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Abstract

There are many machine learning techniques that cannot be
performed on graph-data. Techniques such as graph embedding,
i.e mapping a graph to a vector, can open up a variety of
machine learning solutions. This thesis addresses to what extent
static graph embedding techniques can capture important
characteristics of an IT-architecture graph, with the purpose
of embedding the graphs in a common euclidean vector space
that can serve as the state space in a reinforcement learning
setup. The metric used for evaluating the performance of
the embedding is the security of the graph, i.e the time it
would take for an unauthorized attacker to penetrate the IT-
architecture graph. The algorithms evaluated in this work are
the node embedding methods node2vec and gat2vec and the
graph embedding method graph2vec. The predictive results of
the embeddings are compared with two baseline methods. The
results of each of the algorithms mostly display a significant
predictive performance improvement compared to the baseline,
where the F1 score in some cases is doubled. Indeed, the
results indicate that static graph embedding methods can in
fact capture some information about the security of an IT-
architecture. However, no conclusion can be made whether a
static graph embedding is actually the best contender for posing
as the state space in a reinforcement learning framework. To
make a certain conclusion other options has to be researched,
such as dynamic graph embedding methods.

Keywords: IT-Architecture graph, Node Embedding, Graph
Embedding, Reinforcement Learning, Machine Learning





Sammanfattning

Det är många maskininlärningtekniker som inte kan appliceras
på data i form av en graf. Tekniker som graph embedding,
med andra ord att mappa en graf till ett vektorrum, can öppna
upp för en större variation av maskininlärningslösningar. Det
här examensarbetet evaluerar hur väl statiska graph embeddings
kan fånga viktiga säkerhetsegenkaper hos en IT-arkitektur som
är modellerad som en graf, med syftet att användas i en
reinforcement learning algoritm. Dom egenskaper i grafen som
används för att validera embedding metoderna är hur lång
tid det skulle ta för en obehörig attackerare att penetrera
IT-arkitekturen. Algorithmerna som implementeras är node
embedding metoderna node2vec och gat2vec, samt graph
embedding metoden graph2vec. Dom prediktiva resultaten
är jämförda med två basmetoder. Resultaten av alla tre
medoterna visar tydliga förbättringar relativt basmetoderna,
där F1 värden i några fall uppvisar en fördubbling. Det går
alltså att dra slutsatsen att att alla tre metoder kan fånga upp
säkerhetsegenskaper i en IT-arkitektur. Dock går det inte att
säga att statiska graph embeddings är den bästa lösningen till
att representera en graf i en reinforcement learning algoritm, det
finns andra komplikationer med statiska metoder, till exempel
att embeddings från dessa metoder inte kan generaliseras till
data som inte var använd till träning. För att kunna dra
en absolut slutsats krävs mer undersökning, till exempel av
dynamiska graph embedding metoder.

Nyckelord: IT-Arkitektur, Node Embedding, Graph
Embedding, Reinforcement learning, Maskininlärning
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Chapter 1

Introduction

The world is more connected now than ever before, and the connections are growing each day as
the technology moves forward. Today’s globally interconnected infrastructures give freedom while
at the same time demanding more up-to-date security. All companies today in the tech industry
have data that is of high importance, and it would have devastating consequences for the company
or for individuals if it was compromised. Moreover, as the security knowledge of defenders of the
systems increase, so does the knowledge of the attackers. Consequently, the IT-security systems
need to be advanced and constantly updated and improved, since a secure system today might
not be secure tomorrow. This constantly changing environment can be confusing and hard to
understand for any individual who does not possess expert knowledge in the area.

The company foreseeti addresses the problem of making IT-security understandable, not only
for the experts but for everyone. They do it by visualizing the IT-security architecture of a
company in a graph, such that it clearly displays the IT-structure of the company. They developed
the tool securiCAD, that allows their customers to draw their IT-architecture in a CAD-like
manner. Furthermore, it implements Bayesian networks [19] to model the risk exposure of the
IT-architecture using probabilistic methods. SecuriCAD provides a ”heat map” of where the
architecture is more or less likely to be vulnerable to attacks, giving the costumers a clear and
continuous risk assessment while they plan and design future architectures.

In a work in progress paper [22] by Lagerström et al. the development of an Automatic Designer
within the securiCAD tool is suggested. The Automatic Designer employs machine learning
techniques to automatically improve and redesign any IT-architecture modeled in securiCAD.
Consequently, any customers using the securiCAD tool would not only get the visualization and risk
assessment of the current architecture, but they would also get suggestions of how to remove, add
and modify components to improve it on the spot. The approach suggested for implementing the
Automatic Designer is reinforcement learning (RL), where an agent is trained to make modifications
on the existing IT-architecture to improve it. The current state of the agent is the current IT-
architecture design. In the implementation of the Automatic Designer the state space is a finitely
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large set of IT-architecture designs created using the securiCAD tool. Consequently, each of these
designs is in the form of a graph, with vertices connected by edges. Each of these vertices and edges
represents a real entity or connection in an IT-architecture system. Consequently, they employ all
the imaginable attributes required to model an IT-architecture realistically, which is a significant
amount. As a result, the state space in the implementation of the Automatic Designer is in fact a
set of heavily attributed graphs.

As turns out, many machine learning techniques cannot be applied directly to graph data [23],
which is likewise the case for the RL setup in the work in progress paper. Graphs solely consists
of a set of vertices and a set of edges, and it is a challenge to represent this structure so that it
can easily be exploited by machine learning models [16]. As far as the knowledge of the author
of this thesis goes, there has not been any publications of any attempts to perform RL on graph
data in the way that the Automatic Designer suggests. However, learning representations of data
has become a field in itself in the machine learning community [3]. Learning a representation
means to transform the data to make it more accessible and easier to extract useful information
from. This field has shown great success in e.g speech recognition, object recognition and natural
language processing. Recent methods propose representation learning on graphs, where the nodes
(vertices), subgraphs or entire graphs are mapped into an euclidean vector space. These algorithms
are referred to as graph embedding or node embedding methods. The idea of an embedding is that
two nodes that are embedded closely in this vector space, are also similar to each other in the
graph according to some similarity measure. How this similarity measure of two nodes in a graph
is defined differs for different embedding algorithms. In conclusion, a vector space is fit for a richer
tool set of machine learning approaches than graph structures, including RL.

For the implementation of the Automatic Designer, a graph embedding method could be a viable
solution for representing the attributed graphs in the state space of the RL setup. There are many
different areas of research regarding graph embedding. Most algorithms are static, i.e they are
applicable to graphs that do not evolve over time [23]. Thus, in the framework of the Automatic
Designer, each individual graph in the state space could be represented by one or several vectors
in some euclidean vector space using a static graph embedding.

This thesis regards this topic, and investigates how a static graph embedding can pose as the state
space in a reinforcement learning framework. There are several ways to evaluate whether or not an
embedding is truly representative of a graph. In literature, it is common to evaluate an embedding
by performing node and edge prediction, i.e trying to predict the class belonging of the nodes and
edges in the graph given the embedding. If successful, the embedding is assumed to have captured
some important characteristics of the graph. In the Automatic Designer, it would be desirable if
the embedding captured characteristics of how secure the graph is, since that would be an indicator
whether the graph has to be modified or not. In securiCAD, there is more than one way to measure
security. However, the most used measure is the Time-To-Compromise (TTC), which indicates
how long it would take for an unauthorized attacker to compromise a specific node. If this number
is low, it is easy to compromise the node and thus the security is low. In summary, if the TTC
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values can be predicted given some static graph embedding, it is an indicator that these techniques
can be useful when implementing the Automatic designer.

For investigating this topic a simulator of the securiCAD tool is at disposal. The simulator
employs all the major functionalities of securiCAD. However, it is a simplified version and thus
does not incorporate all the attributes of the securiCAD. Nontheless, it can build IT-security
graphs, simulate attacks and calculate TTC values. The assumption is that if the TTC values
can be predicted using static graph embeddings in the simulator, it will show similar results when
expanded to the more advanced securiCAD.

1.1 Previous Work

There are many different research areas regarding static graph representation. Most of them
regard embedding individual nodes, i.e each node in the graph is mapped into a vector. These
methods are generally optimized for performing link and node prediction, and they are trained
in an unsupervised or semi-supervised manner. The static node embedding methods can roughly
be divided into three categories [16], matrix-factorization methods [1, 2, 5, 38], random walk based
methods [14,39,41,43] and deep learning methods [6, 29,47].

The matrix factorization methods represent the connections between nodes in a graph as some
matrix, and applies a factorization to it to obtain a lower dimensional representation of it. One
of the earliest factorization method is Laplacian Eigenmaps [2] from 2002. The matrix used for
factorization is commonly the adjacency matrix. A power of the adjacency matrix is employed
by Cao et al. in Grarep [5]. Another algorithm is HOPE [38] that captures directed edges and
uses generalized singular value decomposition (SVD) to map the matrix representation to lower
dimensions.

The random walk methods perform random walks from each node in the graph to obtain a
neighborhood set that can be used to train the vector representation of that node. The assumption
is that two nodes that co-occur often during random walks over the network should have similar
node representations. What mainly differs these methods is how they define their random walks.
The DeepWalk [41] algorithm uses a fixed length random walk, whereas node2vec [14] uses a biased
random walk strategy to trade off between both local and global views of the network. An extension
to the random walk strategies is HARP [7], that uses a pre-processing step that collapses related
nodes into ”supernodes” to improve the performance of the random walk methods.

The deep learning methods for graph representation incorporate deep neural network layers to
obtain node embeddings. SEANO [29] uses a two-layer neural network, and DNGR [6] and
SDNE [47] use autoencoders to compress information about the neighborhood of a node. There
are methods that belong to more than one category, such as S2S-N2N-PP [45]. It combines the
random walk strategies with the deep learning methods.

Apart from the static node embedding methods, there are methods that represent neighborhoods
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or entire graphs as vectors. One such method is Subgraph2vec [35] by Narayan et al. that embeds
smaller neighborhoods, and graph2vec [36] that embeds whole graphs.

1.2 Research Questions

The main purpose of this thesis is to investigate one specific approach for representing graph-
data as the state space in the reinforcement learning setup in the Automatic Designer [22]. This
approach is to map each graph to a vector using static graph and node embedding techniques. The
questions to answer in this thesis are:

• How well can a static node embedding capture important characteristics of an IT-security
graph?

• How well can a static graph embedding algorithm capture important characteristics of an
IT-security graph?

• How viable is the approach of using a static graph/node embedding for the purpose of
representing a graph as the state space in a reinforcement learning setup?

1.3 Outline

The outline of this thesis is as follows. The background consists of chapter 2 and chapter 3, where
the former describes the securiCAD and the simulator, and the latter theory about graph and
node embedding. Subsequently, the methodology is in chapter 4 followed by results in chapter 5.
Thereafter, a chapter about potential future work and discussion in chapter 6, and lastly a short
conclusion in chapter 7.
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1.4 Nomenclature

AP Attacker Persistence

BFS Breadth-First Sampling

DFS Depth-First Sampling

DTR Decision Tree Regression

RL Reinforcement Learning

SGD Stochastic Gradient Descent

SVC Support Vector Classifier

SVM Support Vector Machine

TTC Time To Compromise

UNI User Needs Information
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Chapter 2

SecuriCAD and the Simulator

The company foreseeti enables firms to conduct threat modeling and cyber risk simulation through
their product securiCAD. The tool lets companies draw their IT-architecture in a CAD-like manner
in the structure of a graph and simulates hacker attacks to provide a ”heat map” [20] on where
the architecture is more or less vulnerable. It assesses the time it would take for a professional
attacker to compromise a specific asset. It is a complex tool, and it employs numerous features.
For conducting the experiments in this thesis work, a simplified simulator of the SecuriCAD is
employed. For this reason, the securiCAD is only briefly described in the chapter 2.1 and for
further details the reader is referred to [20] and [10]. The simulator is described in more detail in
chapter 2.2.

2.1 SecurCAD

The SecuriLang [20] has four types of concepts; Attacker, AttackStep, Defence, and Asset.

Asset The assets are the vertices in the graph created by the customer, by drawing the architecture
using securiCAD. Each asset represents a logical, physical or conceptual part of an IT-architecture.
Examples of assets are: Firewall, Host, Intrusion Detection System (IDS), Network, Protocol,
Router. The edges in the graph represent different system relation types between the assets.

Defence Most assets are equipped with defences. Each defence reduces the vulnerability of
the asset and prolongs the time it takes for an attacker to compromise it. Examples of
defences associated with the asset Host are: AntiMalware, Hardened, HostFirewall, Patched,
StaticARPTables.

Attacker An attacker is an individual who wants to gain access to assets with or without proper
authority, to exploit weaknesses or cause damage. In SecuriCAD it is assumed that the attacker is
a professional penetration tester that has all public knowledge and all possible tools. An Attacker
is likewise an asset, i.e modelled as a vertex in the graph of the IT-architecture.
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AttackStep An attack step is a step the attacker makes to penetrate further into the IT-
architecture. Each attack step is connected to an asset and the defences that protect it. Every
attack step has a set of parent and child attack steps. A parent-child relationship is represented
by an AttackStepMin (or-step) or an AttackStepMax (and-step). The former implies that at
least one of the parent attack steps must be successfully taken for it to be taken, and the latter
that all of the parents must be successfully taken. Examples of attacks on the asset Host are:
BypassAntiMalware, BypassIDS, Compromise, PhysicalAccess, UserAccess.

Given an IT-security graph drawn in securiCAD, an attack graph can be generated by simulating
cyber attacks on it. The attack graph consists of vertices modelling the attack steps from the entry
point of the attacker and edges modelling child/parent relationships between the attack steps. The
attack steps are modelled in a probabilistic fashion, no nodes are considered safe but the probability
of compromise may be very small.

2.1.1 Time-To-Compromise (TTC)

To have a measure of the effort expected of the attacker to move through the attack graph and
compromise assets, the measure Time-To-Compromise (TTC) is used. The TTC for each attack
step, i.e for reaching a new node in the attack graph, is modelled in a probabilistic fashion as a
random variable and thus connected to some probability distribution. With the assumption that
the effort of the attacker is expended uniformly, the TTC for each step can be calculated through
repeated random sampling from the probability distribution. By the Monte Carlo method the
TTC estimate is the sample mean:

TTCi =

N∑
j=0

f(xi
j)

N

where xi is a sample drawn from the probability distribution associated with attack step i and N

the number of samples, f(·) is an optional weight function. SecuriCAD employs five cumulative
distribution functions [20], Bernoulli, Exponential, Gamma, Log-normal and Pareto. To find the
shortest path, i.e the lowest TTC value to each node, can be fit into the framework of a classical
network optimization problem. The algorithm used in SecuriCAD is Dial’s Approximate Buckets
with a description found in [8].

2.2 The Simulator

The simulator is considerably less complex than SecuriCAD, but attempts to capture the most
important aspects of SecuriCAD. As far as the knowledge of the author of this thesis goes, there
is no documentation of the simulator except of what is written in this report. Therefore, the
description in this chapter is done with the intention to correctly describe how the simulator
works. However, it is not to be taken for true documentation, but can give an introduction.
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2.2.1 Assets

There are seven assets in the simulator; Host, Network, Dataflow, Credentials, Information,
Attacker and User. An overview of their functionality is found in the table below.

Assets in the simulator
Host (H) A computer or some kind of hardware that can store information.
Network (N) Connected to hosts, can be interpreted as a router.
Dataflow (DF) Data that is transferred from one host to another.
Credentials (C) Authorization required to legitimately access one host from another host.
Information (I) Important data stored on a host.
Attacker (A) An infiltrator that attacks the system to compromise the information.
User (U) A legitimate user of the system. Needs access to the information.

Except for the attacker and the user, there can be unlimited number of each asset in one IT-
architecture graph. Most assets are connected to hosts with a connect connection. The exception
are the credentials that will have either a store connection or a grant access connection. This
induces that the authorization key/password that grants access to one host is stored on the other,
and if the latter is reached by the attacker the former will likewise be easily accessed. The dataflow
needs to be connected to exactly two hosts. Further, there is a value called user needs information
(UNI) connected to a host and to one or more informations, which is an indicator of the importance
of the user’s accessibility of that information. However, the UNI is not a structural connection,
and the attacker cannot exploit this connection to reach the information. There is an overview of
the allowed connections between the assets in table 2.1.

Table 2.1: The allowed connections in the Simulator: 1=Connect, 2=Store, 3=Grant access, –=No allowed
connection. UNI stands for User needs information and is an indicator of the importance of the user’s
accessibility of that information.

H N D C I A U
Host – 1 1 * 2, 3 1 1 1
Network 1 1 ** – – – – –
Dataflow 1 * – – – – – –
Credentials 2, 3 – – – – – –
Information 1 – – – – – UNI
Attacker 1 – – – – – –
User 1 – – – UNI – –

* Dataflow needs to be connected to exactly two hosts
** Network-Network connection implements a firewall

All assets are connected to hosts, and hosts can be connected to anything but themselves.
The network asset is the only asset that can be connected to itself, in which case a firewall is
implemented, thus making it harder for an attacker to pass through.

Figure 2.1 shows an example of a very simple IT-architecture with all of the seven assets. Both
the attacker and the user need to get from host 1 (H1) to host 2 (H2) in order to reach the
information.

8



H1

C

DF

N1 N2

H2 I

U

A

Figure 2.1: An example of a simple graph of an IT-architecture in the simulator. U=User, A=Attacker,
H1=Host number 1, H2=Host number 2, N1=Network number 1, N2=Network number 2, DF=Dataflow,
I=Information.

2.2.2 Attack Graph

Similarly to the SecuriLang language the simulator generates an attack graph starting from the
attacker, and each node represents one attack step whose local TTC value is equipped with a
probability distribution. However, contrary to SecuriLang the simulator exclusively employs the
gamma distribution X ∼ Γ(k, θ), with probability density function, mean and variance:

f(x; k, θ) =
xk−1e−

x
θ

θkΓ(k)
, x, k, θ > 0

E[X] = kθ

V ar(X) = kθ2

(2.1)

using the shape and scale parametrization, k and θ. In the simulator the attacks are divided into
legitimate and illegitimate attack steps, where the expected TTC value E[X] = kθ is higher for an
illegitimate attack step. The reasoning is that it takes a longer time for an attacker to access an
asset by exploit than to do it by using for instance credentials.

bypass
firewall

credentials
access by

connect
through
dataflow

access
by exploit

attack
H1

access

C
access

DF
access

N1 N2
accessaccess

H2
access

I
access

(1)

(1)

(1)

(1)

(1)

(50)

(1)

(1) (1)

(100)

(1)

(AND)

Figure 2.2: An attack graph generated in simulator of the simple IT-architecture in figure 2.1. The
legitimate attack steps are cheap, in this example it costs 1 TTC to take them, whereas the illegitimate
ones, bypass firewall and access exploit, cost 50 and 100 respectively. Access by credentials is an (AND)
step, which means that both parents, C access and connect through dataflow, have to be reached to get
there. The attacker takes the cheapest path available.

Figure 2.2 displays an attack graph of the small IT architecture in figure 2.1. The numbers above
each node are the TTC values for that attack step. Note that these numbers are drawn and
averaged from a probability distribution, thus the numbers in the figure are examples. The node
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access by credentials is an (AND) attack step, which indicates that both its parents need to be
compromised for it to be reached. The parents are connect through dataflow and C access. The
attacker will choose the cheapest path to the information, hence through H1 access, C access, access
by credentials and H2 access which leads to I access. This path costs the attacker 5 TTC.
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Figure 2.3: The same attack graph as figure 2.2 showing the TTC value for each attack step in orange as
well as the total TTC value for the attacker to reach each asset in blue. Since H2 and N2 are structurally
connected (see figure 2.1), the attacker can in fact reach N2 without passing through the firewall.

Figure 2.3 displays the very same attack graph as figure 2.2, while it also displays the total TTC
for all the nodes in the actual IT-architecture graph in blue. The shortest path for the attacker
to N2 is via N1. However, that includes the illegitimate attackstep bypass firewall and that path
would costs 53 TTC. The attacker only pays 4 TTC to compromise H2, and H2 is structurally
connected to N2, hence this path is cheaper since the attacker does not need to go through bypass
firewall. See figure 2.1, access to H2 naturally leads to access of N2.

H1

C

DF

N1 N2

H2 I

U

A

H3
store

grant
access

Figure 2.4: An example of another IT architecture. Here the credential that grants access to host 2 are
stored on host 3, which the attacker cannot reach.

Figure 2.4 displays a similar IT-architecture to the example in figure 2.1, with the introduction
of a third host H3 that stores the credentials instead of host H1. The corresponding attack
graph is displayed in figure 2.5. In this case the attacker cannot reach the (AND) attack step
access by credentials, since the credentials are not stored on H1 and the attacker cannot reach H3.
Consequently, the total TTC of C access is infinity and the attacker needs to take the path through
access by exploit. In this example the total TTC for I access is instead 105.
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Figure 2.5: The attack graph generated from the IT architecture in figure 2.4. Since the attacker can
not reach both parents of access by credentials, the shortest way to the information is to connect through
dataflow and access by exploit. In this example the cheapest path to I access costs 105 TTC.

2.2.3 Total Cost

There are more measures than the TTC values that dictate how good an IT-architecture is. For an
architecture design it is naturally important that the attacker can not easily compromise important
information, however it is likewise important that the users have access to it. There are more
parameters to the simulator that will not be described in detail, since they are not relevant for
conducting the experiments in this thesis. These parameters are briefly mentioned for completeness
in the table.

Parameters in the simualor
Attacker persistence AP Skill of the attacker
User needs information UNI A measure of the importance of accessing the information
Unit cost UC A penalty cost for having many entities in a graph
Cost of compromise COC The cost of the damages if an information is compromised

The total cost that the simulator calculates is a function of these parameters, along with the
attacker’s TTC values and how long time it takes for the user to access the information it needs.
Nonetheless, the sole focus in this thesis are the TTC values of the attacker, and further description
of the rest of the parameters is omitted.
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Chapter 3

Graph Embedding

This chapter will introduce static graph embeddings and describe the details about the algorithms
implemented in thesis. The term graph embedding is used to describe a representation of each
node of the graph, a sub-graph or an entire graph in a euclidean vector space. The embedding
should capture the graph’s structure, connections between individual nodes and its attributes. The
intuition is to train a mapping of nodes/sub-graphs/graphs to d-dimensional vectors, such that
nodes/sub-graphs/graphs that are similar to each other according to some proximity, are likewise
close to each other in this d-dimensional vector space [25]. The proximity measure is defined
differently for each algorithm, and depends on what characteristics the user wish to capture. A
formal definition of a node embedding is found in definition 5.

In this thesis node embeddings and graph embeddings are further discussed in chapter 3.3 and 3.4.
Sub-graph embeddings are not implemented and further description in this thesis is omitted.

3.1 Formal Definitions

Graphs are used as an efficient way to represent data and characterize actions between objects of
interest. In this work a definition of a graph similar to the definition in [47] is used:

Definition 1 (Graph). A graph is denoted as G = (V,E), where V={v1,…,vn} is a set of n
vertices (a.k.a nodes) and E = {ei,j}ni,j=1 is a set of edges. Each edge ei,j is associated with
a weight si,j ≥ 0. If vi and vj are not connected to each other, then si,j = 0. Otherwise, for
unweighted graphs si,j = 1 and for weighted graphs si,j > 0. For undirected weighted graphs,
sij = sji ∀i, j ∈ {1, . . . , n}.

All IT-architecture graphs generated from the simulator (chapter 2.2) are undirected and
unweighted. Consequently,

si,j = sj,i = 1 ∀si,j ̸= 0 i, j ∈ {1, . . . , n}.

12



A graph is often represented with a neighborhood matrix, also called adjacency matrix. The
adjacency matrix displays the connections between vertices and is oftentimes used in eg.
factorization based methods, chapter 3.3.2. The following definition of an adjacency matrix is
similar to one by [5].

Definition 2 (Adjacency Matrix). An adjacency matrix of an unweighted graph is a matrix
S of size n × n such that Si,j = 1 if and only if there exists an edge from vertex vi and vj

and 0 otherwise. For a weighted graph Si,j is a real number corresponding to the weight si,j
of edge ei,j.

The edge weight si,j is often treated as a measure of similarity between nodes. Definition 3 and 4
are defined similar to Goyal et al. [13].

Definition 3 (First-Order Proximity). Edge weights si,j are also called first-order proximity
between nodes vi and vj since they are the first and foremost measures of similarity between
two nodes.

Definition 4 (Second-Order Proximity). The second-order proximity between a pair of nodes
describes the proximity of the pair’s neighborhood structure. Let si = [si1, . . . , sin] denote the
first-order proximity between vi and other nodes. Then, second-order proximity between vi

and vj is determines by the similarity of si and sj.

In similar fashion to definition 4, higher order proximities can be defined. Both definition 3 and 4
are so called pairwise node proximities, i.e an estimation of similarity between pairs of nodes, no
more no less. We define sG(vi, vj) to be a pairwise proximity measure and

Si,j := sG(vi, vj) (3.1)

so that the proximity matrix S contains the pairwise node proximities between node vi and node
vj . A node embedding is when each vertex in a graph or network is mapped to a vector in a vector
space. We define a node embedding as [13]:

Definition 5 (Node Embedding). Given a graph G = (V,E) a node embedding is a mapping
f : vi → zi ∈ Rd ∀i ∈ {1, . . . , n} such that d << |V | and the function f preserves some
proximity measure Si,j := sG(vi, vj) defined on graph G.

Hence, each node vi in the graph we have a low dimensional vector zi. We define

Z ∈ Rd×|V | (3.2)

to be a matrix where column i corresponds to the embedding zi of node vi.
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Attributed Graphs

Some graphs are equipped with attributes. For example, the parameters mentioned in chapter 2.2.3
are attributes of the IT-architecture graph. The definition of an attributed is from [43].

Definition 6 (Attributed Graph). An attributed graph is denoted G′ = (V,E,A), composed
of a set of vertices V, a set of edges E, and an attribute function A : V → 2A, where A is
the set of all possible attributes.

In the IT-architecture graphs described in the simulator (chapter 2.2), typical attributes are which
type of asset the vertices are (host, credential, network etc). Other attributes are the values they
are connected to, like UNI1 and AP2.

3.1.1 Graph Isomorphism

Graph isomorphism is a common issue when dealing with graph comparison. Two graphs are
isomorphic if they are equal up to a relabelling of their vertices. In the Automatic Designer [22]
implementation it is essential that the agent can recognize graph isomorphism. It turns out to be
a rather complex problem according to Fortin [11]:

”... it is clearly in NP but is not known to be in P and it is not known to be NP-complete”.

Hence, solving the graph isomorphism problem is infeasible, but any choice of embedding should
be robust against isomorphic transformations of the graphs.

3.2 Skip-gram

Many graph and node embedding algorithms incorporate the Skip-gram model, initially developed
for learning embeddings of words, in for example word2vec [33]. The skip-gram is a simple but
efficient one layer feed forward neural network. Word embedding is the idea of mapping a word
from a sentence to a vector space. The idea is that [36]:
”the words appearing in similar context tend to have similar meanings and hence should have
similar vector representations”.
The skip-gram model as defined in [34] will be explained here, with details from [31]. The skip-
gram is a one hidden layer neural network model that is fully connected. Let |V | be the number
of words in the vocabulary, i.e the number of unique words in the dataset. Then, given an input
word v, the neural network is trained to predict its neighboring words.

The hidden layer is a weight matrix W ∈ R|V |×d, where each row t represents the embedding for
the word vt with dimension d. The input is a one-hot vector to select the corresponding embedded
vector in the weight matrix. Given an input word and a context size, the neural network is trained

1user needs information
2attacker persistence
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Figure 3.1: A overview of the skip-gram model. The input word vt is used to predict its neighboring words,
and vt’s corresponding embedded vector is chosen from the weight matrix using a one-hot vector.

using word pairs in this context. Given a sequence of training words v1, v2, . . . , vT , the goal is to
maximize the average log-likelihood:

1

T

T∑
t=1

logP (vt−c, . . . , vt+c|vt) (3.3)

where c is the size of the training context, and could be a function of the center word vt. The context
word and the target word are assumed to be independent and hence the posterior probability can
be calculated as:

P (vt−c, . . . , vt+c|vt) =
∏

−c≤j≤c,j ̸=0

P (vt+j |vt).

The basic skip-gram defines the probability P (vt+j |vt) using soft-max function, also called
normalized exponential function:

P (vt+j |vt) =
exp(zt · zt+j)∑|V |
i=1 exp(zt · zi)

(3.4)

where zt is the vector representation of the word vt and V is the vocabulary of all the words. In
the node embedding setting, the vector representation is the embedding, and the vocabulary is set
of all vertices in a graph. When the training is over, the hidden layer represents the embedding of
each of the word in the vocabulary, with the desired dimension d. Note that each word has two
trained embedding representations, one in the output layer and one in the hidden layer. However,
the embedding in the output layer is not used further. The nominator

∑|V |
i=1 exp(zt · zi) is a

normalizing constant and is typically expensive to compute when the vocabulary grows large,
since it has complexity O(|V |) [25]. For instance, a naive approach like logistic regression which in
many applications would not be feasible. Two other ways of dealing with the normalizing factor
are Hierarchical soft-max and negative sampling.

3.2.1 Negative sampling

For each word pair sampled in the skip-gram scheme that are trained to ”1”, the equation 3.4
suggests to normalize over all the negative pairs that equals ”0”. The negative sampling method

15



instead approximates the normalizing factor by using a subset of the negative pairs, i.e negative
samples. Consequently, for each input pair of words, only a few weights in the hidden weight
matrix and output weight matrix are updated.

The probability of a word getting selected as a negative sample is chosen according to Unigram
distribution [32] - frequent words in the data set are chosen at a higher probability.

3.3 Node Embeddings

A node embedding (as defined in definition 5) is a mapping of each node in a graph to a vector
in a vector space. There are several different methodologies for applying node embeddings. The
methods described in this chapter are static, i.e they do not deal with graphs that evolve over time.
Most static node embedding methods can be divided into one of three categories: factorization
based methods, random walk based methods and deep learning based methods. In this thesis work,
two different node embedding algorithms are implemented. The first one is node2vec [14] by Grover
et al. The main argument for this algorithm is its superior performance in the node prediction task
in the survey [13]. However, this algorithm does not deal with attributed graphs, and only embeds
nodes according to structural similarities. Consequently, a second node algorithm is implemented,
namely gat2vec [43] by Skeikh et al. In their paper the gat2vec algorithm performed well on a
multilabel node prediction task against various of other embedding techniques. In contrast to the
node2vec algorithm, it incorporates node attributes as well as structural similarities.

Most node embedding algorithms that belongs to one of the three categories can be explained by
a encoder-decoder framework developed by Hamilton et al. [16], which is introduced in chapter
3.3.1. Both node2vec and gat2vec belong to the random walk category, chapter 3.3.4. However,
the other methods will nevertheless be briefly described in chapter 3.3.2 and 3.3.3.

3.3.1 Encoder-Decoder Framework

The encoder-decoder framework developed by Hamilton et al. [16] and is unified way of describing
different types of node embeddings. The encoder

ENC : V → Rd

is a function that maps each node in the graph to a vector zi ∈ Rd in a low dimensional vector
space. The factorization based methods and random walk methods often use a direct encoding
approach, where the encoder is an ”embedding lookup” [16]:

ENC(vi) = Zvi. (3.5)
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Here vi ∈ IV is a vector indicating the column of Z that corresponds to node vi. The training
parameters for direct encoding is ΘENC = {Z}. Hence, the embedding matrix is optimized directly.
The decoder is a function that maps a set of node embeddings to user-specified graph statistics.
Most algorithms use a pairwise decoder

DEC : Rd × Rd → R+ (3.6)

that maps a pair of node embeddings to some defined proximity measure3, that quantifies the
proximity of the two nodes in the original graph. This proximity measure could for instance be
First-Order Proximity in definition 3. Henceforth, with some proximity sG of the original graph

Figure 3.2: An encoder that maps nodes in a graph to a vector space. Here u and v are nodes in the graph
and zu and zv their embeddings. Figure taken from [25].

the aim is to construct the encoder and decoder such that it minimizes the error function:

DEC(ENC(vi), ENC(vj)) = DEC(zi, zj) ≈ sG(vi, vj).

Then the empirical loss function to be minimized is:

L =
∑

(vi,vj)∈D

ℓ(DEC(zi, zj), sG(vi, vj)) (3.7)

where D is a set of training node pairs and ℓ : R×R → R is a user-specified loss function. To learn
an embedding the following steps needs to be done:

1. Define a proximity measure over the graph G, i.e specify what similarities in the graph that
should be preserved in an embedding

2. Define an encoder, i.e a mapping from nodes to embeddings

3. Define an decoder, that reconstructs the proximity values from the embeddings

4. Optimize parameters to minimize the loss function.

3.3.2 Factorization Based Methods

Many factorization based methods employs an encoding algorithm through optimizing a loss similar
to 3.7. A factorization based method uses a matrix that in some way represent the connections

3a measure of how close the nodes are in G
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between nodes, and applies some factorization to it to obtain an embedding. These methods
are closely related to dimensionality reduction techniques, eg. eigenvalue decomposition. The
factorization based methods often use the direct encoding approach, equation 3.5 [16]. One of
the earliest methods was the Laplacian eigenmaps (LE) [2], that uses the squared 2-norm as the
decoder:

DEC(zi, zj) = ||zi − zj ||22.

Another example is the inner product decoder (used in eg. [38] and [5]):

DEC(zi, zj) = zT
i zj .

with a mean squared error (MSE) loss function:

L =
∑

(vi,vj)∈D

||DEC(zi, zj)− sG(vi, vj)||22.

The primary difference between these methods is the graph proximity measure sG(vi, vj). It could
for example be the the adjacency matrix sG(vi, vj) := Si,j in definition 2, or it could be a power
of it sG(vi, vj) := Sp

i,j (eg. [5]). These methods are referred to as Matrix-factorization methods
because of the loss function. When averaging over all nodes they roughly optimize a loss function
of the form L ≈ ||ZT Z − S||22 where S is a matrix that contains the pairwise proximity measure,
which leads to a matrix optimization factorization problem.

3.3.3 Deep Learning Based Methods

In the classical approaches of factorization methods and random walk methods there are no
parameters shared between nodes in the encoder, since they use the direct encoder in equation
3.5. Hence, it can be computationally inefficient since the number of parameters grows O(|V |).
The algorithms Deep Neural Graph Representations (DNGR) [6] and Structural Deep Network
Embeddings (SDNE) [47] instead incorporate the graph structure into the encoder algorithm.
They use autoencoders to compress information about a node’s local neighborhood. Instead of
using a pairwise decoding approach in equation 3.6, they use unitary decoding:

DEC : Rd → R+.

They associate each node vi with a neighborhood vector si ∈ R|V |, which corresponds to vi’s
row in the proximity matrix S (defined in eq. 3.1). Furhtermore, they get the following error
function [16]:

DEC(ENC(si)) = DEC(zi) ≈ si

and loss function:
L =

∑
vi∈V

||DEC(zi)− si||22.
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The encoder and decoder for these approaches consist of multiple stacked neural network layers.
Each layer of the encoder reduces the dimensionality of its input and each layer of the decoder
increases it. The deep learning methods mostly differ from each other in how they construct the
proximity matrix S and how they optimize the autoencoder4. For example, the SDNE [47] looks
at the first and second order proximities, definition 3 and 4.

3.3.4 Random Walk Based Methods

The random walk methods use random walk statistics to optimize so that nodes that co-occur
over short random walks over the graph have similar node embeddings. The similarity measure is
then the probability that nodes vi and vj co-occur during a random walk over the network. These
methods applies direct encoding, equation 3.5. For embedding optimization the following three
steps are done [25]:

1. Using some random walk strategy R, do a random walk from each node of the graph.

2. For each node vi, collect NR(vi), the multiset of nodes visited on during the random walk.
This set can have repeated elements.

3. Optimize embeddings to maximize likelihood of random walk co-occurence.

When a random walk is done from node vi and a multiset NR(vi) is collected, the random walk
method commonly use the skip-gram scheme [14, 43] as described in chapter 3.2. They make the
vi node pose as the center word, and the neighborhood set NR(vi) is interpreted as its context.
Thereafter, samples from the context is drawn, and they look at the probability of visiting that
sample given the center word vi. The loss function to be minimized, is the negative log likelihood
from equation 3.3 [25],

L =
∑
vi∈V

∑
vj∈NR(vi)

−log(P (vj |zi))

Like in skip-gram scheme, P (vj |zi) is parameterized using soft-max, which leads to:

L =
∑
vi∈V

∑
vj∈NR(vi)

−log

(
exp{zT

i zj}∑
vj∈V exp{zT

i zj}

)
.

The intent is to find embeddings zi that minimizes L. The normalizing constant
∑

vj∈V exp{zT
i zj}

is computed in different ways, e.g Node2vec [14] approximates it using negative sampling5 and
DeepWalk [41] hierarchical soft-max.

There are different ways of how to define the random walk. One solution is a fixed-length and
unbiased random walk (Deepwalk 2013 [41]), and another is a flexible, biased, random walk that
can trade off between global and local views of the network (node2vec 2016 [14]).

4 For further information about autoencoding the reader is referred to Hinton et al. [18], Reducing the
Dimensionality of Data with Neural Networks.

5As described in chapter 3.2.1

19



3.3.5 node2vec

The node2vec algorithm is the first method that is implemented in this thesis. The node2vec
algorithm by Grover et al. [14] is an algorithm that belongs to the random walk category. The
contribution of node2vec is its flexible and biased random walk strategy R from each node in the
graph. The aim is to combine two extreme searching strategies:

• Breadth-first sampling (BFS)

• Depth-first sampling (DFS).

In BFS the random walk is restricted to only nodes in the first order neighborhood, which is closely
connected to embeddings that capture structural equivalence. In DFS the random walk is made
sequentially with increasing distance away from the source node. As a result, DFS explores a
larger part of the graph. The figure 3.3 shows a small example of the BFS and DFS strategies.
The random walk described in [14] is as follows. Given a starting node vs, a random walk of fixed

Figure 3.3: Figure related to the node2vec algorithm. Starting from source node v∗, it is showing a random
walk with fixed walk length of l = 3 based on the breadth-first search (BFS) and the depth-first search (DFS)
strategies [14].

length l is made. Subsequently, vj denotes the jth node in the walk starting from v0 = vs. Then
the nodes vj are generated according to the following distribution:

P (vj = v|vj−1 = v∗) =


πv∗v

Z if (v∗, v) ∈ E

0 otherwise

where Z is the normalizing constant approximated with negative sampling (chapter 3.2.1) and πv∗v

is the unnormalized transition probability between nodes v∗ and v that lies on the edge (v∗, v). πv∗v

is the parameter that decides the random walk strategy. In node2vec, a 2nd order random walk is
defined with two parameters p and q. Moreover, consider one step of a random walk starting from
node vs that is now in node v∗. This random walk has to decide which next node to transition
to, by evaluating the transition probabilities to the connected nodes from v∗. Then, by letting
πv∗vi = αpq(v∗, vi) the the transition probability is defined as:

πv∗vi = αpq(v∗, vi) =


1
p if dvsvi = 0

1 if dvsvi = 1

1
q if dvsvi = 2
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where dvsvi denotes the shortest path distance from starting node vs to node vi. For example, in
figure 3.4, the distance between vs and v1 is dvs,v1 = 1 and as a result αpq(v∗, v1) = 1. Furthermore,
α is also referred to as search bias. Moreover, the parameters p and q allows the algorithm to
combine the BFS and the DFS random walk methods.

Figure 3.4: The transition probabilities from node v∗ during the random walk, illustrating the search biases
α. Here it just transitioned from node vs to v∗. The return parameter p sets the likelihood of revisiting vs
in the next step and in-out parameter q how likely it is to visit nodes far away from vs.

Parameters in node2vec

p: The return parameter p decides the probability of returning to the node just transitioned
from. A high value makes it less likely to come back to a node the random walk has just
been to.

q: The in-out parameter q decides the probability to visit nodes far away from node vs. For
large q the random walk is biased towards towards nodes that are closer to the starting
node vs.

d: The dimension of the embedded vectors zi.

γ: The number of walks made from each node.

λ: Walk length per random walk.

k: The maximum amount of nodes the neighborhood set NR(vi) can include [14],

3.3.6 gat2vec

The gat2vec algorithm by Sheik et al. [43] is similarly to node2vec in the random walk method
category, and the second algorithm implemented in this thesis. However, in contrast to node2vec
it deals with attributed graphs. Each graph has a structural content, with structural vertices as
defined in definition 1. An addition, there exists content vertices that are are associated with
attributes. The content vertices then have edges to the attribute vertices that they are related
to. Altogether, given an attributed graph G′ = (V,E,A) as in definition 6, the gat2vec algorithm
obtains two graphs:

• a connected structural graph Gs = (Vs, E) where Vs ⊆ V is the subset of structural vertices,
and every vertex has as least one connection in the set E of edges.
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• a bipartite graph Ga = (Va,A, Ea) that consists of the vertices Va ⊆ V associated with
attributes and a set of possible attribute vertices A. Lastly, it has a set of edges Ea connecting
the Va and A that are associated by the function A from definition 6:

Va = {v : A(v) ̸= ∅}

Ea = {(v, a) : a ∈ A(v)}

Figure 3.5 shows an attributed graph where vertex 9 lacks connections in the set E of edges.
However, in the corresponding bipartite graph it is second neighbor to vertices 4 and 6. Given

Figure 3.5: The left side shows an attributed graph G′ = (V,E,A). The vertices are numbered and the
attribute vertices are lettered. The graph is also partially labelled, i.e a subset of the nodes has a label
attached to it. The right side shows the corresponding bipartite graph Ga. Picture from [43].

this set up, gat2vec performs random walks on both graph Gs and graph Ga. Short random walks
are incorporated, as done by DeepWalk [41]. This random walk strategy is a special case of the
biased random walk strategy by node2vec (chapter 3.3.5), with the return parameter p = 1 and
in-out parameter q = 1. When doing a random walk over the bipartite graph in figure 3.5 it could

Figure 3.6: The structure of the gat2vec algorithm. The size of the one hot vector and the hidden layer in
the skip-gram model depends on the vertices connected to attributes Va in addition to the structural vertices
Vs. Picture from [43].

for example be the sequence [2, b, 1, c, 8, b, 2, b, 8]. Then, the attribute nodes are skipped, and the
kept sequence is [2, 1, 8, 2, 8] with length 5. Thereafter, they random walk sequence of both the
attribute graph Ga and the structural graph Gs from each node are incorporated in the skip-gram
model. The full architecture of the gat2vec algorithm is shown in figure 3.6.
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Parameters for gat2vec

γ: number of walks for each node, on both graphs

λ: the length of the walks

d: Dimension of the embedding

k: Constraint of the neighborhood matrix

3.4 Graph Embedding

There has been a limited amount of research regarding embedding a whole graph to a vector.
According to the authors of graph2vec [36] from 2017, they are the first neural embedding approach
that learns a representation of a whole graph. In the implementation of the Automatic Designer [22]
it is of interest to have the option of representing the entire graph as the state in the reinforcement
learning setup. It is advantageous to have both the node embedding and graph embedding options
available, since it opens up for a larger variety of RL solutions. For this reason, the graph2vec is
the third algorithm implemented in this thesis.

3.4.1 graph2vec

Many node embedding rely on the skip-gram model that originates from word2vec [34], that embeds
each word in a vocabulary to a vector in a vector space. There is a straight forward extension
of this model, called doc2vec [24]. This algorithm does not learn representations of each words,
rather it learn embeddings of sequences of words or entire documents. It employs two algorithms,
Paragraf Vector - Distributed Memory (PV-DM) and Paragraf Vector - Distributed Bag of Words
(PV-DBOW)6. The graph2vec algorithm implements the latter, PV-DBOW, which in principal is
similar to the skip-gram model.

In graph2vec, the entire graph is considered a document and they introduce rooted subgraphs
around each node in the graph to describe the words in the document. In the same manner as
node embeddings, structurally similar graphs yields similar embeddings. Henceforth, to get rooted
subgraphs sg

(ds)
n for each graph, they follow the Weisfeiler-lehman (WL) [44] relabeling process.

The algorithm requires ds, which is the intended degree of neighbors that will be considered when
extracting the subgraph. For each node v and ds > 0, the algorithm starts by collecting its direct
adjacency neighbors and letting ds+ = −1. Then for each of the neighbors, it collects a new set of
neighbors until ds = 0. Thereafter, it return a set of node labels for each of the nodes in last set. A
more detailed description in algorithm 1, which is as described in the graph2vec paper [36].

6Not to be confused with CBOW model - Continous bag of words. Despite similar names, the concept of DBOW
has more similarities with the skip-gram model than CBOW.
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Given rooted subgraphs for every node in each graph, the setup is as follows. Let G =

{G1, G2, . . . , Gk} be a set of graphs, SGvocab = {sg1, sg2, . . . } a vocabulary of subgraphs that
represent words and Φ ∈ R|G|×d a matrix vector representation of graphs. Then, as in the skip-
gram scheme the following log likelihood is to be maximized:

∑
Gi∈G

∑
v∈Vi

ds∑
s=0

logP (sg(s)v |Φ(Gi))

where Φ(Gi) is Gi’s vector representation. In similar fashion as node2vec, the probability
logP (sg

(s)
v |Φ(Gi)) is calculated using soft-max and the normalizing constant is dealt with using

negative sampling. Furthermore, the updates are made using stochastic gradient descent (SGD).

Algorithm 1: GetRootedSubgraphs(v,G, ds)

Input:
v: The node that is the root of the subgraph
G = (V,E): The graph that v belongs to
ds: The degree of neighbors considered in the subgraph

Output: A rooted subgraph sg
(ds)
v around node v

sg
(ds)
v = {}

if ds = 0 then
sg

(ds)
v := the label of node v

else
Nv := {v′|(v, v′) ∈ E)}
M(ds)

v := {GetRootedSubgraphs(v′, G, ds − 1)|v′ ∈ Nv}
sg

(ds)
v := sg

(ds)
v ∪ GetRootedSubgraphs

(v,G, ds − 1)⊕ sort(M(ds)
v )

end
end

return sg
(ds)
v

Parameters graph2vec

d: Dimension of the embedding

ds: Number of WL iterations, i.e the degree of neighboors considered in the subgraphs

α: The learning rate of the SGD

3.5 Summary of the Implemented Algorithms

Three algorithms are evaluated in this thesis work. Two of them are node embeddings, where
each node in a graph are mapped into a vector in a d-dimensional vector space. One of these two,
node2vec, look at structural similarities and use a biased random walk to capture both 1th and
higher order proximities. However, it does not consider the attributes of the graph. The other,
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gat2vec, introduces a bipartite graph containing the attribute information of the graph. It executes
an embedding that regards both the bipartite graph and the structural graph. The third algorithm
is a graph to vector embedding, where the entire graph is mapped in to vector. A summary of the
algorithms is presented in table 3.1.

Table 3.1: A summary of properties of the algorithms implemented

node2vec gat2vec graph2vec
Embedding
type Node Node Graph

Year 2016 2018 2017
Sampling
method Negative sampling Hierachical softmax with

Huffman coding Negative Sampling

Proximity
measure

structural equivalence and
1− kth order proximities

1− kth order proximities
on Gs and Ga

1− dths order proximities

Attributed
graphs No Yes Yes, but only labels

Method Biased Random Walk Random Walk WL-kernels
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Chapter 4

Methodology

In this chapter the methods for obtaining data, experiments performed and implementation
strategies will be described. The task of predicting the TTC values given an embedding is made
into a classification problem, which is described in chapter 4.1. Further, to investigate graph and
node embedding algorithms on the IT-architecture graphs in the simulator, data is required. In
the simulator1 IT-security graphs can be created manually. How data is obtained is described in
chapter 4.2, along with the corresponding pseudo algorithms. The analysis of the data and how it is
made to fit into the classification setup is described in chapter 4.2.1. Thereafter, chapter 4.3 briefly
describes the statistical methods that are implemented. Furthermore, the classifiers that are used
to predict the TTC values are described in chapter 4.4. Lastly, the implementation of node2vec,
gat2vec, and graph2vec is presented in 4.5, and chapter 4.6 presents the baseline algorithms that
are used for comparison.

4.1 Classification Setup

This thesis uses the simulator, which is a simplified version of the securiCAD. The concept
to investigate is of how well the embeddings can capture characteristics of the IT-architecture,
although an IT-architecture generated by the simulator. The simulator can calculate TTC values
for each node in a graph, as described in chapter 2, which is used to evaluate the performance of
the embeddings. The TTC value to each node is divided to one of five classes, namely if it is; very
easy, easy, hard, very hard or impossible for the attacker to reach the node.

The TTC value for each attack step is generated by the Monte Carlo estimate of samples from the
gamma distribution equipped to that attack step (see chapter 2.2.2). For the sake of testing the
concept, it is necessary that the TTC values do not vary noticeably between two different attack
calculations on the very same graph. Rather, it is advantageous if it is close to deterministic.
In addition, since the simulator is not reality true and the attack calculations are expensive, it

1described in section 2.2
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is preferable not having to run multiple attacks for each graph. For this reason, rather than
averaging over many samples, one single sample is drawn for each attack step, with a variance
set close to zero. Henceforth, in the implementation a single sample is drawn according to the
probability distribution in equation 2.1, chapter 2.2.2, with the scale parameter θ → 0 such that
V ar(X) = kθ2 ≈ 0. Moreover, the shape parameter k is set such that an legitimate attack step
gives TTC ∼ 1, bypassing firewall is TTC ∼ 50 and access by exploit gives TTC ∼ 100.

Legitimate: E[X] = kθ = 1 V ar(X) = kθ2 ≈ 0
Bypass firewall: E[X] = kθ = 50 V ar(X) = kθ2 ≈ 0
Access by exploit: E[X] = kθ = 100 V ar(X) = kθ2 ≈ 0

Table 4.1: Table of expected TTC values for different attack steps, where the TTC value for an attack step
is modelled as a X ∈ Γ(k, θ) random variable.

Henceforth, if the attacker can reach a node through legitimate attack steps exclusively, it falls
into the category very easy. If the attacker has to pass a firewall, it is easy. One illegitimate attack
step or two firewalls is hard, and very hard when there is one more illegitimate step. Lastly, the
impossible category is for all nodes with TTC > 195.

Table 4.2: The thresholds for the total TTC categories.

Category very easy easy hard very hard impossible
Total TTC <45 <95 <145 <195 ≥195

In summary, the prediction task is made into a multiclass classification problem consisting of five
classes.

4.2 Producing Training Data

IT-architecture graph can be build in the simulator and to get enough data to conduct experiments,
data is generated randomly. Given the maximum number of entities allowed of each type, algorithm
2 was used to set the number of entities in each graph. For each entity type except the user and the
attacker, a random number between 0 and 15 is drawn, with some few restriction. For example,
there is a limitation that the instances of dataflows, informations, and credentials cannot be more
than the number of hosts in one graph, neither can it be less than 2 hosts and 1 network.

Subsequently, the IT-architecture graph was generated according to algorithm 4. Initially, all
the networks are created and randomly connected to each other. Thereafter, all hosts are
connected to random networks. Subsequently credentials are connected to random hosts, followed
by informations and dataflows. Lastly, the attacker and the user are similarly connected to one
random host, not necessarily the same. When all the assets are connected, the attack simulations
on the graph is made to achieve the true TTC-values for each node in the graph.

The final number of graphs used is 1000, and the maximum number of entities of each type is is
set to 15. The training data is generated by iterating algorithm 2, 4 and calculating its TTC-
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values.

Algorithm 2: Generating the number of graph entities
Input: Max networks, Max hosts, Max credentials, Max Informations, Max dataflows
Output: Number of entities in an IT architecture graph

Networks = Unif{1, Max networks}, Hosts = Unif{2, Max hosts}
if Max Credentials > Hosts then

Credentials = Unif{0,Hosts}
else

Credentials = Unif{0,Max Credentials}
end

end
if Max information > Hosts then

Informations = Unif{1,Hosts}
else

Informations = Unif{1,Max informations }
end

end
if Max dataflow > Hosts then

Dataflows = Unif{0,Hosts}
else

Dataflows = Unif{1,Max dataflow}
end

end

return Networks, Hosts, Credentials, Informations, Dataflows

Generate training data by iterating:

1. Decide the number of entities of each type according to algorithm 2

2. Generate a graph G = (V,E) according to algorithm 4

3. Run attack simulations on G and store the TTC value for each node

Figure 4.1: An example of randomly generated graph. The numbers are the node id’s followed by its
calculated TTC value. The node id’s corresponds to the following entities: 0-1=Networks, 2-6=Hosts, 7-
8=Credentials, 9=Attacker, 10=User, 11-13=Informations (no dataflows in this particular example). The
nodes that do not have a TTC value is either the attacker (id 9) or the user (id 10).

Figure 4.1 and figure 4.2 present to smaller examples of randomly generated graphs according to
the algorithms 2 and 4. The numbers corresponds each node’s id, and it is followed by its total
TTC value. Two of the nodes in both figures do not have a corresponding TTC value, which are
the nodes associated to the user and the attacker.
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Algorithm 4: Generating a graph of an IT-architecture in the simulator
Input: Networks, Hosts, Credentials, Informations, Dataflows
Output: Graph of an IT-architecture

V = {∅}, E = {∅} // An empty vertex and edge set

for Networks do
Create a network vertex vN
if V ̸= ∅ then

Draw a vertex v from V
Add an edge e = (vN , v) to E

end
end
for Hosts do

Create a host vertex vH
Draw a network vertex vN from V
Add an edge e = (v, vN ) to E

end
for Credentials do

Create a credential vertex vC
Draw two host vertices vH1,vH2 from V
Add a store edge e = (vC , vH1) to E
Add a grant access edge e = (vC , vH2) to E

end
for Informations do

Create information vertex vI
Draw a host vertex vH from V
Add edge e = (vI , VH) to E

end
for Dataflows do

Create a dataflow vertex vD
Draw two host vertices vH1,vH2 from V
Add edge e = (vD, vH1) and edge e = (vC , vH2) to E

end
Create an attacker vertex vA and an user vertex vU
Draw two hosts vH1, vH2 with replacement from V
Add edge e = (vA, vH1) and e = (vU , vH2) to E

return G = (V,E)

Figure 4.2: Another example of randomly generated graph. The numbers are the node id’s followed by
its calculated TTC value. The node id’s corresponds to the following entities: 0-7=Networks, 8-14=Hosts,
15-18=Credentials, 19=Attacker, 20=User, 21-22=Informations (no dataflows in this particular example).
The nodes that do not have a TTC value is either the attacker (id 19) or the user (id 20).
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4.2.1 Data Analysis

The same 1000 randomly generated graphs are used for the implementation of all three algorithms.
The figure 4.3 displays how the TTC values are distributed over all nodes over all graphs. The
most common class is easy, which has more than 7000 members. The second largest class is hard,
with almost 7000 members. The right histogram in figure 4.3 shows the percentage of members in
each class out of the whole data set.

Figure 4.3: The left figure displays a histogram of the node TTC values with the total number on the y
axis. The bar plot shows the corresponding classes, very easy: TTC < 45, easy: 45 ≤ TTC < 95, hard:
95 ≤ TTC < 145, very hard: 145 ≤ TTC < 195, impossible: 195 ≤ TTC.

For each graph, the average TTC value is likewise calculated. The result is shown in graph 4.4.
When averaging over all nodes in a graph, there is a heavier weight on the hard class than the
others, which has more than 35% of the whole population.

Figure 4.4: Histogram of the average node TTC value in the graphs. The bar plot shows the corresponding
classes, very easy: TTC < 45, easy: 45 ≤ TTC < 95, hard: 95 ≤ TTC < 145, very hard:
145 ≤ TTC < 195, impossible: 195 ≤ TTC.

The number of members in each class is significantly lower when using the averaging method.

4.3 Statistical Methods

This section briefly describes some statistical concepts that are used to predict the TTC values
given the embeddings.
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4.3.1 Supervised versus Unsupervised Learning

Most statistical learning tasks can be divided into three categories, the supervised, semi-supervised
and the unsupervised [21]. In Supervised learning there exists an outcome variable that can guide
the learning process. We have for each observed data point xi an associated response measurement
yi. Hence, given a data set {(x1, y1), . . . , (xn, yn)} we want to find an estimate f̂ that relates the
observation point to the response variable. This could either be to accurately predict the measure
y for future observations (prediction), or to gain a better understanding of the relationship between
the observation and the response variable (inference).

In unsupervised learning the data does not have a target variable, only features are observed and
there is no measurement of the outcome. In these cases the goal is rather to find how the data is
organized or clustered [17]. The semi-supervised category consists of a mixture of these two, some
observed data points xi has a response measure yi whereas others do not.

The embedding algorithms that are implemented in this thesis are all in the unsupervised category.
Many of the embedding techniques can be made in an semi-supervised manner. This is done when
e.g the authors intend to classify the node labels of a graph given the embeddings, and incorporates
the information of a few correct node labels into the embedding algorithm. Naturally, this improves
the classification result in most cases. However, one of the research topics in this thesis is if the
embeddings can capture characteristics of the graph such that the TTC values can be extracted,
even if it is done unsupervised.

Contrary to the embedding algorithms, the classification part is completely supervised. The
classification is done by using the embedding of a node as the data point xi, and the class it
belongs to as its response measure. Likewise with the graph2vec algorithm, the data point is the
graph embedding and its response measure is the class that graph belongs to.

4.3.2 The Classification Setting

In chapter 4.1 there is an explanation of how the TTC values are divided into classes of very easy,
easy, hard, very hard and impossible. In the classification setting, the aim is to fit a model with
as small error as possible. One common way to quantify the accuracy of of the estimate f̂ is the
training error rate

1

n

n∑
i=1

I(yi ̸= ŷi)

where I is the indicator function, ŷi is the predicted class of an observation, yi is its true class, and
n the total number of observation. Hence, I(yi ̸= ŷi)) = 1 each time a false prediction is made,
and thus the error rate should be minimized.
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4.3.3 Testing and Training

In many circumstances it is not good enough to calculate the error rate of f̂ on the same data
that was used for training. To have a measure on how good the model actually is the accuracy
is deduced on a new test data set that was not used for training [21]. To get access to this it is
common to divide the data into a test set and a train set, where the train set is used for training
the model and the test set for testing its accuracy.

In this work 10% of the data is used for testing, i.e 100 out of the 1000 graphs in the generated
data. The same division of test set and train set is made for all three of the algorithms. It is
common to use cross validation2 for dividing the data into test and train set and report error
averages. This is done to make sure that there is no particular bias in the test set. However, since
all the graphs in the data are randomly generated in the same fashion, the same test set is used
for all trials in all three algorithms.

4.3.4 Cross Validaton for Parameter Tuning

Cross validation is to divide the data set into smaller regions, and train a model using all but
one of these sections. This is done for each section, and the prediction error result is averaged
among them. In K-fold cross validation, the data set is divided into K sections. Each model has
some parameters that need to be optimized for the particular dataset at hand. Henceforth, the
cross validation procedure can be executed for a range of values of the model parameter. This
achieves a prediction error curve as a function of the tuning parameter, and the optimal parameter
choice.

The function GridSearchCV [40] implements this method from the scikit-learn package, and is
used for parameter tuning in the classification models in this thesis.

4.3.5 Classification Score

There are different measures of evaluating classification tasks. The table below is a performance
table, which shows the possible outcomes when trying to predict whether a set of observations
belongs to a class or not.

Predicted
Negative Positive

Negative True Negative (tn) False Positive (fp)True Positive False Negative (fn) True Positive (tp)

In the binary classification setting, it shows the amount of correct predictions, true negatives and
true positive, and false predictions, false negative and false positive. The predicted accuracy is

2Described in chapter 4.3.4
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computed as:
A =

tp+ tn

tp+ fp+ fn+ tn
=

tp+ tn

N

where N is the total number of observations in the dataset. The accuracy is the fraction of correctly
classified observation, both positives and negatives. In addition, two other common measures called
precision and recall can likewise be computed:

P =
tp

tp+ fp
, R =

tp

tp+ fn
.

The precision is the fraction of correctly classified observations among all the observations that
were predicted as positives. Moreover, the recall is the fraction of correcly classified positives
among all true positive observations. This is in a binary setting, i.e when there is only two classes.
In the multiclass setting these measures are averaged among all the classes. For the precision and
the recall there are two common averaging methods, the micro and the macro. For K number of
classes, the micro average is

PMicro =

∑K
k=1 tpk∑K

k=1(tpk + fpk)
, RMicro =

∑K
k=1 tpk∑K

k=1(tpk + fnk)
=

∑K
k=1 tpk
N

.

Here RMicro is in fact the same as the accuracy in the multiclass setting [46]. The macro average
is:

PMacro =

∑K
k=1 Pk

K
, RMacro =

∑K
k=1 Rk

K

The macro averaging gives equal weight to each class, whereas large classes dominate the small
classes in micro averaging. In this thesis, both methods are implemented for comparison. A third
less common averaging method alters the macro method by accounting for label imbalance:

Pweighted =

∑K
k=1 nkPk

N
, Rweighted =

∑K
k=1 nkRk

N

where nk is the number of predicted instances of class k. The weighted average does not necessarily
fall between the micro and the macro methods, and is also implemented. The F1-score used in this
thesis is the harmonic mean of the averaged precision and recall:

F1 = 2 · Paverage ·Raverage

Paverage +Raverage

where average is the micro, macro or weighted average.

4.4 Classifiers

In this thesis two classifiers are implemented to predict the TTC values. On the node classification
task (node2vec and gat2vec), the decision tree classifier is used. In the graph classification task
(graph2vec), the support vector classifier is instead applied.
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4.4.1 Support Vector Classifier (SVC)

A support vector machine (SVM) is classifier that can deal with non linear boundaries between
classes. For example, it could use a kernel that is polynomial or radial to divide the feature
space [21]. However, in the implementation of graph2vec [36] the authors employ the SVM with
a linear kernel. This particular case of SVM is called Support Vector Classifier (SVC), and to
follow their methodology this is also what is chosen in this work. In the binary class setting, a
SVC draws a hyperplane in the feature space to separate the classes. It is sometimes called a soft
margin classifier since it allows for some miss-classification in the data [21]. In a d -dimensional
setting, a hyperplane is defined as

f(X) = (β0 + β1X1 + β2X2 + . . . βdXd) = 0.

In a data set {xi, yi}Ni=1, with y ∈ {TRUE,FALSE}, all observations that fulfills f(x) > 0 will
be classified to belong to y = TRUE. Similarly, the ones that fulfills f(x) < 0 will be classified to
the other class y = FALSE. Moreover, the distance for an observation to the hyperplane can be
interpreted as the confidence that the observation is correctly classified.

When constructing a support vector classifier, it is not certain whether or not the training data set
is linearly separable. Therefore, it is allowed to missclassify some data points. For this purpose a
tuning parameter C is introduced. The tuning parameter decides to what extent missclassification
is allowed. Henceforth, this parameter is set using the grid search cross validation as described in
chapter 4.3.4.

The SVC is limited to binary classification, and is not naturally extended to multiclass classification
tasks. One solution is the One-Versus-the-Rest classification, which is the one implemented in the
Scikit-learn [40] package. In this solution, one SVC is fit for each of the K classes, where a
hyperplane fk(X) is created between class k and all the other classes. A test observation x is
assigned to the class for which fk(x) is the largest. Henceforth, this value amounts to the certainty
that the observation x belongs to class k rather than any of the other classes [21].

4.4.2 Decision Tree Classifier

The Decision Tree Classifier (DTC) is a tree-based method that partitions the feature space into
regions. Subsequently, it fits a simple model, like a constant or a class, into each region [17].
Figure 4.5 shows a small example of a decision tree with two features, X1 and X2. Here the splits
t1, . . . , t4 are made giving the regions R1, . . . , R5. The new data points that falls into region Rm are
classified to the majority class of the training data in that region. For example, if in the training
data only has nodes of type easy in region R1, each new observation with an embedding that falls
into that region will likewise be classified to easy.

There are different ways to grow the tree, i.e to decide where to make the next split. In this thesis
the Gini index is applied as a measure of quality of a specific split. The Gini index is defined
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Figure 4.5: This is an example of tree splitting with a two dimensional feature space. Here t1 is the first
split, t2 the second and so forth, and we end up with 5 regions, R1, . . . , R5.

as:

G =

K∑
k=1

p̂mk(1− p̂mk) (4.1)

where K is the number of classes in the data set and p̂mk is the proportion of training observations
in the mth region from the kth class, such that

p̂mk =
number of observations from class k in region m

total number of observations in region m
.

The Gini index is close to zero when either p̂mk → 0 or p̂mk → 1 for all k, therefore it is also
referred to as a measure of node purity [21]. As a result, when the Gini index is low it indicates
that most observations in each region belongs to the same class and thus they are pure.

The splitting will continue until either all the regions are completely pure, or when a certain
stopping criteria is met. In this thesis the stopping criteria minimum samples split is used, which
is the minimum amount of members in a region to allow for a split. The reason to have this
constraint is to prevent overfitting. Overfitting is the concept of having a model that is too fitted
to the training data but does not generalize well to unseen data, and it is a common phenomenon
in statistical models.

Yet anther way to control for overfitting and improve the predictive accuracy is to use random
forests [4], which is likewise implemented in this work. A random forest grows an ensemble of
decision trees on various sub-samples of the dataset, and lets them vote for the most popular class
for each new observation. With a big enough ensemble, random forests do not overfit the data [4].
When building the decision trees in a random forest, only a random subset of the features are
considered in each split. The amount is typically around

√
d, where d is the total numbers of

features (or in this case the dimension of the embedding that is being evaluated). This process is
to decorrelate the trees and reduce variance [21].

The implementation of the random forest classifier is done using the sklearn package [40], and
the minimal samples split paramenter is tuned using the grid search cross validation described in
chapter 4.3.4.
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4.5 Implementation of Algorithms

All implementation is done in the python 3 language. Each algorithm has different hyper
parameters, and the tuning of them is done by evaluating classification scores when classifying
the TTC values in the test data. Initially, a graph or node embedding is done on the dataset
with 1000 graphs with some arbitrary parameter setting. Thereafter, the TTC values for each
node in each graph is computed. Subsequently, the TTC values are predicted using the DTC as
described in chapter 4.4.2 or the SVC, chapter 4.4.1. Finally, the F1 score is evaluated for different
hyper-parameters, and they are updated accordingly. Clearly, it is optimal to implement a grid
search over all parameters at the same time, i.e try all possible combinations. However, due to
expensive computations one parameter or two parameters are updated at a time.

The node embedding algorithms incorporate random walks, which means the resulting embeddings
are slightly different each time on the same data set. For this reason, after their hyper-parameters
are set, they are executed 10 times and the average result is reported in the results chapter 5.

4.5.1 node2vec

For the implementation of node2vec a python package GEM [12] is used with modifications, which
is built on the software library by [27]. In chapter 3.3.5, there is a description of the model
parameters to be set, (p, q, d, γ, λ, k). The classification method used is the DTC, with the random
forest implementation and a grid search cross validation over the minimal split parameter, where
MSS ∈ {2, 20, 40, 60, 80, 100, 120}. Figure 4.6 displays some tests to decide the the dimension d

and neighborhood set k. The grid search is over d ∈ {4, 8, 16, 32, 64, 128} and k ∈ {2, 5, 10, 15},
and these parameters was tested separately. The result suggests to use dimension d = 64 and
neighborhood size k = 10.

Figure 4.6: The left figure displays a F1 scores for deciding dimension d of the node2vec algorithm. Here
the dimension 64 appears to be superior. The right to decide the size of the neighborhood set k, where size
10 is slightly better.

To follow the methodology of Grover et al. [14], the grid search for the parameters q and p is
over p, q ∈ {0.25, 0.5, 1, 2, 4}. and the result is displayed in figure 4.7. In the F1-MICRO and F1-
WEIGHTED scores, the choice of letting (p, q) = (2, 2) is superior, whereas the F1-MACRO suggests
to use (p, q) = (4, 1). The parameters are set to (p, q) = (2, 2) since that combination is a good
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contender even in the F1- MACRO scoring.

Figure 4.7: Some test runs for deciding the return-parameter p and the inout-parameter q for the node2vec
algorithm. The micro and weighted averaging show that (p, q) = (2, 2) is a good choice. In the macro
averaging those parameters are likewise good contenders, even if (p, q) = (4, 1) performs better.

To decide the walk length λ and number of walks γ, they are tried against each other over grids of
λ ∈ {20, 40, 60, 100, 120} and γ ∈ {5, 10, 15, 20, 25}. The figure 4.8 displays the result. In all three
averaging methods, the choice of (λ, γ) = (60, 10) is superior.

Figure 4.8: Some of the tests to decide the walk length λ and the number of walks γ for the node2vec
algorithm. In all three averaging methods, the choice (λ, γ) = (60, 10) gives the highest F1 score.

In summary, the final parameter setting for the node2vec algorithm can be seen in the table below.

p q d γ λ k

node2vec 2 2 64 10 60 10

4.5.2 gat2vec

The implementation of gat2vec is built on the repository GAT2VEC [42]. To implement the gat2vec
algorithm as described in [43], a bipartite graph Ga is required containing all the attributes for
all the entities in the simulator. In the gat2vec paper, the labels of each node is partly known
and they investigate performing label classification prediction using semi-supervised learning, i.e
incorporating the partly known labels when training the embedding. The corresponding labels in
this work is the node entity type, for example if a node is a host or a network. However, in this
implementation the labels are treated as attributes of the graph, and thus a part of the bipartite
graph Gs. However, the TTC values of each node are not used as an attribute when training the
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embedding. All the attributes used are presented in table 4.3. The table displays which type of
entities that can be connected to the specific attribute, since all entities are not allowed to have
all the attributes. Naturally, each entity is connected to its corresponding node type attribute,
e.g hosts are connected to the attribute Host. Furthermore, each unique attribute is assigned an
attribute id. Some attributes have values, in which case each value of the attribute is assigned
an unique id. For example, the attribute UNI has values 500, 1000, 2000. Therefore, UNI500,
UNI1000 and UNI2000 are all assigned unique attribute id’s.

Table 4.3: A table of the attributes implemented in the gat2vec algorithm, with the corresponding connected
entity types. Some attributes have values, in which case each value is treated as an unique attribute.

Attribute Connected entity types Values
Host hosts -
Network networks -
Dataflow dataflows -
Credential credentials -
Information informations -
Attacker attacker -
User user -
User needs information (UNI) user, informations 500, 1000, 2000
Cost of Compromise (COC) informations 500, 1000, 2000
Attacker Persistence (AP) attacker 500, 1000, 2000
Grant Access hosts, credentials -
Store hosts, credentials -

Further, the COC, AP, Grant Access, and Store are likewise implemented as attributes of the
graph. The credentials have a store edge to one host, and a grant access edge to another. Instead
of treating these as special edges between the entities, they are connected using a normal connect
edge. Instead, the store and grant access are incorporated as attributes, and connected to the
hosts and credentials that had these connections between themselves.

The classification method used for gat2vec is DTC implemented with random forest and grid search
cross validation over the minimal sample split parameter, whereMSS ∈ {2, 20, 40, 60, 80, 100, 120}.
The parameters to be set are (γ, λ, d, k), with a further description in chapter 3.3.6.

Figure 4.9: The left figure shows the F1 scores for the three different averaging methods, as a function
of the embedding dimension d. The rightmost figure does similarly for the size of the neighborhood set k.
These results suggests to use d = 64 and k = 15.

The dimension d is tested over d ∈ {2, 8, 16, 32, 64, 128}, and figure 4.9 suggest that the optimal
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dimension size is 64. Further, the size of the neighborhood set k is tested over k ∈ {2, 5, 10, 15, 20}
and the left figure in 4.9 displays a superior result for k = 15. Subsequently, the parameters λ and γ

are tested in a combined grid search, where λ ∈ {10, 20, 40, 60, 100, 120} and γ ∈ {5, 10, 15, 20, 25}.
The result is shown in figure 4.10, and the figure suggests a general negative correlation of the
walk length and the F1. Thus, the walk length λ is set to 10, and the number of walks γ is set to
20 since the combination (λ, γ) = (10, 20) performs well in each of the averaging methods.

Figure 4.10: The left, middle and right figure present the F1-MICRO, F1-MACRO and F1-WEIGHTED for
a grid search combining the walk length λ and the number of walks γ for the gat2vec algorithm.

The final parameter setting is the in the following table.

d k λ γ

gat2vec 64 15 10 20

4.5.3 graph2vec

The graph2vec algorithm is implemented using the repository graph2vec_tf, which is a tensorflow
implementation by the authors of the paper of graph2vec [36]. The classification method
used is the SVC, with a grid search cross validation over the penalty parameter C, letting
C ∈ {0.01, 0.1, 1, 10, 100, 1000}. The parameters to be set for the graph2vec are (d, ds, α), which
are described in chapter 3.4.1. Figure 4.11 presents the F1 score using all three averaging methods
as a function of the learning rate α, with α ∈ {0.025, 0.1, 0.3, 0.5, 0.75}. From this result, the
learning rate is chosen to α = 0.3.

Figure 4.11: The F1-MICRO, F1-MACRO, and F1-WEIGHTED as a function of the learning rate α. The
result displays a maximum for α = 0.3.
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The parameters d and ds are chosen with a combined grid search, letting d ∈
{32, 64, 128, 256, 512, 1024} and ds ∈ {1, 2, 3, 4, 5}. The resulting F1 score is presented in figure
4.12, with one plot for each of the three averaging methods.

Figure 4.12: The F1-MICRO, F1-MACRO, and F1-WEIGHTED with varying dimension d and number of
WL-iterations ds. The parameter combination (d, ds) = (512, 2) performs superior than any other choice
in all three averaging methods.

The final parameter setting for the graph2vec algorithm is presented below.

d ds α
graph2vec 512 2 0.3

4.6 Baseline Algorithms

Since there are no previous results of this specific task, two naive approaches are implemented for
comparison. The two approaches are a random baseline and a constant baseline.

Random baseline This algorithm guesses randomly among all classes, with uniform
distribution.

Constant baseline This algorithm guesses on the same class for every node. For evaluation
purposes, it is forced to guess on the class that has the most amount of members in it among the
test data. As a result, with 5 classes, the total accuracy of this algorithm is at worst 20% if the
membership of the classes is completely even.

These algorithms are implemented in python 3.
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Chapter 5

Results

The result of each algorithm is presented with relative performance against each of the baseline
algorithms. Since the two node embeddings node2vec and gat2vec and the graph embedding
graph2vec differ in what data they use for the classification task as well as differ in the classification
method, they are not compared against each other.

5.1 node2vec

The average result of the node2vec algorithm are shown in table 5.1, together with the standard
deviation after 10 runs. The precision, recall and F1-score are presented for each of the classes in
addition their micro, macro and weighted averages. The support is the average number of data
points that is classified to each respective class.

Table 5.1: The results of the node2vec algorithm averaged from 10 executions, with the standard deviation.
This is done with decision tree regression as classification method.

Precision Recall F1-score Support
very easy 0.42 ± 0.06 0.30 ± 0.01 0.35 ± 0.03 1203.6 ± 133.7
easy 0.08 ± 0.02 0.39 ± 0.05 0.13 ± 0.03 49.7 ± 14.4
hard 0.60 ± 0.04 0.29 ± 0.01 0.39 ± 0.01 1513.2 ± 131.6
very hard 0.00 0.00 0.00 0.0
impossible 0.01 ± 0.01 0.25 ± 0.07 0.03 ± 0.02 32.5 ± 22.87
Micro 0.30 ± 0.1 0.3 ± 0.01 0.3 ± 0.01
Macro 0.22 ± 0.01 0.25 ± 0.02 0.23 ± 0.01
Weighted 0.51 ± 0.01 0.30 ± 0.01 0.37 ± 0.01

The table shows that the two most populated classes, hard and very easy, acquire most of the
support from the classifier. In fact, about 97% of the support is carried by these classes, whereas
less than 60% of the nodes in the data set actually belong to these classes. A normalized confusion
matrix is presented in figure 5.1 where the diagonal represents true predicted values.
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Figure 5.1: Normalized confusion matrix of the TTC prediction of one of the 10 runs of the node2vec
algorithm with the final parameter settings. The numbers corresponds to each class in order, where 1=very
easy.

5.2 gat2vec

The averaged result of the gat2vec algorithm is presented in 5.2, with the standard deviation. Like
the node2vec implementation, the largest classes very easy and hard carry most of the support,
about 89%.

Table 5.2: The results of the gat2vec algorithm, averaged from 10 execution, with the standard deviation.

Precision Recall F1-score Support
very easy 0.57 ± 0.01 0.39 ± 0.01 0.46 ± 0.01 1257.5 ± 29.7
easy 0.08 ± 0.02 0.27 ± 0.04 0.12 ± 0.03 67.8 ± 8.8
hard 0.48 ± 0.02 0.29 ± 0.01 0.36 ± 0.01 1241.7 ± 45.3
very hard 0.00 0.19 ± 0.14 0.01 ± 0.00 8.2 ± 4.4
impossible 0.12 ± 0.01 0.29 ± 0.02 0.27 ± 0.01 223.8 ± 17.1
Micro 0.33 ± 0.01 0.33 ± 0.01 0.33 ± 0.01
Macro 0.25 ± 0.01 0.28 ± 0.03 0.26 ± 0.01
Weighted 0.48 ± 0.01 0.33 ± 0.01 0.38 ± 0.01

In general, the weighted average gives a higher score than the micro and macro averaging methods,
and micro higher than the macro. The DTC votes for the majority class in each region, and there
will be more regions with a majority of the larger classes, which leads to a relatively low score in
the smaller classes. As a result, the macro average score that weights all classes equally, is low in
comparison.

Figure 5.2: Normalized confusion matrix for the TTC prediction of one of the 10 runs of the gat2vec
algorithm, where the diagonal corresponds to correctly predicted instances. The numbers corresponds to
each class in order, where 1=very easy.

The confusion matrix in figure 5.3 shows the predicted labels and how it was classified compared
to the true labels.
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5.3 graph2vec

The table 5.3 displays the final result for the graph2vec algorithm using the SVC to predict the
average TTC values for each graph. Compared to the node embedding algorithms that use the
DTC, the support for each class is more evenly distributed. Consequently, the macro average
method is nearly on par with with the micro an weighted averaging methods.

Table 5.3: The result of the TTC prediction classification, using the graph2vec embedding with the support
vector classifier.

Precision Recall F1-score Support
very easy 0.20 0.27 0.23 15
easy 0.44 0.40 0.42 20
hard 0.53 0.46 0.49 37
very hard 0.19 0.25 0.21 12
impossible 0.40 0.33 0.36 6
Micro 0.38 0.38 0.38
Macro 0.35 0.34 0.34
Weighted 0.41 0.38 0.39

The normalized confusion matrix for the predicted result of the graph2vec algorithm is shown in
figure 5.3. Compared to each of the node embedding algorithms, the distribution of the predicted
values is more evenly distributed. This is due to the choice of classifier, where DTC in contrast to
SVC gives a high weight to the larger classes if the minimal sample split parameter is high.

Figure 5.3: Normalized confusion matrix for the final graph2vec algorithm. The diagonal represent correct
predictions, and the integers represents each class in order, where 1=very easy.

5.4 Baseline Algorithms

Table 5.4 shows the results for both of the baseline algorithms in the node classification case. The
random algorithm is presented with its standard deviation. The largest class is very easy, hence
the constant algorithm predicted all nodes to belong to that class and the very easy class precision
is 100% as well as the support for that class. The averaged precision, recall and F1 score for the
random baseline method is around 20%, which is as expected with 5 classes.

Table 5.5 displays the results in the graph classification case. Here the largest class is hard, which
leads to the constant baseline method putting all support on hard. The random is evenly distributed
with around 20% on each class.
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Table 5.4: Results from the random/constant baseline algorithms in the node classification case. The
random algorithm is reported along with its standard deviation. The constant algorithm has 100% support
on the largest class very easy, whereas the random algorithm has its support evenly distributed.

Precision Recall F1-score Support
very easy 0.19 ± 0.01 / 1 0.30 ± 0.02 / 0.31 0.24 ± 0.01 / 0.47 552.1 ± 15.1 / 2799
easy 0.19 ± 0.03 / 0 0.08 ± 0.01 / 0 0.11 ± 0.02 / 0 563.7 ± 15.2 / 0
hard 0.19 ± 0.02 / 0 0.26 ± 0.01 / 0 0.22 ± 0.01 / 0 565.8 ± 26.7 / 0
very hard 0.19 ± 0.02 / 0 0.14 ± 0.01 / 0 0.17 ± 0.01 / 0 568.1 ± 28.4 / 0
impossible 0.19 ± 0.02 / 0 0.18 ± 0.01 / 0 0.18 ± 0.01 / 0 549.3 ± 14.1 / 0
Micro 0.19 ± 0.01 / 0.31 0.19 ± 0.01 / 0.31 0.19 ± 0.01 / 0.31
Macro 0.19 ± 0.01 / 0.20 0.19 ± 0.01 / 0.06 0.18 ± 0.01 / 0.09
Weighted 0.19 ± 0.01 / 1.00 0.19 ± 0.01 / 0.31 0.18 ± 0.01 / 0.47

Table 5.5: Classification report of the uniform/constant baseline methods in graph embedding case. The
constant baseline method solely puts support on class hard and the random method is evenly distributed.

Precision Recall F1-score Support
very easy 0.18 ± 0.07 / 0 0.18 ± 0.05 / 0 0.18 ± 0.06 / 0 19.8 ± 3.6 / 0
easy 0.20 ± 0.08 / 0 0.26 ± 0.07 / 0 0.22 ± 0.08 / 0 20.1 ± 3.9 / 0
hard 0.19 ± 0.06 / 1 0.32 ± 0.01 / 0.32 0.24 ± 0.06 / 0.48 18.7 ± 3.1 / 100
very hard 0.23 ± 0.12 / 0 0.18 ± 0.10 / 0 0.20 ± 0.11 / 0 20.4 ± 3.9 / 0
impossible 0.28 ± 0.20 / 0 0.07 ± 0.05 / 0 0.11 ± 0.08 / 0 21.0 ± 2.5 / 0
Micro 0.20 ± 0.04 / 0.32 0.20 ± 0.04 / 0.32 0.20 ± 0.04 / 0.32
Macro 0.21 ± 0.05 / 0.20 0.20 ± 0.03 / 0.06 0.19 ± 0.04 / 0.10
Weighted 0.22 ± 0.05 / 1.00 0.20 ± 0.04 / 0.31 0.19 ± 0.04 / 0.48

5.5 Summary

A summary and comparison between the node embedding algorithms and the baseline methods is
shown in table figure 5.6. It presents the gain in percent of each of the algorithms compared to
the baseline random/constant methods, i.e gain = algorithm/baseline − 1. The indices in bold
showcases the best result in each category. In two cases the constant baseline method scored the
highest, it which case it is in bold. These are the weighted averaged precision score (1.00), and the
weighted averaged F1 score (0.47). In most cases, node2vec and gat2vec shows a superior result
compared to the baseline methods and gat2vec slightly so over node2vec.

Table 5.6: A summary of the predictive score of node embedding algorithms and their relative gain compared
to the baseline random/constant methods, using the DTC. The bold indices indicates the best score of each
category.

Precision Recall F1-score
Micro Macro Weighted Micro Macro Weighted Micro Macro Weighted

node2vec 0.30 0.22 0.51 0.3 0.25 0.3 0.3 0.23 0.37
gat2vec 0.33 0.25 0.48 0.33 0.28 0.33 0.33 0.26 0.38
Baseline R/C 0.19/0.31 0.19/0.20 0.19/1.00 0.19/0.31 0.19/0.06 0.19/0.31 0.19/0.31 0.18/0.09 0.18/0.47
Gain node2vec [%] 57.9/-3.2 15.8/10.0 168.4/-49.0 57.9/-3.2 31.6/316.7 57.9/-3.2 57.9/-3.2 27.8/155.6 105.6/-21.3
Gain gat2vec [%] 73.7/6.5 31.6/25.0 152.6/-52.0 73.7/6.5 47.4/366.7 73.68/6.5 73.7/6.5 44.4/188.9 111.11/-19.1

The result of the class prediction using graph2vec and SVC is compared to the baseline methods
in table 5.7. Similar to the node embedding method, the weighted avarage of the constant baseline
method gives a high F1 score and a high weighted score.
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Table 5.7: The predictive scores of the graph classification task using the graph2vec algorithm and SVC,
and compared to the baseline random/constant approaches.

Precision Recall F1-score
Micro Macro Weighted Micro Macro Weighted Micro Macro Weighted

graph2vec 0.38 0.35 0.41 0.38 0.34 0.38 0.38 0.34 0.39
Guessing R/C 0.20/0.32 0.21/0.20 0.22/1.00 0.20/0.32 0.20/0.06 0.20/0.31 0.20/0.32 0.19/0.10 0.19/0.48
Gain graph2vec [%] 90.0/18.8 66.7/75.0 86.4/59.0 90.0/18.75 70.0/466.7 90.0/22.6 90.0/18.9 78.9/240 105.3/-18.5
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Chapter 6

Discussion and Future Work

According to Do et al. [9], classifying high dimensional data with DTC is not optimal. The node
embeddings can indeed be seen as high dimensional data, which makes the choice of classifier
debatable. Another choice would be the SVM classifier that is used to classify the graph2vec
algorithm. However, even with a possible sup-par classification method, the result show that each
of the implemented embedding algorithms perform considerably better than the naive baseline
algorithm of random guessing. Furthermore, the result displays a slight favor of incorporating
attributes (gat2vec) over not doing so (node2vec), which is in line with what one would intuitively
think matters to predict the TTC value in the IT-architecture. Nonetheless, there are still some
questions to be answered.

In both the node embedding algorithms, node2vec and gat2vec, the training of the skip gram is done
completely independently on each graph. As a result, there is a limit on how well these algorithms
can perform when trying to carry out a classification as if the training was not independent. In fact,
they are not built to be compared between graphs [26], and it is not possible generate embeddings
for new nodes in a graph that were not seen during training. On the other hand, the benefit of
these algorithms is that they are easily expanded to unseen graphs, i.e the embedding of the unseen
graph can be directly compared to the graphs used in training. This is essential, since it is not
feasible to train on all possible graphs that can be reached by a reinforcement learning algorithm.
However, the disadvantage of training the embeddings of each graph independently is undoubtedly
significant, and thus making this solution sub-par. For further analysis, it would be valuable to
investigate how the node embeddings can be trained with dependence between the graphs, in such
a way that it can be expanded to unseen graphs.

The graph embedding method, graph2vec, does not suffer from the independence issue. It trains
the skip gram model on all graphs at the same time, and naturally the embedding of each graph is
dependent on the embedding of each of the other graphs. On the other hand, this solution suffers
from the inability to generalize to unseen graphs. The graphs that are seen in training are the only
graphs in the algorithm’s vocabulary. As a result, each new graph introduced requires retraining
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of all graphs. Consequently, directly incorporating this algorithm to the reinforcement learning
framework is certainly not feasible. However, that does not exclude the possibility that graph2vec
could be used with slight alterations. For example, one solution to investigate is to store the weights
(embeddings) of existing graphs during the reinforcement learning scheme. Henceforth, when a
new graph is reached, expand the dimension of the hidden weight matrix and only update the
new weights according to the DBOW1 algorithm. Another solution is by Niepert et al. [37]. They
propose to use convolutional neural networks on a collection of graphs, to learn a function that
can be used for classification and regression on unseen graphs. In similar fashion, graphSAGE [15]
likewise learns to aggregate features about the neigborhood of a node, which can be generalized to
unseen nodes. As a result, these methods do not need to be retrained when a new graph or node
is introduced.

The three implemented methods are all static methods, i.e the graphs do not evolve over time.
However, if an action by an agent in the RL algorithm is modelled as change of a graph rather
than visiting a new graph, a dynamic graph embedding could be a viable solution. Dynamic graph
embeddings treat graphs that evolve over time. For example, IGE [48] deals with an with dynamic
and attributed graph edges. The DANE [28] initiate the algorithm with a static embedding that
preserves both structural proximities and node attributes, and updates it with matrix peturbation
theory as it evolves over time. Similarly, the DepthLGP [30] initiates a static node embedding and
then generate embeddings of nodes that arrive after learning.

Further, these experiments are made on simulating tool that incorporates less features than the
actual securiCAD tool. The importance of choosing an embedding that captures the attributes
of each node and edge is likely of even higher importance than what the results of this thesis
displays.

1Distributed bag of words, explained in the 3.2 chapter.
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Chapter 7

Conclusion

Some complications arise when trying to apply vector based machine learning techniques to graph
data. In this thesis the specific problem is to represent graph data as the state space in a
reinforcement learning algorithm. The solution that is evaluated is to map the graph to a vector
space using either a node embedding or a graph embedding, and alternatively using the resulting
embedding in the reinforcement learning framework. Three algorithms are implemented, two node
embedding and one graph embedding. The first one is the node embedding node2vec, that uses
biased random walks to capture neighborhood structures of a node. The second one is the node
embedding gat2vec, that introduces a bipartite attribute graph and capture the neighborhood
of a node by random walking on both the attribute and the structural graph. The third one
is graph2vec, that embeds an entire graph by introducing rooted subgraphs. To evaluate these
algorithm the already known TTC value1 for each node is used. Henceforth, it is made into a
classification problem, where the aim is to classify if it is very easy, easy, hard, very hard, impossible
for the attacker to reach the node given the embeddings (or average difficulty for the attacker if
we have a graph embedding). The result is then compared to the baseline algorithms constant
and random guessing. All three algorithms have a significant improvement in terms of F1 score
compared to the random baseline algorithm - using the micro average method the improvement
is 57.9%, 73.7% and 90.0% respectively. Still, the weighted F1 score for the constant baseline
algorithm is not beaten. As a result, given that the user has prior knowledge about the distribution
of the classes in the data, it is arguable if any of the algorithms is better than constant guessing
on the most popular class, depending on how the classification score is evaluated. However, the
results show that the static node embedding algorithms and static graph embedding algorithm does
indeed capture some information about the TTC value of each node, which is essential for using
this solution in a reinforcement learning setup. However, even if these results show improvement
over naive approaches, the implementation of the Automatic Designer would nevertheless require
an even better performance. A natural next research area is dynamic graph embedding, where the
graphs can evolve over time. Another promising area are the algorithms that learn functions of

1Time To Compromise, the time it takes for an attacker to reach each node
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features of graphs, which can thereafter be applied to unseen nodes and graphs [15,37].

49



Bibliography

[1] M. Balasubramanian and E. L. Schwartz. The isomap algorithm and topological stability.
Science, 295(5552):7–7, 2002.

[2] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Advances in neural information processing systems, pages 585–591, 2002.

[3] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–
1828, 2013.

[4] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[5] S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph representations with global structural
information. In Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management, pages 891–900. ACM, 2015.

[6] S. Cao, W. Lu, and Q. Xu. Deep neural networks for learning graph representations. In AAAI,
pages 1145–1152, 2016.

[7] H. Chen, B. Perozzi, Y. Hu, and S. Skiena. Harp: Hierarchical representation learning for
networks. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[8] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest paths algorithms: Theory and
experimental evaluation. Mathematical programming, 73(2):129–174, 1996.

[9] T.-N. Do, P. Lenca, S. Lallich, and N.-K. Pham. Classifying very-high-dimensional data with
random forests of oblique decision trees. In EGC, 2009.

[10] M. Ekstedt, P. Johnson, R. Lagerstrom, D. Gorton, J. Nydrén, and K. Shahzad. Securi
cad by foreseeti: A cad tool for enterprise cyber security management. In 2015 IEEE 19th
International Enterprise Distributed Object Computing Workshop (EDOCW), pages 152–155.
IEEE, 2015.

[11] S. Fortin. The graph isomorphism problem. Technical report, Citeseer, 1996.

[12] P. Goyal and E. Ferrara. Gem: A python package for graph embedding methods. Journal of
Open Source Software, 2018.

49



[13] P. Goyal and E. Ferrara. Graph embedding techniques, applications, and performance: A
survey. Knowledge-Based Systems, 2018.

[14] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. CoRR,
abs/1607.00653, 2016.

[15] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

[16] W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584, 2017.

[17] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining,
inference and prediction. Springer, 2 edition, 2009.

[18] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

[19] H. Holm, M. Korman, and M. Ekstedt. A bayesian network model for likelihood estimations
of acquirement of critical software vulnerabilities and exploits. Information and Software
Technology, 58:304–318, 2015.

[20] J. Jacobsson. Securilang technical documentation, 2017. Edition 1.2.8.

[21] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical Learning:
With Applications in R. Springer Publishing Company, Incorporated, 2014.

[22] R. Lagerström, P. Johnson, and M. Ekstedt. Automatic design of secure enterprise
architecture: Work in progress paper. In Enterprise Distributed Object Computing Workshop
(EDOCW), 2017 IEEE 21st International, pages 65–70. IEEE, 2017.

[23] P. Latouche and F. Rossi. Graphs in machine learning: an introduction. ArXiv e-prints, June
2015.

[24] Q. Le and T. Mikolov. Distributed representations of sentences and documents. In
International Conference on Machine Learning, pages 1188–1196, 2014.

[25] J. Leskovec, W. L. Hamilton, R. Ying, and R. Sosic. Representation learning on networks, part
1: Node embeddings. http://snap.stanford.edu/proj/embeddings-www/, 2018. Accessed:
2018-11-14.

[26] J. Leskovec, W. L. Hamilton, R. Ying, and R. Sosic. Representation learning on networks,
part 2: Graph neural networks. http://snap.stanford.edu/proj/embeddings-www/, 2018.
Accessed: 2018-11-14.

[27] J. Leskovec and R. Sosič. Snap: A general-purpose network analysis and graph-mining library.
ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1, 2016.

50

http://snap.stanford.edu/proj/embeddings-www/
http://snap.stanford.edu/proj/embeddings-www/


[28] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu. Attributed network embedding for
learning in a dynamic environment. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pages 387–396. ACM, 2017.

[29] J. Liang, P. Jacobs, J. Sun, and S. Parthasarathy. Semi-supervised embedding in attributed
networks with outliers. In Proceedings of the 2018 SIAM International Conference on Data
Mining, pages 153–161. SIAM, 2018.

[30] J. Ma, P. Cui, and W. Zhu. Depthlgp: Learning embeddings of out-of-sample nodes in dynamic
networks. In AAAI 2018, 2018.

[31] C. McCormick. Word2vec tutoral - the skip-gram model. http://www.mccormickml.com,
2016, April 19. Accessed: 2019-02-16.

[32] C. McCormick. Word2vec tutoral part 2 - negative sampling. http://www.mccormickml.com,
2017, January 11. Accessed: 2019-02-16.

[33] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781, 2013.

[34] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing
systems, pages 3111–3119, 2013.

[35] A. Narayanan, M. Chandramohan, L. Chen, Y. Liu, and S. Saminathan. subgraph2vec:
Learning distributed representations of rooted sub-graphs from large graphs. CoRR,
abs/1606.08928, 2016.

[36] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal. graph2vec:
Learning Distributed Representations of Graphs. ArXiv e-prints, July 2017.

[37] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks for graphs.
In International conference on machine learning, pages 2014–2023, 2016.

[38] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu. Asymmetric transitivity preserving graph
embedding. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1105–1114. ACM, 2016.

[39] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang. Tri-party deep network representation.
Network, 11(9):12, 2016.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[41] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations.
CoRR, abs/1403.6652, 2014.

51

http://www.mccormickml.com
http://www.mccormickml.com


[42] N. Sheikh. Gat2vec. https://github.com/snash4/GAT2VEC, 2018.

[43] N. Sheikh, Z. Kefato, and A. Montresor. gat2vec: representation learning for attributed
graphs. Computing, pages 1–23, 2018.

[44] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borgwardt.
Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12:2539–2561, Nov. 2011.

[45] A. Taheri, K. Gimpel, and T. Berger-Wolf. Learning graph representations with recurrent
neural network autoencoders. KDD Deep Learning Day, 2018.

[46] V. Van Asch. Macro-and micro-averaged evaluation measures [[basic draft]]. Belgium: CLiPS,
2013.

[47] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. In Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pages 1225–1234, New York, NY, USA, 2016. ACM.

[48] Y. Zhang, Y. Xiong, X. Kong, and Y. Zhu. Learning node embeddings in interaction graphs.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,
pages 397–406. ACM, 2017.

52

https://github.com/snash4/GAT2VEC






TRITA -SCI-GRU 2019:046

www.kth.se


	Omslag Wåhlin
	Inlägg - framsida Wåhlin
	Inlägg backsida Wåhlin
	LV-VT18-final
	Introduction
	Previous Work
	Research Questions
	Outline
	Nomenclature

	SecuriCAD and the Simulator
	SecurCAD
	Time-To-Compromise (TTC)

	The Simulator
	Assets
	Attack Graph
	Total Cost


	Graph Embedding
	Formal Definitions
	Graph Isomorphism

	Skip-gram
	Negative sampling

	Node Embeddings
	Encoder-Decoder Framework
	Factorization Based Methods
	Deep Learning Based Methods
	Random Walk Based Methods
	node2vec
	gat2vec

	Graph Embedding
	graph2vec

	Summary of the Implemented Algorithms

	Methodology
	Classification Setup
	Producing Training Data
	Data Analysis

	Statistical Methods
	Supervised versus Unsupervised Learning
	The Classification Setting
	Testing and Training
	Cross Validaton for Parameter Tuning
	Classification Score

	Classifiers
	Support Vector Classifier (SVC)
	Decision Tree Classifier

	Implementation of Algorithms
	node2vec
	gat2vec
	graph2vec

	Baseline Algorithms

	Results
	node2vec
	gat2vec
	graph2vec
	Baseline Algorithms
	Summary

	Discussion and Future Work
	Conclusion

	Omslag Wåhlin
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page



