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A system in equilibrium
From earlier: Consider a system of springs and masses in equilibrium.

To obtain our system of equations, we applied three equations (Strang,
sec. 2.1):

1) The forces should be in equilibrium. f = ATw
2) Hooke's law for springs. w = Ce.
3) Relation between elongation of springs and displacements of masses
e = Au.
(u displacements, w tension in the springs (internal forces), e elongation
of the springs, f external forces on the masses. )

: -C1 A w 0 :
The system is on the form: [ AT 0 ] [ " ] = [ ; ] where C is a

diagonal matrix with positive entries on the diagonal.
This yields ATCAx = f + AT Cb.

" Stiffness matrix” K = ATCA is symmetric positive definite if the
columns of A are linearly independent.



Incidence matrix A

A is the so called "incidence matrix" for the graph. Much used when we
considered electric circuits. (Strang, Section 2.3).

Another example is that of trusses - 2D structures of elastic bars joined
at pin joints, where the bars can turn freely. (Section 2.4 of Strang).
Under the assumption of small deformations, and a linearization of the
elongation equation, a system on the same form as before is obtained.
However, A will be different.

Stable and unstable trusses.

Assume that we have e = Au, where u is a vector of displacements, and
e gives the stretching (elongation) of the bars.
(To have this relation, must linearize. )

» Stable truss The columns of A are linearly independent.

1. The only solution to Au=0is u = 0.
2. The force balance equation A”w = f can be solved for every f.

» Unstable truss The columns of A are linearly dependent.

1. Au = 0 has a non-zero solution. We can have displacements with no
stretching.

2. The force balance equation A”w = f is not solvable for every f,
some forces cannot be balanced.

Two types of unstable trusses:
> Rigid motion: The truss translates and/or rotates as a whole.

» Mechanism: The truss deforms. Change of shape without any
stretching.



Incidence matrix A for trusses.

» Denote by 0;; the angle that a bar from node / to j makes with the
X-axis.

> Let A be the edge-node incidence matrix as earlier in Strang for the
electric circuits.

> Replace the £1s by +cosfj;:s in A to produce a matrix Agos.
Analogously for Ag,.

» Define A = [Aos Asinl.

» Assume N nodes that are not fixed, and m edges. Then A, and
Ag,are mx N, ie. Aismx2N.

» Linearized relation between displacements and elongation
(stretching):

e = Au,
where u = [x1,...,xn, ¥1,...,yn]", i.e. of size 2N x 1, and
e =[e1,...,en] (size m x 1) holds the elongations of the m bars.

System of equations for trusses

Applying also Hooke's law for the bars (elastic contant for each bar), we
have our "usual” equations:

1) The forces should be in equilibrium. f = ATw
2) Hooke's law for the bars. w = Ce.

3) Linearized relation between elongation of bars and displacements of
nodes e = Au.

(u displacements, w tension in the springs (internal forces), e elongation
of the springs, f external forces on the masses. )

, —-C 1 A w 0
The system is on the form: [ AT 0 } [ u ] = [ f ]

where C is a diagonal matrix with positive entries on the diagonal.
Same form as before, read in Strang for details. The cos/sin
decomposition since components in x and y combine to give elongation
and forces along each bar.



Constrained optimization

Section 2.2 of Strang.
[NOTES ON 2D PROBLEM]
Consider the following problem:

Minimize f(x), x € R"
subject to g(x) = C.
Introduce the so called Lagrange function defined by
L(x,A) = f(x) + Mg(x) = C)

where the scalar A is called a Lagrange multiplier. (The A term may be
added or subtracted).

If x is a minimum for the original constrained problem, then there exists a
A s.t. (x,A) is a stationary point for L.

Stationary point:
oL .
D =0 /= 1, ...,Mm
oL =0

2N
% = 0 gives back the constraint.
[WORKSHEET]

Constrained optimization - Example with multiple
constraints

We can also have multiple constraints, simply add them all.
Example: To find equilibrium configuration of a system, minimize the
energy with the constraint that the forces are in balance.

» Assume m springs.
> Elongations: e = [e1,...,ey]", internal forces: w = [wy, ..., wy,]T.

Hooke's law: w; = cje;, or ef = w;/c;.

1 1 11 11
1

= EWTC_IW C~'diagonal matrix with 1/c¢; on the diagonal.
Force balance: ATw = f at n nodes.

Want to minimize the energy E(w) subject to the constraint ATw = f.



Constrained optimization - Example, continued

Minimize the energy E(w) = 2w C~lw
subject to the constraint ATw = f.

Introduce Lagrange multipliers \;, i =1,...,m A= (\g,...,\,)7.
Define the Lagrange function:

L(w, ) = %ch—lw ~AT(ATw —f)

Differentiate, set all partial derivatives to zero:

%:C_lw—A)\:O
ow
oL -

Hence we obtain,
w=CA\, ATw=Hf.

Same equations as obtained by graph theory earlier, with A = u.
[NOTES for details.]



