
Infinitely iterated Brownian motion

LetB1, B2, . . . be independent one-dimensional Brownian motions parametrized
by the whole real line such that Bi(0) = 0 for every i ≥ 1. We consider
the nth iterated Brownian motion Wn(t) = Bn(Bn−1(· · · (B2(B1(t))) · · · )).
Such a process first appeared in a paper by Funaki as a probabilistic con-
struction of the solution of higher order diffusion equations. The process re-
ceived some attention by the probability community (Burdzy, Khoshnevisan,
Shi, Eisenbaum, Bertoin) in relation to the pathwise properties of this non-
semimartingale process. In this talk, we will review some of the fascinating
properties of Wn such as Burdzy’s result that, given a path of W2, one can
recover the paths B1, B2 up to a sign. We will then show that Wn has
a limit, in a certain very weak sense, as n → ∞, which is exchangeable
and, therefore, by the de Finetti-Hewitt-Savage theorem, a conditionally in-
dependent collection of random variables. We identify the object, µ∞, we
condition on as being the limit of the random occupation measures, on [0, 1],
of Wn. It turns out that µ∞ has almost surely finite support and continuous
(random) density. The limiting marginal distributions have some rather cu-
rious properties, but only the 1-dimensional ones are explicitly known (from
which we can obtain a new characterization of the exponential distribution).
This talk is based on joint work with Nicolas Curien, Université Paris VI.
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