NADA, KTH, Lennart Edsberg

Tentamen i Kursen 2D1225
 Numerisk Behandling av Differentialekvationer I

Thursday 2008-12-18 kl 8-13

SOLUTIONS

1. a) The definition of $e^{A t}$ involving eigenvalues and eigenvectors is

$$
e^{A t}=S e^{D t} S^{-1}
$$

where $e^{D t}=\operatorname{diag}\left(e^{\lambda_{1} t}, e^{\lambda_{2} t}, \ldots, e^{\lambda_{n} t}\right)$
b) The eigenvalues of A are -1 and -2 (for a triangular matrix the eigenvalues are found in the diagonal of A). The homogeneous linear systems of equations giving the eigenvectors are

$$
\lambda_{1}=-1 \quad\left(\begin{array}{cc}
0 & 0 \\
2 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=0, \quad \lambda_{2}=-2 \quad\left(\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right)\binom{y_{1}}{y_{2}}=0
$$

giving $\mathbf{x}=(1,2)^{T}$ and $\mathbf{y}=(0,1)^{T}$. We obtain

$$
S=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right), \quad S^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)
$$

c) If the columns of S are scaled by numbers $w_{1}, w_{2}, \ldots, w_{n}$ we get $S_{w}=S * W$, where W is a diagonal matrix with $w_{1}, w_{2}, \ldots w_{n}$ in the diagonal, hence $S=S_{w} * W^{-1}$. The inverse is $S^{-1}=W * S_{w}^{-1}$. Inserting into the definition gives $e^{A t}=S_{w} * W^{-1} * e^{D t} *$ $W * S_{w}^{-1}$. The three matrices in the middle, $W^{-1} * e^{D t} * W$ are all diagonal matrices, and the order of multiplication can be changed to e.g. $W^{-1} * W * e^{D t}=e^{D t}$. Hence $e^{A t}$ does not depend on the lengths of the eigenvectors.
Another argument for this is to look at the Taylor expansion definition of $e^{A t}=$ $I+A t+(A t)^{2} / 2!+(A t)^{3} / 3!+\ldots \ldots$, which is independent of S.
2. a) Method 1: Solve the differential equation exactly.

Let $v=u^{\prime}, \rightarrow v^{\prime}+\lambda v=0$. If $\lambda \neq 0$ we get $v=C e^{-\lambda x} \rightarrow u=C_{1}+C_{2} e^{-\lambda x}$. The solution is stable if $\operatorname{Re}(\lambda) \geq 0$. If $\lambda=0$, however, we have $u^{\prime \prime}=0 \rightarrow u=C_{1}+C_{2} x$ which is unstable.
Method 2: Write as a system of two first order ODE's where $u_{1}=u, u_{2}=u^{\prime}$:

$$
\mathbf{u}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
0 & -\lambda
\end{array}\right) \mathbf{u}
$$

The eigenvalues are 0 and $-\lambda$. If $\lambda \neq 0$ we have two simple eigenvalues and the system is stable if $\operatorname{Re}(\lambda) \geq 0$. If $\lambda=0$, both eigenvalues $=0$ and we have a double eigenvalue. To investigate stability in this case we have to look at the solution of the differential equation, i.e. $u^{\prime \prime}=0$, which is done in method 1 , showing that it is unstable.
b) For the differential equation: $\mu^{2}+\lambda \mu=0 \quad$ (1). For the difference equation: $(1+$ $h \lambda) \nu^{2}-(2+h \lambda) \nu+1=0$
c) The solution of the difference equation is stable if $\left|\nu_{1}\right| \leq 1$ and $\left|\nu_{2}\right| \leq 1$. The roots of (2) are $\nu_{1}=1$ and $\nu_{2}=1 /(1+h \lambda)$. If $\lambda \neq 0$ we have two simple roots and a stable solution if $|1+h \lambda|>1$, i.e. $h \lambda$ is in the outside of a disc with radius 1 and center at -1 . If $\lambda=0$ we have a double root. The difference equation is then: $u_{n}-2 u_{n-1}+u_{n-2}=0$ and the solution $u_{n}=C_{1}+C_{2} n$, hence unstable.
3. Taylor expansion of $a y(-h)+b y(0)+c y(h)+d y(2 h)$ gives $(a+b+c+d) y(0)+h(-a+$ $c+2 d) y^{\prime}(0)+\left(h^{2} / 2!\right)(a+c+4 d) y^{\prime \prime}(0)+\left(h^{3} / 3!\right)(-a-c+8 d) y^{\prime \prime \prime}(0)+\left(h^{4} / 4!\right)(a+c+$ $16 d) y(4)(0)+O\left(h^{5}\right)$, hence the linear system of equations is obtained by identifying $y^{\prime \prime \prime}(0)$ with the first four terms in the Taylor expansion:

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2 \\
1 & 0 & 1 & 4 \\
-1 & 0 & 1 & 8
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
6 / h^{3}
\end{array}\right)
$$

and the solution $a=-1 / h^{3}, b=3 / h^{3}, c=-3 / h^{3}$ and $d=1 / h^{3}$, hence

$$
y^{\prime \prime \prime}(0)=\frac{-y(-h)+3 y(0)-3 y(h)+y(2 h)}{h^{3}}+\frac{h}{2} y^{4}(0)+\ldots
$$

and the approximation is of first order.
4. See the book, pg 156. The characteristics are the parallell straight lines $x=2 t+C$.
5. See the book chapter 6.5 and pg 114-115
6. a) The PDE is parabolic
b) Discretize the r-axis according to $r_{0}=-h, r_{1}=0, r_{2}=h, r_{i}=(i-1) h, r_{N+1}=R$, i.e. $h=R / N$. Use the MoL to obtain a system of N ODEs at $r=r_{1}, r_{2}, \ldots r_{N}$ with z as independent variable. At $r=r_{1}$ we have to investigate the term $(1 / r) \partial T / \partial r$, which is of type $0 / 0$. Use of l'Hôpital's rule gives

$$
\lim _{r \rightarrow 0} \frac{\partial T / \partial r}{r}=\lim _{r \rightarrow 0} \frac{\partial^{2} T / \partial r^{2}}{1}=\frac{\partial^{2} T}{\partial r^{2}}(0, z)
$$

Hence we get the following system of ODEs

$$
\begin{gathered}
\text { at } \quad r=r_{1}=0: \quad \frac{d T_{1}}{d z}=2 \frac{D_{r}}{v} \frac{T_{2}-2 T_{1}+T_{0}}{h^{2}} \\
\text { at } \quad r=r_{i}: \quad \frac{d T_{i}}{d z}=\frac{D_{r}}{v}\left(\frac{T_{i+1}-2 T_{i}+T_{i-1}}{h^{2}}+\frac{1}{r_{i}} \frac{T_{i+1}-T_{i-1}}{2 h}\right), i=2,3, \ldots, N
\end{gathered}
$$

The BC's are discretized according to

$$
\text { at } \quad r=r_{1}=0: \quad \frac{T_{2}-T_{0}}{2 h}=0, \quad \text { at } \quad r=r_{N+1}=R: T_{N+1}=T_{o u t}
$$

giving an ODE-system for $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{N}\right)^{T}$:

$$
\frac{d \mathbf{T}}{d z}=A \mathbf{T}+\mathbf{b}, \quad \mathbf{T}(0)=\mathbf{T}_{0}
$$

where
$A=\left(\begin{array}{ccccc}-4 \alpha & 4 \alpha & 0 & 0 & 0 \\ \alpha-\beta_{2} & -2 \alpha & \alpha+\beta_{2} & 0 & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & 0 & \alpha-\beta_{N} & -2 \alpha\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}0 \\ 0 \\ \cdot \\ \cdot \\ -\left(\alpha+\beta_{N}\right) T_{\text {out }}\end{array}\right), \quad \mathbf{T}(0)=\left(\begin{array}{c}0 \\ 0 \\ \cdot \\ \cdot \\ 0\end{array}\right)$
where $\alpha=D_{r} / v h^{2}$ and $\beta_{i}=D_{r} / 2 h v r_{i}$. Hence A is tridiagonal with the elements $\alpha-\beta_{i},-2 \alpha, \alpha+\beta_{i}$ in row i.
c) The PDE is elliptic. You need a boundary condition also at $z=L$, i.e. $T(r, L)=T_{L}$ or $\partial T / \partial z=0$. The FEM or the FDM can be used to discretize the problem. A large sparse linear system of equations is obtained. Can be solved with a sparse algorithm or iteration with CG or preconditioned CG.

