Introduction to QR-method
SF2524 - Matrix Computations for Large-scale Systems
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So far we have in the course learned about...

Methods suitable for large sparse matrices

@ Power method
Computes largest eigenvalue
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So far we have in the course learned about...

Methods suitable for large sparse matrices
@ Power method
Computes largest eigenvalue
@ Inverse iteration
Computes eigenvalue closest to a target
@ Rayleigh Quotient Iteration
Computes one eigenvalue with a starting guess
@ Arnoldi method for eigenvalue problems
Computes extreme eigenvalue

Now: QR-method
@ Compute all eigenvalues

@ Suitable for dense problems

@ Small matrices in relation to other algorithms
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Agenda QR-method

© Decompositions

Jordan form
Schur decomposition
QR-factorization

@ Basic QR-method
© Improvement 1: Two-phase approach

Hessenberg reduction
Hessenberg QR-method

@ Improvement 2: Acceleration with shifts

© Convergence theory
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Agenda QR-method

© Decompositions

Jordan form
Schur decomposition
QR-factorization

@ Basic QR-method
© Improvement 1: Two-phase approach

Hessenberg reduction
Hessenberg QR-method

@ Improvement 2: Acceleration with shifts

© Convergence theory

Reading instructions

Point 1: TB Lecture 24

Points 2-4: Lecture notes “QR-method” on course web page
Point 5: TB Chapter 28

(Extra reading: TB Chapter 25-26, 28-29)
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Similarity transformation
Suppose A € C™*™ and V € C™*™ is an invertible matrix. Then

A

and
B =vAy!

have the same eigenvalues.
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Similarity transformation
Suppose A € C™*™ and V € C™*™ is an invertible matrix. Then

A

and
B =vAy!

have the same eigenvalues.

Numerical methods based on similarity transformations

o If B is triangular we can read-off the eigenvalues from the diagonal.

@ ldea of numerical method: Compute V such that B is triangular.
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First idea: compute the Jordan canonical form

Jordan canonical form
Suppose A € C™*™_ There exists an invertible matrix V € C™*™ and a
block diagonal matrix such that

A= VAV
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First idea: compute the Jordan canonical form

Jordan canonical form
Suppose A € C™*™_ There exists an invertible matrix V € C™*™ and a
block diagonal matrix such that
A=VAVTE
where
S
A= ,
Ik
where
A1
JI = 5 I = 1, ,k
1
Ai
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Common case: distinct eigenvalues
Suppose A; # Aj, i =1,...,m. Then,

A1
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Common case: distinct eigenvalues
Suppose A; # Aj, i =1,...,m. Then,

A1
A=
Am
Common case: symmetric matrix
Suppose A= AT € R™™_ Then,
A1
A=
Am
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Example - numerical stability of Jordan form
Consider

2 1
2
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Example - numerical stability of Jordan form

Consider
2 1
A= 2 1
€ 2

If ¢ = 0. Then, the Jordan canonical form is

2 1
A= 2 1
2
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Example - numerical stability of Jordan form

Consider
2

1
A= 2 1
€ 2

If ¢ = 0. Then, the Jordan canonical form is

2 1
A= 2 1
2
If € > 0. Then, the eigenvalues are distinct and

2+ 0(e/3)
A= 2+ O(1/3)
2+ O(e'/3)
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Example - numerical stability of Jordan form

Consider
2

1
A= 2 1
€ 2

If ¢ = 0. Then, the Jordan canonical form is

2 1
A= 2 1
2
If € > 0. Then, the eigenvalues are distinct and

2+ 0(e'/3)
A= 2 + O(e'/3)
2+ 0(51/3)

= Not continuous with respect to ¢
= The Jordan form is often not numerically stable
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Schur decomposition (essentially TB Theorem 24.9)

Suppose A € C™*™_ There exists an unitary matrix P
Pyt =Pt
and a triangular matrix T such that

A= PTP".
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Schur decomposition (essentially TB Theorem 24.9)

Suppose A € C™*™_ There exists an unitary matrix P
Pyt =Pt
and a triangular matrix T such that

A= PTP".

The Schur decomposition is numerically stable.
Goal with QR-method: Numercally compute a Schur factorization
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Outline:

©® Decompositions
» Jordan form

» Schur decomposition
» QR-factorization

@ Basic QR-method

© Improvement 1. Two-phase approach
» Hessenberg reduction

» Hessenberg QR-method

@ Improvement 2: Acceleration with shifts
© Convergence theory
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QR-factorization

Suppose A € C™*™_ There exists a unitary matrix @ and an upper
triagnular matrix R such that

A= QR
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QR-factorization

Suppose A € C™*™_ There exists a unitary matrix @ and an upper
triagnular matrix R such that

A= QR

Note: Very different from Schur factorization

A=QTQ"

@ QR-factorization can be computed with a finite number of iterations

@ Schur decomposition directly gives us the eigenvalues
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Basic QR-method

Didactic simplifying assumption: All eigenvalues are real
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Basic QR-method

Didactic simplifying assumption: All eigenvalues are real
Basic QR-method = basic QR-algorithm
Simple basic idea: Let Ag = A and iterate:

o Compute QR-factorization of Ay = QR
@ Set Axr1 = RQ.
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Basic QR-method

Didactic simplifying assumption: All eigenvalues are real

Basic QR-method = basic QR-algorithm

Simple basic idea: Let Ag = A and iterate:
o Compute QR-factorization of Ay = QR
@ Set Axr1 = RQ.

Note:
o A = RQ = Q*AsQ = Ao, A1,... have the same eigenvalues

@ More remarkable: Ay — triangular matrix (except special cases)
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Ay — triangular matrix:

B T T D Y
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Ay — triangular matrix:

il

k

A

* Time for matlab demo *
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Elegant and robust but not very efficient:
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http://www.youtube.com/watch?v=qmgxzsWWsNc

Elegant and robust but not very efficient:

Disadvantages
o Computing a QR-factorization is quite expensive. One iteration of the
basic QR-method
O(m?).
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http://www.youtube.com/watch?v=qmgxzsWWsNc

Elegant and robust but not very efficient:

Disadvantages

o Computing a QR-factorization is quite expensive. One iteration of the
basic QR-method
O(m?).

@ The method often requires many iterations. (HW3, problem 1)

Improvement demo:

http://www.youtube.com/watch?v=gqmgxzsWWsNc
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http://www.youtube.com/watch?v=qmgxzsWWsNc

Outline:
©® Decompositions
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Two-phase approach

We will separate the computation into two phases:

X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X
X X X X X — X X X X — X X X
x x x x x Phase 1 x x x Phase 2 x x
X X X X X X X X

Introduction to QR-method 16 / 17



Two-phase approach

We will separate the computation into two phases:

X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X
X X X X X — X X X X — X X X
X x x x x Phase 1 x x x Phase 2 x x
X X X X X X X X

Phases:

@ Phase 1: Reduce the matrix to a Hessenberg with similarity
transformations (Section 2.2.1 in lecture notes)
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Two-phase approach

We will separate the computation into two phases:

X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

X X X X X — X X X X — X X X

x x x x x Phase 1 x x x Phase 2 x x

X X X X X X X X
Phases:

@ Phase 1: Reduce the matrix to a Hessenberg with similarity
transformations (Section 2.2.1 in lecture notes)

@ Phase 2: Specialize the QR-method to Hessenberg matrices (Section
2.2.2 in lecture notes)
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Phase 1: Hessenberg reduction

Idea: Compute unitary P and Hessenberg matrix H such that

A = PHP*
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Phase 1: Hessenberg reduction

Idea: Compute unitary P and Hessenberg matrix H such that
A = PHP*

Unlike the Schur factorization, this can be computed with a finite number
of operations.
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