
Lecture notes in numerical linear algebra
Krylov methods matrix functions

x3 Krylov methods for matrix functions

In the lectures we have seen several methods to compute

f (A)

for specialized f as well as general situations. All of these methods
involve, in some way, direct properties of the matrix A, making most
of them difficult to adapt for large and sparse problem. We will now
see a method which is suitable for large and sparse problems. In
many applications, it is sufficient to compute the matrix function
multiplied with a vector:

f (A)b (3.1)

The method we will present now is a method to compute (3.1) and
which is based on Arnoldi’s method.

x3.1 Cauchy integral formulation

Analytic matrix functions can be characterized explicitly with the
contour integrals, as follows:

f (A) =
1

2iπ ∮Γ
f (z)(zI − A)−1 dz,

where Γ is a contour enclosing all eigenvalues of A. See GVL 9.2.7 for
a proof. Clearly, our quantity of interest is now

f (A)b =
−1
2iπ ∮Γ

f (z)((A − zI)−1b) dz.

In order to approximate this expression, we will now approximate
the factor involving a shifted linear system of equations

x = (A − zI)−1b,

be means of Krylov subspace approximations.

x3.2 Krylov approximation of shifted linear systems

A Krylov subspace is defined by an expression involving a span,

Km(A, b) = span(b, Ab, . . . , Am−1b).
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Due to the fact that the span is unchanged by adding or subtracting
multiplies of the vectors, one can easily verify that

Km(A − σI, b) = Km(A, b).

This implies that the Krylov subspace is independent of shift. More-
over, a similar property holds for the Arnoldi factorization.

Lemma 3.2.1 Suppose Qm ∈ Cn×m, Hm ∈ C(m+1)×m is an Arnoldi factor-
ization associated with Km(A, b),

AQm = QmHm+1,m + eT
mqm+1hm+1,m,

Then, for any σ ∈ C, Qm ∈ Cn×m and Hm − σI is an Arnoldi factorization
associated with Km(A − σI, b),

(A − σI)Qm = AQm = Qm(Hm+1,m − σI)+ eT
mqm+1hm+1,m,

Hence, the Arnoldi factorization associated with Km(A − σI, b) can be
easily reconstructed from the Arnoldi factorization associated with
Km(A, b), by shifting hessenberg matrix Hm and using the same basis
matrix Qm.

Krylov approximation

The lectures on GMRES gave a natural procedure to extract an ap-
proximation of a linear system by means of minimizing the residual
in the Krylov subspace. For the purpose of approximating f (A)b,
via approximation of (A − zI)−1b we will work with a different way
to extract an approximation from the Krylov subspace. We define a
Krylov approximation of the linear system Ax = b by

x̃ = Qm H−1
m QT

mb = Qm H−1
m e1∥b∥. (3.2)

This approximation can be derived by assuming that x̃ ∈ Km(A, b) GMRES vs (3.2): The approximation
(3.2) corresponds to an element of
Km(A, b) such that the residual satisfies
QT

m(Ax̃ − b) = 0, whereas the GMRES
approximation corresponds to an
element of Km(A, b) which minimizes
minx∈Km(A,b) ∥Ax − b∥2 = ∥Ax̃ − b∥2.

and imposing that the residual is orthogonal to the mth Krylov sub-
space, QT

m(Ax̃ − b) = 0.
Due to Lemma 3.2.1, the Krylov approximation of the shifted

linear system (A − σI)x = b is

x̃ = Qm(Hm − σI)−1e1∥b∥. (3.3)

Note that this approximation can be computed for many σ by only
computing one Arnoldi factorization.
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x3.3 A Krylov approximation of the matrix function

By using the approximation (3.3) in the Cauchy integral formulation,
we have

f (A)b ≈
−1
2iπ ∮Γ

f (z)Qm(Hm − zI)−1e1∥b∥ dz =

Qm
1

2iπ ∮Γ
f (z)(zI − Hm)

−1 dz(e1∥b∥) = Qm f (Hm)e1∥b∥.

This serves as a justification of (what we call) the Krylov approxima-
tion of f (A)b, which is defined as

fm ∶= Qm f (Hm)e1∥b∥. (3.4)

Note that the Krylov approximation (3.4) involves a matrix function.
However, the Hessenberg matrix Hm is in general much smaller than
the original problem and computing f (Hm) is realitively inexpensive
in comparison to carrying out the Arnoldi method.

x3.4 Convergence theory

Similar to the Arnoldi method for eigenvalue problems and GMRES,
the convergence can be characterized with a min-max expression.
To illustrate the convergence, we present only a result for normal
matrices. Unlike the other bounds in this course, the maximum is
not taken over a discrete set, but a continuous convex compact set Ω
containing the eigenvalues of A. The proof of Theorem 3.4.1 is beyond

the scope of the contents of the course.
A proof can be found in [Error estima-
tion and evaluation of matrix functions
via the Faber transform, Beckermann,
Reichel, SIAM J. Numer. Anal., 47:3849-
3883, 2009]

Theorem 3.4.1 Suppose A ∈ Cn×n is a normal matrix and suppose Ω ⊂ C

is a convex compact set such that λ(A) ⊂ Ω. Let fm be the Krylov approxi-
mation of f (A)b defined by (3.4). Then,

∥ f (A)b − fm∥ ≤ 2∥b∥ min
p∈Pm−1

max
z∈Ω
∣ f (z)− p(z)∣.

Error interpretations

The bound gives several qualitative interpretations of the error. Suf-
ficient conditions for fast convergence can be easily identified: The
method will work well if

• f (z) can be well approximated with low-order polynomials

• λ(A) are clustered together such that Ω can be chosen small

Similar to other min-max bounds in this course, qualitative under-
standing can be found by bounding using particular choices of the
polynomials. Let qm be the truncated Taylor expansion

qm(z) ∶=
m
∑
i=0

f (m)(0)
i!

zm.

Lecture notes - Elias Jarlebring - Autumn 2014

3

version:2014-12-22



Lecture notes in numerical linear algebra
Krylov methods matrix functions

Hence, rm(z) = f (z) − qm is the remainder term in the Taylor ex-
pansion of f . Suppose now that Ω is a subset of a disk of radius ρ

centered at the origin Ω ⊂ D(ρ, 0). Then

max
z∈Ω

rm(z) ∼
ρm−1

(m − 1)!

and ∥ f (A)b − fm∥ ≤ em ∼
ρm−1

(m−1)! → 0 as m → ∞. This shows that
the method is convergent. The speed of convergence is usually much
faster than what is predicted by this Taylor series bound.

x3.5 Example

For many problems, the convergence is superlinear in practice. See
the video demonstration

http://www.math.kth.se/~eliasj/krylov_matfun_approx.mp4

Lecture notes - Elias Jarlebring - Autumn 2014

4

version:2014-12-22

http://www.math.kth.se/~eliasj/krylov_matfun_approx.mp4

	Krylov methods for matrix functions
	Cauchy integral formulation
	Krylov approximation of shifted linear systems
	A Krylov approximation of the matrix function
	Convergence theory
	Example


