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Computer Lab 1
ODE-systems of LCC-type and stability

In this exercise the following problems are treated:

• linear ODE-systems with constant coefficients (LCC-systems)

• stability of trajectories and critical points

LCC-systems can be solved analytically (see course material) and need there-
fore no numerical method. LCC-systems are treated in mathematical courses,
but are still presented in this course for reviewing purposes since it is easy
to obtain their solution with the expm-function in Matlab and since it also
gives exercise in displaying the solution curves graphically. There are also
a few exercises on the important concept of stability of ODE-systems, both
the stability of solution curves and equilibrium points.

We start by illustrating how a Matlab program for solution of an LCC-
problem can look like:

Introductory example

Given the following second order differential equation:

y′′ + 2y′ + 5y = 0

with the initial values y(0) = 0 and y′(0) = 1. Compute the solution of this
ODE-problem on a suitable t-interval.

Rewrite this scalar problem to the standard form, i.e. as a system of first
order ODEs u′ = Au, which is solved analytically with the expm-function.
Input data to the Matlab program solving this problem consists of the matrix
A, the initial vector u(0) and gridpoint data h and N for the points ti =
ih, i = 0, 1, 2, . . . , N , where the solution shall be computed and plotted. The
output from the program is the graph of the solution at these gridpoints.
In the Matlab program below the solution u(t) is stored in a resultmatrix
result. Each column in result corresponds to the solution vector at a
gridpoint ti. The first column is the initial vector u(0).
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The plotted result is shown in a graph.

A=[0 1;-5 -2];
u0=[0 1]’;t0=0;
h=0.1;N=60;
result=[u0];time=[t0];
for k=1:N
t=k*h;
u=expm(A*t)*u0;
result=[result u];
time=[time t];

end
plot(time,result)

This Matlab program plots two curves in the graph. The first row in
the result-matrix corresponds to the solution y(t), while the second row
corresponds to the derivative of the solution z(t) = y′(t), since u(t) is defined
as (y(t), z(t))T . The initial values of y och z are different in this case so it
is easy to see which curve corresponds to which variable. Otherwise you can
use different plot-symbols for different curves.

Observe that the time step h must be chosen with some care if the plotted
curve is to be smooth. In the left graph h = 0.1 is used as stepsize while
the right graph is plotted with h = 1. With so few points, however, the line
segments building up the curves are clearly seen and the curves gets rough.

With too small time steps, on the other hand say h = 0.001, the com-
putation of the result-matrix will take unreasonably long time. Hence it is
advisable to work out the gridpoint spacing interactively. For other problems
it may also be better to use loglog, semilogx or semilogy instead of plot
to display the important qualitative features of solution curves.

———————– *** ———————–

Part 1. Solution of ODE-systems with constant coefficients

Electric circuit

Given the following simple electric circuit with a voltage source of size E,
a resistance R, an inductance L and a capacitance C. The components are
coupled in series.
Assume that the circuit is first at rest. The switch is pressed at t = 0 and a
current starts to go through the circuit. Introduce the variable q defined by
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the relation q̇ = i, and the following differential equation can be set up:

Lq̈ + Rq̇ +
1

C
q = E, q(0) = 0, q̇(0) = 0

Rewrite this scalar ODE as a system of first order ODEs then write a Matlab
program to solve the problem for the following parameter values of E, L, C
och R: E = 10, L = C = 0.1, R = 1, 10, 100, 1000, 10000. Observe that this
ODE-system is inhomogenous.

Plot the solutions y(t) on suitable time intervals and with suitable time
steps. Use the subplot-command to obtain the three graphs in the same
figure.

Part 2. Stability of ODE-systems

a. Stability of the solutions of an ODE-system of LCC-type

In many technical applications where a differential equation is used to model
a dynamic process, it is important to see how the solution curves change as
a parameter in the model is changed. For a control system it is of great
interest to investigate how the the stability properties change as a parameter
is changed continuously.

Given the following third order differential equation

y′′′ + 3y′′ + 2y′ + Ky = 0, y(0) = 1, y′(0) = 1, y′′(0) = 1

Investigate how the solution y(t) is changed as K varies in the interval K ≥ 0.

Rewrite this third order ODE as a system of first order ODEs. We then
obtain a system

u′ = A(K)u, u(0) = (1, 1, 1)T

Write a Matlab-program showing the solutions y(t) for K = 0, 1, 4, 8. Use
subplot to plot the four graphs in the same figure. Estimate from these
plots an approximate value of K for which the solution becomes unstable.

The stability properties can also be shown in a so called root locus, often used
in control theory to visualize the stability properties for a regulator modeled
by an ODE of LCC-type. A root locus is a graph showing the paths of the
eigenvalues in the complex plane as a parameter varies. Assume that all
eigenvalues start in the left half plane for say K = 0, where we have a stable
system. When K then increases the eigenvalues will follow continuous paths
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and for a certain value of K a few eigenvalues eventually enter the right half
plane and the system becomes unstable.

Write a Matlab program that plots the root locus when 0 ≤ K ≤ 10.
Compute accurately the smallest value of K that gives an unstable system.
To present the results take a paper copy of your program and the plot of the
root locus. Hint: in this part of the lab it is easiest to plot complex numbers
in the complex plane. If the number is real, make it complex by adding a
small imaginary number, say i*1e-8.

b. Stability of critical points of a nonlinear ODE-system

Given the following system of nonlinear ordinary differential equations

u′
1 = 5u1 + 4u2 − u1u3

u′
2 = u1 + 4u2 − u2u3

u′
3 = u2

1 + u2
2 − 89

Write a Matlab-program with the help of which you compute all critical
points of the ODE-system and also compute which of these critical points
are stable. Hint: use Newton’s method to compute the critical points with at
least 5 significant digits. There are four critical points and they are situated in
the neighbourhood of the following points in R3: (8,−5, 2), (−8, 5, 2), (9, 3, 7)
and (−9,−3, 7).
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