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So far we have in the course learned about...

Methods suitable for large sparse matrices

Power method
I Computes largest eigenvalue

Inverse iteration
I Computes eigenvalue closest to a target

Rayleigh Quotient Iteration
I Computes one eigenvalue with a starting guess

Arnoldi method for eigenvalue problems
I Computes extreme eigenvalue

Now: QR-method

Compute all eigenvalues

Suitable for dense problems

Small matrices in relation to other algorithms
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Agenda QR-method

1 Decompositions
I Jordan form
I Schur decomposition
I QR-factorization

2 Basic QR-method
3 Improvement 1: Two-phase approach

I Hessenberg reduction
I Hessenberg QR-method

4 Improvement 2: Acceleration with shifts

5 Convergence theory

Reading instructions

Point 1: TB Lecture 24
Points 2-4: Lecture notes “QR-method” on course web page
Point 5: TB Chapter 28
(Extra reading: TB Chapter 25-26, 28-29)
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Similarity transformation

Suppose A ∈ Cm×m and V ∈ Cm×m is an invertible matrix. Then

A

and
B = VAV−1

have the same eigenvalues.

Numerical methods based on similarity transformations

If B is triangular we can read-off the eigenvalues from the diagonal.

Idea of numerical method: Compute V such that B is triangular.
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First idea: compute the Jordan canonical form

Jordan canonical form

Suppose A ∈ Cm×m. There exists an invertible matrix V ∈ Cm×m and a
block diagonal matrix such that

A = VΛV−1

where

Λ =

J1
. . .

Jk

 ,

where

Ji =


λi 1

. . .
. . .
. . . 1

λi

 , i = 1, . . . , k
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Common case: distinct eigenvalues

Suppose λi 6= λj , i = 1, . . . ,m. Then,

Λ =

λ1 . . .

λm

 .

Common case: symmetric matrix

Suppose A = AT ∈ Rm×m. Then,

Λ =

λ1 . . .

λm

 .
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Example - numerical stability of Jordan form

Consider

A =

2 1
2 1

ε 2



If ε = 0. Then, the Jordan canonical form is

Λ =

2 1
2 1

2

 .

If ε > 0. Then, the eigenvalues are distinct and

Λ =

2 + O(ε1/3)

2 + O(ε1/3)

2 + O(ε1/3)

 .

⇒ Not continuous with respect to ε
⇒ The Jordan form is often not numerically stable
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Schur decomposition (essentially TB Theorem 24.9)

Suppose A ∈ Cm×m. There exists an unitary matrix P

P−1 = P∗

and a triangular matrix T such that

A = PTP∗.

The Schur decomposition is numerically stable.
Goal with QR-method: Numercally compute a Schur factorization
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Outline:
1 Decompositions

I Jordan form
I Schur decomposition
I QR-factorization

2 Basic QR-method
3 Improvement 1: Two-phase approach

I Hessenberg reduction
I Hessenberg QR-method

4 Improvement 2: Acceleration with shifts

5 Convergence theory
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QR-factorization

Suppose A ∈ Cm×m. There exists a unitary matrix Q and an upper
triagnular matrix R such that

A = QR

Note: Very different from Schur factorization

A = QTQ∗

QR-factorization can be computed with a finite number of iterations

Schur decomposition directly gives us the eigenvalues
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Basic QR-method

Didactic simplifying assumption: All eigenvalues are real

Basic QR-method = basic QR-algorithm

Simple basic idea: Let A0 = A and iterate:

Compute QR-factorization of Ak = QR

Set Ak+1 = RQ.

Note:

A1 = RQ = Q∗A0Q ⇒ A0,A1, . . . have the same eigenvalues

More remarkable: Ak → triangular matrix (except special cases)
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Ak → triangular matrix:

* Time for matlab demo *
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Elegant and robust but not very efficient:

Disadvantages

Computing a QR-factorization is quite expensive. One iteration of the
basic QR-method

O(m3).

The method often requires many iterations. (HW3, problem 1)

Improvement demo:

http://www.youtube.com/watch?v=qmgxzsWWsNc
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Outline:
1 Decompositions

I Jordan form
I Schur decomposition
I QR-factorization

2 Basic QR-method
3 Improvement 1: Two-phase approach

I Hessenberg reduction
I Hessenberg QR-method

4 Improvement 2: Acceleration with shifts

5 Convergence theory
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Two-phase approach

We will separate the computation into two phases:


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 →
Phase 1


× × × × ×
× × × × ×

× × × ×
× × ×

× ×

 →
Phase 2


× × × × ×

× × × ×
× × ×

× ×
×



Phases:

Phase 1: Reduce the matrix to a Hessenberg with similarity
transformations (Section 2.2.1 in lecture notes)

Phase 2: Specialize the QR-method to Hessenberg matrices (Section
2.2.2 in lecture notes)
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Phase 1: Hessenberg reduction

Idea: Compute unitary P and Hessenberg matrix H such that

A = PHP∗

Unlike the Schur factorization, this can be computed with a finite number
of operations.
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