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SOLUTIONS

1. a) The characteristic equation is λ2 − 4λ− 5 = 0. The characteristic roots are λ1 = 5 and
λ2 = −1. Hence the general solution is y(x) = Ae5x +Be−x

b) y(0) = 1 → A + B = 1. y(∞) = 0 → A = 0. Hence the particular solution of
this boundary value problem is yp(x) = e−x. This solution is NOT stable since
arbitrarily close to the trajectory yp(x) = e−x there are solution curves containing
some multiple of e5x which makes yp(x) UNSTABLE.

c) The INSTABILITY region of implicit Euler is the disc |hλ− 1| < 1 in the hλ-plane,
hence, if λ is real, the interval 0 < hλ < 2. In our case hλ2 is always in the
STABILITY region while hλ1 is in the INSTABILITY region if 0 < h < 2/5.

2. a) The first order system is ṙ = v v̇ = a(t), hence in matrix form
(

ṙ
v̇

)

=

(

0 1
0 0

)(

r
v

)

+

(

0
a(t)

)

Eulers explicit method applied to this system gives

rk+1 = rk + hvk, r0 = 0 vk+1 = vk + hak, v0 = 0

b) From the given central difference formulas rk+1−rk−1 = 2hvk → rk−1 = rk+1−2hvk.
Inserted into the first difference formula this gives rk+1−2rk+rk+1−2hvk = h2ak →
rk+1 = rk + hvk + (h2/2)ak, the formula for the position. The velocity formula can
be obtained from the two difference equations: rk+1 − 2rk + rk−1 = h2ak and
rk+2 − 2rk+1 + rk = h2ak+1 Adding them together gives (rk+2 − rk+1) − (rk+1 −
rk−1) = h2(ak + ak+1) which can also be written vk+1 = vk + (h/2)(ak + ak+1)

c) Explicit Euler: the residual for the position variable r(t) is

r(t+ h)− r(t)− hṙ(t) = r(t) + hṙ(t) + (h2/2)r̈(t)− r(t)− hṙ(t) = O(h2)

. The residual for the velocity variable v(t) is

v(t+ h)− v(t)− hv̇(t) = v(t) + hv̇(t) + (h2/2)v̈(t)− v(t)− hv̇(t) = O(h2)

In the book (pg 45) the local error is derived to be of order one, but there the
definition of the local error is a little different!
Verlet’s method: the residual for the position variable r(t) is

r(t+h)−r(t)−hṙ(t)−(h2/2)r̈(t) = r(t)+hṙ(t)+(h2/2)r̈(t)+O(h3)−r(t)−hṙ(t)−(h2/2)r̈(t) = O(h3)

. The residual of the velocity variable v(t) is

v(t+ h)− v(t)− (h/2)(v̇(t+ h) + v̇(t)) =

v(t)+hv̇(t)+(h2/2)v̈(t)+O(h3)−v(t)−(h/2)(v̇(t)+hv̈(t)+O(h2)+ v̇(t)) = O(h3)
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3. Start with the difference formula in the x-direction:

∂2u

∂x2
(x, y) ≈

bu(x− h, y) + cu(x, y) + du(x+ αh, y)

h2

Taylorexpansion around (x, y) in the x-direction gives the linear system of three algebraic
equations: b + c + d = 0, −bh + dαh = 0 and ((h2/2)b + (h2/2)α2d)/h2 = 1 with the
solution b = 2α/(α + α2), d = 2/(α + α2) och c = −2/α. When α = 1 this is in
accordance with the usual central difference formula!
Now replace x by y and α by β and we get a similar formula a = 2β/(β + β2), e =
2/(β + β2) and c = −2/β. The sum of these two gives a modified 5-point formula for
the laplace operator:

△u(xi, yj) ≈
1

h2
(

2

1 + α
ui−1,j+

2

1 + β
ui,j−1+

2

α(1 + α)
ui+1,j+

2

β(1 + β)
ui,j+1−2(

1

α
+
1

β
)ui,j)

4. See the book, pg 52

5. a) The matrix A is diagonalizable with real eigenvalues λ1 = 1 and λ2 = 5, hence the
system is hyperbolic.

b) The eigenvalue problem AS = AD gives S−1AS = D, where

D =

(

1 0
0 5

)

, S =

(

−1 1
2 2

)

, S−1 = −
1

4

(

2 −1
−2 −1

)

With the transformation u = Sv we get the two uncoupled hyperbolic PDEs:

∂v1
∂t

+
∂v1
∂x

= 0,
∂v2
∂t

+ 5
∂v2
∂x

= 0

6. With the transformations T = T1 + (T0 − T1)u, r = Rx and t = ατ , where α is to be
determined, we get for the PDE:

T0 − T1

α

∂u

∂τ
=

κ

R2

1

R

∂

∂x
(R2x2(T0 − T1)

1

R

∂u

∂x
)

. With α = R2/κ the PDE becomes dimensionsless.
The initial condition: T1 + (T0 − T1)u(x, 0) = T1, i.e. u(x, 0) = 1.
The boundary conditions:T0−T1

R
∂u
∂x

(0, τ) = 0 and k T0−T1

R
∂u
∂x

(1, τ ) = −β(T1 + (T0 −

T1)u(1, τ) − T1) which gives ∂u
∂x

(1, τ) = −βR
k
u(1, τ) and a = −βR/k.

7) a) Introduce the grid points xi = (i− 1)h, i = 0, 1, . . . , N,N + 1, where x0 and xN+1 are
ghost points, x1 = 0 and xN = 1. Hence (N − 1)h = 1. This is one possible way of
introducing an equidistant grid for the problem.

b) Write the right hand side as

1

r2
∂

∂x
(x2

∂u

∂x
) =

2

x

∂u

∂x
+

∂2u

∂x2

At x = 0 the first term takes the form 2∂2u
∂x2 using l’Hôpital’s rule. Hence the PDE

at x = 0 takes the form
∂u

∂τ
= 3

∂2u

∂x2
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c) With the MoL the PDE turns into a system of ODEs:

du1
dτ

= 3
u2 − 2u1 + u0

h2
, u1(0) = 1

dui
dτ

=
2

xi

Ti+1 − Ti−1

2h
+

Ti+1 − 2Ti + Ti−1

h2
, ui(0) = 1, i = 2, 3, . . . , N

The boundary conditions are discretized:

u2 − u0
2h

= 0,
uN+1 − uN−1

2h
= auN

d) The systems of ODEs written on matrix-vector form:

du

dτ
= Au+ b, u(0) = u0

where A is tridiagonal, b = 0 and u0 = (1, 1, ...., 1)T . The nonzero elements ai,j of A
are: the first row a1,1 = −6/h2 and a1,2 = 6/h2, for row number i = 2, 3, ..., N −1
ai,i−1 = 1/h2 − 1/(xih) , ai,i = −2/h2 ,ai,i+1 = 1/h2 + 1/(xih) . The nonzero
elements of the last row are aN,N−1 = 2/h2 and aN,N = 2a+ (2ah− 2)/h2.
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