NADA, KTH, Lennart Edsberg

Tentamen i Kursen DN2221

Tillämpade Numeriska Metoder I

Thursday 2014-01-15 kl 14-19

SOLUTIONS

1. a) The characteristic equation is $\lambda^{2}-4 \lambda-5=0$. The characteristic roots are $\lambda_{1}=5$ and $\lambda_{2}=-1$. Hence the general solution is $y(x)=A e^{5 x}+B e^{-x}$
b) $y(0)=1 \rightarrow A+B=1 . y(\infty)=0 \rightarrow A=0$. Hence the particular solution of this boundary value problem is $y_{p}(x)=e^{-x}$. This solution is NOT stable since arbitrarily close to the trajectory $y_{p}(x)=e^{-x}$ there are solution curves containing some multiple of $e^{5 x}$ which makes $y_{p}(x)$ UNSTABLE.
c) The INSTABILITY region of implicit Euler is the disc $|h \lambda-1|<1$ in the $h \lambda$-plane, hence, if λ is real, the interval $0<h \lambda<2$. In our case $h \lambda_{2}$ is always in the STABILITY region while $h \lambda_{1}$ is in the INSTABILITY region if $0<h<2 / 5$.
2. a) The first order system is $\dot{r}=v \quad \dot{v}=a(t)$, hence in matrix form

$$
\binom{\dot{r}}{\dot{v}}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{r}{v}+\binom{0}{a(t)}
$$

Eulers explicit method applied to this system gives

$$
r_{k+1}=r_{k}+h v_{k}, \quad r_{0}=0 \quad v_{k+1}=v_{k}+h a_{k}, \quad v_{0}=0
$$

b) From the given central difference formulas $r_{k+1}-r_{k-1}=2 h v_{k} \rightarrow r_{k-1}=r_{k+1}-2 h v_{k}$. Inserted into the first difference formula this gives $r_{k+1}-2 r_{k}+r_{k+1}-2 h v_{k}=h^{2} a_{k} \rightarrow$ $r_{k+1}=r_{k}+h v_{k}+\left(h^{2} / 2\right) a_{k}$, the formula for the position. The velocity formula can be obtained from the two difference equations: $r_{k+1}-2 r_{k}+r_{k-1}=h^{2} a_{k}$ and $r_{k+2}-2 r_{k+1}+r_{k}=h^{2} a_{k+1}$ Adding them together gives $\left(r_{k+2}-r_{k+1}\right)-\left(r_{k+1}-\right.$ $\left.r_{k-1}\right)=h^{2}\left(a_{k}+a_{k+1}\right)$ which can also be written $v_{k+1}=v_{k}+(h / 2)\left(a_{k}+a_{k+1}\right)$
c) Explicit Euler: the residual for the position variable $r(t)$ is

$$
r(t+h)-r(t)-h \dot{r}(t)=r(t)+h \dot{r}(t)+\left(h^{2} / 2\right) \ddot{r}(t)-r(t)-h \dot{r}(t)=O\left(h^{2}\right)
$$

. The residual for the velocity variable $v(t)$ is

$$
v(t+h)-v(t)-h \dot{v}(t)=v(t)+h \dot{v}(t)+\left(h^{2} / 2\right) \ddot{v}(t)-v(t)-h \dot{v}(t)=O\left(h^{2}\right)
$$

In the book (pg 45) the local error is derived to be of order one, but there the definition of the local error is a little different!
Verlet's method: the residual for the position variable $r(t)$ is

$$
r(t+h)-r(t)-h \dot{r}(t)-\left(h^{2} / 2\right) \ddot{r}(t)=r(t)+h \dot{r}(t)+\left(h^{2} / 2\right) \ddot{r}(t)+O\left(h^{3}\right)-r(t)-h \dot{r}(t)-\left(h^{2} / 2\right) \ddot{r}(t)=O\left(h^{3}\right)
$$

. The residual of the velocity variable $v(t)$ is

$$
\begin{gathered}
v(t+h)-v(t)-(h / 2)(\dot{v}(t+h)+\dot{v}(t))= \\
v(t)+h \dot{v}(t)+\left(h^{2} / 2\right) \ddot{v}(t)+O\left(h^{3}\right)-v(t)-(h / 2)\left(\dot{v}(t)+h \ddot{v}(t)+O\left(h^{2}\right)+\dot{v}(t)\right)=O\left(h^{3}\right)
\end{gathered}
$$

3. Start with the difference formula in the x-direction:

$$
\frac{\partial^{2} u}{\partial x^{2}}(x, y) \approx \frac{b u(x-h, y)+c u(x, y)+d u(x+\alpha h, y)}{h^{2}}
$$

Taylorexpansion around (x, y) in the x-direction gives the linear system of three algebraic equations: $b+c+d=0,-b h+d \alpha h=0$ and $\left(\left(h^{2} / 2\right) b+\left(h^{2} / 2\right) \alpha^{2} d\right) / h^{2}=1$ with the solution $b=2 \alpha /\left(\alpha+\alpha^{2}\right), d=2 /\left(\alpha+\alpha^{2}\right)$ och $c=-2 / \alpha$. When $\alpha=1$ this is in accordance with the usual central difference formula!
Now replace x by y and α by β and we get a similar formula $a=2 \beta /\left(\beta+\beta^{2}\right), e=$ $2 /\left(\beta+\beta^{2}\right)$ and $c=-2 / \beta$. The sum of these two gives a modified 5 -point formula for the laplace operator:

$$
\triangle u\left(x_{i}, y_{j}\right) \approx \frac{1}{h^{2}}\left(\frac{2}{1+\alpha} u_{i-1, j}+\frac{2}{1+\beta} u_{i, j-1}+\frac{2}{\alpha(1+\alpha)} u_{i+1, j}+\frac{2}{\beta(1+\beta)} u_{i, j+1}-2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right) u_{i, j}\right)
$$

4. See the book, pg 52
5. a) The matrix A is diagonalizable with real eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=5$, hence the system is hyperbolic.
b) The eigenvalue problem $A S=A D$ gives $S^{-1} A S=D$, where

$$
D=\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right), \quad S=\left(\begin{array}{cc}
-1 & 1 \\
2 & 2
\end{array}\right), \quad S^{-1}=-\frac{1}{4}\left(\begin{array}{cc}
2 & -1 \\
-2 & -1
\end{array}\right)
$$

With the transformation $\mathbf{u}=S \mathbf{v}$ we get the two uncoupled hyperbolic PDEs:

$$
\frac{\partial v_{1}}{\partial t}+\frac{\partial v_{1}}{\partial x}=0, \quad \frac{\partial v_{2}}{\partial t}+5 \frac{\partial v_{2}}{\partial x}=0
$$

6. With the transformations $T=T_{1}+\left(T_{0}-T_{1}\right) u, r=R x$ and $t=\alpha \tau$, where α is to be determined, we get for the PDE:

$$
\frac{T_{0}-T_{1}}{\alpha} \frac{\partial u}{\partial \tau}=\frac{\kappa}{R^{2}} \frac{1}{R} \frac{\partial}{\partial x}\left(R^{2} x^{2}\left(T_{0}-T_{1}\right) \frac{1}{R} \frac{\partial u}{\partial x}\right)
$$

. With $\alpha=R^{2} / \kappa$ the PDE becomes dimensionsless.
The initial condition: $T_{1}+\left(T_{0}-T_{1}\right) u(x, 0)=T_{1}$, i.e. $u(x, 0)=1$.
The boundary conditions: $\frac{T_{0}-T_{1}}{R} \frac{\partial u}{\partial x}(0, \tau)=0$ and $k \frac{T_{0}-T_{1}}{R} \frac{\partial u}{\partial x}(1, \tau)=-\beta\left(T_{1}+\left(T_{0}-\right.\right.$ $\left.\left.T_{1}\right) u(1, \tau)-T_{1}\right)$ which gives $\frac{\partial u}{\partial x}(1, \tau)=-\frac{\beta R}{k} u(1, \tau)$ and $a=-\beta R / k$.
7) a) Introduce the grid points $x_{i}=(i-1) h, i=0,1, \ldots, N, N+1$, where x_{0} and x_{N+1} are ghost points, $x_{1}=0$ and $x_{N}=1$. Hence $(N-1) h=1$. This is one possible way of introducing an equidistant grid for the problem.
b) Write the right hand side as

$$
\frac{1}{r^{2}} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial u}{\partial x}\right)=\frac{2}{x} \frac{\partial u}{\partial x}+\frac{\partial^{2} u}{\partial x^{2}}
$$

At $x=0$ the first term takes the form $2 \frac{\partial^{2} u}{\partial x^{2}}$ using l'Hôpital's rule. Hence the PDE at $x=0$ takes the form

$$
\frac{\partial u}{\partial \tau}=3 \frac{\partial^{2} u}{\partial x^{2}}
$$

c) With the MoL the PDE turns into a system of ODEs:

$$
\begin{array}{cl}
\frac{d u_{1}}{d \tau}=3 \frac{u_{2}-2 u_{1}+u_{0}}{h^{2}}, & u_{1}(0)=1 \\
\frac{d u_{i}}{d \tau}=\frac{2}{x_{i}} \frac{T_{i+1}-T_{i-1}}{2 h}+\frac{T_{i+1}-2 T_{i}+T_{i-1}}{h^{2}}, & u_{i}(0)=1, \quad i=2,3, \ldots, N
\end{array}
$$

The boundary conditions are discretized:

$$
\frac{u_{2}-u_{0}}{2 h}=0, \quad \frac{u_{N+1}-u_{N-1}}{2 h}=a u_{N}
$$

d) The systems of ODEs written on matrix-vector form:

$$
\frac{d \mathbf{u}}{d \tau}=A \mathbf{u}+\mathbf{b}, \quad \mathbf{u}(0)=\mathbf{u}_{0}
$$

where A is tridiagonal, $\mathbf{b}=0$ and $\mathbf{u}_{0}=(1,1, \ldots, 1)^{T}$. The nonzero elements $a_{i, j}$ of A are: the first row $a_{1,1}=-6 / h^{2}$ and $a_{1,2}=6 / h^{2}$, for row number $i=2,3, \ldots, N-1$ $a_{i, i-1}=1 / h^{2}-1 /\left(x_{i} h\right) \quad, a_{i, i}=-2 / h^{2} \quad, a_{i, i+1}=1 / h^{2}+1 /\left(x_{i} h\right) \quad$. The nonzero elements of the last row are $a_{N, N-1}=2 / h^{2}$ and $a_{N, N}=2 a+(2 a h-2) / h^{2}$.

