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Abstract

In this study within quantitative portfolio optimization, stochastic program-
ming is investigated as an investment decision tool. This research takes the
direction of scenario based Mean-Absolute Deviation and is compared with the
traditional Mean-Variance model and widely used Risk Parity portfolio. Fur-
thermore, this thesis is done in collaboration with the First Swedish National
Pension Fund, AP1, and the implemented multi-asset portfolios are thus tai-
lored to match their investment style. The models are evaluated on two di↵erent
fund management levels, in order to study if the portfolio performance benefits
from a more restricted feasible domain. This research concludes that stochastic
programming over the investigated time period is inferior to Risk Parity, but
outperforms the Mean-Variance Model. The biggest flaw of the model is its
poor performance during periods of market stress. However, the model showed
superior results during normal market conditions.
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Sammanfattning

I denna studie inom kvantitativ portföljoptimering undersöks stokastisk pro-
grammering som ett investeringsbeslutsverktyg. Denna studie tar riktningen
för scenariobaserad Mean-Absolute Deviation och jämförs med den traditionel-
la Mean-Variance-modellen samt den utbrett använda Risk Parity-portföljen.
Avhandlingen görs i samarbete med Första AP-fonden, och de implementerade
portföljerna, med flera tillg̊angsslag, är därför skräddarsydda för att matcha
deras investeringsstil. Modellerna utvärderas p̊a tv̊a olika fondhanteringsniv̊aer
för att studera om portföljens prestanda drar nytta av en mer restrektiv optime-
ringsmodell. Den här undersökningen visar att stokastisk programmering under
undersökta tidsperioder presterar n̊agot sämre än Risk Parity, men överträ↵ar
Mean-Variance. Modellens största brist är dess prestanda under perioder av
marknadsstress. Modellen visade dock n̊agot bättre resultat under normala
marknadsförh̊allanden.
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1 Introduction

No person or institution has the ability to accurately predict future market returns.
Constructing the perfectly optimized portfolio with various assets over time is one
of the most frequently discussed and written about topics in finance. It is almost
impossible to predict the correct returns and most researches considers the case of
predicting whether the market will go up or down during the following period.

This is a study within quantitative portfolio optimization investigating if stochastic
programming can improve multi-asset portfolio performance. It is compared with
other quantitative portfolio allocation models such as the traditional Markowitz’s
Mean-Variance model. This research takes the direction of scenario based Mean-
Absolute Deviation, which with a rigorous mathematical framework e�ciently com-
prehends complex decision making problems. The idea is to simulate various sce-
narios dynamically with di↵erent models in order to transform a stochastic problem
into a deterministic one, where the objective is optimized by assigning weights to
all included assets. Various methods of generating these scenarios are implemented
and analyzed.

The Swedish National Pension Funds manage and allocate capital in the national
income pension system. Everyone who works, receives a salary and pays tax in Swe-
den receives a general pension. This thesis is written in collaboration with the First
Swedish National Pension Fund, AP1, one of five bu↵er funds which as the end of
2017 manages fund capital of ⇠ SEK 330 billion. Investments are placed worldwide
in equites, fixed income and currencies, but also in alternative investments such as
real estate, hedge funds, private equity and venture capital funds.

The fund’s objective is to maximize its return in relation to the riskiness of its place-
ments. Risk awareness should be neutral between generations, meaning, risks are
not to be minimized in the short term if it entails increased risk of adversely a↵ected
pensions in the future. Risk is pivotal to the institution’s investment strategies as
they hold the relatively modest long-term required annual return of 4%.

Personnel at AP1 have carefully selected 17 market indices on which this research is
based on. Data has been collected from 2002-2018 and the indicis represent expo-
sure to the fund’s holdings as they fully capture its spectrum of assets. Furthermore,
the portfolios are tailored with additional constraints and a transaction model to
realistically represent the portfolio of AP1. All models are implemented and eval-
uated on two fund management levels with the aim to determine the optimal asset
allocation. To compare the di↵erent models, the simulated portfolios are backtested
against historical data, as well as tested on metrics such as Sharpe ratio.
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1.1 Purpose

In this section the related research questions will be introduced. The objective of
this thesis is to develop a reliable framework for stochastic programming in the
purpose of portfolio optimization. The following main questions questions are to be
answered

• Can stochastic programming improve the performance of a multi-asset port-
folio?

– The model is evaluated and compared with the conventional Markowitz’s
Mean-Variance model as well as the broadly used Risk Parity model

– The analysis is performed in a multiperiod setting

• At which level of fund management is the use of optimizers suitable?

– The aim is to investigate if quantitative allocation function better when
the optimizers are free to work by themselves or constrained by invest-
ment limits based on rationale

– The implemented models are evaluated on two levels, namely the min-
imum regulatory requirements and under the restrictions set up by the
board of AP1

1.2 Outline

Chapter 2 introduces the reader to the mathematical background of the thesis.
Important concepts on stochastic programming techniques and scenario generation
are thoroughly introduced, as well as the dynamic framework that incorporates the
portfolios. Chapter 3 describes the data processing and the general methodology
of the thesis. Here, the models are implemented with detailed descriptions of all
concerning aspects, e.g. transactions costs and specific constraints. Chapter 4
is devoted to showing results corresponding to the considered optimized portfolio
models, while the following two chapters, Chapter 5 and Chapter 6, discusses and
summarizes the results achieved in this thesis.

12



2 Theory

The theory implemented in this thesis is presented in the following section.

2.1 Notation and Definitions

In this section the notations used throughout the thesis are stated. Other definitions
are introduced in the relevant chapters if necessary.

N - Number of risky assets in the portfolio

w - Vector of size N + 1, containing weights for risk-free asset and each of the N
risky assets

wi - Percentage weight corresponding to asset i

w0 - Weight corresponding to risk-free asset

R0 - Risk-free rate

⌃ - Covariance matrix of asset returns

�i - Volatility of asset price i

µ - Expected returns of risky assets

µi - Expected return of asset i

⇢ - Correlation coe�cient of asset returns

S - Number of scenarios

ps - Probability of scenario s

Rs - Asset returns for scenario s

R̄ - Mean average asset returns across all scenarios

�(x) - Transaction cost as a function of the amount transacted

T - Rebalancing period

13



2.2 Portfolio Weighting Strategies

2.2.1 Risk Parity

Two well-documented investment strategies are the Mean-Variance and the equally-
weighted portfolios, with main drawbacks being portfolio concentration and limited
diversification of risk, respectively. The equally-weighted portfolio is generally con-
sidered to be a naive investing approach, as portfolios are constructed by the simple
measure of assigning equal weight to all assets [7]. The Mean-Variance approach
asses a portfolio of which the expected return of its assembled assets are maximized
at a certain level of risk. The method is developed as an extension to the theory
focusing on the importance of diversification. An investment strategy that acts as
middle ground between the two is called the Equally-weighted Risk Contributions
(ERC), and is perhaps the most well-known version of Risk Parity. The main pur-
pose of the strategy is to equalize risk contributions from the di↵erent components
of the portfolio, i.e �i(w) = �j(w), see below for definition. Handling risk properties
in this manner has become increasingly popular and goes by the name risk budget-
ing, and the analysis focuses on risk contributions rather than portfolio weights as
no asset contributes more than its peers to the total risk of the portfolio.

The marginal risk contribution, @wi�(w), is defined as

@wi�(w) =
@�(w)

@wi
=

wi�
2
i +

P
j 6=iwj�ij

�(w)
(2.2.1)

Then by definition, the total risk contribution of the i

th asset is given by (2.2.2).
and the sum of the total risk contributions by (2.2.3)

�i(w) = wi · @wi�(w) (2.2.2)

Continuing, the sum of the total risk contributions is then given as

�(w) =
nX

i=1

�i(w) (2.2.3)

From (2.2.3), it can be concluded that the risk of the portfolio is equal to the sum
of the total risk contributions.

Assuming the scenario with equal correlation for every couple of variables, meaning
⇢i,j = ⇢ for all i, j, the total risk contribution of component i becomes

�i(w) =
w

2
i �

2
i + ⇢

P
j 6=iwiwj�i�j

�(w)
(2.2.4)

The assumption of equal correlation coupled with the budget constraint of the
portfolio weights equaling one, yields the following weights to the ERC portfolio

14



wi =
�

�1
i

�

�1
1 + ...+ �

�1
n

(2.2.5)

In other words, each components’ weight is deduced from the ratio of the inverse
of its volatility and the harmonic average of the volatilities. The weight of each
component i decreases with increased volatility.

While the previous solution measures each component’s risk in relation to its corre-
sponding portfolio, it does not provide a closed-form solution. In order to do so, the
construction of a numerical algorithm is required. One approach to constructing
the ERC portfolio is to consider the following optimization problem

Minimize
y

p
yT⌃y

Subject to
NX

i=1

ln yi � c, 8 i

yi � 0, 8 i

(2.2.6)

where c is an arbitrary constant that corresponds to a particular value such that
�1  c  �N ln(N). The first constraint implies su�cient diversification of
weights, whilst the second implies the exclusion of short-selling. The portfolio
weights are then obtained by normalizing the help variable y, w = yPN

i=1 yi
. Note that

the weights corresponding to the risk free asset is not included here. If
PN

i=1wi < 1,

the rest of the capital is put to the risk free-asset such that w0 = 1 �
PN

i=1wi.
Furthermore, the optimization problem in (2.2.6) yields a unique solution as long
as the covariance matrix ⌃ is positive-definite [18, 14].

2.2.2 Mean-Variance

In 1952, Harry Markowitz published his seminal work on portfolio selection, in which
he established a framework for investment decisions. The study has its limitations,
but it was nonetheless groundbreaking for its day and awarded with the Nobel Prize
1990. This model for portfolio choice is known as the Mean-Variance model due to
the fact that it optimizes the expected return and variance of the portfolio. The
model can be formulated in various ways where one can weigh the model to maximize
the expected return or minimize the risk. This trade-o↵ between return and risk is
regulated by the tuning parameter c in (2.2.7). This problem formulation includes a
risk-free asset where the risk-free return is given by R0. The corresponding weight
is given by w0 = 1�wT1 [11, 12].

Minimize
w

c

2
wT⌃w �wTµ� w0R0 (2.2.7)
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By varying the trade-o↵ parameter c � 0, one can obtain pairs (�p(c), µp(c)) of
the expected optimal portfolio values. The set of these optimal portfolios is called
the e�cient frontier. The frontier is a modern portfolio theory tool that represents
the optimal parts of the risk-return spectrum. It is used to analyze portfolios to
determine the best combination of underlying assets that has the best expected
return for its level of risk. The pairs (�p(c), µp(c)) that construct the e�cient frontier
are given by equation 2.2.8 [11, 12].

�p(c) = (wT⌃w)1/2

µp(c) = w0R0 +wTµ
(2.2.8)

For practical implementation, the weights are functions of sample estimates of ex-
pected returns and covariances. The optimizer tend to pick the assets with very
attractive features, i.e. high returns and low variances, and deselect those with the
worst features. For this reason, the weights of the assets with high returns and low
variances are likely overestimated. As a result the e↵ect of the estimation error
is maximized since these cases usually correspond to the highest estimation errors.
This is a known flaw of Markowitz’s model that is known as error maximization
[12].

2.3 Stochastic Programming

There is often some degree of uncertainty or randomness to certain variables in
mathematical modeling. An approach to overcome this predicament, or at least, to
reduce the risk of misinterpreting the data is to perform stochastic programming.
The method investigates how di↵erent solutions behave in various scenarios in order
to find the optimal solution. By creating and simulating di↵erent scenarios for the
given assets, the technique transforms the stochastic nature of the variables into a
deterministic problem. The model is then left with the task of determining weights
to the given assets in order to optimize the objective. The generated problem can
now in most cases be solved by applying linear or quadratic programming techniques.
Scenarios are created as to reflect likely future outcomes by change in input variables.
A few number of scenarios may overadjust the data, while too many projected
scenarios can result in a computationally intractable problem [8].

2.3.1 Scenario Properties

Scenario generation is the process of creating a finite set of scenarios which describe
the distribution of the random parameters in the optimization formulation. This
collection represents the stochastic model parameters where each scenario is a pos-
sible realization of them, which is weighted by its probability of occurrence. This
process is related, but should not be confused with forecasting. Forecasting is the
prediction of the most likely value for a random variable while a scenario set can be
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viewed as a density forecast [19].

Scenario optimization techniques are only useful if the simulated scenarios are of
high quality. Some key aspects to keep in mind while conducting them are

• Parsimonious – the importance of creating a relatively small set of scenarios

• Representative – scenarios must represent a realistic form of the problem at
hand

• Arbitrage-free – scenarios that create great arbitrage opportunities are re-
garded as unrealistic and should therefore be avoided

• Numerical stability - the optimal solutions for di↵erent scenario sets should
not vary significantly

There are numerous approaches to generate scenarios. The most widely used gen-
erators are based on either historical observations or model-based methods that
describe the price-dynamics of the assets. This report will focus on two techniques
for scenario optimization, namely moment-matching and multivariate GARCH. [8,
10, 25, 20]

2.3.2 Moment-matching

The method of utilizing an algorithm for moment-matching scenario generation
produces scenarios as well as corresponding probability weights that match the given
mean, the covariance matrix, the average of the marginal skewness and the marginal
kurtosis of each component of a random vector. This algorithm has two major
advantages over other scenario generating methods:

1. Computationally modest - the moment-matching model excludes optimisation
in contrast to other similar methods

2. The generated scenarios come with corresponding probability weights, making
it unnecessary to attach user-defined probabilities and saving time for solving
the stochastic program

The method generates 2Ns+3 scenarios and their corresponding probabilities. Here,
n is the dimension of the random vector and s is an arbitrary positive integer. The
three extra scenarios are generated in order to match the average skewness and the
average marginal kurtosis for each component of the random vector r with dimen-
sion N . The mean vector µ, the covariance matrix ⌃ and the marginal third and
forth central moments, j ⇣j are used as inputs for the algorithm.
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The average marginal moments are defined as

1
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NX

j=1

j = ,
1

N

NX

j=1

⇣j = ⇣

The algorithm begins with the choice of arbitrary positive integer s, an arbitrary
non-zero deterministic such that⌃�ZZT

> 0 and a scalar p 2 (0, 1). The remaining
parameters to be calculated then are
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where ↵ and � are the symmetric parameter and w0, w1 and w2 are coe�cients.
The upper constraint � is set to make certain of real numbers for ↵ and � for
the expression under square root. L is a positive definite matrix such that ⌃ =
LLT +ZZT holds. Furthermore, the auxiliary parameters, �1 and �2, are defined
as

�1 =
N

p
ps+1

PN
j=1 Z

3
j

, (2.3.7)
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PN
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4
j

, (2.3.8)

The probability weights can now be generated. First o↵, real scalars pi 2 (0, 1) for
i = 1, 2, ..., s are created under the conditions

sX

i=1

pi <
1

2n
(2.3.9)
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sX

i=1

1

pi
< � (2.3.10)

ps+1 = 1� 2N
sX

i=1

pi, (2.3.11)

where the probability weights of the first 2Ns scenarios are represented by pi and
the additional three scenarios’ weights are represented by ps+1, corresponding to
those of higher order moments. Equation 2.3.9 restricts the probabilities to make
certain of real numbers of ↵ and � as previously mentioned.

With the use of p1, p2...p1+s and equations 2.3.3-2.3.5, the following weights are
generated

P = {p1, p2, ..., ps, p1, p2, ..., ps, ..., ps+1wo, ps+1w1, ps+1w2} (2.3.12)

In the final step, support points rk of the multivariate distribution of returns are
generated. S = 2Ns+3 support points are created using their respective probability
weights Pk from equation (2.3.12). The procedure is conducted as follows

P

⇣
r(i�1)N+c = µ+

1p
2spi

Lc

⌘
= pi = Pi+s(c�1), (2.3.13)

P

⇣
r(s+i�1)N+c = µ� 1p

2spi
Lc

⌘
= pi = Pi+s(N+c�1), (2.3.14)

P (r2Ns+1 = µ) = ps+1w0 = P2Ns+1, (2.3.15)

P

⇣
r2Ns+2 = µ+

↵

p
ps+1

Z
⌘
= ps+1w1 = P2Ns+2, (2.3.16)

P

⇣
r2Ns+3 = µ+

�

p
ps+1

Z
⌘
= ps+1w2 = P2Ns+3, (2.3.17)

where i = 1,2, ..., s, c = 1,2, ..., N and Lc is the c:th column of L. Vector rk yields
the outcome of the scenario generation algorithm from the 2Ns+3 support points,
shown below

rk = (r1, r2, ..., r2Ns+1, r2Ns+2, r2Ns+3) (2.3.18)

This is the final step of the algorithm [22].
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2.3.3 Multivariate GARCH

Generalized autoregressive conditional heteroskedasticity, or GARCH, is a method
of estimating the stylized features of a return process {Zt}. It has been proven to be
successful in determining volatility as well as estimating future volatility. The main
use of the model is to predict future volatility k� step ahead, i.e. ht+k. Volatilities
in the financial market are generally known to move closely together over time. The
covariance matrix among assets can be estimated by the univariate GARCH model,
but by extending it to a multivariate GARCH model better decision tools can be
obtained, especially in financial applications in areas such as hedging and portfolio
selection [5].

In the multivariate case, a GARCH model is defined as

rt = µt + at (2.3.19)

at = H
1/2
t zt, (2.3.20)

where rt is a n⇥1 vector of returns at time t, at is a n⇥1 vector of mean-corrected
returns of n assets at time t and µt is a n ⇥ 1 vector of the expected value of the
conditional rt. Then the conditional variances of at at time t is given by the n⇥ n

matrix Ht, where H
1/2
t is obtained by Cholesky factorization of Ht. Lastly, zt is

given as a n⇥ 1 vector of IID errors such that E[zt] = 0 and E[ztz
T
t ] = I [9].

2.3.4 DCC-GARCH

Models of conditional variances and correlations are built on the thesis of modelling
the conditional variances and correlations rather than the corresponding conditional
covariance matrix. The basic idea behind the Dynamic Conditional Correlation
(DCC) GARCH model is hence to decompose the covariance matrix, Ht into con-
ditional standard deviations, Dt and a correlation matrix, Rt. They are both con-
structed to be time-varying variables.

Given returns at from n assets where E[at] = 0 and with covariance matrix Ht, the
DCC-GARCH model is given by

rt = µt + at (2.3.21)

at = H
1/2
t zt (2.3.22)

Ht = DtRtDt, (2.3.23)

where rt, at, µt, Ht and zt are given as before. Here, Dt is a n⇥n diagonal matrix
of conditional standard deviations of at at time t, whereas Rt is a n⇥n conditional
correlation matrix of at at time t.

20



The diagonal matrixDt is constructed of standard deviations from univariate GARCH
models, such that

Dt =

2

66664

p
h1t 0 . . . 0

0
p
h2t

. . .
...

...
. . .

. . . 0
0 . . . 0

p
hnt

3

77775

where,

hit = ↵i0 +
QiX

q=1

↵iqa
2
i,t�q +

PiX

p=1

�iphi,t�p (2.3.24)

A simplification of the model is when the conditional correlation matrix is time
invariant i.e. [9],

Ht = DtRDt (2.3.25)

2.3.5 Student’s t Copula

In the case of constructing a multivariate model, suppose a random vector X =
(X1, ..., Xd) with non-trivial dependence among components and with marginal dis-
tribution functions defined as F1, ..., Fd. Then X can with quantile transformation
be defined as

X = (F�1
1 (U1), ..., F

�1
d (Ud)) (2.3.26)

where the vector U = (U1, ..., Ud) has uniformly distributed components on (0,1).
The copula C

t
⌫,R of a d-dimensional standard Student’s t distribution with ⌫ >

0 degrees of freedom and linear correlation matrix R is the distribution of the
random vector (t⌫(X1), . . . , t⌫(Xd)), where X has a td(0,R,⌫) distribution and t⌫ is
the univariate standard Student’s t⌫ distribution function. Thus we get the Student’s
t copula as

C

t
⌫,R(u) = P (t⌫(X1)  u1, . . . , t⌫(Xd)  ud) = t

d
⌫,R(t�1

⌫ (u1), . . . , t
�1
⌫ (ud)), (2.3.27)

where t

d
⌫,R is the distribution function of X [12].

2.3.6 Mean-Absolute Deviation

As opposed to the Mean-Variance model where risk is a squared deviation, the
Mean-Absolute Deviation model measures the risk as an absolute deviation from
the mean. It is defined as
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Minimize
w

MAD

subject to w0R0 +wT R̄ � Rmin

(2.3.28)

where

MAD =
SX

s=1

ps|wT (Rs � R̄)|. (2.3.29)

Here, ps denotes the probability of scenario s, w denotes the vector of portfolio
weights, Rs denotes the vector of returns in scenario s and R̄ represents the vector
of return means for all given scenarios [25].

The underlying distribution of asset returns often exhibit heavy tails, which indicates
non-normality. Unlike Mean-Variance, mean-absolute deviation as a sample statistic
measure, does not assume normally distributed sample population [26].

2.4 Dynamic Portfolio Construction

To maintain the investment discipline over time rebalancing must be considered.
This means that the assets of the portfolio are periodically bought and sold. Hence-
forth, the portfolio selection strategies described in section 2.2 shall be reformulated
to match a multi-period setting.

At each time the portfolio is rebalanced, transaction costs are particularly important
since the possible return is penalized twice. First when assets are sold to finance the
new investments and then when the new securities are bought. To capture this in
the weighting strategies, a transaction-cost function is introduced to the allocation
models [4].

2.4.1 Incorporating Transaction Costs

A trade should only be transacted if the investor believes that it will generate greater
return than the cost of it. By introducing transaction costs to the model, a more
realistic decomposition of assets is obtained by penalizing those associated with high
costs. This is especially important for the multi-period model, where each rebalanc-
ing of the portfolio is associated with buying and selling [4].

Typically transaction fees can firstly be divided into two parts, fixed and variable
costs. The fixed costs are those which do not depend on transacted amount, e.g.
broker fees [21, 15].
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Assuming the transaction costs are separable, the total cost is obtained as the sum
of the transaction costs associated with each trade, i.e.

�(x) =
NX

i=1

�i(xi) =

(PN
i=1 �v,i(xi) + �

+
iPN

i=1 �v,i(xi) + �

�
i

(2.4.1)

where x = (x1, ..., xN )T is the amount transacted, �+/�
i and �v,i(xi) are the fixed

and variable costs respectively. Note that �

+
i is the fixed cost for buying an asset

and �

�
i the fixed cost of selling. Accordingly to the asset type, the costs are modeled

as a proportion of the transaction in this thesis [24]. Further information about the
assets can be found in section 3.1 and A.1.

�v,i(xi) =

(
↵

+
i xi, xi � 0

�↵

�
i xi, xi  0

(2.4.2)

Furthermore, the choice of a transaction model can a↵ect the feasibility of the
optimization problems. Both the objective function to be optimized and the set
over which the optimization is performed, must all be convex. Therefore, it is
required that the transaction cost function, 2.4.1, is convex to be directly solvable
by linear or quadratic programming [17]. .

Figure 2.1: Transaction cost as a piece-wise linear function with non-zero fixed
costs.

Consider a linear variable cost function, then the components of 2.4.1 are given by

�v,i(xi) =

8
><

>:

�

�
i � ↵

�
i xi, xi < 0

0, xi = 0

�

+
i + ↵

+
i xi, xi > 0.

(2.4.3)
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Clearly, this function is not convex, unless the fixed cost is set to zero. Therefore,
the transaction model used in this thesis will assume �

+ = �

� = 0. How the cost
coe�cients ↵i are set can be read in section 3.4.

2.4.2 Rebalancing of Portfolio Weights

The dynamic portfolio selection model consists of a set of the optimization problems
in section 2.2 and 2.3, each at a di↵erent point in time with period.

Consider a portfolio which is rebalanced in the beginning of each period. If the initial
investments are performed at t = t0, the consecutive weights are computed at the
discrete points of time tn = t0+nT for n = 0,1,...,M, where M is the total number of
periods. The corresponding portfolio weights are denoted by w(tn) = wn. At each
rebalancing stage, a budget constraint must be satisfied such that the rebalancing
is self-financing. This constraint applies to all models and is given by the equation
below [3, 17].

1T (wn �wn�1) + �(wn �wn�1)  0. (2.4.4)

Risk Parity

Since the aim of the Risk Parity portfolio is to assign equal risk to all assets the
transaction costs do not a↵ect the objective function of the optimization problem.
However, the self-financing condition 2.4.4 is added as a constraint to the original
problem. This means that 2.2.6 is translated to

Minimize
yn

q
yT
n⌃nyn

Subject to
NX

i=1

ln yn,i � c, 8 i

yn,i � 0, 8 i,

1T (wn �wn�1) + �(wn �wn�1)  0

(2.4.5)

in a multi-period setting. The corresponding weights are obtained in the same way
as the single-period model, i.e [3],

wn =
yn

1T · yn
. (2.4.6)

Mean-Variance

In contrast to Risk Parity, the Mean-Variance model has an objective function de-
pendent on the expected return. This means that the transaction cost must be
subtracted from the expected return in equation 2.2.7 as well as adding 2.4.4 as a
constraint.
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Minimize
wn

c

2
wT

n⌃nwn �wT
nµn � wn,0Rn,0 + �(wn �wn�1)

Subject to 1T (wn �wn�1) + �(wn �wn�1)  0.
(2.4.7)

The dynamic portfolio selection formulation according to Markowitz’s model is then
given by equation 2.4.7 above.

Mean-Absolute Deviation

In a similar fashion as for the Mean-Variance model, the transaction cost is sub-
tracted from the expected return in the constraint of the optimization problem.
More specifically, the formulation of this particular investment decision problem
transforms into [16]

Minimize
wn

SX

s=1

pn,s|wT
n (Rn,s � R̄n)|

subject to w0R0 +wT
n R̄n � �(wn �wn�1) � Rmin

1T (wn �wn�1) + �(wn �wn�1)  0.

(2.4.8)

2.5 Portfolio Evaluation

2.5.1 Sharpe Ratio

The Sharpe Ratio is a way of evaluating an investment’s performance by taking its
risk in consideration. Pension fund investors are generally risk averse. When faced
with two investments with similar expected returns, the risk averse investor almost
certainly chooses the portfolio with less risk. The Sharpe Ratio helps investors
evaluate portfolios with di↵erent expected returns and levels of risk. It is defined as

SR =
E[RA

P � r

A
F ]

�

A
P

(2.5.1)

where R

A
P is the annual asset return, rAF is the risk-free rate and �

A
P the standard

deviation of the portfolio’s returns. E[RA
P � r

A
F ] is then a measure of the expected

excess return of the portfolio, given a risk-free benchmark level. In general, the
attractiveness of the risk-adjusted return increases with the value of the Sharpe
Ratio [12].

2.5.2 Value-at-Risk

The Value-at-Risk (VaR) is in general terms defined as a measurement of potential
loss for investments. In other words, VaR indicates a quantile of the probability
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distribution for a portfolio’s potential loss given a specific time period.

The Value-at-Risk of a portfolio with value X at time 1 at level p 2 (0, 1) is given
as

VaRp(X) = min{m : P(mR0 +X < 0)  p}, (2.5.2)

where R0 is the percentage return of a risk-free asset. It can also be expressed as

VaRp(X) = F

�1
L (1� p), (2.5.3)

where L = �X/R0 [12].
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3 Data and Methodology

3.1 Data

The data used in the analysis is provided by AP1 which all is obtained from
Bloomberg. The basket of assets of the fund’s portfolio is represented by 17 in-
dices which are presented in Table 3.1. Additional to the indices below the 3 month
rate for SEK, USD, EUR and JPY is used to correct the portfolio for FX hedg-
ing costs which is further described in section 3.3. See Appendix A.1 for further
information regarding the assets of the portfolio.

Weigth Asset Currency
w0 Bloomberg Barclays 1-3 Month T-Bill ETF USD
w1 Bloomberg Barclays US Govt USD
w2 Swedish Government Bond Total Index SEK
w3 Bloomberg Barclays US Corporate High Yield USD
w4 S&P 500 USD
w5 OMX Stockholm 30 SEK
w6 Topix Index JPY
w7 Russell 2000 USD
w8 MSCI World USD
w9 MSCI Emerging Markets USD
w10 MSCI World Small Cap USD
w11 MSCI Sweden Small Cap SEK
w12 US REIT USD
w13 LPX Composite EUR
w14 USD/SEK -
w15 EUR/SEK -
w16 JPY/SEK -

Table 3.1: Portfolio assets. Datasource: Bloomberg.

The analysis is performed using R 3.5.0, Matlab R2017a and Python 3.6.4 with
packages numpy, scipy, pandas and pickle.

3.2 Additional Constraints

The models described in section 2 are all optimization-problems with constraints.
To better match the requirements that asset managers face, additional constraints
must be considered. The regarded constraints in this thesis are added to tailor the
portfolio such that it matches AP1’s investment style and complies with regulatory
requirements.
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Long only Portfolio

Real money investors hold the securities they buy and are generally long only on
their investments. Therefore, the long-only constraint,

wi � 0, 8i, (3.2.1)

will apply for all portfolios.

Exposure Limits

AP1 are obligated to follow APL (AP-fund-law), a law regulating the allocations
of the fund. APL specifies requirements on the allocations between asset classes.
This is the minimum regulatory requirements and will be the first level of fund
management that will be considered. Applied on the assets in Table 3.1, APL
translates to the following constraints

w1 + w2 + w3 � 0.3

w13  0.05

w14 + w15 + w16  0.4.

(3.2.2)

Moreover, the asset allocation of AP1 is decided by di↵erent decision levels. Based
on the overall asset allocation, exposure limits are specified for asset classes as well
as for illiquid investments. These exposure limits are defined by the Board’s risk
preference, henceforth denoted BRP. The BRP also determines AP1’s strategic long
term benchmark based on its investment beliefs and general guidelines [2]. This is
the second level of fund management that will be analyzed in this thesis.

In terms of the optimization problems specified in section 2, these requirements
translates to the constraints below.

0.25  w1 + w2 + w3 + w4  0.35

0.30  w5 + w6 + w7 + w8 + w9 + w10 + w11  0.55

w12  0.15

w13  0.05

0.15  w14 + w15 + w16  0.38

(3.2.3)

In this research, the portfolio optimization will be constructed using constraints
represented by both 3.2.2 and 3.2.3, in order to review the e↵ect of the additional
constraints.

Optimal Currency Hedge Ratio

In reality, the investments are made in the currencies of each local asset holding.
These positions can thereafter be hedged to limit the risk of undesired moves in the
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currency rates. Due to the fact that the weights corresponding to the given FX-rates
represent the unhedged positions in the portfolio one can easily integrate the cur-
rency exposure to the optimization problem. This thesis is written in collaboration
with AP1 and the analyzed portfolios must therefore replicate their actual portfolio
as good as possible. This is the only reason why this constraint is added, such that
the analysis is of value for the fund. The portfolio results will be evaluated as a
whole and the optimal currency hedge ratio will not be considered alone.

By simply modifying the constraints such that the sum of the weights is less or equal
to a number greater than one, the optimal currency exposure is jointly determined
with the portfolio’s local asset holdings. Thus, the optimal hedge ratio is determined
by adding the constraints

NX

i=1

wi  1.4

N�nX

i=1

wi  1.0

NX

i=n

wi  0.4,

(3.2.4)

where n is the number of currencies [23]. The currency pairs used in this thesis can
be found in Table 3.1.

Note that the weights sum up to 1.4 to comply with APL specified in equation 3.2.2.
This means that the maximum currency exposure is 40 %, i.e. 60 % of the portfolio
is FX hedged as a minimum. Since the sum of the weights are greater than one, one
must not forget to normalize the return.

3.3 Data Processing

Before the analysis can be performed the data needs to be modified. Firstly, a risk-
free interest rate must be determined such that cash can be present in the portfolio.
The second constraint in equation 3.2.4 states that the sum of the assets in the
portfolio must be less or equal to one. In other words, if those weights do not sum
up to one, the containing capital is kept in cash, which yields the risk-free return.

In theory this rate is the rate of return of a hypothetical investment with no risk
of financial loss, over a given period of time. To infer the risk-free interest rate in
the optimization problems in section 2, a money-market ETF is used, corresponding
to weight w0 in Table 3.1. The ETF consists of US Treasury Bills with maturities
between 1-3 months. Since the default risk of the US government is so low it can
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be negligible, it seems like a plausible choice to approximate the risk-free asset with
this index.

Equally important is the fact that the variance of a risk-free asset and correlations
with risky assets are all equal to zero. As can bee seen in Appendix A.2, the corre-
lations with the risky assets are all low and the variance is obtained to 1.0941 ·10�7.
Hence, it is seems that the choice of asset corresponding to w0 is a credible approx-
imation of a risk-free asset.

Secondly, the time series have to be corrected for currency hedging costs. Accord-
ingly to the constraints 3.2.4, one can assume that the portfolio can be divided into
two parts; the fully FX-hedged portfolio and the currency exposure. Here, weight
w1-w13 corresponds to the fully hedged portfolio while w14-w16 resembles the pro-
portion of the holdings that are left unhedged. Because of this assumption, the time
series have to be corrected for the cost of hedging. To obtain the final time series
the corrections in the table below are performed.

Table 3.2: To obtain the time series for the currency hedged portfolio, the original
series are corrected through short rates in the a↵ected currencies.

Weigth Correction
w0 -
w1 + 3m STIBOR - 3m USD LIBOR

w2 -
w3 + 3m STIBOR - 3m USD LIBOR
w4 + 3m STIBOR - 3m USD LIBOR
w5 -
w6 + 3m STIBOR - 3m JPY LIBOR
w7 + 3m STIBOR - 3m USD LIBOR
w8 + 3m STIBOR - 3m USD LIBOR
w9 x(SEK/USD)
w10 + 3m STIBOR - 3m USD LIBOR
w11 -
w12 + 3m STIBOR - 3m USD LIBOR
w13 + 3m STIBOR - 3m EURBIOR
w14 + 3m USD LIBOR - 3m STIBOR
w15 + 3m EURIBOR - 3m STIBOR
w16 + 3m JPY LIBOR - 3m STIBOR

STIBOR (Stockholm Interbank O↵ered Rate), LIBOR (London Interbank O↵ered
Rate) and EURIBOR (Euro Interbank O↵ered Rate) are reference rates based on
averaged interest rates at which banks in each respective market are willing to lend
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funds to another, without collateral, at di↵erent maturities.

The following and final step of correcting the time series is to handle missing values.
Considering that the availability of data varies between the indices, a start date is
chosen such that the data is aligned. In this case the start date is set to 2002-01-07
since from that date forward, weekly data is available for all assets. However, some
values are still missing for various reasons and can cause issues in the computations
to be performed. Therefore, missing values are handled by linear interpolation using
adjacent data points.

3.4 Transaction Cost Coe�cients

In order to evaluate the performance of each investment strategy with all di↵erent
assets, one needs to not only consider the returns of the individual assets, but also
the transaction costs that accompanies each rebalancing occasion. For the purpose
of this thesis, interviews have been conducted with asset managers at AP1 to get
a better understanding of how to most correctly assign transaction coe�cients to
each of the di↵erent asset indices.

Table 3.3: Datasource: The Journal of Portfolio Management [13].

Asset Class Time Period Transaction costs

Equities 1880-1992 0.34%
1993-2002 0.11%
2003-2016 0.06%

Bonds 1880-1992 0.06%
1993-2002 0.02%
2003-2016 0.01%

Commodities 1880-1992 0.58%
1993-2002 0.19%
2003-2016 0.10%

Currencies 1880-1992 0.18%
1993-2002 0.06%
2003-2016 0.03%

In addition, Hurst B. et.al (2017) recently made a study on trend-following in-
vestment strategies, where Table 3.3 was used to describe di↵erent asset classes’
simulated transaction costs. These costs are based on proprietary estimates made
in 2012, of average transaction costs for each asset class specified including both
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market impact and commissions.

Equities

The S&P 500 index is constructed to measure performance of the US economy as it
weighs 500 large US equities representing all major industries. With the free float-
adjusted market capitalization representing over 90% of the index, S&P is considered
to have the low transaction coe�cient of 0.05%.

The MSCI World equity index consists of large and mid-cap equity performances
across 23 developed markets. With approximately 85% of the free float market cap-
italization of each country and the exclusion of emerging markets, MSCI World is
assigned the transaction cost coe�cient of 0.06%. MSCI Emerging Markets index
consists of 24 countries representing 10% of the world market capitalization with
the free float-adjusted market capitalization exceeding 80%. Due to the increased
risk of securities in emerging markets, the index is assigned the higher transactions
cost coe�cient of 0.10%. Furthermore, the MSCI World Small Cap index captures
small cap representation in 23 developed markets. With only 14% of the free float-
adjusted market capitalization of each country, and lower overall trading volumes
that smaller companies endure, the index is assigned transaction cost coe�cient of
0.08%. By the same token, the MSCI Sweden Small Cap index with its largest
contributor only carrying a market capitalization of USD 6.7 billion, the index is
assigned the relatively high transaction cost coe�cient of 0.14%.

The Japanese stock market is represented by Topix Index, a metric that lists all of
the largest companies (firms in the first section of the Tokyo Stock Exchange) in the
country. The transaction coe�cient is set to 0.06%. Finally, the Russell 2000 index
represents the bottom 2000 stocks in the Russell 3000 index (representing the 3000
largest companies in the US). The index serves as benchmark for small-cap stocks
in the US, and is assigned the transaction cost coe�cient 0.07%.

Bonds

The Bloomberg Barclays US Govt is assigned transaction cost value 0.01%, as de-
termined by Hurst B. et.al. [13]. Considering global presence and higher volumes
transacted in this than in Swedish Government Bond Total Index, the latter is as-
signed the higher coe�cient of 0.05%. Finally, Bloomberg Barclays US Corporate
High Yield is assigned the highest coe�cient in this asset class, 0.06%.
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Alternative Investments

The LPX Composite represents all listed private equity companies that fulfill some
explicit liquidity constraints. The second index in this asset class, US REIT, is
an index constructed to capture the investable universe of publicly traded property
companies. Although these indices represent sections of the stock market, they serve
as proxies for investments in illiquid assets, e.g. apartments or land. Consequently,
the transaction cost model intents to penalize these assets as they are assigned
higher transaction cost coe�cients. US REIT receives coe�cient 0.20%, while LPX
Composite that represents more complex and illiquid investments in private equity
is assigned coe�cient 0.30%.

Currencies

Since the weights w14, w15 and w16 are representing the open currency exposure of
the portfolio rather than positions in the currency pairs specified in Table 3.1, the
corresponding cost coe�cients are set to zero.

All finalized transaction cost values are presented in Table 3.4.

Table 3.4: Transaction cost coe�cients used in this thesis.

Simulated Transaction Costs

Asset Class Asset Transaction costs
Bonds Bloomberg 1-3 Month T-Bill ETF 0.00%

Bloomberg US Govt 0.01%
Swedish Government Bond Index 0.05%
Bloomberg US Corporate High Yield 0.06%

Equities S&P 500 0.05%
OMX Stockholm 30 0.08%
Topix Index 0.06%
Russell 2000 0.07%
MSCI World 0.06%
MSCI Emerging Markets 0.10%
MSCI World Small Cap 0.08%
MSCI Sweden Small Cap 0.14%

Alternative Investments US REIT 0.20%
LPX Composite 0.30%

Currencies USD/SEK 0.00%
EUR/SEK 0.00%
JPY/SEK 0.00%
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3.5 Scenario Generation

Three scenario generation models are implemented in this thesis where one is based
on estimation of population parameters and the other two on time series theory.
The moment-matching model, described in section 2.3.2, failed to produce scenarios
in the real domain for this particular choice of assets. This is further described in
section 3.5.1.

Furthermore, DCC-GARCH and copula-GARCH are used to produce inputs to the
stochastic programming based decision model. The latter is multivariate GARCH
with constant conditional correlations, equation 2.3.25, using a copula function as
it’s distribution model which is described in section 2.3.5. In section 3.5.2 the
implementation of these time series models and the procedure of generating scenarios
are outlined in detail.

3.5.1 Moment Matching

Certain scenario generation models are based on matching a specific class of statis-
tical parameters, e.g moments as in the case with the moment-matching models.

The aim of the moment-matching procedure is to generate scenarios as well as
their corresponding probability weights that match exactly the given mean, the co-
variance matrix, the average of the marginal skewness and the marginal kurtosis of
each component of a random vector. The model is implemented in Python.

The mean vector µ, the covariance matrix ⌃ and the marginal third and forth
central moments, j and ⇣j are used as inputs for the algorithm. Next, the user
chooses an arbitrary non zero deterministic vector Z, such that

⌃�ZZT
> 0 (3.5.1)

The vector Z is later used to determine �1, �2 from equations 2.3.7 in order to
eventually determine coe�cients ↵ and � form equations 2.3.1-2.3.2. Z has been
determined with two di↵erent methods.

In the first method, proposed in ’An algorithm for moment-mathing scenario gen-
eration with application to financial portfolio optimisation’ by Ponomareva et.al.
(2014), it is calculated as

Zj = ⇢

p
Rjj , (3.5.2)

where Rjj is the diagonal of the covariance matrix and ⇢ 2 (0, 1) is chosen for some
su�ciently small values [22].
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The second approach to generate the vector Z was proposed in ’Comment on ”An al-
gorithm for moment-mathing scenario generation with application to financial port-
folio optimisation” by Contreras et.al. (2018), where eigenvalues and eigenvectors
are used to construct the covariance matrix. One lets �1  ...  �n be the eigen-
values and v1

, ...,vn the corresponding eigenvectors of the matrix ⌃. Then Z is
generating using

Zj =
p
�ll, (3.5.3)

Then

(⌃� ZZ

T )vj =

(
�jv

j
, if j 6= l

�l(1� ⇢

2)vl
, if j = 0.

(3.5.4)

The eigenvalues are positive and as a consequence, ⌃�ZZT
> 0 should hold [6].

Unfortunately, none of the methods were able to generate scenarios in the real
domain. This is further discussed in section 5.1.1.

3.5.2 Multivariate GARCH

Two multivariate GARCH models are used to generate scenarios, DCC-GARCH
and copula-GARCH. Copula-GARCH is a mixture model between a multivariate
GARCH model with constant conditional correlation and a copula. Both models
are implemented in R using the package rmgarch written by Alexios Ghalanos. For
specifics about the implementation, see the sections below.

The procedure for generating scenarios is similar for both models. A parameter esti-
mation is performed in the beginning of each year using a window length of l weeks.
Furthermore, the fitted models are used to simulate S scenarios a year ahead, where
every fourth time step is considered which corresponds to each rebalancing occa-
sion. In this way the path-dependency is preserved for the scenarios. The starting
values are given by the last observations to fit the models. After a year has past,
a significant amount of new historical data is available and new time series models
are fitted to simulate new scenarios for the consecutive year.
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Figure 3.1: An illustration of the discretization used in the scenario generation.

Given m historical weekly returns, this procedure is repeated for Y years, where Y

=
j
M�l
52

k
.
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DCC-GARCH

The DCC-GARCH model is used to simulate scenarios with the procedure described
above. The implemented method is based on a two-step Maximum-Likelihood fit
followed by a simulation of S scenarios.

Table 3.5: Implementation specifications of DCC-GARCH.

Input Historical returns of assets in Table 3.1 using a rolling win-
dow length of l = 520. This means that at each point of
time t = t13i a DCC-GARCH model is fitted using the 520
antecedent historical asset returns.

Start Date: 2012-01-23
End Date: 2017-01-16

Output S scenarios of assets returns for the sequent year. To use
computer resources e�ciently, only every fourth week is con-
sidered. The scenarios are assigned equal probabilities.

Technical Specifi-
cations

Implemented in R using package rmgarch

Order: (1,1)
Fit Model: dccfit1

Distribution Model: Multivariate Normal
Simulation Model: dccsim1

Moreover, to ensure that the scenarios are of high quality, the generated scenario
sets are tested for the properties described in section 2.3.1.

Parsimonious Scenario sets of size S = 100, 500 and 1000 are generated. By
producing results with di↵erent data sets, one can test which
size is large enough such that it renders su�ciently small errors
and small enough from a computational perspective.

Representative To establish a representative set of scenarios, the model of choice
must capture important aspects of the assets’ price dynamics.
Since the return volatility varies over time, DCC-GARCH seems
like a plausible choice.

Arbitrage free The conditional variance of any asset with respect to all other
assets is positive. In other words, no asset can be perfectly
explained by a combination of the others, i.e. replicated, and
thus rules out arbitrage.

1Object in package rmgarch. URL http://www.unstarched.net, https://bitbucket.org/alexiosg
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Numerically Stable The numerical stability is considered in respect of a particular
decision model, in this case equation 2.4.8. The combined use
of a scenario generator and decision model should lead to nu-
merically stable results. To test this, the optimal solutions for
two di↵erent scenario sets are compared. Generating two sets
of the same size using DCC-GARCH, the optimal solutions are
computed according to equation 2.3.28. By comparing the out-
comes one can conclude that the results are numerically stable.
For more information, see Appendix B.2.

Copula-GARCH

Copula functions were introduced as a tool to connect disparate marginal distribu-
tion together, to form a joint multivariate distribution. Since they where introduced,
they have become popular in analyzing financial time series.

Due to the fact that Student’s t copulas captures tail events for n-variate superior
to Normal, this particular copula has been chosen as the distribution model in the
multivarie GARCH model with constant correlations. Together, they form Copula-
GARCH which is the second time series model to be used for scenario generation in
this thesis [1].

Table 3.6: Implementation specifications of Copula-GARCH.

Input Historical returns using a rolling window length of l = 156
corresponding to 3 years of data

Start Date: 2005-01-31
End Date: 2017-01-16

Output S scenarios of assets returns for the sequent year. The sce-
narios are assigned equal probabilities.

Technical Specifi-
cations

Implemented in R using package rmgarch.

Order: (1,1)
Fit Model: cgarchfit1

Distribution Model: Student’s t copula
Simulation Model: cgarchsim1

1Object in package rmgarch. URL http://www.unstarched.net, https://bitbucket.org/alexiosg
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Parsimonious As for DCC-GARCH, scenario sets of size 100, 500 and 1000 are
generated to ensure both accuracy and computational tractabil-
ity.

Representative Copula-GARCH also captures the varying volatility and thus
represents a realistic form of the problem at hand.

Arbitrage free Also here, arbitrage is ruled out by positive conditional vari-
ances.

Numerically Stable The stability for this model is considered as for DCC-GARCH.
The solutions for the two sets do not vary and the scenario
generator is therefore considered to be numerically stable. More
information can be found in Appendix B.3.

3.6 Allocation Models

The asset allocation models in section 2 are all formulated as optimization problems
with some arbitrary parameters. These parameters are chosen such that the models
fulfill the requirements of the investor, e.g. risk appetite, diversification. This section
demonstrates how the models are calibrated and specifies how they are implemented.

3.6.1 Risk Parity

The objective of the Risk Parity portfolio is to allocate risk equally to all assets given
certain constraints, presented in section 2.4.2. In other words, the portfolio may be
viewed as variance-minimizing subject to a constraint of su�cient diversification in
terms of component weights. This results in allocations with the aim to maintain
equal risk, measured as volatility. The optimization of the objective function given
in 2.4.2 results in the initial constraint of �1  c  �N ln(N). In this thesis, the
arbitrary constant, c, will be chosen such that c = �N ln(N).

Furthermore, the allocation is performed dynamically during 2005-2018 according
to the scheme described in section 2.4.2. Because of the diversification constraint,
the APL and BRP constraints do not give unique outcomes and thus Risk Parity
will only be evaluated at one fund management level. Specifications can be found
in Table 3.7.
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Table 3.7: Implementation specifications of Risk Parity.

Input Rolling covariance estimate using a window length of 60 data
points. The estimation is performed using numpy

Start Date: 2005-01-31
End Date: 2018-01-08

Output Vector of percentage weights w.

Technical Specifi-
cations

Implemented in Python using packages numpy and
scipy.optimize

Optimization method: Sequential Least Squares Programming2

Rebalancing: 676 times during specified time period

3.6.2 Mean-Variance

Due to the fact that the asset allocation is performed dynamically, the formulation
according to equation 2.4.7 is considered. As described in section 2.2.2, the pa-
rameter c determines the trade-o↵ between risk and expected return. In the final
analysis, the objective is to maximize the return with a boundary on the volatility
such that it renders a suitable risk appetite. This boundary is chosen to be the
annualized volatility of 10 %, i.e. �A

P  0.10. To calibrate the model, c is be chosen
such that it yields an estimated annualized portfolio volatility of 10%.

Table 3.8: Implementation specifications of Mean-Variance.

Input Rolling covariance and mean estimates using a window
length of 60 data points. The estimation is performed using
numpy

Start Date: 2005-01-31
End Date: 2018-01-08

Output Vector of percentage weights w.

Technical Specifi-
cations

Implemented in Python using packages numpy and
scipy.optimize

Optimization method: Sequential Least Squares Programming2

Rebalancing: 676 times during specified time period

The Mean-Variance model is evaluated with both APL, equation 3.2.2, and BRP
constraints, equation 3.2.3, described in section 3.2. These portfolios will be referred
to as MV APL and MV BRP respectively.

2Optimizer SLSQP in package scipy.optimize. URL http://www.pyopt.org/reference/optimizers.slsqp.html
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3.6.3 Mean-Absolute Deviation

As for the Mean-Variance model, Mean-Absolute Deviation, as it is formulated in
2.4.8, optimizes two metrics simultaneously. Similarly, the optimization is performed
such that it yields an estimated mean-absolute deviation of 10%. Specifications
about the implementation can be found in Table 3.9.

Table 3.9: Implementation specifications of Mean-Absolute Deviation.

Input Scenarios generated with methods described in (3.5.2).
Start Date: 2005-01-31 (2012-01-23)3

End Date: 2018-01-08

Output Vector of percentage weights w.

Technical Specifi-
cations

Implemented in Python using packages numpy and
scipy.optimize

Optimization method: Sequential Least Squares Programming2

Rebalancing: 676 (312) times during specified time period3

Moreover, the Mean-Absolute model is evaluated with APL and BRP constraint,
referred to as MAD APL and MAD BRP.

3.7 Rebalancing and Portfolio Drift

Over time, the value of each individual investment move up and down which re-
sult in a drift of each weight wi. This results in another composition of securities
than intended when the investments were done and is the reason why rebalancing is
needed. Between rebalancing occasions the changing weights consequently drift the
value of the portfolio. How the portfolio drift is modeled in this report is demon-
strated below.

The portfolio is chosen to be rebalanced every fourth week. According to the nota-
tion specified in section 2.4.2 this correspond to T = 4 since the analysis is performed
on weekly data. With the discretization of time outlined in 2.4.2, each rebalancing
is performed at tn = t0 + nT with k = 1, 2, 3, 4 stages between each occasion. A
weight at time tn and stage k is denoted by wn(k). The drift is considered for all 4
stages between tn and tn�1 and is calculated according to the following procedure
for n = 1, 2, ..., M.

2Optimizer SLSQP in package scipy.optimize. URL http://www.pyopt.org/reference/optimizers.slsqp.html
32005-01-31 using scenarios generated with Copula-GARCH and 2012-01-23 with DCC-GARCH.
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k = 1

At this instant a rebalancing is considered and the current positions should be
valuated. To do this, the drift of the weights is calculated according to

w⇤
n(1) = [w(n�1)

0 (4)R(n)
0 (1) w

(n�1)
1 (4)R(n)

1 (1) · · · w

(n�1)
16 (4)R(n)

16 (1)]T

where the star denotes that the weights are not normalized.

The weights can be divided into two subsets, the actual assets of the portfolio, wn,P ,
and the weights representing the open currency exposure, wn,UH . The correspond-
ing unnormalized weights at this stage are given by

w⇤
n,P (1) = [w(n�1)

0 (4)R(n)
0 (1) · · · w

(n�1)
13 (4)R(n)

13 (1)]T

w⇤
n,UH(1) = [w(n�1)

14 (4)R(n)
14 (1) · · · w

(n�1)
16 (4)R(n)

16 (1)]T .

Due to the fact that w⇤
n,UH are not actual holdings of the assets, the value change

has to be divided by 1 added with the un-hedged porportion of the portfolio, i.e.

�Vn(1) =
1T ·w⇤

n(1)

1T ·w(4)n�1
) Vn = Vn(1) = Vn�1(4)�Vn(1)

Note that this is not necessary for n = 1. Then V1 is given as 100 % of the initial
investment, i.e. V1 = 1.

The normalized weights at this stage, wn(1), are obtained with the optimizer of
choice.

k = 2, 3, 4

Start by calculating the drifting weights.

w⇤
n(k) = [w(n�1)

0 (k � 1)R(n)
0 (k) · · · w

(n�1)
16 (k � 1)R(n)

16 (k)]T

Compute the portfolio value as for k = 1.

�Vn(k) =
1T ·w⇤

n(k)

1T ·w(k � 1)n
) Vn(k) = Vn(k � 1)�Vn(k)

The normalized weights at this stage are necessary to compute the value change for
k+1 and are simply obtained by

wn(k) =
w⇤

n(k)

Vn(k)
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3.8 Portfolio Evaluation

The portfolio evaluation is implemented in MATLAB for the time periods specified
in section 3.6. The performance of the weighting strategies are compared in terms
of the metrics described in section 3.8.

Table 3.10: Implementation specifications of the portfolio evaluation.

Metric Window
length

Technical Specification

Annualized
Return

52 data points Return defined as 1 + value change. mean()4 is
used to compute the average.

Annualized
Volatility

52 data points std()4 is used to compute the volatility

Sharpe Ratio 52 data points mean() and std() are used to calculate the quo-
tient

Value-at-Risk 52 data points Computed at level p = 0.05 using the normal
distribution method5

4MATLAB built-in function.
5Value-at-Risk estimation under the assumption that portfolio profits and losses are normally

distributed. URL: https://se.mathworks.com/help/risk/value-at-risk-estimation-and-backtesting-
1.html
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4 Results

This section will present the quantitative results obtained that will be used to answer
the research questions. The section begins by outlying the results acquired from the
di↵erent optimization strategies. It continues by presenting results from the di↵erent
scenario generators implemented in this research, how the number of scenarios e↵ect
the decision model’s outcomes and how the transaction cost model impact the results
of the optimizers.

4.1 Comparison of allocation strategies

The results of the proposed optimization strategies are presented in Table 4.1 to-
gether with some key performance indicators.

Table 4.1: Results of the di↵erent optimization strategies.

Strategy Return Volatility Sharpe Ratio VaR0.05

MAD APL 1.0956 0.1057 1.2919 0.1738
MAD BRP 1.0975 0.1031 1.3072 0.1695
MV APL 1.0790 0.0706 1.2087 0.1161
MV BRP 1.0899 0.0754 1.3063 0.1240

RP 1.1063 0.1026 1.3770 0.1687

Here, return describes the average annual return of each strategy. All metrics are
extracted as annual averages over the time period 2006-2017.

Table 4.1 indicates that Risk Parity with an average annual return of 1.1063 has
outperformed all other strategies, closely followed by Mean-Absolute Deviation BRP
with an average annual return of 1.0975. Mean-Absolute Deviation APL has proven
to be the most volatile strategy, followed by Mean-Absolute Deviation BRP and
Risk Parity. All strategies show fairly high Sharpe ratio values, indicating accept-
able levels of risk for investors.

Figure 4.1 exhibits the di↵erent portfolio strategy’s performance in terms of annu-
alized return between years 2006-2017. The portfolios lose significant value during
the exceptionally distressed time period of 2007-2008, in the midst of the prevalent
financial crisis. However, Mean-Variance APL and Mean-Variance BRP perform
considerably better than the other strategies. All portfolios seem to behave rela-
tively similarly from 2012 and onwards.
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Figure 4.1: Comparison between di↵erent optimization strategies in terms of
annualized return years 2005-2017.

As shown in Figure 4.2, all portfolios experience high volatility during the dis-
tressed period of 2007-2008. The turmoil caused by the recession inevitably made
the overall market more volatile. Contrary to expectations however, the Risk Parity
portfolio shows the highest volatility during this period, almost reaching the annu-
alized volatility of 0.25. The 5% Value-at-Risk performance displayed in Figure 4.3
show identical behavior.
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Figure 4.2: Comparison between di↵erent optimization strategies in terms of
annualized volatility years 2005-2017.

Figure 4.3: Comparison between di↵erent optimization strategies in terms of 5%
value-at-risk in years 2005-2017.

Figure 4.4 displays the di↵erent strategy’s Sharp ratio performance. The largest
discrepancies seem to occur during years 2009-2011. As expected, after investigating
the annualized returns in Figure 4.1, it is clear that Mean-Variance APL and Mean-
Variance BRP outperform the other strategies during distressed market conditions.
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It is also noteworthy that all strategies at some point in the examined time period
experience a Sharpe ratio as high as 4.0.

Figure 4.4: Comparison between di↵erent optimization strategies in terms of
Sharpe ratio in years 2005-2017.

4.2 Scenario Generators

In this section results for the di↵erent scenario generators are presented. To begin
with, a comparison of the two methods outlined in section 3.5.2 is performed in
section 4.2.1. Further, scenario sizes of S = 100, 500 and 100 are evaluated for both
models in section 4.2.2.

4.2.1 Methods

As described in section 3.6.3, the computations are performed both on the scenarios
generated with Copula-GARCH and DCC-GARCH. When evaluating the scenario
generation methods; return, volatility, Sharpe ratio and Value-at-Risk are consid-
ered for multi-period Mean-Absolute Deviation with APL constraints and scenario
size S = 500. For the portfolios with BRP constraints and analysis of individual
years, more information can be found in Appendix C.1.

As can be seen in Figure 4.5, the Mean-Absolute Deviation portfolio based on
Copula-GARCH produces a higher rate of return for almost all years, with an ex-
ception of mid 2015 to mid 2016. This is also clear by the 4.8% higher average
compared to DCC-GARCH.
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Table 4.2: Performance averages for scenario generators for years 2013-2017.

Model Return Volatility Sharpe Ratio Value-at-Risk0.05

Copula-GARCH 1.1114 0.0819 1.6968 0.1123
DCC-GARCH 1.0629 0.0785 0.8558 0.1077

Figure 4.5: Comparison of scenario generators with APL constraints in terms of
annualized return for 2013-2017.

In terms of risk, the methods perform similarly during years 2013-2017. As Figure
4.6 indicates, the volatility is similar with a slightly smaller overall risk for DCC-
GARCH. The second risk measure, Value-at-Risk, also shows a similar performance
which can be seen in Figure 4.7.
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Figure 4.6: Comparison of scenario generators with APL constraints in terms of
annualized volatility for 2013-2017.

Figure 4.7: Comparison of scenario generators in terms of 5% Value-at-Risk for
2013-2017.

Consequently, Copula-GARCH outperforms DCC-GARCH in terms of Sharpe ratio,
with an exception for the time period between 2015-2016. Since the models generate
similar levels of volatility but Copula-GARCH performs better in terms of return,
it is clear that the Sharpe ratio is higher. This result can be seen in Figure 4.8.
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Figure 4.8: Comparison of scenario generators with APL constraints in terms of
Sharpe ratio for 2013-2017.

4.2.2 Scenario Size

The scenario generations performed with both Copula-GARCH and DCC-GARCH
are implemented with three distinct scenario sizes, S = 100, 500 and 1000, as de-
scribed in section 3.5.2. The purpose is to learn how the increase in quantity of
scenarios a↵ect each model’s performance.

The results are summarized in Table 4.3 below. Values in Table 4.3 corresponding
to the Copula-GARCH model are extracted as averages between years 2006-2017,
whereas values corresponding to the DCC-GARCH model are calculated as averages
between years 2013-2017. The reason for the latter model’s shorter time period
is that it requires a longer window length due to the large number of estimation
parameters. Hence, the availability of scenarios starts later than for copula-GARCH.

Table 4.3: Summary of Copula-GARCH and DCC-GARCH performance with
di↵erent scenario sizes.

Copula-GARCH DCC-GARCH
Size Return Vol SR VaR0.05 Return Vol SR VaR0.05

100 1.1135 0.1032 1.4359 0.1868 1.1041 0.0764 1.2667 0.1257
500 1.1220 0.0991 1.6394 0.1761 1.0629 0.0785 0.8558 0.1292
1000 1.1220 0.0991 1.6394 0.1761 1.0629 0.0785 0.8558 0.1292
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The results show a slight increase in return for the Copula-GARCH model as the
number of scenarios increases from 100 to 500. Contrarily, the DCC-GARCH model
experiences a decreased return as the scenario size increases by the same amount.
Volatility decreases from 0.1032 to 0.0991 for the Copula-GARCH model, while it
increases from 0.0764 to 0.0785 for the DCC-GARCH model, in both cases the sce-
nario size is increased from 100 to 500 scenarios. The Sharpe ratio is subsequently
increased for the Copula-GARCH, while the DCC-GARCH model experiences a de-
crease. Finally, the Value-at-Risk is, using a confidence level of 95%, decreased for
the Copula-GARCH model, while it is increased for the DCC-GARCH model.

All results remain constant as the scenario size is increased from 500 till 1000.
Outcomes from Table 4.3 will be further discussed in Chapter 5.

DCC-GARCH

Figures 4.9-4.11 below graphically examine the behavior of the DCC-GARCH model
between years 2012-2017 in terms of annualized return, annualized volatility, Sharpe
ratio and Value-at-Risk. As demonstrated in the previous section by Table 4.3, an
increase in scenario sets from 500 to 1000 scenarios has no e↵ect on the outcome,
regardless of investigated variable. Thus, the data points representing 500 scenarios
coincide with the ones representing 1000 scenarios. As shown in Figure 4.9, the
DCC-GARCH model implementing 100 scenarios outperforms the others over the
total time period, except between years 2012-2014.

Figure 4.9: Comparison of scenario sizes for DCC-GARCH in terms of annualized
return over total time period.

51



Figures 4.10 and 4.11 show seemingly identical behavior, a natural occurrence as
risk-measures correlates well with volatility. As shown in both figures, there is a
significant increase between years 2015-2017 for the model with 500 scenarios, as
opposed to the model using 100 scenarios.

Figure 4.10: Comparison of scenario sizes for DCC-GARCH in terms of annualized
volatility over total time period.

Figure 4.11: Comparison of scenario sizes for DCC-GARCH in terms of 5 %
Value-at-Risk over total time period.
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As depicted in Figure 4.12, the DCC-GARCHmodel using 100 scenarios outperforms
the others in terms of Sharpe ratio over the majority of the time period, except
around years 2012-2014 where it experiences lower returns, shown earlier in Figure
4.9.

Figure 4.12: Comparison of scenario sizes for DCC-GARCH in terms of sharpe
ratio over total time period.

Copula-GARCH

Figures 4.13-4.16 below graphically examine the behavior of the DCC-GARCH
model between years 2012-2017 in terms of annualized return, annualized volatility,
Sharpe ratio and Value-at-Risk. Again, an increase in quantity of scenarios from
500 to 1000 unveil no e↵ect on the results.

The most noticeable and interesting di↵erence between these results and the ones
presented for DCC-GARCH, is how correlated the annualized returns for the Copula-
GARCH generated by 100 and 500 scenarios are.
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Figure 4.13: Comparison of scenario sizes for Copula-GARCH in terms of
annualized return over total time period.

Figures 4.14 and 4.15 show that the Copula-GARCH model using larger number of
scenarios, i.e. 500, outperforms the model with only 100 scenarios during the period
of distressed market conditions between years 2008-2009.

Figure 4.14: Comparison of scenario sizes for Copula-GARCH in terms of
annualized volatility over total time period.
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Figure 4.15: Comparison of scenario sizes for Copula-GARCH in terms of 5 %
Value-at-Risk over total time period.

Results of annualized returns observed in Figure 4.13 naturally create the same
pattern in Sharpe ratio, presented in Figure 4.16, as the metric is highly dependent
on return.

Figure 4.16: Comparison of scenario sizes for Copula-GARCH in terms of sharpe
ratio over total time period.
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4.2.3 Transaction Costs

In this thesis, portfolio performance has also been evaluated based on the associated
transaction costs that accompanies each rebalancing occasion. Table 4.18 examines
the impact transaction costs have on the average portfolio turnover for each indi-
vidual allocation strategy.

Portfolio turnover is defined as either the total amount of new securities purchased
or the amount of securities sold at each rebalancing occasion, whichever is less, ex-
pressed as proportion of the total portfolio value. Mean-Absolute Deviation APL
and Mean-Absolute Deviation BRP both measure extremely high quantities of port-
folio turnover, as the investigated models suggest >40% turnover including trans-
action costs, and nearly 50% turnover excluding transaction costs. Mean-Variance
APL and Mean-Variance BRP however, experience significantly lower volumes of
portfolio turnover. Mean-Variance APL measures 12.57% including transaction
costs and 14.75% excluding transaction costs, whereas Mean-Variance BRP reg-
ister slightly lower measurements of 10.04% including transaction costs and 12.02%
portfolio turnover excluding transaction costs. The study further suggests that port-
folio turnover is una↵ected by transaction costs for the Risk Parity portfolio, as it
is held consistent at 2.10% both including and excluding transaction costs.

Table 4.4: Average portfolio turnover at each rebalancing occasion for years
2009-2017.

Average Portfolio Turnover
Strategy Excl. transaction costs Incl. transaction costs
MAD APL 0.4548 0.4154
MAD BRP 0.4802 0.4647
MV APL 0.1475 0.1257
MV BRP 0.1202 0.1004
RP 0.0210 0.0210

The impact of a transaction cost model is also examined in terms of sharpe ratio
for the Mean-Variance and Mean-Absolute Deviation model with APL constraints.
Since transaction costs do not impact the Risk Parity model, it is excluded from
this analysis.

As seen in Figure 4.17, the transactions costs do not a↵ect the Mean-Variance model
significantly. The Sharpe ratios overlap each other the four first years and are very
similar for the whole period. Only during 2011-2013 one can see a gain in Sharpe
ratio for the model including transaction costs.
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Figure 4.17: Comparison of MV excluding and including transaction costs in terms
of Sharpe ratio for 2017.

As for Mean-Variance, transaction costs have a limited impact on Mean-Absolute
Deviation. This can be graphically examined in Figure 4.18 where the curves closely
follow each other with an exception of 2009-2011.

Figure 4.18: Comparison of MAD excluding and including transaction costs in
terms of sharpe ratio for 2017.
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5 Discussion

5.1 Scenario Generation

5.1.1 Moment Matching

Two di↵erent approaches in implementing the theory of moment-matching scenario
generation has been performed in this thesis. The first one was introduced by Pono-
mareva et.al. (2014) in [22], and the second one by Contreras et.al. (2018) in [6].
The research performed by Contreras et.al. (2018) was made with intention to im-
prove the work of Ponomareva et.al. (2014), suggesting their method of generating
scenarios was conducted with inconsistent assumptions, causing the algorithm to
produce negative probabilities, ultimately altering the results as consequence.

Unfortunately, both methods of determining the deterministic vector Z lead to vi-
olation of equation 3.5.1, with corresponding matrix shown in Appendix B.1. Con-
sequently, � from equation 2.3.6 becomes negative, violating condition

Ps
i=1

1
pi

< �

and the subsequent coe�cients ↵ and � from equations 2.3.1-2.3.2 end up in the
complex domain. The model has been applied for many di↵erent periods, all with
the same outcome of incompleteness. Ponomareva et.al. (2014) failed to mention
their implemented asset types, however their covariance matrix ⌃ consists of all
positive entries. This report is diversely based on a study of 17 assets from a variety
of underlying markets, natural yielding negative covariances between certain asset
classes. The occurrence of negative covariances from the assets used in this research
might explain the outcome of non-real solutions from the proposed algorithm.

5.1.2 Multivariate GARCH

Unlike the moment matching model, both GARCH models successfully generated
scenarios representing the asset returns. It could also be said that the GARCH
models fulfill the properties of a satisfactory scenario generator. Especially in terms
of generating representative scenarios as they preserve the path-dependency of the
asset returns and models volatilities and covariances that varies over time.

Notwithstanding these advantages, it is worth to highlight some key aspects observed
in the results. Scenario generation is a tool to model uncertainty and randomness in
decision policy and thus susceptible to estimation issues as any other estimator. As
the GARCH models are fitted, the estimation is vulnerable to two sources of error,
namely sampling error and non-stationarity of the time series. The cause of the
sampling error is insu�cient data so a solution would be to simply use more data.
On the other hand, the non-stationarity is due to changes in the variance and mean
over time, i.e. lag-dependency. By shortening the time windows the lag-dependency
is likely to be reduced whereas the contribution of the sampling error is anticipated
to increase. Hence, the choice of window length is an important point of considera-
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tion as can be seen in from the above analysis.

A further point to be considered is the trade-o↵ between solution tractability and
model accuracy. The scenarios are the foundation of the decision making and are
evaluated as the combined use of a scenario generator and decision model. As the
number of scenarios increase the model accuracy is expected to increase, resulting
in superior investment decisions. Nonetheless, given finite computational resources,
the scenario size has to be small enough such that the problem does not become
intractable. Since the decision making model is based on a iterative optimization
algorithm, the computational complexity increases exponentially with scenario size.

DCC-GARCH

As has been seen from the results in section 4.2.1, the decision model based on
DCC-GARCH resulted, on average, in inferior results compared to the alternative
scenario generator. Although the model accomplished to generate a lower risk of
0.34% on average, it only achieved an average return slightly higher than half of
Copula-GARCH.

A significant aspect of the underlying causes of the results is the long window length
when fitting the DCC-GARCH model. As noted in the definition of the model in
section 2.3.4, the model requires a large number of parameters to be estimated. This
makes it more easily a↵ected by the curse of dimensionality, i.e. the fact that the
amount of data needed to support the result grows exponentially with the dimen-
sionality. For this reason, a window length of 10 years was required to estimate the
DCC-GARCH parameters without encountering singularities. This means that the
model is likely to be built on non-stationary time series. Having this in mind, the
investment decision for the whole time period were based on data that included the
2008 financial crisis. This might explain the risk-avert allocations of the decision
model and the reason that it managed to maintain a lower risk.

The claim that DCC-GARCH poorly models the asset returns is also supported by
the results in section 4.2.2. The decision model is expected to perform better with
increased scenario size but the results shows the opposite. This indicates that the
method fails to model the uncertainty in the decision making and that the higher
performance of S = 100 is caused by mere chance.

This critique, unfortunately, implies that DCC-GARCH is not a credible choice
for scenario generation of n-variate data. The method should be discarded unless
clustering is considered such that a shorter window length can be used for the
estimation.
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Copula-GARCH

The fitting of Copula-GARCH required a shorter window length compared to DCC-
GARCH. Instead of 10 years, only 3 years were needed for the estimation of model
parameters. The optimizer based on Copula-GARCH was able to produce an av-
erage Sharpe ratio twice as large compared to the other scenario generator. Hence
this model did not seem to encounter the same issues of non-stationary time series
described above.

As expected, the model accuracy increased with scenario size which can be seen
in section 4.2.2. The gains of larger scenario sets are most observable during time
periods of distressed market conditions and high volatility. The risk is significantly
lower for larger scenario sets, both in terms of volatility and Value-at-Risk, for years
2008 and 2011, which are years were spikes in volatility could be observed in the
markets.

Moreover, one can see a saturation of performance at S = 500 as the decision model
based on the scenario set of S = 1000 yields identical allocations. In other words,
once a certain tolerance is reached, a higher accuracy do not influence the decisions.

5.2 Allocation models

5.2.1 Risk Parity

The Risk Parity model by definition aims at making the total risk contributions of
all assets equal among them, with volatility used as risk measure. In other words,
the investment strategy is formalized such that the quantity of capital invested in
each asset should be determined such that the total risk contribution for all assets
within the portfolio are equal.

According to Table 4.1, the Risk Parity constructed portfolio in this thesis scored
the highest average annual return during the investigated time period, although only
slightly higher than Mean-Absolute Deviation APL. Before performing the simula-
tions, the superior returns realized for the Risk Parity portfolio was not expected.
An explanation for the unconventional results might be found in the definition of
the portfolio’s construction. The optimization problem does not take into account
expected return, but solely focuses on the assets’ volatility. Since the mean vector
µ is more complicated to estimate than the covariance matrix ⌃, the risk parity by
nature has less exposure to significant estimation errors. In other words, the dif-
ference between expected and realized return is generally larger than the di↵erence
between expected and realized volatility.

Another interesting discovery from the results of the model (Table 4.1) is its rela-
tively high annualized volatility, only scoring lower than Mean-Absolute Deviation
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APL. This somewhat unexpected result might be explained by the model’s per-
formance during the distressed market conditions experienced in the critical years
of 2008-2009 (Figure 4.2). Here, it measured significantly higher volatility than
all other models due to its definition concerning equal risk contribution across all
assets. Therefore, the model has the possibility to reduce its exposure in certain
(poor) investments, but is limited from excluding them completely, an option all
other models are programed to have.

Furthermore, Table 4.4 suggests to the reader that the Risk Parity model outper-
forms all other models in terms of portfolio turnover, with an average portfolio
turnover of only ⇠ 2%, which is a clear advantage.

5.2.2 Mean-Variance

As one could have expect, the Mean-Variance portfolios had on average, the poorest
performance in terms of Sharpe ratio. However, the portfolio strategy managed to
keep the lowest levels of risk, which is an important property especially during pe-
riods of market stress. As observed, Mean-Variance was by far the superior choice
under the financial crisis of 2008.

It is also worth to mention that Mean-Variance was the model that gained the most
of a more restrictive feasible region. In absolute measures, the Sharpe ratio rose ⇠
10 % with BRP constrains compared to the same portfolio under APL. This can
be explained by the fact that the model su↵ers from error maximization and thus
benefits the most when sources of errors are restricted.

5.2.3 Mean-Absolute Deviation

It has been shown that this particular decision model has on average the highest
risk, in terms of value-at-risk, and su↵ers by far the biggest losses during periods of
market stress. However, the model seems to outperform the other two under normal
market conditions, in terms of Sharpe ratio, and only Mean-Variance managed to
keep a lower risk. Furthermore, the portfolio with BRP constraints outperformed
the less constrained one. Despite the fact that Mean-Absolute Deviation BRP suf-
fered bigger losses during periods of market stress, it still managed to maintain a
lower level of risk. Having considered this, it is important to acknowledge that the
Mean-Absolute Deviation model is based on stochastic programming with mean-
absolute deviation as it’s measure of risk. What di↵ers mean-absolute deviation
from variance, which is the risk measure for the other two implemented models, is
that the statistic is not squared.

In statistics, the sample variance is most commonly preferred since the aim is only
to estimate. If the estimates are o↵ by a small margin, it is acceptable, but if they
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deviate a lot, they have a bigger impact on the estimate and should therefore be
treated as such. Hence, the variance penalizes the larger deviations as smaller ones
do not cause as much damage as the larger ones do. This property might be prefer-
able in many cases, but if the underlying distribution has heavy tails it renders in
an unjust assessment. If this is the case, the sample mean-absolute deviation may
be more robust and may exist when the second central moment is not defined.

Since asset returns often exhibit non-normal behavior, mean-absolute deviation
might seem like a plausible choice. However, this choice also results in a substan-
tial disadvantage during periods of market stress, which is clearly observable in the
results. Considering that the assets with the highest risk are not as penalized in
Mean-Absolute Deviation as in the other two models, this is not a remarkable dis-
covery. Through the objective function, optimality is not as sensitive to substantial
market moves and thus less reactive under distressed market conditions.

Moreover, the model performs better with BRP constraints compared to the mini-
mum regulatory requirements, APL. This indicates that this quantitative allocation
model benefits from investment constraints based on rationale. Quantitative models
often lack a long-term return and risk level and thus more prone to errors in the
models. They are mainly based on statistical methods of which historical data is
the input. The past is in many cases a poor indicator of the future but historical
data remains the best way to forecast it with the available tools today and the only
objective way to measure risk. However, as the results show, the less constrained
optimizers are more susceptible to sources of error and it is thus beneficial to limit
the feasible region of the optimization.

Lastly, it is also important to highlight that Mean-Absolute Deviation had by far the
highest portfolio turnover. Reaching nearly 63 % as an maximum annual average,
compared to Mean-Variance and Risk Parity with 25 % and 5 % respectively. To
keep a low portfolio turnover is important for two reasons. A fund with a high
turnover rate will incur more transaction costs than a fund with a lower rate. Despite
the higher costs, a fund can still generate a higher return through superior asset
selection the high turnover rate might entail. However, unless fully automated,
these transactions have to be executed and monitored by sta↵, which is another
source of cost. This is the second drawback of a high turnover rate, the fund has
to be more actively managed which results in higher costs of human resources. The
intention with a transaction cost model is to limit this e↵ect but also to penalize
the assets with high costs and thus a more realistic problem. However, it has been
shown that it has a limited e↵ect both on portfolio turnover and performance.
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Computational Issues

Due to the high computational complexity of stochastic programming, processing
power can be an issue. The implemented models were executed on a Intel Core i7
6700K 4 GHz processor. By reason of the high complexity, the computations were
spread out such that there was only one optimizer per processor. The model with
the largest scenario set resulted in a running time of 123 hours and 36 minutes for
the whole time period (2005-01-31 - 2018-01-08).

To boost computational e�ciency one can consider the data partition proposed in
Figure 5.1. By reason of the di�culty of implementation, this partition was not
considered in this thesis. However, if computational e�ciency is of importance, this
particular partition reduces the computational complexity of the problem at hand
and maintains the important property of path dependency of the scenarios.

Figure 5.1: Partition of the scenario set to boost computational e�ciency.
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6 Conclusion and Future Research

6.1 Answering the Research Questions

The purpose of this study has been to develop a reliable framework for stochastic
programming in regards of portfolio optimization and to investigate several di↵erent
allocation models. The following research questions are answered with the use of
quantitative analysis.

”Can stochastic programming improve the performance of a multi-asset portfo-
lio?”

This research concludes that stochastic programming at the investigated time period
of 2005-01-31 - 2018-01-08 is inferior to Risk Parity, but outperforms the Mean-
Variance Model. The biggest flaw of the model is its poor performance during
periods of market stress. Compared with the other two implemented models, the
Mean-Absolute Deviation su↵ered the greatest losses during these periods.

”At which level of fund management is the use of optimizers suitable?”

This research also concludes that the optimizer with the more restrictive constraints,
BRP, performs better than the minimum regulatory requirements, APL. This im-
plies that these quantitative models benefit from restricted feasible regions based on
a long-term investment rationale.

6.2 Future Research

As discussed, the poor performance of the Mean-Absolute Deviation model may be
caused by the fact that the metric of its objective function does not penalize large
deviations as much as the other two models and thus less reactive under distressed
market conditions. Although this might explain the problem, it has not been isolated
in this thesis. Therefore, it would be of interest to study if stochastic programming
could benefit from a more sensible metric of risk applied on a multi-asset portfolio.

Another interesting aspect would be to investigate at which quantity of scenarios
saturation of model accuracy is achieved. In this study scenario sets of S = 100,
500 and 1000 were implemented and it has been shown that no more than 500 were
needed to achieve equivalent results. However, the limit of saturation lies between
100-500 and because of the high computational complexity it would be of value to
determine it.
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A Appendix: Portfolio Assets

A.1 Asset Descriptions

A.2 Asset Correlations

The correlations between the assets described in section 3 Table 3.1 are presented
in the figure below.

Figure A.1: Asset correlations.
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B Appendix: Scenario Generation

B.1 Moment Matching

Figure B.1: Numerical values of the violated condition ⌃�ZZT
> 0 from section

2.3.2.
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B.2 DCC-GARCH

To test the stability of DCC-GARCH as a scenario generator in respect of 2.4.8 as
a decision model, two independent sets of size S = 100 are generated. The optimal
solutions are computed for both data sets and are presented in Table B.1.

Table B.1: Stability analysis of GARCH models.

DCC Copula
Data set 1 2 1 2
w0 0.005 0.005 0.075 0.075
w1 0.000 0.000 0.000 0.000
w2 0.295 0.295 0.225 0.225
w3 0.000 0.000 0.000 0.000
w4 0.000 0.000 0.000 0.000
w5 0.000 0.000 0.000 0.000
w6 0.000 0.000 0.000 0.000
w7 0.000 0.000 0.000 0.000
w8 0.000 0.000 0.000 0.000
w9 0.000 0.000 0.000 0.000
w10 0.000 0.000 0.000 0.000
w11 0.000 0.000 0.000 0.000
w12 0.700 0.700 0.700 0.700
w13 0.000 0.000 0.000 0.000
w14 0.400 0.400 0.400 0.400
w15 0.000 0.000 0.000 0.000
w16 0.000 0.000 0.000 0.000

The optimal solutions are obtained with additional constraints 3.2.1, 3.2.2 and 3.2.4
for the last 4-week period of 2017.

B.3 Copula-GARCH

The numerical stability is tested as for DCC-GARCH. The optimal solutions for the
two sets are given in Table B.1.
The same constraints and time period as in B.2 are considered.
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C Appendix: Results

Figures C.2-C.4 below give a closer look at each strategy’s performance during the
critical year of 2008.

Figure C.1: Comparison between di↵erent optimization strategies in terms of
annualized return in distressed year of 2008.

Figure C.2: Comparison between di↵erent optimization strategies in terms of
annualized volatility in distressed year of 2008.

70



Figure C.3: Comparison between di↵erent optimization strategies in terms of
sharpe ratio in distressed year of 2008.

Figure C.4: Comparison between di↵erent optimization strategies in terms of
annualized volatility in distressed year of 2008.
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Tables C.1-C.3 summarizes numerical results from each strategy’s returns, shape
ratio and volatility between years 2006-2017.

Table C.1: Annualized returns for each strategy between 2006-2017.

Year MAD APL MAD BRP MV APL MV BRP RP
2006 1.1002 1.1322 1.1707 1.1460 1.1643
2007 1.0448 1.0423 1.0301 1.0308 1.1018
2008 0.7938 0.7599 0.9652 0.9588 0.8948
2009 1.1454 0.9765 1.0889 1.1121 1.0924
2010 1.2574 1.1559 1.0985 1.1086 1.2580
2011 1.1083 1.0745 1.0795 1.1030 1.0865
2012 1.0492 1.0330 1.0391 1.1007 1.0998
2013 1.1172 1.1257 1.1988 1.2071 1.1541
2014 1.1377 1.0982 1.1253 1.1292 1.1269
2015 1.0836 1.0950 1.0631 1.0870 1.1265
2016 1.0026 0.9731 1.0379 1.0333 1.0395
2017 1.1198 1.1394 1.0504 1.0614 1.1312

Table C.2: Sharpe ratio for each strategy between 2006-2017.

Year MAD APL MAD BRP MV APL MV BRP RP
2006 1.2525 1.7036 1.9598 1.7785 2.0867
2007 0.5165 0.4832 0.4613 0.4706 1.2046
2008 -1.5059 -1.5687 -0.4214 -0.4742 -0.6996
2009 0.7641 0.0256 1.1385 1.3705 0.5428
2010 2.9040 2.1996 2.3533 2.2613 2.4018
2011 1.6592 1.2124 1.4926 1.5455 1.0082
2012 0.4402 0.3655 0.8714 1.6182 1.0123
2013 1.5367 1.6529 2.9133 2.9734 2.4262
2014 1.9770 1.3843 1.6144 1.6327 1.9428
2015 1.0600 1.0808 0.7691 1.0405 1.5796
2016 0.1292 -0.1462 0.4927 0.4238 0.4398
2017 2.4528 2.6696 0.8600 1.0702 2.5787
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Table C.3: Volatility for each strategy between 2006-2017.

Year MAD APL MAD BRP MV APL MV BRP RP
2006 0.0776 0.0821 0.0876 0.0832 0.0844
2007 0.1127 0.1110 0.0670 0.0705 0.0890
2008 0.1415 0.1580 0.0907 0.0935 0.1417
2009 0.2182 0.2159 0.0811 0.0852 0.2113
2010 0.0859 0.0712 0.0421 0.0487 0.1040
2011 0.1031 0.0934 0.0543 0.0714 0.1069
2012 0.1374 0.1211 0.0473 0.0680 0.1201
2013 0.0748 0.0762 0.0688 0.0717 0.0636
2014 0.0701 0.0715 0.0772 0.0794 0.0661
2015 0.0873 0.0976 0.0860 0.0871 0.0874
2016 0.1039 0.1166 0.0850 0.0874 0.1054
2017 0.0483 0.0524 0.0602 0.0585 0.0509

C.1 Scenario Generators

Figures C.5-C.7 below give a closer look at each scenario generator’s performance
with APL constraints during the most recent year of 2017.

Figure C.5: Comparison of scenario generators with APL constraints in terms of
annualized return for 2017.
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Figure C.6: Comparison of scenario generators with APL constraints in terms of
annualized volatility for 2017.

Figure C.7: Comparison of scenario generators with APL constraints in terms of
Sharpe ratio for 2017.
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Table C.4: Performance averages for scenario generators with BRP constraints for
years 2013-2018.

Model Return Volatility Sharpe Ratio Value-at-Risk
Copula-GARCH 1.1156 0.0881 1.6469 0.1207
DCC-GARCH 1.0783 0.0781 1.0971 0.1071
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Figures C.8-C.11 exhibits the di↵erent scenario generator’s performance with BRP
constraints in terms of annualized return, annualized volatility, Value-at-Risk and
Sharpe ratio between years 2013-2017.

Figure C.8: Comparison of scenario generators with BRP constraints in terms of
annualized return for 2013-2017.
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Figure C.9: Comparison of scenario generators with BRP constraints in terms of
annualized volatility for 2013-2017.

Figure C.10: Comparison of scenario generators with BRP constraints in terms of
5% Value-at-Risk for 2013-2017.
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Figure C.11: Comparison of scenario generators with BRP constraints in terms of
Sharpe ratio for 2013-2017.

C.2 Scenario Sizes

Tables C.5-C.7 below summarizes the numerical results between di↵erent scenario
sizes annualized return, Sharpe ratio and annualized volatility produced by DCC-
GARCH between years 2013-2017.

Table C.5: Comparison of scenario sizes for DCC-GARCH in terms of annualized
return between 2013-2017.

Year 100 500 1000
2013 1.0287 1.0362 1.0362
2014 1.1546 1.1257 1.1257
2015 1.1611 1.1281 1.1281
2016 1.0061 0.9536 0.9536
2017 1.0334 1.0356 1.0356
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Table C.6: Comparison of scenario sizes for DCC-GARCH in terms of Sharpe ratio
between 2013-2017.

Year 100 500 1000
2013 0.4107 0.3852 0.3852
2014 2.3427 1.6325 1.6325
2015 1.9490 1.5258 1.5258
2016 0.0737 -0.4301 -0.4301
2017 0.7484 0.6620 0.6620

Table C.7: Comparison of scenario sizes for DCC-GARCH in terms of annualized
volatility between 2013-2017.

Year 100 500 1000
2013 0.0652 0.0662 0.0662
2014 0.0750 0.0720 0.0720
2015 0.0868 0.0871 0.0871
2016 0.0982 0.1123 0.1123
2017 0.0564 0.0551 0.0551

Tables C.8-C.12 below summarizes the numerical results between di↵erent scenario
sizes of annualized return, Shape ratio, annualized volatility, 5% Value-at-Risk and
1% Value-at-Risk produced by Copula-GARCH between years 2006-2017.

Table C.8: Annualized returns from Copula-GARCH for di↵erent scenario sizes
between 2006-2017.

Year 100 500 1000
2006 1.1002 1.1284 1.1284
2007 1.0448 1.0916 1.0916
2008 0.7938 0.8508 0.8508
2009 1.1454 1.0863 1.0863
2010 1.2574 1.3110 1.3110
2011 1.1083 1.1035 1.1035
2012 1.0492 1.0405 1.0405
2013 1.1172 1.1843 1.1843
2014 1.1377 1.1779 1.1779
2015 1.0836 1.0736 1.0736
2016 1.0026 0.9638 0.9638
2017 1.1198 1.1575 1.1575
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Table C.9: Sharpe Ratio from Copula-GARCH for di↵erent scenario sizes between
2006-2017.

Year 100 500 1000
2006 1.2525 1.1349 1.1349
2007 0.5165 0.7072 0.7072
2008 -1.5059 -1.0930 -1.0930
2009 0.7641 0.5449 0.5449
2010 2.9040 3.6325 3.6325
2011 1.6592 1.6667 1.6667
2012 0.4402 0.4262 0.4262
2013 1.5367 2.4676 2.4676
2014 1.9770 2.6470 2.6470
2015 1.0600 0.9562 0.9562
2016 0.1292 -0.2849 -0.2849
2017 2.4528 2.6981 2.6981

Table C.10: Annualized volatility from Copula-GARCH for di↵erent scenario sizes
between 2006-2017.

Year 100 500 1000
2006 0.0776 0.1215 0.1215
2007 0.1127 0.1206 0.1206
2008 0.1415 0.1346 0.1346
2009 0.2182 0.1731 0.1731
2010 0.0859 0.0872 0.0872
2011 0.1031 0.0948 0.0948
2012 0.1374 0.1273 0.1273
2013 0.0748 0.0747 0.0747
2014 0.0701 0.0677 0.0677
2015 0.0873 0.0833 0.0833
2016 0.1039 0.1160 0.1160
2017 0.0483 0.0630 0.0630
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Table C.11: Value-at-Risk calculations at 95% confidence level from
Copula-GARCH and DCC-GARCH simulations.

VaR0.05

Copula-GARCH DCC-GARCH
Year 100 500 1000 100 500 1000
2007 0.1276 0.1999 0.1999 - - -
2008 0.1853 0.1983 0.1983 - - -
2009 0.2328 0.2214 0.2214 - - -
2010 0.3589 0.2848 0.2848 - - -
2011 0.1412 0.1434 0.1434 - - -
2012 0.1696 0.1559 0.1559 - - -
2013 0.2260 0.2094 0.2094 - - -
2014 0.1231 0.1229 0.1229 0.1083 0.1089 0.1089
2015 0.1153 0.1113 0.1113 0.1233 0.1184 0.1184
2016 0.1436 0.1452 0.1452 0.1427 0.1432 0.1432
2017 0.1708 0.1907 0.1907 0.1615 0.1847 0.1847

Table C.12: Value-at-Risk calculations at 99% confidence level from
Copula-GARCH and DCC-GARCH simulations.

VaR0.01

Copula-GARCH DCC-GARCH
Year 100 500 1000 100 500 1000
2007 0.1804 0.2828 0.2828 - - -
2008 0.2621 0.2805 0.2805 - - -
2009 0.3292 0.3131 0.3131 - - -
2010 0.5076 0.4028 0.4028 - - -
2011 0.1997 0.2028 0.2028 - - -
2012 0.2399 0.2205 0.2205 - - -
2013 0.3196 0.2962 0.2962 - - -
2014 0.1741 0.1738 0.1738 0.1531 0.1541 0.1541
2015 0.1630 0.1574 0.1574 0.1744 0.1675 0.1675
2016 0.2030 0.2054 0.2054 0.2284 0.2026 0.2026
2017 0.2416 0.2698 0.2698 0.1313 0.2612 0.2612
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Table C.13 summarizes the averages of the di↵erent scenario generator’s perfor-
mances.

Table C.13: Performance averages for scenario generators with APL constraints for
years 2013-2018.

COPULA-GARCH DCC-GARCH
Size Return Vol SR VaR0.95 Return Vol SR VaR0.95

100 1.1135 0.1032 1.4359 0.1868 1.1041 0.1778 1.2667 0.1257
500 1.1220 0.0991 1.6394 0.1761 1.1063 0.1827 0.8558 0.1292
1000 1.1220 0.0991 1.6394 0.1761 1.0663 0.1827 0.8558 0.1292
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