NADA, KTH, Lennart Edsberg

Tentamen i Kursen DN2221

Tillämpade Numeriska Metoder I

Thursday 2009-12-14 kl 14-19

SOLUTIONS

1. a) The definition of $e^{A t}$ involving eigenvalues and eigenvectors is

$$
e^{A t}=S e^{D t} S^{-1}
$$

where $e^{D t}=\operatorname{diag}\left(e^{\lambda_{1} t}, e^{\lambda_{2} t}, \ldots, e^{\lambda_{n} t}\right)$
b) The eigenvalues of A are i and $-i$ The homogeneous linear systems of equations giving the eigenvectors are

$$
\lambda_{1}=i \quad\left(\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right)\binom{s_{1}}{s_{2}}=0, \quad \lambda_{2}=-i \quad\left(\begin{array}{cc}
i & 1 \\
-1 & i
\end{array}\right)\binom{s_{1}}{s_{2}}=0
$$

giving $\mathbf{s}_{1}=(i,-1)^{T}$ and $\mathbf{s}_{2}=(i, 1)^{T}$. We obtain

$$
S=\left(\begin{array}{cc}
i & i \\
-1 & 1
\end{array}\right), \quad S^{-1}=\frac{1}{2 i}\left(\begin{array}{cc}
1 & -i \\
1 & i
\end{array}\right)
$$

Some calculations give

$$
e^{A t}=S e^{D t} S^{-1}=\left(\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right)
$$

2. a) The general solution is (for simple eigenvalues) $\mathbf{x}(t)=\sum \alpha_{k} \mathbf{s}_{k} e^{\lambda_{k} t}$. Since $e^{\lambda_{k} t}=\cos (t)+$ $i \sin (t)$ there is no term that grows unboundedly as $t \rightarrow \infty$, hence the solution is stable (bounded).
b) Since all $h \lambda_{k}$ are situated on the imaginary axis and the stability region $S_{E E}$ for Euler's explicit method does not contain the imaginary axis, the numerical solution will be unstable.
c) The stability region for the explicit midpoint method is the interval $[-i, i]$ on the imaginary axis, see the book pg 187. Hence if $h \leq 1 / \max \mu_{k}$ the numerical solution will be stable.
3. Symmetry properties give that $a=e$ and $b=d$. Taylor expansion of $a y(-2 h)+b y(-h)+$ $c y(0)+b y(h)+a y(2 h)$ gives $(a+b+c+b+a) y(0)+h^{2}(2 a+b / 2+b / 2+2 a) y^{\prime \prime}(0)+$ $h^{4}(16 a / 12+b / 12)+O\left(h^{6}\right)$. The linear system of equations is $2 a+2 b+c=0, \quad 4 a+b=$ $1 / h^{2}, \quad 16 a+b=0$ and the solution $a=-1 / 12 h^{2}, b=16 / 12 h^{2}, c=-30 / 12 h^{2}$. Hence

$$
y^{\prime \prime}(0)=\frac{-y(-2 h)+16 y(h)-30 y(0)+16 y(h)-y(2 h)}{12 h^{2}}+O\left(h^{4}\right)
$$

and the approximation is of fourth order.
4. See the book, pg 152. The characteristics are the parallell straight lines $x=-t+C$. See also formula (8.31) on page 158 .
5. See the book chapter 6.5.
6.

