
Lecture notes in numerical linear algebra
Homework 3

Homework 3

Deadline (for bonus points): 2014-12-12

1. Exercise about basic QR-method. Implement the basic QR-
method. Apply it to alpha_example.m from the course web page.
Measure the error with the maximum value below the diagonal
errfun=@(A) max(max(abs(tril(A,-1)))).

(a) Plot the number of iterations required to achieve error 10−10,
as a function of α. More precisely, generate the following plot.
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For the theoretical reasoning in (b) and
(c) you may use the function eig

(b) Suppose the eigenvalues are ordered by magnitude |λ1| <
· · · < |λm|. From the lecture notes we know that the elements
below the diagonal will asymptotically after n iterations be
proportional to |λi/λj|n with i < j. For large α the error will be
dominated by one particular choice of i and j. Which ones?

Hint for (c): Show that if the error
behaves as ek = |β|k , then eN = TOL if
N = ln(TOL)/ ln(|β|).

(c) Use (b) to establish an estimated number of iterations required
to reach a specified tolerance, for different choices of α. Add a
plot of the predicted number of iterations in the plot generated
in (a), for tolerance 10−10, and discuss the result.

2. Exercises about Hessenberg reduction. Hint for (a): First derive a formula first
for the case ‖y‖ = 1.

(a) Generalize Lemma 2.2.3 in the lecture notes as follows. Given
a vector x ∈ Rn and a vector y ∈ Rn with y 6= 0 and x 6= 0,
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derive a formula for a Householder reflector (represented by a
normal direction u ∈ Rn) such that Px = αy for some value α.

(b) Implement a naive (inefficient) Hessenberg reduction by com-
pleting the program naive_hessenberg_red.m on the course
web page.

(c) Implement Algorithm 2 in the lecture notes and compare
the computation time with the algorithm in (b). Carry out
the comparison by computing a Hessenberg reduction of
A=alpha_example(1,m), which generates an m × m-matrix.
Complete the following table.

CPU-time Algorithm 2 CPU-time of algorithm in (b)

m=10

m=100

m=200

m=300

m=400

3. Exercise about matrix exponential. The matrix

A :=


1 1

. . . . . .
. . . 1

α 1

 ∈ Rm×m

has only simple eigenvalues when α > 0 for m = 10. Implement
the following methods for the matrix exponential eA: [GVL] are specific references to the

Book Golub and Van Loan, Matrix
computations, 4th edition (2013)• The eigenvector approach [GVL Corollary 9.1.3]. You may use

[V,D]=eig(A).

• Taylor approximation method. Use N terms where ‖AN‖/N! <
TOL = 10−16.

• S&S = Scaling-and-squaring [GVL Algorithm 9.3.1]. Use δ =

10−16 For S&S you may use find_q.m on the
course web page.(a) Carry out simulations for the methods and for different α.

Complete the folling table with the norm of the error. Use
expm(A) as an exact solution.

Taylor Eigenvector approach S&S

α = 1
α = 10−8

α = 10−12
Additional optional reading: The
classical paper Nineteen Dubious Ways
to Compute the Exponential of a Matrix
http://www.cs.cornell.edu/cv/

researchpdf/19ways+.pdf describes
many other methods to compute the
matrix exponential.

(b) How many matrix-matrix products are needed for Taylor and
S&S?

(c) Discuss the results above. Based on the numerical experiments,
which of the methods above is best in terms of robustness and
efficiency?
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4. Exercise about matrix square root. We will call the iteration [GVL
(9.4.7)] Newton-SQRT and [GVL (9.4.8)] Denman-Beavers iteration.

(a) Let A be symmetric positive definite. Show that Newton-SQRT
has local quadratic convergence. Hints for (a): We know that Newton’s

method has local quadratic convergence
when applied to the scalar problem
f (x) = x2 − α = 0. Show that the eigen-
values of Xk are iterates of Newton’s
method applied to scalar problems
where α are the eigenvalues of A. If
A = VΛV−1, what is V−1XkV?

(b) Prove that the iterates Xk of Newton-SQRT are equal to the
iterates Xk in Denman-Beavers iteration.

(c) Implement Newton-SQRT and Denman-Beavers iteration and
apply them to the problem

A=gallery(’wathen’,10,10);

As a reference you may use B=sqrtm(full(A)). Let k be the
number of iterations. Complete the following table with the
norm of the error ‖Xk − B‖2.

k Newton-SQRT Denman-Beavers

1

2

3

4

5

6

7

8

9

10

15

20

Note that two matrix inversions are
necessary for one step of Denman-
Beavers.

(d) What are the disadvantages / advantages of Newton-SQRT
and Denman-Beavers? For the matrix in (c): Which method is
best/fastest if an error of 10−4 is sufficient? Which method is
best/fastest if an error of 10−13 is sufficient? “Fastest” is here
meant in terms of CPU-time.

PhD students: see next page.
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Only for PhD students taking the course Numerical linear algebra:

5. Exercise about exploitation of structure in specific application.
The purpose of this exercise is to learn some techniques to derive
more efficient methods by taking problem-specific structure into
account. (The new method you will derive is not necessarily the
best for this problem-type.)

(a) Prove that

d
dt

exp(tA) = A exp(tA) = exp(tA)A

Connection with current research: In
the field of quantum chemistry, the
relation (*) for t = 1 is commonly
called the Baker-Campbell-Hausdorff
expansion. It is fundamental in one
of the leading numerical methods in
that field - the so-called coupled cluster
approach.

(b) Let G(t) := exp(−tA)B exp(tA) and let [·, ·] denote a commu-
tator, i.e., [A, B] := AB− BA. Show that

G(t) = B + t[B, A] +
t2

2!
[[B, A], A] +

t3

3!
[[[B, A], A], A] + · · · (*)

(c) Suppose A is anti-symmetric AT = −A. Let

P :=
∫ τ

0
exp(tAT)B exp(tA) dt

Derive an expression for P involving commutators of A and B. The quantity P is called a Gramian,
and it is often used in system and
control in order to study controllability,
observability and to derive optimal
control as well as carrying out “model
order reduction”.

(d) Let Ck = [Ck−1, A] with C0 = B. Show that ‖Ck‖ ≤ 2k‖A‖k‖B‖.
(e) Suppose ‖A‖ < 1

2 and t ≤ 1. Let GN be the truncation of G,

GN(t) := B + t[B, A] + · · ·+ tN

N!
[· · · [[B, A], A] · · · , A].

Derive a bound for ‖GN(t)− G(t)‖, which converges to zero as
N → ∞ for any t ≤ 1.

(f) Combine (c)-(e) and derive a numerical method to compute
P where A is anti-symmetric and ‖A‖ < 1/2. Construct the
algorithm such that the user can specify a tolerance.

(g) Compare your numerical method with the naive numerical
integration approach:

P=integral(@(t) expm(t*A’)*B*expm(t*A),0,T,’arrayvalued’,true);

Use τ = 1 and the matrices generated by: Not a part of the exercise: Can you
derive a similar algorithm which
does not require the matrix to be anti-
symmetric?

A=gallery(’neumann’,20^2); A=A-A’; A=A/(2*norm(A,1));

B=sprandn(length(A),length(A),0.05);

How much better is the new method?

Lecture notes - Elias Jarlebring - Autumn 2014

4

version:2014-12-03


