non-linear
relations in the markets which past methods fail to find. A promising type of
network is the Recurrent Neural Network which in contrast to simple feed-
forward networks, is able to take into account the time dependency inherent
in financial data.

We aim to analyze both recurrent and feed-forward networks on a set of
futures contracts on commodities, rates and FX contracts. Equipped with
this proposition, we are immediately faced with two issues. If we want to
understand futures trading and the financial market, a statistical model that
is interpretable is preferred compared to a black-box model such as a neural
network. If we want to investigate various neural networks, highly noisy data
coming from financial sources make it hard to perform informative experi-
ments. By considering different feature setups and model architectures, this
thesis aims to walk the fine line between these two contradictory statements
and provide a detailed analysis of the relation between neural networks and
financial markets.

1.1 Research questions

Throughout this thesis we seek to gain a deeper understanding into the
nature of the market and how to explicitly tune a set of neural networks to
exploit possible inefficiencies. In particular we will limit our research to the
following set of questions.
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1. What set of features are most significant to the task of predicting future
returns?

2. Can a recurrent neural network outperform a Feedforward network
given the same feature setup?

3. What is the influence of the objective function of the Neural Network
and how does it impact feature selection?

1.2 Related work

This thesis stands on the shoulders of Philip Widegren’s Masters Thesis
"Deep Learning-based forecasting of Financial Assets" [18]. Widegren inves-
tigates and compares the use of Feedforward-Networks and simple Recurrent
Networks for application of financial asset forecasting. Our thesis serves as
a direct extension of Widegrens work hence a great deal of the methodology
is inspired by the paper to enable us to provide a comparison between our
different methods.

Further work has been done in the intersection between machine learning
and finance by various authors. Another masters thesis that touches upon
this subject is Magnus Hansson’s Thesis "On Stock Market Prediction using
LSTM Networks" [8]. Hansson compares the use of an advanced type of
recurrent network, the Long-Short Term Memory (LSTM) network, to more
traditional auto-regressive moving average models. The thesis investigates
both the models performance across different markets with respect to di-
rectional accuracy as well as evaluating trading strategies based upon the
accuracy of its predictions. The author concludes that the trading strate-
gies generated by the LSTM outperform the conventional time-series models.

An interesting paper that concerns time-series prediction is "Deep and Con-
fident Prediction for Time Series at Uber" [19]. The authors predict the
number of trips given different weekdays and holidays together with devel-
oping a framework for anomaly detection using LSTM networks. The most
interesting aspect of the paper is the emphasis of utilizing LSTMs for auto-
matic feature extraction in time series data.

Another paper which attempts to apply Deep Learning to Finance is "A
Deep Reinforcement Learning Framework for the Financial Portfolio Man-
agement Problem" by Z. Jiang et al [12]. Deep Reinforcement Learning has
found popularity in tasks such as learning to play video games directly from
the pixel data. In this paper the authors apply it to create automatic trading
bots from intraday data. To learn a video game with only the pixels as input,

2



an RL agent uses neural networks created for image recognition to determine
the players state on the board. Similarly, in the case of financial markets,
the authors uses among other methods, LSTMs, directly on financial data to
determine the trading bots state in the market. One of the conclusions the
authors draw is that LSTMs perform worse than other networks and specif-
ically that simple Recurrent Networks and Convolutional Neural Networks
outperform them.

1.3 Scope and Limitations

The thesis focuses on understanding and predicting financial markets through
the use of neural networks. One limitation of our research is hyperparameter
optimization. We have searched through a relatively large space of hyper-
parameters together with training each network with different random seeds
to provide a measure of stability as well. This is a process that can always
be explored further to provide even more accurate results.

1.4 Outline

We employ the following structure to our thesis. In chapter 2 we begin by
giving the necessary background information to understand our data and an
idea of why financial markets are hard to predict. Chapter 3 dives into the
construction and optimization of feed-forward and recurrent neural networks.
Chapter 4 gives a detailed explanation of our methodology including feature
extraction and preprocessing for our data as well as an insight into what
performance metrics we consider for our networks. We also mention what
architectures we wish to explore and how we evaluate the importance of
a feature in our model. We present our results together with a detailed
analysis of them in chapter 5. The discussion in chapter 6 then begins with
a more general comment on our methodology and results where discuss the
effectiveness of our method. Chapter 6 then proceeds with a discussion on
how well we have researched our initial research questions and again pinpoint
the limitations of our analysis. We end the discussion chapter with a note
on possible future work that could be used to extend this thesis. A final
conclusion is presented in chapter 7.
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Chapter 2

Financial Background

Financial data is some of the most difficult data to model. In this chapter we
give the necessary background to understand the data in this thesis as well
as outlining the difficulties that arise when trying to model financial data.

2.1 Futures

For our input data, we will consider a special type of financial contract called
Futures contracts. A section on future contracts can not be complete without
and introduction to the forward contract. Consider an underlying asset X
which could for example be a commodity such as gold. A forward contract
on X, made at time t with a delivery date at T is a contract which stipulates
the holder to receive a fixed amount of the underlying asset at time T for
the forwardprice K. The forward contract thus ensures that the holder
is mitigated from the risk of price movements in the underlying asset. In
the forward contract the transaction is settled at the delivery date, when
the forward price K is paid to receive the underlying. This brings us to
the futures contract. With the same setup as before, the futures contract
differs from the forward by the fact that all payments from the holder of the
contract to the underwriter are made continuously until the delivery date T
is reached. Let F (t, T,X) denote the futures price at time t < T . At time
t+ �t the holder of the contract receives the difference

F (t+ �t, T,X)� F (t, T,X). (2.1)

As the contract is settled continuously, the value of price of the futures con-
tract at any time is 0. Hence, it is free to enter or leave the contract at any
time, the only obligation is the payment stream.
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2.2 Efficient Market Hypothesis

This thesis aims to evaluate the performance of Recurrent Neural Networks
on the basis of its ability to predict future market movements. The input to
our model is the aggregated past price movements of several future contracts.
The Efficient Market Hypothesis (EMH) concerns the general claim that
given any collection of information about the market, is it at all possible to
predict the future? The EMH is mainly associated with two claims:

1. Price changes in financial markets are random

2. The price today reflects all available information about the market.

This leads to the market being considered efficient. There are different forms
of the EMH which concerns what to include as "all the available informa-
tion". Specifically, this refers to three variants of efficiency: weak, semi-
strong and strong.

2.2.1 Weak Efficiency

The weak form of the EMH states that a market exhibits weak-form effi-
ciency if the current price of the security completely includes all historic
public information about historic prices, trading volume and other informa-
tion available from the market only. A consequence of this is that future
behaviour is uncorrelated with the past. Another name for the weak form
efficiency is unsurprisingly the random walk theory.

2.2.2 Semi-strong form

The weak-form efficiency considers public information limited to historic or-
der book data. The semi-strong efficiency considers all publicly available
information. That is, in addition to the claims of the weak-form, it consid-
ers non-market information such as earnings and dividends information as
well as both news data about the market, economy and politics. While the
weak-form states that analyzing past prices is useless, the semi-strong form
goes one step further and considers even fundamental analysis to be a futile
endeavor.

2.2.3 Strong form

In addition to historic price data and non-market data the Strong form
efficiency states that the current price even reflects all insider information

that is not considered to be public information. There is little reason to
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believe that the market exhibits strong form efficiency, one reason being
that insider trading continues to happen.

2.2.4 Adaptive Markets

Even though strong-form efficiency and even semi-strong efficiency seem im-
probable, there is compelling evidence that the weak-form holds. Still, the
fact remains that some hedge-funds, trading firms and individual investors
have been shown to consistently beat the market. The most notable example
being the fully systematic fund Renaissance Technologies which has shown
an annualized 35% return over a 20 year period [15]. This type of perfor-
mance is rare, but it is something that is not covered by the EMH. The
rising discipline of behavioural economics has sought to explain the market
as being driven by a large part by fear and greed and are thus not at all
times rational. A more nuanced theory that extends the EMH is the the-
ory of Adaptive Markets [14]. The Adaptive Markets Hypothesis takes into
consideration the irrational behaviour of investors and states that:

Prices reflect as much information as dictated by the combina-
tion of environmental conditions and the number and nature of
"species" in the economy.

"Species" refers to different market participants such as hedge funds, retail
investors and pension funds. The theory states that the degree of market
efficiency varies between different time periods, markets and the adaptability
of market participants. From this, one can derive a number of consequences
that puts the theory at odds with the EMH:

1. Arbitrage opportunities exist

2. Fundamental analysis, technical analysis and other quantitative strate-
gies are able to perform well in certain environments.

3. The relationship between risk and reward, the price of risk, is con-
stantly changing over time. An adaptive strategy can thus be deemed
better to achieve a consistent level of expected returns.

Hence, according to the Adaptive Markets Theory we can possibly expect
to see evidence of increased prediction ability in different time-periods, pos-
sibly indicating that the rate of market efficiency is lower in various market
conditions.
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2.3 Stationarity

The notion of market efficiency can be related to the mathematical notion
of stationarity. Let X

t

denote a time series and let F
X

(x
t1+h

, . . . x
tk+h

)
represent the joint cumulative probability distribution of X

t

at times t1 +
h, . . . , t

k

+ h. X
t

is then said to be strictly stationary if

F
X

(x
t1+h

, . . . x
tk+h

) = F
X

(x
t1 , . . . , xtk) 8k, h, t1, . . . , t

k

(2.2)

In other words, a time series X
t

is strictly stationary if the distribution of
the data is the same for all time periods.
There is a weaker form of stationarity as well, which states that for a time
series is weakly stationary if

E[X
t

] = µ (2.3)
Cov(X

t

, X
t+h

) = �
h

. (2.4)

In other words a time series X
t

is weakly stationary if its expected value is
constant and the covariance with past data is only dependent on the lag-
factor h and not which time period t is taken into consideration. Note that
strong condition implies weak stationarity. An example of a non-stationary
time series is the random walk

X
t

= X
t�1 + "

t

(2.5)
"
t

⇠ N (0,1) (2.6)

The weak form of the efficient market hypothesis states that markets exhibit
behaviour similar to random walks. A stationary financial time series would
thus contradict the EMH. We cannot expect a financial time series to display
stationarity throughout the entire dataset.
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Chapter 3

Neural networks

The name Neural-Net stems from its history of trying to find a mathematical
representation of the information processes of the brain. The artificial neural
network consists of interconnected groups of artificial neurons. The neurons
fire through an activation function which represents the similar function in
the brain where neurons either activate or not depending on which informa-
tion they receive. Learning in neural networks is composed of updating the
connections between the artificial neurons. This is similar to how the human
brain updates the synaptic connections between the neurons. Our focus is
not whether these are accurate representations of biological information pro-
cessing systems but rather their strength as devices for pattern recognition.

Neural networks have gained popularity due to the fact that they are able
to effectively model data using very limited assumptions on the underlying
distribution and discover patterns that too complex for humans or other
algorithms to find. In classical statistical modeling, the data aids in the
process of model selection. We can note that the data seems to be linear
or polynomial or exhibit other properties which allows us to make educated
guesses on the underlying distribution and what model would be best to
serve our purpose. The data is then used to estimate the parameters in this
model to at last compare this fitted model to other alternatives. In the world
of Neural Networks, the role of data is slightly different. Data is used to di-
rectly model the underlying function which generates the data. The clear
advantage is that we need no assumption of the distribution of data since
the neural networks itself discovers it.
Thus, another term for the neural net could be universal function approxima-

tors. It can be shown that a feed-forward neural network with 1 hidden layer
and a finite number of neurons can approximate any continuous function on
compact subsets of Rn.
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3.1 Feed-forward neural Networks

Mathematically, the neurons in an artificial neural networks is represented
by the weight matrices W k. The activations are non-linear functions f which
usually squash the input into a smaller range. The number of hidden-layers is
determined by how many matrix multiplications and non-linearities exist be-
tween your input-layer and output layer. We can describe the architecture of
the feed-forward network succinctly by the following process of calculations.

Given an input X 2 Rd, the output y of a L layer neural net is found by an
iterative process of matrix multiplications and non-linearities. This is called
a forward pass of the network and is defined as
Definition 3.1. Forward pass

h1 = f1(W T

(1)X + b
l

) (3.1)

h
l

= f l(W T

(l)h(l�1) + b
l

) (3.2)

y = fL+1(W T

(L+1)h(L) + b
L+1) (3.3)

The feed-forward neural network is thus a composition of functions f l�W (l)T .
We can now arrive at the Universal Approximation Theorem
Theorem 3.2. Universal Approximation theorem Let ⇢(·) be a non-constant,

bounded and monotonically-increasing continuous function. Let I
m

be an m-

dimensional unit hypercube [0, 1]m. The space of continuous functions on

I
m

is denoted C(I
m

). Then, given any " > 0 and any function f 2 C(I
m

),
there exists an integer N , real constants v

i

, b
i

2 R and real vectors w
i

2 Rm

,

where i = 1, . . . , N such that we may define

F (x) =
NX

i=1

v
i

⇢(wT

i

x+ b
i

) (3.4)

as an approximate realization of the function f where f is independent of ⇢;
that is,

|F (x)� f(x)| < " (3.5)

for all x 2 I
m

. In other words, functions of the form F (x) are dense in

C(I
m

)

Note that equation 3.4 is exactly the operation of a one-layer feed-forward
neural network. We can thus conclude that a feed-forward neural network
has the capacity of approximating almost any function.
This may seem like a gift, but it imposes some limitations on the benefit of
using a neural network for statistical analysis. Given a task such as classifica-
tion, each layer transforms the data in such a way that distinct properties of
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each class can be extracted to further aid the classification that is performed
in the last layer. The issue is that how exactly this is performed is still an
open research question. Neural Networks are also considered non-identifiable

models. Training two equivalent neural networks on the same task can lead
to different values of the weights which further makes the model difficult to
interpret. Neural Nets are for this reason called black-box models. Some
applications of neural networks can range from predicting customers risk-
premiums for a insurance company to identifying brain damage from MRI-
scans. Common to both of these applications is that the model needs to
have a level of interpretability to allow experts to motivate and verify the
decision of the model, otherwise the models decision could possibly lead to
life threatening consequences in the case of applications within health-care.

Figure 3.1: Architecture of a two layer feed-forward network. The circles
represent neurons and the connections between them synapses.

3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) can best be described as an extension of
vanilla feed-forward networks with the property that the output of the model
serves as an input together with the next training example. This property
makes RNNs suitable for tasks which involve a time series such as speech
recognition and machine translation. The idea of RNNs stem from the fact
that humans refer to previous information when performing a task. When
we read a sentence, we do not evaluate each individual word as they are but
evaluate them given the previous words in the sentence. To model this sort
of memory, recurrent neural networks keep a hidden state h

t

which serves as
a vector that summarizes the information in the previous inputs.

There are several different types of input-output architectures for RNNs
which are chosen given the nature of our problem. There are sequence input

and non-sequence output models which can for example be used to classify
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what genre a song belongs to. There are also sequence input to sequence out-

put models which are prevalent in translation tasks. A third model would
be non-sequence input to sequence output. These work by for example gen-

erating descriptions of a given image.

3.2.1 Simple Recurrent Neural Network

Consider a sequence of inputs x1, . . . , xT with x
i

2 RD. At time-step t,
the RNN takes the current input x

t

together with the previous hidden state

h
t�1 2 Rp to calculate the output. In particular, at each time-step we apply

the recurrence formula

h
t

= f
W

(x
t

, h
t�1) (3.6)

where f
W

is a function with parameters W . These parameters are the same
for every time-step. The output can then be computed as

y
t

= g
W2(ht) (3.7)

where g
W2 can be modeled as a simple feed-forward net.

Figure 3.2: RNN

Simple RNNs are thus simply a sequence of regular feed-forward networks
where the output is a hidden state.

Simple RNNs have shown to be effective in modelling non-linear time series.
However, they exhibit a few issues which need to be addressed:

1. As the gradient is propagated through time, RNNs can have difficulties
modeling long time-series because of vanishing or exploding gradients

2. Simple RNNs can have problems modeling longer term dependencies
in the time-series.

3.2.2 Long Short-Term Memory

When reading a book, we not only keep track of individual words at a sen-
tence level, we also remember characters and events mentioned several pages
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back and even the theme of the book to evaluate the precise meaning of
what is happening at this moment. There are in other words multiple lev-
els of memory stored in our thoughts which we at each time-point pick and
choose the most relevant thoughts from to aid our task. To model this,
and address the issues of the Simple RNN, Schmidhuber [11] developed the
Long Short-Term Memory Recurrent Neural Network (LSTM). These are
members of the class of RNNs which are called gated RNNs. Regular RNNs
can accumulate information. The previous state is gradually accumulated
throughout the time-series. Sometimes it can however be beneficial to forget

some of this information. In the domain of analysis of financial time-series,
where we deal with highly non-stationary data, we would ideally want to
forget time periods where the distribution of the data differs from our cur-
rent distribution. To achieve this, the LSTM works with a set of gates which
regulate how previous information should be incorporated into the current
output. In particular, the architecture is composed of a memory cell to-
gether with an input gate, output gate and forget gate. The gates produce
an activation, usually created through a sigmoid function, which controls the
extent of which new information flows into the cells. In particular we have:

f
t

= �
g

(W
f

x
t

+ U
f

h
t�1 + b

f

) (3.8)
i
t

= �
g

(W
i

x
i

+ U
i

h
t�1 + b

i

) (3.9)
o
t

= �
g

(W
o

x
t

+ U
o

h
t�1 + b

o

) (3.10)
c
t

= f
t

c
t�1 + i

t

� �
c

(W
c

x
t

+ U
c

h
t�1 + b

c

) (3.11)
h
t

= o
t

� �
h

(c
t

) (3.12)
(3.13)

In the LSTM the hidden state h
t

is created through the context vector c
t

which passes through the output gate o
t

. The context vector in turn consists
of the previous context c

t�1 together with the gated output of the previous
input and hidden state. The context vector is thus a description of the
history of the time series weighted with the new input. The forget and input
gates f

t

, i
t

control how much previous versus new information should be
included in the context. The output gate o

t

then decides how much of this
context should be taken into consideration when constructing the current
hidden state h

t

. This set of operations becomes more apparent in Figure 3.3
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Figure 3.3: LSTM unit. Merging arrows describes concatenation. The upper
flow is the flow of the context vector, the lower part the flow of h

t

. Merging
arrows as seen in the lower left part denote concatenation. The concatenation
follows from the fact that W

f

x
t

+ U
f

h
t�1 = W ⇤

f

[x
t

, h
t�1] for matrix W ⇤

f

=
[W

f

, U
f

].

From the figure, the function of the LSTM unit can be described as a series
of pipes which control the flow of information. The context c

t

, also referred
to as the internal memory of the LSTM flows through the forget gate which
determines how much of the memory we should keep. Next it passes through
a summation sign which determines how much new memory we should in-
clude. The input x

t

and hidden state h
t�1 thus mainly serve to help us

determine how much to alter the context vector.
An issue mentioned with simple RNNs is the problem of vanishing or ex-
ploding gradients. The magnitude of gradients is affected by the derivatives
of the activation functions and weight matrices.

3.2.3 Gated Rectified Units

An alternative to Long-Short Term Memory units is the Gated Rectified
Units (GRU) [2]. As the name suggests, these types of networks also utilize
gates to process the input together with the previous output. Let h

t

, x
t

denote the hidden state and input respectively. The gates of the GRU is
calculated as,

z
t

= �
g

(W
z

x
t

+ U
z

h
t

+ b
z

) (3.14)
r
t

= �(W
r

x
t

+ U
r

h
t�1 + b

r

) (3.15)
h
t

= (1� z
t

) � h
t�1 + z

t

� �
h

(W
h

x
t

+ U
h

(r
t

� h
t�1) + b

h) (3.16)

where � denotes the Hadamard product. The activation functions �
g

,�
h

were originally set to be the sigmoid function and the hyperbolic tangent
respectively. There are a few advantages of using GRUs compared to LSTMs:

1. Fewer parameters due to a smaller number of gates. This leads to
faster training.
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2. Have been shown to exhibit better performance on smaller datasets.
[4]

3.3 Residual Connections

For deep layers with many hidden layers it is common to encounter the
problem of vanishing or exploding gradients. During training, gradients are
propagated throughout the network by the chain rule. Thus, if the gradients
are small, they will eventually vanish given a deep enough network. Residual
Connections or skip connections was introduced by Microsoft Research [9]
to prevent this and ease the training process. Adding residual connections
between the layers can be expressed as

ĥ
l

= F (W,h
l�1) (3.17)

h
l

= ĥ
l

+ h
l�1 (3.18)

(3.19)

Residual Connections are motivated by the fact that if we want to learn
an underlying mapping H(x), we can equivalently approximate the residual
F (x) = H(x)� x instead. The original function thus becomes

H(x) = F (x) + x. (3.20)

In theory, deeper networks should identify redundant layers by letting them
converge to identity functions during training. In practice, this is not guar-
anteed and by adding an identity function to the layer, the network can more
easily identify if the layer is necessary or not.

Figure 3.4: An overview of residual connections.
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3.4 Loss functions

3.4.1 Binary cross-entropy

We are now faced with the task evaluating the performance of our network
and finding a way to tune it’s parameters to more accurately model its given
task. Let us consider the problem of binary classification. Let ŷ

i

represent
the probability of input x

i

belonging to class 1 with y
i

representing the true
class of x

i

. The conditional probability of the targets given our inputs could
thus be modelled as a Bernoulli distribution with probability density function

P (y
i

|X
i

) = ŷ(w, x
i

)yi(1� ŷ(w, x
i

))1�yi (3.21)

The likelihood of our targets given our data is thus

L(y|X) =
Y

P (y
i

|X
i

) =
Y

ŷ(w, x
i

)yi(1� ŷ(w, x
i

))1�yi (3.22)

Considering the negative log-likelihood, we get

l(y|X) = �
X

y
i

ln(ŷ(w, x
i

))� (1� y
i

)ln(1� ŷ(w, x
i

)) (3.23)

This function is in fact denoted as the cost or error function of our neural
net for the task of binary classification. We have thus achieved a metric
for determining the performance of our network. The task of training the
network is reduced to finding the minimum of the error-function.

3.4.2 Sharpe

When evaluating the performance of an investment one usually examines the
Sharpe Ratio which is a measure of the investments return adjusted for its
risk. The task of predicting future returns of financial assets is essentially
a precursor for maximizing our Sharpe ratio. The adequacy of investigating
the directional accuracy relies on the fact that it could be used in a strategy
which maximizes our Sharpe ratio. Is it possible that we could circumvent
this and let our model directly optimize to maximize Sharpe? The Sharpe
ratio is defined as

SR =
E(R)� r

fp
var(R)

(3.24)

where R denotes our portfolios’ return over a period and r
f

the risk-free rate.
How do we incorporate this as our loss function? In the case of optimizing
the binary cross-entropy, we let the activation function of the output layer be
a sigmoid which can be interpreted as the probability of the input belonging
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to a the positive class. In this case we let the activation function be the
hyperbolic tangent, tanh. This scales the output to a variable ŷ(x,w) 2
[�1, 1] which can be interpreted as the size of our position with negative
numbers denoting a short position. We then calculate the returns of our
portfolio as

R
B

= r
B

y(x,w) (3.25)

where B denotes our batch size. We specify our custom loss function as

J(w) = �
1
B

P
R

Bi

1
B

P
(R

Bi

� µ
RB )

2
(3.26)

Note that we specify the loss as the negative Sharpe which we want to
minimize. If directional accuracy were a good indicator of a high Sharpe
ratio we would assume that when scaling our output such that ŷ 2 [0, 1], and
interpreting it as a measure of class assignment, we would achieve similar
accuracy to that of the binary cross-entropy method.

3.5 Stochastic Gradient Descent

3.5.1 Parameter Optimization

The process of optimizing the parameters w to find the minimum value of a
function E(w) is a well studied problem in optimization. Given that E(w)
is smooth and continuous function of w, we can find the gradient OE(w)
which points in the direction of the greatest increase of the error function.
The point w such that

OE(w) = 0 (3.27)

is called a stationary point and could represent both a local minimum, maxi-
mum or saddle point. Our error function could be highly non-convex, giving
us several points where the gradient vanishes. It may not be possible to find
a global minimum. To find an optimal solution would thus require us to
compare several local minima to find a sufficiently good solution.

We proceed by developing a method to numerically find a solution to 3.27.
We want to find a scheme that iteratively updates our weights w such that
E(w) reaches its smallest value. One such update scheme could be described
by

w

(t+1) = w

(t) +�w

(t). (3.28)
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Our main concern involves the choice of �w

(t). Consider adding random
noise to w

(t). That is we let

�w

(t) ⇠ N (0,�2) (3.29)

and then evaluate E(w(t+1)). We repeat this experiment k times and pick
the value of w(t+1) where E has decreased the most. We can improve this
evolutionary strategy by using additional information provided by E(w). We
want to minimize E(w), we could thus take steps in the opposite direction
of the gradient OE(w) such that

w

(t+1) = w

(t) � ⌘OE(wt) (3.30)

This is the most basic form of the gradient descent algorithm where the
parameter ⌘ is known as the learning rate which is a hyperparameter that
needs to be chosen. In this case the error function E is defined w.r.t the
training set. This implies that to evaluate the gradient, we need to first
process the entire dataset, which could be very time consuming. Consider
a dataset with N training examples x1, . . . , xN . If we create a new dataset
which is double the size by duplicating each element, the error function will
simply be scaled by a constant factor which will make no difference in the
gradient descent algorithm. However, this will take twice the amount of
computational time to evaluate.

There exists another approach which takes this problem into account. In-
stead of evaluating the the error function on the entire dataset we consider
it as a sum of individual errors for each training example,

E(w) =
NX

n=1

E
n

(w) (3.31)

We then evaluate the gradient for each training example and update the
weights as such

w

(t+1) = w

(t) � ⌘OE
n

(wt) (3.32)

This version of gradient descent is called stochastic gradient descent. Since
we perform a weight update for each data point, it is possible that we will get
very noisy gradients that may lead us away from the direction of the batch
gradient descent. We can instead consider a trade-off between these two ap-
proaches. Consider using a mini-batch of size B which is randomly sampled
from the data. We then perform

⌃
N

B

⌥
gradient updates at each epoch. When

using mini-batch gradient descent we achieve the computational efficiency of
stochastic gradient descent while not being prone to the noisiness of the al-
gorithm. The batch-size B is a hyperparameter which needs to be optimized
together with the learning rate ⌘ to find a good pair.
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We note that a practical implementation of the gradient descent algorithm
involves analytically calculating the gradient OE(w). This is by considering
the output of our network as composite function of our weight layers and
taking the derivative, using the chain rule, w.r.t to all the weight layers.

3.6 Optimizers

The learning rate fills a crucial role in the vanilla stochastic gradient descent.
A small learning rate yields an update scheme which could be very slow to
converge or even fail to prohibit the weights to get stuck in a non-optimal
minimum. On the other hand a large learning rate could overshoot and fail
to converge completely. It is common to adjust the learning rate at various
epochs of the algorithm to avoid these problems. A simple adjustment would
be to exponentially decay the learning rate at each time step, so that

⌘(t+ 1) = ↵⌘(t) ↵ 2 [0, 1] (3.33)

As the algorithm reaches a minimum, the learning rate decays and can fine
tune the model at a level where a large learning rate would fail. Another
issue we face is that we apply the same learning rate for each parameter. If
our input data contains features which change with varying frequencies we
may need to make larger changes to some parameters of our model and not
others. We would thus need different learning rates for each parameter.

3.6.1 Adagrad

Various adjustments to the gradient descent algorithm exists. One of them,
Adagrad incorporates both learning rate decay and different learning rates
for each parameter. Let

g
t,i

= OE(w
t,i

) (3.34)

denote the gradient of parameter w
i

at time step t. We introduce the diagonal
matrix G

t

where the diagonal element G
t,ii

is the sum of the past squared
gradients of parameter i up to timestep t. The weights are then updated as
follows

w
t+1,i = w

t,i

� ⌘p
G

t,ii

"
OE(w

t,i

) (3.35)

This results in that parameters which are rarely updated, with a small ac-
cumulative gradient contribute to a larger step in the gradient update.
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3.6.2 Adam

ADAM [13] is another update scheme which computes adaptive learning
rates. Adam keeps track of both past gradients and past squared gradients
as follows

m
t

= �1mt�1 + (1� �1)gt (3.36)
v
t

= �2vt�1 + (1� �2)g
2
t

. (3.37)

It thus computes an estimate of both the mean and variance of the gradients.
The initial values of m

t

and v
t

are 0. This implies that when the decay rates
are small, i.e �1,�2 are close to one, m

t

and v
t

will be biased towards 0. To
adjust for this, we compute the bias corrected mean and variance,

m̂
t

=
m

t

1� �1
(3.38)

v̂
t

=
v
t

1� �2
(3.39)

Similar to Adagrad, we then compute the weight updates by,

t+1 = w
t

� ⌘p
v̂
t

+ "
m̂

t

(3.40)

3.7 Regularization

Given the large number of parameters in a Neural Network, it is very prone to
overfit the data. Overfitting occurs when the criterion in model-selection is
not the same as when judging the performance of the model. When training
the model, we want to fit the training data as well as possible by minimizing
the loss function. When evaluating the model, we test it on unseen data
which the model has not been optimized for. Overfitting our model refers
to the fact that our model has learned the training set to well and cannot
generalize well to unseen data. To prevent this we must introduce some
limits on the networks capabilities.
There are three common ways to regularize Neural Networks.

1. Constraining the parameter values.

2. Ensemble learning.

3. More training data.

We will mostly be concerned with the first two.
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3.7.1 L1 regularization

A common way to regularize a statistical model is introducing limits on the
magnitude of the parameters. This can be done by introducing a regular-
ization term to the loss. Let J denote our cost function, to regularize our
model we could introduce the new cost function

J(f(W,x), y) + �R(W ) (3.41)

A common choice for R is the L1 norm over all parameters.

R(W ) =
LX

k=1

X

i,j

|W k

i,j

| (3.42)

The objective function to minimize is thus the prediction error regularized
on the condition that the elements of the weight matrices should not be too
large. The parameter � determines the amount of regularization we want
to introduce. To much regularization can instead lead to our model under-
fitting the data which implies that it cannot adequately capture the structure
of the data.

3.7.2 Ensemble Learning

Wisdom of Crowds is the idea that a large group of people are collectively
better at decision making than even individual experts. In Ensemble Learn-
ing we apply this idea to increase the predictive performance of our clas-
sifiers by decreasing generalization error. Given a set of k trained models
M = {M1, . . . ,M

k

} we can combine the these into a single classifier by
considering the average of their outputs.

M(x) =
1

k

kX

i=1

M
k

(x) (3.43)

This is the simple average of the model, we can consider geometric or other
weighted averages as well. A further possibility is training a new classifier
given the outputs of our k models to learn the optimal weighting scheme.
This is called stacking.
Two conditions for Ensemble Learning to increase performance is that the
individual performance of each classifier must be good while preserving
diversity between the classifiers. This essentially keeps the average perfor-
mance the same but decreased the variance of the decisions.
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3.7.3 Dropout

Dropout [10] was introduced in 2012 as a novel way to prevent overfitting in
Neural Networks. Consider a one-layer neural network with n hidden units.
Dropout applies a probability p on each unit to randomly be removed from
the network at each forward pass during training. Consider the forward pass
at the lth layer of a feed-forward neural network.

hl
t

= �(W
l

h
l�1 + b

l

) (3.44)

Applying dropout to layer l coincides with introducing a Bernoulli dis-
tributed random variable rl 2 Rd of the same dimension d as the previous
output h

t�1

rl
i

⇠ Bernoulli(p) (3.45)

ĥ
l�1 = h

l�1 � rl (3.46)

hl
t

= �(W
l

ĥ
l�1 + b

l

) (3.47)

This is equivalent to setting certain columns in W
l

to 0.
The neurons to drop are sampled randomly at each forward pass in training.
When testing, we scale each neuron by p such that the output at test time
is the expected output during training. It is not immediately clear how
dropout increases generalization in the network. Dropout can be regarded
as a form of ensemble learning. In batch-learning, we update the weights
by averaging the losses for each training example in the mini-batch. With
dropout applied we are essentially creating a new, smaller network at each
forward pass. During testing we use the entire collection of neurons and
scale each weight by p. This is equivalent to averaging over all the models
created by Dropout.

3.7.4 Recurrent Dropout

Dropout can be applied between recurrent connections as well. A recurrent
unit processes information both through input-output connections as well as
along the time-dimension through its states. Recurrent Dropout [6] drops
neurons in the time-dependent recurrent connection only.

3.7.5 Early Stopping

When using a gradient-descent based optimization scheme, the number of
epochs impacts the level of overfitting in the model. As with all statistical

21



learning algorithms, we are fitting a model based on only a sample of the
data. The optimal parameter values we attain will thus not be entirely
descriptive of the true distribution. Early Stopping takes this into account
and by utilizing a hold-out set or validation set and computing the loss on
this set during training as well. When the validation loss stops decreasing,
further optimization will lead to over-fitting, hence early stopping will halt
training at this point.

Figure 3.5: Overfitting can be defined as the point when the validation loss
reaches its minimum.

3.7.6 Multi-Task Learning

When training a Neural Network we are usually concerned with only one
metric, be it accuracy of a classifier or the mean-square error of a regression.
There can however be different, but related metrics which could help the
network in extracting signals which tell us something more about the nature
of our original metric. In multi-task learning we create a network with
several shared layers followed by individual layers, each optimized for an
individual metric. The final loss is calculated as a weighted average over all
loss-functions.
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Figure 3.6: An overview of Multi-task learning. The shared layers extracts
features which optimize performance for both tasks while the task specific
layers only optimize for an individual task.

If we are interested in optimizing one metric, introducing another one can
either work by aiding in feature extraction, or it could work as a regularizer.
If the shared layers have two goals to optimize for, it won’t necessarily over-fit
to one of the metrics.

3.8 Scaling

Before inputting the data into the model, it is common practice to perform
feature scaling which standardizes the range of values that each feature
can attain. This is especially important if the scale of the features differ a
lot. Feature scaling is important for mainly two reasons:

1. Model interpretability. With each feature scaled to the same range of
values, the parameters of the model can reveal which features are most
significant for the task. This is most apparent in classical Statistical
methods such as Linear Regression where the absolute value of the
parameters related to more important features will be larger. For our
neural network the value of the weights is not necessarily related to
feature importance.

2. Optimization. On of the key components of the performance of the
Neural Network is on how well our learning algorithm converges. With
our parameters initialized as ✓ 2 [0, 1], unscaled features will lead to our
optimization scheme beginning at a point further from a local minimum
compared to the rescaled features and we run a bigger risk of ending
up at a non-optimal minimum. In the gradient descent optimization
scheme, the weight updates are also dependent on the value of the
feature itself, leading to certain weights updating faster than others.
Feature scaling thus leads to increased performance of the learning
algorithm.
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3.8.1 Min-Max Scaler

A common way to scale features is to use the min-max scaler.

X̂ =
X �min(X)

max(X)�min(X)
(3.48)

This scales the input X into X̂ 2 [0, 1]. The minimum and maximum are
taken over the entire training set and the values are kept for the test set
when re-scaling during testing. An issue with the min-max scaler is that it
scales the data relative to minimum and maximum of the dataset which are
outliers. Thus outlier features will be scaled to 1 while the rest of the dataset
may be scaled to values closer to 0.

3.8.2 Robust Scaler

An alternative to the Min-Max scaler is the Robust Scaler. This alternative
is a method that is more robust to outliers. It does this by considering the
inter-quartile range which is the range between the first and third quartile.
The robust-scaler can be described as

X̂ =
X �median(X)

Q3 �Q1
(3.49)

where Q
i

denotes the ith quartile.
Scaling using the robust-scaler provides a more even distribution of the
dataset.
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Chapter 4

Methodology

Data from eight futures contract from 2000�01�01 to 2018�01�16 is used
as input. The markets are chosen to represent FX markets, commodities and
interest rates. The data consists of the open and close aswell as the highest
and lowest price for each day. These are denoted O

t

, C
t

, H
t

, L
t

respectively.
The data is summarized in Table 4.1.

Table 4.1: Data used for our model.

Gold Commodity Future
Crude Commodity Future
CAD Forex Future
EUR Forex Future
GBP Forex Future
AUD Forex Future
SP500 Stock Indices Future
Tbond Fixed Income Future

A larger set of assets could ofcourse have been chosen. However, we want
to keep the number of assets relatively low to prevent having a large set of
features compared to our number of data points.

Before we dive into our methodology it is worth mentioning that all analysis
was performed using Python 3.6 with the Deep Learning Framework Keras
[3].
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4.1 Pre-processing

Before we input the data into our model we first begin by extracting a set
of features which we believe may be relevant towards predicting future mar-
ket activity. Feature extraction and selection may be considered the most
important part of our modelling task. Given a set of features which are un-
correlated and highly informative for our prediction task, the choice of model
becomes less relevant. One advantage of neural networks compared to more
traditional methods is its ability to automatically extract relevant features.
An example is Speech recognition where traditional methods consists of pre-
processing the speech signal through a series of filters which are designed
similar to how humans process speech. Today, the raw signal is sufficient
to serve as input to a neural network since the feature extraction is handled
automatically by the network. Hence, it is also relevant to investigate if the
raw closing prices C

t

is sufficient to serve as input to our model. This will
be compared to a set of features which are based on Widegren’s [18] feature
setup.

4.2 Features

4.2.1 Simple Moving Average

A simple feature which summarizes past performance is a moving average.
The simple moving average (SMA) of the past m days is defined as

SMA(X
t

,m) =
1

m

m�1X

i=0

X
t�i

(4.1)

4.2.2 Exponential Moving Average

The simple moving average weights all past m points equally. In theory, the
more recent prices should be more relevant and thus be weighted higher in
our average. The exponential moving average (EMA), gives an exponentially
decaying weight ↵ to all past points. It is given by

EMA(X
t

,↵) =
1X

i=0

↵(1� ↵)iX
t�i

, |↵| < 1 (4.2)

It is common do define the EMA by a lookback period of m days similar to
the SMA. This is done by choosing ↵ by

↵ =
2

1 +m
(4.3)
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where m is the number of past days to take into consideration.

4.2.3 Momentum

Momentum is defined as the price difference between todays price and the
price k days ago.

Momentum(X
t

, k) = X
t

�X
t�k

(4.4)

If the momentum is positive, this could be indicative of an upwards trend in
the price.

4.2.4 Stochastic K%

The stochastic K% feature over the past K days can be interpreted as a
measure of how overbought or oversold an asset is. It is given by

StockK(m)
t

=
C
t

�min{L
t

, . . . , L
t�k

}
max{H

t

, . . . , H
t�k

}�min{H
t

, . . . , H
t�k

} · 100 (4.5)

It compares the current closing price C
t

to the relative to the past highest
and lowest price.

4.2.5 Relative Strength Index

The Relative Strength Index (RSI) is another measure of the momentum of
a stock. Let

�
t

= C
t

� C
t�1 (4.6)

U
t

= �
t

I
�t>0 (4.7)

D
t

= �
t

I
�t<0 (4.8)

. We define the Relative Strength as the fraction of the average of the upward
movements U

t

and average of the downward movements D
t

. The RSI is then
this value scaled between 0 and 100 as follows

RS =
SMA(U,m)

SMA(D,m)
(4.9)

RSI(m) = 100� 100

1 +RS
(4.10)

Usually a value below 30 would indicate that the asset is oversold while a
value greater than 70 is an indicator that the asset is overbought.
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4.2.6 Return vs Risk

The purpose of the Return vs Risk indicator is to provide a measure for the
trade-off between risk and return in the contract.

V̂
t

(m) = EMA((C
t

� C
t�1)

2,m) (4.11)

RvR(m) =
C
t

� C
t�1q

V̂
t�1(m)

(4.12)

4.2.7 Commodity Channel Index

The Commodity Channel Index (CCI) is a measure of how far the price has
strayed from its moving average in terms of a moving average of the mean
deviation. The Commodity Channel Index is thus defined as

X
t

=
C
t

+H
t

+ L
t

3
(4.13)

CCI(m) =
X

t

� SMA(X
t

,m)

0.015 · SMA(|X
t

� SMA(X
t

,m)|,m)
(4.14)

4.2.8 Percentage Price Oscillator

The Percentage Price Oscillator (PPO) is a measure of the relative difference
between two moving averages.

PPO(m1,m2) =
SMA(X

t

,m1)� SMA(X
t

,m2)

SMA(X
t

,m2)
· 100 (4.15)

4.2.9 Williams % R

The relation between the current price compared to the high and low can re-
veal information of about volatility and if the asset is overbought or oversold.
The Williams % R is defined as

WilliamsR(m)
t

= � max{H
t

, . . . H
t�m

}� C
t

max{H
t

, . . . , H
t�m

}�min{L
t

, . . . , L
t�m

} · 100
(4.16)

It is bounded in the range [�100, 0]. A value in [�20, 0] indicates that
the asset is overbought while a value in the range of [�100,�80] gives an
indication of how oversold the asset is. A common value m is 14.
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4.3 Feature Setup and further processing

To evaluate feature importance we will mainly compare three different fea-
ture setups. We will use a simple setup which consists mainly of the difference
between various exponential moving averages of various time lengths. We
will also consider a more complex setup which will take into account both
a larger feature setup and also more advanced features which should give a
more detailed account for the current market activity. We will also consider
using just the lagged closing price OC

t

as the only feature. A detailed ac-
count for the features is given below. All moving averages are calculated on
the closing price C

t

.

4.3.1 Simple Features

• C
t

� EMA(10)

• C
t

� EMA(20)

• C
t

� EMA(60)

• EMA(5)� EMA(60)

• EMA(20)� EMA(60)

• EMA(40)� EMA(60)

4.3.2 Complex Features

• C
t

� EMA(20)

• C
t

� EMA(60)

• EMA(5)�Momentum(10)

• EMA(5)�Momentum(20)

• EMA(5)�Momentum(60)

• Stochastic K% with parameter 14

• RSI with parameter 14

• Percentage Price Oscillator with parameters (5, 10)

• Return Vs Risk with parameter 20

• Williams Percent R with parameter 14

• Commodity Channel Index with parameter 20
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4.3.3 Close features

• OC
t

= C
t

� C
t�1

4.3.4 A note on stationarity

The stationarity property was outlined in section 2.3 and defines the con-
ditions that enable classical time-series models to function properly. The
property of equal distribution of our input data across the dataset aids our
neural networks as well. Consider just the closing price C

t

as an input. The
test set could possibly exhibit higher or lower closing prices than the net-
work has encountered before, thus prohibiting the network to make educated
guesses for the output. By differencing C

t

, we hope to map our input data
to a bounded set that is equally distributed across time, since the price jump
between each day should be similar across the dataset. This could however
still not be a stationary set, particularly if our test set contains the finan-
cial crisis of 2008. This issue is manifested in all our features and could
be further prohibited by considering the percentage change instead of the
absolute difference for some features. The advantage of our features as they
are now is that they are based on classical market indicators and provide an
explanatory power in our analysis.

4.3.5 Bias

One of the most challenging aspects of modeling financial data is its low
signal-to-noise ratio. The inherent noisiness in the data makes any model
prone to reducing the parameters to 0 and being affected only by a constant
bias term. To counteract this, it is common to remove any bias terms in
the model. This may however not be enough. Even when removing the
bias term, our model still converged to predicting a constant up or down
movement throughout the test data. This is due to the fact that if a feature
is always positive, the network can itself create a bias term from this data
which again leaves us with the same problem we started with. Scaling by
removing the mean forces features to never be always positive and removes
any bias in the model.

4.3.6 Data splitting

Scaling is performed using the Robust-Scaler as described in Section 3.8.2.
The data is split into training, validation and test splits which refers to a
60%�20%�20% split of the data respectively. Our training, validation and
test set is thus composed of the following dates.
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Table 4.2: Dates for our data split.

Start End
Train 2000-01-01 2011-07-21
Validation 2011-07-22 2014-06-16
Test 2014-06-17 2017-12-27

Because we are dealing with time-dependent data, the order of the data is
kept during splitting. We will also feed the data chronologically into our
models to further avoid any look-ahead bias when training.

For the recurrent architecture our inputs are sequences instead of individ-
ual data points. There are several ways to reshape the data into sequences.
A common way is to consider a moving window of sequences of a fixed
size k. The input data X will thus have dimensions X 2 R

N

0⇥K⇥D with
N 0 = N�k+1. However, this method disregards the fact that the RNN may
want to take into account events which are further back then k data points in
time. We can instead consider inputting the entire sequence into the model
and evaluating each prediction ŷ

t

against the true value y
t

at each time-step.
This is done by splitting the data X into sequences of fixed size k which
are non-overlapping. We process the

⌅
N

k

⇧
sequences by initializing the state

of the RNN with the state of the previous sequence. Thus the memory of
all past events is preserved throughout the training. This is done practically
in Keras by setting the parameter stateful = True in our recurrent units.

At the beginning of the prediction, we ideally want to initialize the state
of the RNN. We do this by providing the RNN with a burn-in period to let
it initialize the states. At each epoch, the state is thus initialized through a
forward-pass of the first k elements in the sequence. This aides the RNN in
providing more accurate predictions from the beginning.

4.4 Metrics

This thesis is concerned with two objectives. The first one is to evaluate to
overall performance of a feed-forward neural network compared to various
recurrent architectures. The metrics which we will utilize to compare models
will be the directional accuracy of the classifiers together with the area under
the Receiving Operating characteristic (ROC) curve, denoted as ROC-AUC.

The ROC curve is created by measuring the True positive rate (TPR) com-
pared to the False positive rate (FPR) of our model when we vary the thresh-
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old probability in our binary classifier. The ROC-AUC is then the area under
this curve which coincides with the probability of predicting a true positive
compared to a false positive. Consider a model which only predicts upward
movements in our time-series. If the up and down movements are unbal-
anced, we could possibly achieve a high accuracy using this method. We
will thus achieve a true positive rate of 1. Varying the threshold to only
predicting downward movements gives a TPR and FPR of 0. Hence the
ROC-AUC will be the area under the triangle created from the straight line
from (0, 0) to (1, 1), which is 0.5. Hence, the ROC-AUC is a more significant
performance metric than the accuracy.

The second problem investigates the benefit of these metrics when put in the
context of creating an automated trading algorithm. A simple strategy which
we will investigate is to trade everyday based on the next-day prediction
of an up or down movement in the market. The metric used to evaluate
this strategy is the Sharpe Ratio. Good predictions on the direction of the
market has clear benefits but it is not certain that they directly translate to
a high Sharpe ratio. This discrepancy will be examined by training networks
optimized either for Accuracy or Sharpe and evaluating them on both of these
metrics. We will further investigate this by considering multi-loss networks
which optimize for both objectives at the same time.

4.5 Architectures

We will consider a wide range of feed-forward and recurrent architectures.
We want to investigate the importance of the number of hidden layers as
well as layer size in the model. This is done in part to investigate if larger
networks provide an advantage when training our network on certain feature
setups. Another reason is that performance of neural networks is highly de-
pendent on different combinations of its hyperparameters. The number of
layers together with the number of nodes of each layer has an impact on the
optimal learning rate and batch size. This symbiotic relationship impels us
to consider several combinations of hyperparameters to be able to provide a
fair comparison when studying our research questions.

4.5.1 Feed-forward architectures

We will consider networks with a hidden layer depth ranging from one to
three. The number of neurons in each layer will also vary and we will specif-
ically consider layer sizes as outlined in Table 4.3
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Table 4.3: Overview of Feed-Forward Networks considered.

Layers Neurons
1 [100], [200]
2 [32,16], [64,32], [128,64]
3 [32,32,16], [64,64,32], [128,128,64]
Activation relu
Optimizer ADAM
Residual Connections Yes/No
Loss function Sharpe / Binary Cross-entropy
L1 Regularization 0.01
Batch Normalization Yes
Dropout 0.5
Input size 80 / 160

4.5.2 Recurrent architectures

We will experiment with single layer Recurrent networks as well as stacked
recurrent networks which processes the data through several different recur-
rent layers. The architectures are summarized in Table 4.4

Table 4.4: Overview of Recurrent Network Architectures

Layers Neurons
1 [64], [128]
2 [32,16], [64,32], [128,64]
3 [32,32,16], [64,64,32], [128,128,64]
Optimizer ADAM
Residual Connections Yes/No
Loss function Sharpe / Binary Cross-entropy
Recurrent Dropout 0.2
Recurrent Unit [LSTM, GRU, Simple RNN]

4.6 Feature Importance

When evaluating the efficiency of a statistical learning algorithm one usually
considers the accuracy of its predictions. For a researcher, one of the most
important parts of a model is however its interpretability. Neural networks
are very hard to interpret and solving this problem is one of the biggest
challenges the research community must solve before neural networks can
achieve widespread adoption throughout society. We propose a novel method
for investigating the importance of the features in our model. This gives us
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further insight into what technical indicators have the most predictive power.

Let T denote the number of timesteps in a series. Let D denote the number
of features per contract and C the number of contracts. Our input X is then
of the form X 2 RT⇥DC together with outputs y 2 RT⇥C . For each timestep
t 2 T and market c 2 C consider the partial derivatives

J t,c

i,j

=
@y

t,c

@X
ti,dj

t
i

2 [0, t], d
j

2 [cD, (c+ 1)D] (4.17)

For a contract c we consider only the features X which were generated from
this the time series of this contract. The implicit belief is that these fea-
tures will be the most relevant when measuring the predictions on contract
c. There are of course relationships between the markets which is left out
from this analysis. The gradients are computed after training is done by
considering inputs and outputs from the test set.

The derivatives gives us insight into how the output at timestep t is affected
when slightly adjusting the values of each feature at previous timesteps.
Hence, a hypothesis is that the most important features will have the largest
absolute gradient, since the networks output is more sensitive to a change
from these. Furthermore, by considering all timesteps t we can investigate
how far back in time the LSTM remembers. Inputs further back in time will
likely have lower impact than more recent inputs.

We conduct two types of analysis using the gradients. We consider the
gradients of the last data point in our series with respect to all previous
input. This gives us an not only which features affect contract c but also
which points in time the recurrent architectures take into account.
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To give a summarizing picture of the effect of the gradients, we will also
consider the mean absolute value of the gradients throughout all time-steps.
That is we find the absolute gradient with respect to feature j as

G
T,cj

=
1

N

NX

i=1

| @y
T,c

@X
ti,dj

| (4.19)

This gives us a picture of the overall impact of a feature.
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Chapter 5

Results

In this chapter we present the results of our findings. To ease notation, we
will describe the model architectures with the following notation.

Table 5.1: Notation

1L1 1L2 2L1 2L2 2L3 3L1 3L2 3L3
Recurrent [64] [128] [32,16] [64,32] [128,64] [32,16,16] [64,32,32] [128,64,64]
Feed-forward [100] [200] [32,16] [64,32] [128,64] [32,16,16] [64,32,32] [128,64,64]

5.1 Benchmark

We will compare our results to a buy and hold strategy as well as a naive
strategy where the next prediction equals the previous direction such that if
Ŷ
t

denotes our prediction at time t, we have

Ŷ
t

= Y
t�1 (5.1)

The performance of these two strategies is presented below

Table 5.2: Benchmark strategies

Sharpe Return Accuracy ROC
Buy and Hold -0.036 -1.7% 51,8 % 0.5
Naive strategy -0.45 -6,3% 48,6% 0.48
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5.2 Feed-forward Neural Network

5.2.1 Vanilla Feed-forward Network

We compare various feed-forward network architectures and objective func-
tions. We also investigate the effects of including residual connections on
these networks.

Figure 5.1: Evaluating the accuracy of our feedforward Networks. The differ-
ent figures indicate whether residual connections were used or not together
with which objective functions the networks were trained for.

Figure 5.1 evaluates the accuracy of our vanilla feed-forward models on our
test set. Beginning with the two types of feature setups, the simple features
seem to outperform across all network architectures and optimization goals.
The complex features include both a larger feature setup which may benefit
the network by providing more information about the time series and a set
of more advanced features that should give additional insights into market
behaviour. These attributes can however at the same time be detrimental to
model performance since additional features introduce the probability of the
model overfitting, especially with our rather limited number of datapoints.
The Complex features also exhibit quicker features which on one hand may
be more impactful when deciding the next day accuracy but at the same
time can fail to capture longer term trends which may be features that are
important for predicting the directional movements of the time series.
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By introducing more parameters into our model by increasing both layer
depth and including more neurons per layer, we can detect a slight improve-
ment in performance. This adheres to the hypothesis that financial time
series exhibit highly non-linear dependencies and thus our network requires
deeper architectures to be able to make decent predictions.

Residual connections seem to exhibit lesser performance than its counter-
part. The advantage of residual connections is the ability to utilize deeper
networks without impacting network performance by introducing issues such
as vanishing or exploding gradients. The residual connections seem to have
one advantage noticeable across all architectures and that is stability. With
the residual connections, each network, no matter what initialization, has
the same input propagated throughout the network. We see less difference
between the networks performance since we only need to learn an easier resid-
ual function F (x)�x instead of each network learning F (x). This introduces
smaller differences between the networks which leads to more stability. We
can summarize the above two discussion in Figure 5.2.

Figure 5.2: The accuracy of our ensemble grouped by number of layers and
use of residual connections. More layers and non residual connections seem
to be a winning combination. The figure also highlights the difference be-
tween the simple and complex features. Each model is chosen based upon its
optimal combination of learning rate and epochs to give a fair comparison.
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We can evaluate the accuracy when optimizing for the Sharpe Ratio by scal-
ing the output of our model to the range [0, 1] and computing the accuracy.
There is no obvious reason why this would work better than the accuracy
method but it could confirm the validity of a strategy based on directional
accuracy. When optimizing for the Sharpe Ratio, if we were able to achieve
a high accuracy, this could imply that the network itself figures out the
strategy of only predicting up and down movements and acting on that in-
formation. Clearly, this is not the case of the Feedforward network. We can
approach this same problem by instead evaluating the Sharpe ratio for both
methods and comparing.

Figure 5.3: Evaluating the Sharpe of our Feedforward Networks for different
objective functions and whether we include residual connections.

Not surprisingly, we achieve a higher Sharpe for networks that are also opti-
mized for this task. Inspecting the second column in Figure 5.3 provides us
with two important insights. The first is that networks with more parameters
are favored compared to smaller networks. This could indicate that maximiz-
ing the Sharpe function, balancing the trade-off between return and variance,
requires additional non-linear dependencies that smaller networks are inca-
pable of capturing. A second interesting aspect of the results is that the
networks optimized for Sharpe exhibit less difference in performance when
utilizing either the Simple or Complex features and in the case of larger
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networks, favors the Complex features. The more advanced feature setup
gets its name from applying features which supposedly paint a more detailed
picture of the time series. To make an adequate maximization of the Sharpe
Ratio we need both an accurate prediction of future market movements to
maximize our return but also future predictions of market volatility, which
would allow us to shrink our positions when needed to protect ourselves to
market risk. The complex features especially may help us with the second
problem since some of our features also incorporate past standard deviation
of returns. Figure 5.4 shows the results when examining the Sharpe ratio of
various ensembles optimized for Sharpe.

Figure 5.4: A further look into the results of networks optimized for Sharpe.
Clearly complex features and non-residual connections are favored.

5.2.2 Multi-loss Feedforward Network

We examine the effect of incorporating multiple losses into our network and
optimizing for both at the same time. The losses affect the weights in the
shared layers by the parameter loss-weights which determines how the
losses are weighted when evaluating the combined loss, thus determining the
importance of the loss when calculating the gradient. We plot the average
score together with its error-bars of 1 standard deviation together with the
results of an ensemble of networks initialized with different random seeds.
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5.2.2.1 Results - Accuracy

In figure 5.5 we examine several different neural architectures and evaluate
the performance of the accuracy layers given various combinations of loss
weights. We evaluate the performance by examining both the accuracy and
ROC-AUC of the sub-network.

Figure 5.5: Results for the accuracy layers of our Multi-loss Feedforward
Network. The different figures indicate different weights for the losses. The
X-axis denotes the number of layers and layer size.
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Figure 5.6: ROC-AUC for accuracy layers in our multi-loss NN.

The top-right figure gives zero weighting to the Sharpe loss function and
is thus only optimized for accuracy. In the bottom figures we incorporate
a small part of the Sharpe loss by weighing the loss functions with a ratio
of 10 : 1, 100 : 1 respectively towards the accuracy loss. We can note that
the results become slightly better compared to only incorporating the the
accuracy loss. This suggests that the regularizing effect of the multi-loss
network has a positive effect on performance. As

5.2.2.2 Results - Sharpe

Next we examine both the Sharpe and Return for the layers optimized to
maximize Sharpe. The figures are presented as in the previous section.
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Figure 5.7: Results from evaluating the Sharpe of the layers optimized for
the Sharpe loss in our Multi-Loss Network. We examine the results un-
der different weightings of the loss functions where the weights correspond
[accuracy, sharpe] respectively.

The top-left figure corresponds to optimizing directly for Sharpe and not
taking into account the binary cross-entropy loss. We can compare this
to incorporating the accuracy loss into the model. We note that the aver-
age results are slightly similar with perhaps a slight edge to the alternative
of optimizing for Sharpe only. We can however identify that incorporating
multiple losses provides slightly more stable results in certain cases. Further-
more, there is similar performance across various layer depths and sizes with
notable outliers being the larger of the two-layer and three-layer networks
which show worse performance with the complex features.
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Figure 5.8: Results from evaluating the Return of the layers optimized for
the Sharpe loss in our Multi-Loss Network. We examine the results under
different weightings of the loss functions where the weights correspond to
[accuracy, sharpe] respectively.

The return on our portfolio when optimized for the Sharpe ratio tell a dif-
ferent story. Comparing our results, we find that regularizing our network
with an additional loss function yields both a higher average return as well
as a set of more stable results.

5.3 Recurrent Neural Network

5.3.1 Comparison between different types of RNNs

We will evaluate the performance of the three different types of Recurrent
Networks by comparing different optimization functions together with eval-
uating them on different performance metrics. Figure 5.9 shows the results
when optimizing for either Sharpe or Accuracy and evaluating the accuracy
of both methods. Note that in the case of optimizing for the Sharpe ratio,
the positions that serve as output of the model are re-scaled to be in the
interval of [0, 1] which is then used to evaluate the accuracy.
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Figure 5.9: The accuracy of various RNNs with different objective functions
and different feature setups.

Judging from 5.9, the simple features show superior predictive performance
on the test set compared to other feature setups across all different RNNs
and objective functions. As expected, when utilizing only the lag-differenced
closing price, the networks perform significantly worse. The value of the aver-
age accuracy is amplified when utilizing an ensemble of models with different
random seeds, which shows the power of using ensemble methods. Unsur-
prisingly, optimizing a model for Sharpe delivers worse performance when
evaluating the accuracy. It is however notable that given the simple features,
we can still attain a relatively high accuracy with the Sharpe objective func-
tion, as is most apparent in the case of GRU and the LSTM. This serves
as further evidence of the intricate relationship between directional accuracy
and the Sharpe Ratio.

Conversely, we can investigate the Sharpe ratio for our various model se-
tups.
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Figure 5.10: The Sharpe ratio of various strategies generated by our RNNs
with different objective functions and different feature setups.

Comparing the different types of RNNs, we can draw the conclusion that
the LSTM gives both a higher average Sharpe as well as slightly more sta-
ble results. Interestingly, the complex features give similar or in the case
of the LSTM optimized for Sharpe, greater results than the simple features.
Clearly the complex features paint a clearer picture of the optimal positions
to take to maximize your Sharpe. This could be due to the fact that the
complex features include features such as the Commodity Channel Index,
which incorporates the mean standard deviation of the asset price, which is
an intricate component when calculating the Sharpe ratio. We can further
comment on the number of parameters in the model. Inspecting the models
that were optimized for Sharpe, we can detect a slight upward trend in the
Sharpe as the number of layers and neurons increase. This could indicate
that optimizing for the Sharpe ratio is a harder problem than optimizing for
accuracy. This in turn calls for more convoluted model architectures which
can sufficiently extract the features that allow the model to optimize its po-
sitions to both maximize its return while keeping the variance of returns low.

The antithesis of our LSTM is the vanilla RNN which depicts a sad story
of uncertainty in predictions and lesser scores. It is not however completely
impractical, because it reveals an interesting aspect of our feature selection.
Contrary to the GRU and LSTM, the Simple RNN favours the simple fea-
tures. When impeding a models ability to look further back in time and
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draw more advanced conclusions, the model settles for the simple features.
One of the main differences between the two feature setups is that the com-
plex features is a collection of quicker features which incorporate only the
past 20 to 10 days. The simple features are however composed of a set of
rather slow moving averages. If we were given only a single data point, the
simple features give a more comprehensive picture of current trends in the
time series than the Complex features. The complex features thus require
the Recurrent Network to figure out these relationships by itself, which on
one hand requires more advanced architectures but at the same time proves
more fruitful for our objective.

We can further investigate the Sharpe Ratio by examining the return of
our generated strategies.

Figure 5.11: The cumulative return of various strategies generated by our
RNNs.

Two immediate observations from figure 5.11 is that when using the Sharpe
ratio as the objective functions, there is very little variance in the average
cumulative return. As a consequence of this, we gain very little from our
ensemble. We can draw one further conclusion and that is about the nature
of the optimization that the networks perform. In Markowitz Portfolio Op-
timization, one aims to maximize the return of a portfolio while keeping its
variance low. This can be done using two approaches. One can either specify
a trade-off parameter between the expected return and variance which speci-
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fies our aversion to risk. A second approach has a slightly different objective.
To find an optimal combination of weights for a set of assets, one can aim
to minimize the variance with the secondary condition that the expected
return is kept constant. As evidenced from Figure 5.11, the latter approach
is exactly what our network seems to optimize for.

We can finalize our comparison of feed-forward and recurrent networks in
Figure 5.12

(a) (b)

Figure 5.12: To provide a comparison between feed-forward and recurrent
networks we present the results of the best ensembles for each type of net-
work.

5.3.2 Multi-Loss Recurrent Networks

We can now move on to investigate the effect of introducing auxiliary loss
functions into our recurrent networks.
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Figure 5.13: The accuracy of our multi-loss LSTM with various weighting
schemes of the two different loss functions. A weight of [1, 0] corresponds to
only incorporating the binary cross-entropy loss.

It is clear that the regularizing effect of multi-loss networks does not work in
our favor and instead allows our network to underfit the data instead. We
can look at the average result of our ensembles for each weighting of the loss
functions in Figure 5.14
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Figure 5.14: Summarized results of different weightings in the multi-loss
LSTM

The effect of under-fitting becomes even more apparent as it is clear that
weighing the network towards placing larger importance on the binary cross-
entropy loss gives increased performance on our test set. In general, when
increasing layer size or the number of model parameters, the effect of over-
fitting becomes more apparent. The converse must then hold as well.
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Figure 5.15: Relative difference of introducing an auxiliary loss functions
compared to only incorporating the binary cross-entropy loss.

Figure 5.15 shows the difference in performance for each layer size and loss
weight compared to the case of only incorporating the accuracy loss. As be-
fore, it is apparent that a weighting of [100, 1] succeeds the lesser weighing.
It is most notable however that the difference becomes lesser when intro-
ducing more neurons to our layers. This suggests that deeper networks with
more parameters benefit more from this type of regularization .

Next we turn to examining the multi-loss regularization method on the layers
optimized to maximize the Sharpe ratio.
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Figure 5.16: The average Sharpe ratio for various networks optimized with
different loss weights.

Optimization for the Sharpe ratio benefits clearly from introducing auxil-
iary loss functions. Figure 5.16 presents the results of the average Sharpe
ratio for networks optimized for our various loss weights. As evident in the
figure, networks that do not take the binary cross-entropy loss into account
struggle compared to the other networks. We can draw two conclusions from
introducing another loss function into this network. We are either gaining
better performance due to preventing over fitting in our network by in some
way limiting the values of our weight layers, similar perhaps to an L1 reg-
ularization. Another hypothesis highlights the connection between Sharpe
and directional accuracy. As for our simple networks in the previous sec-
tion, evaluating the Sharpe for a layer optimized for accuracy and vice versa
yielded surprisingly positive results. Another way to put this is that we es-
sentially took all the features extracted from an Accuracy layer, which boils
down to an integer y 2 {0, 1}, and transformed it to evaluate the Sharpe
Ratio. When introducing auxiliary losses, we are generalizing this process
by letting the network incorporate a learned subset of features from the ac-
curacy layers that aid in the process of maximizing Sharpe. One can theorize
that if directional accuracy were the best way to attain a high Sharpe, our
multi-loss network would learn to maximize the accuracy and the output of
our Sharpe layers would simply be the re-scaled outputs of the accuracy lay-
ers, as we manually did before. This is not the case here, but we are clearly
seeing an increased Sharpe by introducing auxiliary losses.
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5.4 Gradient Investigation

Feature selection is perhaps the most important part of any statistical learn-
ing algorithm. The advantage of neural networks is its ability to naturally
extract relevant features from the input and even generate custom-built fea-
tures specific for the task. A problem with neural networks is however the
limited ability for a researcher to interpret which features the network selects
to be relevant to the task. We will approach this problem by evaluating the
gradients of our network with respect to different features. Based on our
previous results, we choose a subset of models which perform the best at
their respective task and investigate the gradients of these models.

5.4.1 Memory of a Recurrent Unit

Gradients allows us to get an idea of which features are the most important
for our model. Besides our simple and complex features, the recurrent net-
works operate on a second dimension as well, time. This is a feature that
can be examined in the same way as our other inputs. Figure 5.17 shows the
gradients of the output at the last time step in the AUD futures contract
with respect to all previous inputs for a model optimized for accuracy.

Figure 5.17: Overview of how our simple features impact the models predic-
tions on the Australian Dollars Futures.
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The figure provides an overview of which features impact the model the most,
and how far back in the time the network seems to remember. From the
figure, only the past 10 days seem to have any influence on the models pre-
diction with the past 5 days being extra significant. The feature importance
and time dependency varies across models, contracts and loss functions. To
highlight our results we can examine the average results across similar mod-
els and feature setups. We will consider only models optimized for accuracy
since we mainly want to highlight the different time dependencies of our
models.

Figure 5.18: The average impact of our simple features across all LSTM
models optimized for accuracy.

We can compare the memory of a LSTM to that of a simple RNN by con-
sidering Figure 5.18 and Figure 5.19.
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Figure 5.19: The average impact of our simple features across our simple
RNNs.

Both networks seem to be impacted by similar time-steps in the input. The
LSTM has the theoretical ability to remember further back, yet it seems
to choose not to. The simple features are already inherently incorporating
previous information through the moving averages, perhaps this informa-
tion is sufficient for our networks and a longer term memory is unnecessary.
Another explanation is vanishing gradients. During backpropagation, the
gradient from a single point is propagated throughout all time steps in the
sequence which may cause it to either explode or vanish. LSTMs can con-
strain this effect through the use of the forget gate but it is still not entirely
guaranteed to avoid this complication. Another aspect of the figures is that
the gradients from the LSTM appear more smooth and consistent with re-
gards to the sign of the gradient. The gradients of the simple RNN exhibit
on the other hand a more chaotic pattern with gradients of a higher magni-
tude but with less certainty in how to utilize them. The difference between
the architectures boils down to the forget gate. Due to the non-stationarity
of financial data, the patterns a RNN finds may quickly become irrelevant.
Removing the RNNs ability to forget leads to a higher uncertainty in how
each feature and timestep affects the output. The LSTM on the other hand
can itself choose when to reset its memory state and thus has a more updated
perspective on the current properties of the time-series. Our hypothesis is
that when contradictory patterns from the past can be excluded from the
current predictions, the LSTM has a clearer view of which features affect the
output positively or negatively. Hence we see a consistent smooth slope in
the gradient.
We can make the same investigation with respect to the Sharpe Ratio. Figure
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5.20 reveals the gradients with respect to our complex features.

Figure 5.20: The average impact of our complex features for the LSTM.

Comparing Figure 5.20 with Figure 5.18 we note that models trained with
the complex features exhibit a longer memory compared to models utilizing
the simple features. This is inline with the discussion in the previous sec-
tion where we noted that the complex features are a collection of quicker and
more revealing features. The short lookback periods on the features force the
networks to tailor features which incorporate a longer time-period of obser-
vations. The features may also reveal more complex patterns in the market
than the simple features. To fully utilize these patterns, a combination of a
larger set of past observations is needed. Perhaps moving averages filter out
important aspects the time series, making it difficult for the LSTM to see the
value in employing a larger memory to make predictions. It is interesting to
also consider the quickest feature of them all, they lag-1 differenced closing
price.

55



Figure 5.21: The gradients with respect to the differenced closing price.

Figure 5.21 reveals the gradient of our single feature when the output is the
next days directional movement. The lookback period of our model seems to
be similar to that of the simple features. Given only the next days prediction,
it is not entirely misguided to assume that the most relevant features are only
the most recent. The value of the gradients increases as we approach the
last timestep. This is akin to the network creating an exponential moving
average where more weight is placed on the more recent observations.
It is difficult to provide a clear cut answer if our results stem from difficulties
in model optimization or if they reveal a deeper fact about the Markovian
nature of the market. It is however clear that there is a difference between
how the input data affects the predictions of the LSTM and simple RNN
respectively. This further highlights the importance of the forget gate in
Recurrent architectures.

5.4.2 Feature importance

Next we will take a closer look at the individual features and how they impact
the decisions different models. Consider the figures from the previous sec-
tion. We determine absolute feature importance by considering the absolute
values of the gradients and computing the mean value throughout the time
series. Thus we measure the average impact that each feature has on the
last data-point. Figure 5.23 depicts the mean absolute gradient of a number
of recurrent networks optimized for accuracy using the simple features. The
values have been rescaled for the purpose of clarity to depict the percentage
share of the total gradients.
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(a) (b)

Figure 5.22: Mean percentage share of the gradients of each feature of LSTM
networks optimized for accuracy. The mean gradients are found by comput-
ing the gradient of the last data point with respect to each input in the series
and averaging the absolute value.

In figure 5.22b we see a more equal distribution of gradients. The indicates
that the network has a level of stability with respect to the input. If we
one day encounter an outlier in some feature, the networks performance may
not be significantly altered, since the weight of the gradients is distributed
equally among the features. Equally distributed feature significance could
either indicate that each feature is equally important, or similarly equally
insignificant. From our earlier results on evaluating the accuracy on our
networks, the simple recurrent network gives the least promising results.
Thus the features importance in the case of the simple RNN could indicate
that it has not found any significant patterns determined by a subset of the
features. Figure 5.22a gives a more unequal distribution of gradients for each
feature. This gives us further insight into how our model makes its decisions
and whats features it considers important. Leaving the simple RNN behind,
we proceed by providing a comparison between features considered by the
LSTM when optimizing for Sharpe and optimizing for Accuracy.
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(a) Feature importance for an LSTM op-

timized for accuracy.

(b) Feature importance of the simple fea-

tures for an LSTM optimized for Sharpe.

Figure 5.23: Comparison between LSTM optimized for accuracy and sharpe.
In the case of sharpe, the output seems to be determined for the most part
by the first and third feature.

The LSTM optimized for sharpe weighs a smaller subset of features higher
than those optimized for accuracy. The features belonging to the simple
features are all very similar since the are all different combinations of moving
averages. One network converging to a point where it considers feature n
the most important could be more related to parameters in the network
optimization rather than the feature having an intricate connection to market
predictability. The complex features provide a more diverse set of features
which provides us with more insight than the simple ones.
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(a) LSTM optimized for accuracy.

(b) LSTM optimized for sharpe

Figure 5.24: Comparison between LSTM optimized for accuracy and sharpe
on the complex features.

We can begin by considering Figure 5.24a. There seems to be significant
weight placed on the moving average features on the left hand side of the
diagram. This is consistent with the fact that simple features predict accu-
racy the best. The largest proportion of the gradients stem from the Relative
Strength Index which indicates if an asset is overbought or oversold. Perhaps
including this feature among the simple features would give us further im-
provement in our main results. Next we consider the results for the models
optimized for Sharpe. The two most significant features is the 5-day expo-
nential moving average minus the momentum and the Commodity Channel
Index. The latter feature is specifically interesting since it is a measure of
the number of standard deviations the current price is from its moving av-
erage. When an asset is volatile, it strays far away, measured in standard
deviations, from the current mean. Thus the CCI gives a measure of future
risk in the market and could this be used for adjusting our positions when
optimizing for Sharpe. Besides moving averages, another mid-significant fea-
ture is the Percentage Price Oscillator.

Before we draw any further conclusions it is best to question the validity
of this approach. The gradients do show how features impact the models
predictions. The question is whether we can completely disregard features
with "low" significance or if they work conjointly with other features in a
way that is not exposed with this method. If we had a linear model, the
gradient would expose the coefficient of each factor and would thus be a
direct measure of importance given that each feature is scaled similarly. In
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our non-linear model we cannot so readily draw the same conclusions. There
is significant difference between model performance when evaluating on the
test set. The absolute performance itself may however be too insignificant to
provide an accurate framework for investigating the model further. Neural
networks are non-identifiable models. This implies that given two models
with the same performance, it is not necessary that the model parameters
are the same. Thus we can have models with similar, good performance yet
evaluating the gradients would yield different results. This is due to the fact
that different random initializations of the variables and optimizers during
training yield different local minimas.
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Chapter 6

Discussion

In this section we will further discuss the results presented in the previous
chapter and discuss the limitations of our research and possible extensions.

6.1 Discussion of results

6.1.1 Feed-forward Networks

The results show clearly that simple features are to be preferred to the com-
plex. Layer size and residual connections seem to also have a significant
impact on the performance. Utilizing an ensemble of models can greatly
boost performance, specifically if the average individual performance of the
models is good. The results are however very unstable which sheds light
on the issue of using Neural Networks for this kind of task. Furthermore a
larger hyperparameter space could have been explored. Different optimizers
with varying learning rates together with varying the batch size could be ex-
plored. A comparison with the best hyperparameters chosen for each layer
size was conducted but this result could be strengthened by further testing
various setups.

Batch size is intricately connected to the evaluation of the Sharpe ratio since
the batch-size is used as the time period we calculate the Sharpe ratio on.
We hypothesize that a larger batch size allows the model to create positions
which take into account larger trends and thus possibly allowing longer hold-
ing periods for each asset. A small batch-size would provide the model with
insufficient information to be able to take positions in an intelligent way.
In this thesis a batch-size of 256 trading days is used which corresponds to
about a year. Investigating further batch-sizes may prove a valuable insight
into understanding how the network optimizes for maximum Sharpe.
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6.1.2 Recurrent Networks

The recurrent networks were investigated in a similar way to the feed-forward
networks. The layer depth and sizes were also chosen similarly. It is worth
mentioning that a LSTM has four times the model parameters of a feed-
forward network given the same number of units. This is due to the fact
that a LSTM unit utilizes four different transformations of its inputs. Thus
it is further motivated to investigate additional layer sizes than the ones cho-
sen. The input size of our series is also a parameter that could be explored.
As our gradients show, only the past 10 inputs play a part in our predic-
tions. Transforming the input data to take this into account may provide
us with better results. It could also be worth investigating a rolling window
approach, where a window of k days is used to predict the movement of
(k + 1)st day. In this method we do not propagate the state of the LSTM
throughout the network and thus force it to forget after k days. This could
provide further improvements specifically for the simple RNN.

6.1.3 Multi-loss Networks

The multi-loss networks were highly dependent on the weights chosen for
the dual loss functions. The loss weights are in turn highly dependent on
the magnitude of the loss functions. For an accuracy of 50%, a binary cross-
entropy loss lies at a value of ln(2) ⇡ 0.69. The negative Sharpe loss however
proved to lie in the range of �10 to �5 during training. When combing these
losses, it becomes more valuable for the network to decrease the Sharpe loss
rather than increasing the accuracy. This is apparent when evaluating the
accuracy of a multi-loss network. Introducing a Sharpe loss to the model
quickly deteriorated our results, even when placing much greater importance
on the binary cross-entropy loss. The other side of this coin is that when
evaluating Sharpe, introducing accuracy layers proved successful since the
network still placed greater importance on minimizing Sharpe loss and we
achieved our desired regularizing effect. One can further this discussion by
considering the fact that it is the gradients of the loss function that influences
how the parameters are updated, not just the magnitude of the loss. A
detailed investigation of how to scale the magnitude of the losses w.r.t to the
magnitude of the gradients could be conducted.

6.1.4 Gradients

How and why neural networks work is a field still in its infancy. Various
methods have been proposed to measure the relationship between input and
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output such as measuring the mutual information between them [1]. Gra-
dient based methods have also been explored on image recognition [16] to
discover what parts of the image is the most important when the network
performs classification. Similar to what an image classifier finds interesting
in an image, gradient based methods performed on RNNs reveal what the
most interesting parts of sequence are. The difficulty of the analysis per-
formed in this thesis stems from the fact that the performance of our RNNs
may not be significant enough to be able to excerpt any useful properties
from the gradients. In our analysis, the gradients are averaged among a set of
the best performing models. If a gradient is significant in all of them, it will
still be significant in the mean. This provides a grain of legitimacy for our
method but still leaves room for vast improvement. An obvious extension is
introducing more models, to see if they all find similar features important. A
factor that is ignored in our analysis is the impact different markets have on
each other. Perhaps exploring the effect the features from different currency
pairs or different commodities with similar properties affect each other.

6.2 Discussion of scope and limitations

This thesis aims to answer three propositions:

1. Can a Recurrent neural network outperform a Feedforward network
given the same feature setup?

2. What is the influence of the objective function of the Neural Network
and how does it impact feature selection?

3. What set of features are most significant to the task of predicting future
returns?

6.2.1 Can a Recurrent neural network outperform a Feed-
forward network given the same feature setup?

The foundation for a fair comparison between feed-forward networks and
RNNs lies in the use of the same input data for the model and evaluating
on the same performance metric. A third setup that must be taken into
account is hyperparameter search. Through trial and error, the network se-
tups that were chosen in this thesis were considered because they at an initial
stage provided seemingly the best performance. A hyperparameter search
was then conducted on these networks to further fine tune performance. The
field of Neural Networks is relatively new and theoretical results regarding
optimal network architecture are few. Instead, state-of-the-art results are

63



found through intuition and an extensive exploration of the hyperparam-
eter space. We can never state that our results are final, since we never
reach a global minimum of our loss function. Yet the combination of results
and intuition tells a story that is coherent, both with existing research and
properties of the financial market. This provides a grain of evidence for the
validity of our results and opens up research questions which could further
help confirm them.

6.2.2 What is the influence of the objective function of the
Neural Network and how does it impact feature selec-
tion?

The impact of the objective function was examined both through the lens
of single loss networks and multi-loss networks. In the first comparison the
two different performance metrics were evaluated on both networks. The
comparison is however not entirely fair. When evaluating the Sharpe of a
model optimized for accuracy, the predictions are scaled to integers in the
set {�1, 1}. Positions are thus deemed to be absolute, either we buy or sell.
When optimizing for Sharpe, the outputs are continuous variables in the
range of [�1, 1]. This gives the model the freedom to adjust positions based
on its certainty in predictions. It is not surprising that a unrestricted model
can achieve a higher Sharpe ratio. However this is not entirely relevant for
our study. Our comparison still shows significant positive results for all com-
binations of loss functions and metrics. The relationship is hypothesized to
be evidence for a deeper connection between the objective functions. This re-
lationship is then further investigated through the use of multi-loss networks.

The issue regarding our multi-loss configuration was previously addressed
in our discussion. When optimizing for Sharpe and incorporating an aux-
iliary loss function, we achieve an improved score. Here we cannot draw
the conclusion whether this is simply a regularizing effect or if the networks
share important features. A study combining additional loss functions could
be conducted which could shed further light on this issue.

6.2.3 What set of features are most significant to the task of
predicting future returns?

Our simple and complex features are continuously compared throughout all
our experiments where the results paint a coherent picture that simple fea-
tures are to prefer when optimizing for accuracy and complex features are
better suited for the task of optimizing for the Sharpe ratio. Explanations
are provided where we highlight the different properties of the features and
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provide an intuition as to why certain features may be preferred for different
tasks and networks. We provide an additional comparison between features
in our analysis of the model gradients. Here our reasoning is limited in part
by the assumption that the most significant features for an asset will stem
from those generated from the same assets time-series. Further limitations
are apparent when questioning the stability of our models and thus the sig-
nificance of our gradients. There is no clear cut method to perform feature
selection. As with many methods in Machine Learning, the best practice is
to test every combination. We present an alternative method to perform the
feature selection though further research is needed to confirm the validity of
the approach.

6.3 Future work

We have previously touched upon specific further research that could possibly
improve our analysis. In this section we will expand upon these areas and
present a set of questions which could provide a basis for further research
within recurrent neural networks and financial modeling.

6.3.1 Feature importance and selection

Our gradient based method is one of many methods to examine the inner
workings of our models. Information theoretic approaches are becoming
increasingly popular and provide an interesting framework for further in-
vestigating the connection between features and model predictions. Tishby
et al laid the foundation for an information theoretic approach in their pa-
per "Deep Learning and the Information Bottleneck Principle" [17]. Here
the mutual information between input and output is examined. Another
recent interesting paper is "Learning to Explain: An Information-Theoretic
Perspective on Model Interpretation" by Chen et. al. [1] which utilizes
information theory to specifically investigate feature selection.

6.3.2 Convolutional Neural Networks

Equipped with our new-found understanding of Recurrent Networks, one
conclusion we can draw is that perhaps not the entire past sequence of data
is required to perform accurate predictions. This opens up to models where
our input can be a sequence of fixed length. Convolutional Networks work
through a set of kernels which measures the dependency between neigh-
boring inputs. Time series analysis is thus a natural application of these
types of models since neighboring data points have a clear time-dependent
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relationship. Past research has shown that convolutional neural networks
outperform LSTMs on these types of tasks, both in machine translation [7]
and on financial modeling [12].

6.3.3 Transfer Learning

A popular area of Machine Learning today is Transfer Learning and specif-
ically Domain Adaption [5]. Given two datasets with similar properties,
one can train a classifier on one dataset and extend it to function on the
other set as well. An application on financial modeling would be to train a
model using inputs from one asset class and then extending it to work on a
different market. The process would shed light on relationships between dif-
ferent markets and could further increase model performance similar to how
our multi-loss networks worked. Another possibility is investigating whether
patterns that appear on an intraday level could also be used on daily data.
Data collected on a minute-to-minute basis provides a several magnitudes
larger dataset than the daily closing prices. We could thus train a better
fitted model on the intraday set and extend it to work on daily data.
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Chapter 7

Conclusion

From our results it is clear that recurrent networks outperform feed-forward
networks on the task of predicting both price movements and maximizing
Sharpe on financial time series. The difference in performance is recurring
in both simple single loss networks and multi-loss networks. It shows that
utilizing the time dimension in addition to the features give a significant
advantage in predicting future returns.

The difference between our two feature setups is also continually evaluated
throughout our results. For predicting directional accuracy, the simple fea-
tures outperform the complex setup. The opposite holds when maximizing
the Sharpe ratio. The feature setups reveal different aspects of the market.
Different objective functions allow us to explore different ways in how the
networks utilize the features. A conclusion we can draw is that the com-
plex features reveal more information about market risk, which allows the
network to perform a better optimization compared to using the simple fea-
tures. Introducing a regularization through multi-loss networks also gives a
larger performance. This can be due to the fact that our objective functions
share similar goals which would imply that they would benefit from sharing
some parameters.

The recurrent networks gradients are analyzed. From looking at the memory
of RNNs, it is concluded that a large lookback period may by unnecessary
for our recurrent setups. The gradients show that for well-trained networks,
there are features which exhibit a higher influence over the networks deci-
sions. Here differences in feature importance between different optimization
goals further highlight the fact that the feature setups reveal different aspects
of the market.
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