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Outline QR-method:
@ Decompositions (last lecture)
@ Basic QR-method (last lecture)

© Improvement 1: Two-phase approach

» Hessenberg reduction
» Hessenberg QR-method

@ Improvement 2: Acceleration with shifts

© Convergence theory

Reading instructions

Point 1: TB Lecture 24

Points 2-4: Lecture notes “QR-method” on course web page
Point 5: TB Chapter 28

(Extra reading: TB Chapter 25-26, 28-29)
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Basic QR-method (repetition last lecture)

@ Method for dense eigenvalue problems

@ Computes a Schur factorization
A=Q'TQ

by using QR-factorizations

QR-method - Lecture 2 3 /36



Basic QR-method (repetition last lecture)

@ Method for dense eigenvalue problems

@ Computes a Schur factorization

A=Q"TQ
by using QR-factorizations
B = QR.
Basic QR-method
Ak-1 = QiR
Ac = RikQx
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Basic QR-method (repetition last lecture)

@ Method for dense eigenvalue problems

@ Computes a Schur factorization

A=Q'TQ
by using QR-factorizations
B = QR.
Basic QR-method
A1 = QiR
Ac = RikQx

Generates a sequence of matrices Ay with same eigenvalues, and in
general converge to a triangular matrix.
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The basic QR-method is elegant and robust but not very efficient:
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The basic QR-method is elegant and robust but not very efficient:

Disadvantages
o Computing a QR-factorization is quite expensive. One iteration of the
basic QR-method
o(m?).
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The basic QR-method is elegant and robust but not very efficient:

Disadvantages
o Computing a QR-factorization is quite expensive. One iteration of the
basic QR-method
o(m?).

@ The method often requires many iterations. (HW3, problem 1)
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Improvement 1: Two-phase approach

We will separate the computation into two phases:

X S X X X
X X X X x X
X — X X — X
«| Phase1 % Phase 2

X

X X X X

X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X

X X X X X
[ ——)
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Improvement 1: Two-phase approach

We will separate the computation into two phases:

X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

X X X X X — X X X X — X X X

x x X x x Phase 1 x x x Phase 2 x x

X X X X X X X X
Phases:

@ Phase 1: Reduce the matrix to a Hessenberg with similarity
transformations (Section 2.2.1 in lecture notes)
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Improvement 1: Two-phase approach

We will separate the computation into two phases:

X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

X X X X X — X X X X — X X X

x x x x x Phase 1 x x x Phase 2 x x

X X X X X X X X
Phases:

@ Phase 1: Reduce the matrix to a Hessenberg with similarity
transformations (Section 2.2.1 in lecture notes)

@ Phase 2: Specialize the QR-method to Hessenberg matrices (Section
2.2.2 in lecture notes)
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Phase 1: Hessenberg reduction

We will need matrices called Householder reflectors.
Definition
A matrix P € C™*™ of the form

P =1—2uu* where u e C" and |ju]| =1

is called a Householder reflector.
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Phase 1: Hessenberg reduction

We will need matrices called Householder reflectors.
Definition
A matrix P € C™*™ of the form

P =1—2uu* where u e C" and |ju]| =1

is called a Householder reflector.

X Properties
o Pr=pl=p

QR-method - Lecture 2

6/ 36




Phase 1: Hessenberg reduction

We will need matrices called Householder reflectors.
Definition
A matrix P € C™*™ of the form

P =1—2uu* where u e C" and |ju]| =1

is called a Householder reflector.

v X Properties
o Pr=pl=p
@ Pz =z —2u(u*z) can be
computed with O(m)
P operations.
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Phase 1: Hessenberg reduction

We will need matrices called Householder reflectors.
Definition
A matrix P € C™*™ of the form

P =1—2uu* where u e C" and |ju]| =1

is called a Householder reflector.

v X Properties
o Pr=pl=p
@ Pz =z —2u(u*z) can be
computed with O(m)
P operations.
° - )
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Householder reflectors satisfying Px = ae;
Problem

Given a vector x compute a Householder reflector such that

Px = «ey.
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Householder reflectors satisfying Px = ae;
Problem

Given a vector x compute a Householder reflector such that

Px = aey. )
Solution (Lemma 2.2.3)
Let p = sign(x1),
x1 = pllx|l
X2
zimx—plxle=|
Xn

and

u=z/|zl.
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Householder reflectors satisfying Px = ae;
Problem

Given a vector x compute a Householder reflector such that

Px = aey. )
Solution (Lemma 2.2.3)
Let p = sign(x1),
x1 = pllx|l
X2
zimx—plxle=|
Xn

and
u=z/|z|.

Then, P = | — 2uu* is a Householder reflector that satisfies Px = ae.
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Householder reflectors satisfying Px = ae;
Problem

Given a vector x compute a Householder reflector such that

Px = aey. )
Solution (Lemma 2.2.3)
Let p = sign(x1),
x1 = pllx|l
X2
zimx—plxle=|
Xn

and
u=z/|z|.

Then, P = | — 2uu* is a Householder reflector that satisfies Px = ae.

QR-method - Lecture 2 7 /36



* Matlab demo showing Householder reflectors *
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We will be able to construct m — 2 householder reflectors that bring the
matrix to Hessenberg form.

Elimination for first column
1 0

P =

o O O o

X X X X O
X X X X O
X X X X ©

X
X
X
X
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We will be able to construct m — 2 householder reflectors that bring the
matrix to Hessenberg form.

Elimination for first column
1 0

P =

o O O o

X X X X O
X X X X O
X X X X ©

X
X
X
X

Use Lemma 2.2.1 with x” = [az1, ..., an1] to select uy such that

X
X

PIA =

X X X X X
X X X X X
X X X X X
X X X X X
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We will be able to construct m — 2 householder reflectors that bring the
matrix to Hessenberg form.

Elimination for first column

1 0 0 0 O
0 x X X X
P1::O><><x><—[élg7- T]
0 X X X X - <
0 x X X X
Use Lemma 2.2.1 with x” = [az1, ..., an1] to select uy such that
X X X X X
X X X X X
P1A = X X X X
X X X X
X X X X
In order to have a similarity transformation mult from right:
P1AP; - P1AP; = same structure as PiA.
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We will be able to construct m — 2 householder reflectors that bring the
matrix to Hessenberg form.

Elimination for first column

1 0 0 0 O
0 x X X X
P1::O><><x><—[élg7- T]
0 X X X X - <
0 x X X X
Use Lemma 2.2.1 with x” = [az1, ..., an1] to select uy such that
X X X X X
X X X X X
P1A = X X X X
X X X X
X X X X
In order to have a similarity transformation mult from right:
P1AP; - P1AP; = same structure as PiA.
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Elimination for second column
Repeat the process with:

10 o
P,=10 1 oF
00 I—2uzu2T
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Elimination for second column
Repeat the process with:

10 o
P,=10 1 o’
00 I—2uzu2T

where uy is constructed from the n — 2 last elements of the second column
of PLAPY.

X X X X X X X X X X
X X X X X X X X X X
PlA'Dl: X X X X —_— X X X X
X X X x| ult. from XXX
*oox X XA eft with P xoox X
X X X X X
X X X X X
— X X X X :P2P1AP1P2
X X X
X X X

mult. from
right with P;




Elimination for second column
Repeat the process with:

10 o
P,=10 1 oF
0 0 /—2uwu]

where us is constructed from the n — 2 last elements of the second column
of P1AP;.

X X X X X X X X X X
X X X X X X X X X X
P]_AP]_: X X X X —_ X X X X
x o ox X X mult. from XXX
*oox X XA eft with P xoox X
X X X X X
X X X X X
— S S :P2P1AP1P2
mult. from X XX
X X X

right with P,
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* Matlab demo of the first two steps of the Hessenberg reduction *
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The iteration can be implemented without explicit use of the P matrices.

Algorithm 2 Reduction to Hessenberg form
Input: A matrix A e C""
Output: A Hessenberg matrix H such that H = U*AU.
fork=1,...,n-2do
Compute 1 using (2.4) where xT = [a,1x, - B,x)

ComPUte PkA: Ak+1 ki B Ak+1 mkm T zuk(u;AkJrlm,km )
ComPUte PkAp:: Al:n,k+1:n = Al:n,k+1:n - Z(Al:n,k+1muk)”j:
end for
Let H be the Hessenberg part of A.
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Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step of Hessenberg is Hessenberg *
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Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:
* Matlab demo showing QR-step of Hessenberg is Hessenberg *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates
Ay are Hessenberg matrices.
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Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:
* Matlab demo showing QR-step of Hessenberg is Hessenberg *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates
Ay are Hessenberg matrices.

Recall: basic QR-step is O(m?).
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Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:
* Matlab demo showing QR-step of Hessenberg is Hessenberg *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates
Ay are Hessenberg matrices.

Recall: basic QR-step is O(m?).

Hessenberg structure can be exploited such that we can carry out a
QR-step with less operations.
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Definition (Givens rotation)
The matrix G(i,/, c,s) € R™" corresponding to a Givens rotation is

defined by
/

G(i,j,c,s) = / ,

which deviates from identity at row and column / and j.
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Definition (Givens rotation)
The matrix G(i,/, c,s) € R™" corresponding to a Givens rotation is

defined by
/

G(i,j,c,s) = / ,

which deviates from identity at row and column / and j.

N

&

Gx

(N
7

€i
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Definition (Givens rotation)
The matrix G(i,/, c,s) € R™" corresponding to a Givens rotation is

defined by
/

G(i,j,c,s) = / ,

which deviates from identity at row and column / and j.

N

€ Properties
o G* =G
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Definition (Givens rotation)
The matrix G(i,/, c,s) € R™" corresponding to a Givens rotation is

defined by
/

G(i,j,c,s) = / ,

which deviates from identity at row and column / and j.

N

€ Properties
o G* =G

@ Gz can be computed with

G
X O(1) operations
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7
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Definition (Givens rotation)
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defined by
/
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which deviates from identity at row and column / and j.

N

€ Properties
o G* =G

@ Gz can be computed with

G
X O(1) operations
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7
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The Q-matrix in the QR-factorization of a Hessenberg matrix can be
factorized as a product of m — 1 Givens rotators.
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The Q-matrix in the QR-factorization of a Hessenberg matrix can be
factorized as a product of m — 1 Givens rotators.

Theorem

Suppose A € C™*™ s a Hessenberg matrix. Let H; be generated as
follows Hy = A
H,'+1 = G,-TH,', i:1,...,m—1

where G; = G(i, i+1, (H,'),'J/I’,', (H,-),-+17,-/r,-) and r; = \/(H,)%, aF (H"):?—i-l,i
and we assume r; # 0. Then, H, is upper triangular and

A= (G1Gy- - Gm_1)Hn = QR

is a QR-factorization of A.
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The Q-matrix in the QR-factorization of a Hessenberg matrix can be
factorized as a product of m — 1 Givens rotators.

Theorem

Suppose A € C™*™ s a Hessenberg matrix. Let H; be generated as
follows Hy = A
H,'+1 = G,-TH,', i:1,...,m—1

where G; = G(i, i+1, (H,'),'J/I’,', (H,-),-+17,-/r,-) and r; = \/(H,)%, aF (H"):?—&-l,i
and we assume r; # 0. Then, H, is upper triangular and

A= (G1Gy- - Gm_1)Hn = QR

is a QR-factorization of A.

v

Proof idea: Only one rotator required to bring one column of a Hessenberg
matrix to a triangular.
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Idea of Hessenberg QR-method: Do not explicitly compute the @Q-matrix
but only implicitly apply the Givens rotators
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Idea of Hessenberg QR-method: Do not explicitly compute the @Q-matrix
but only implicitly apply the Givens rotators: Let

Ak-1=(G1G2 - Gm—1)Rm

and
Ak = Rm(Gi1Ga--- Gp1) =
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Idea of Hessenberg QR-method: Do not explicitly compute the @Q-matrix
but only implicitly apply the Givens rotators: Let

Ak-1=(G1G2 - Gm—1)Rm
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Ak = Rm(G1Gy - Gpm_1) = (- ((RmG1)G2) - - - ) Gy
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Idea of Hessenberg QR-method: Do not explicitly compute the @Q-matrix
but only implicitly apply the Givens rotators: Let

Ak-1=(G1G2 - Gm—1)Rm
and

Ak = Rn(G1Ga - Gp—1) = (- ((RmG1)G2) - - - ) Gy

Complexity of one QR-step of for a Hessenberg matrix
We need to apply 2(m — 1) givens rotators to compute one QR-step.
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Idea of Hessenberg QR-method: Do not explicitly compute the @Q-matrix
but only implicitly apply the Givens rotators: Let

Ak-1=(G1Gy - Gm—1)Rm

and
Ak = Rm(G1G2 -+ Gp-1) = (- ((RmG1)G2) - -+ ) Gy

Complexity of one QR-step of for a Hessenberg matrix
We need to apply 2(m — 1) givens rotators to compute one QR-step.

@ One givens rotator applied to a vector can be computed in O(1)
operations.
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Idea of Hessenberg QR-method: Do not explicitly compute the @Q-matrix
but only implicitly apply the Givens rotators: Let

Ak-1=(61G2 - Gm—1)Rnm

and
Ak = Rn(G1Ga - Gp—1) = (- ((RmG1)G2) - - - ) Gy

Complexity of one QR-step of for a Hessenberg matrix
We need to apply 2(m — 1) givens rotators to compute one QR-step.
@ One givens rotator applied to a vector can be computed in O(1)
operations.
@ One givens rotator applied to matrix can be computed in O(m)
operations.
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Idea of Hessenberg QR-method: Do not explicitly compute the @Q-matrix
but only implicitly apply the Givens rotators: Let

Ak-1=(61G2 - Gm—1)Rnm

and
Ak = Rn(G1Ga - Gp—1) = (- ((RmG1)G2) - - - ) Gy

Complexity of one QR-step of for a Hessenberg matrix
We need to apply 2(m — 1) givens rotators to compute one QR-step.
@ One givens rotator applied to a vector can be computed in O(1)
operations.
@ One givens rotator applied to matrix can be computed in O(m)
operations.

=
the complexity of one Hessenberg QR step = O(m?)
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Givens rotators only modify very few elements.
Several optimizations possible. =
Algorithm 3 Hessenberg QR algorithm
Input: A Hessenberg matrix A e C"*"
Output: Upper triangular T such that A = UTU* for an orthogonal
matrix U.
Set Ag:=A
fork=1,... do
/ / One Hessenberg QR step
H= Ay,
fori=1,...,n-1do
[cirsi] = givens(hi i, hivqi)
Hiijm = [_C;l ::] Hisi1,im
end for

fori=1,...,n-1do

¢ s
Huyivtiia = Hiawiaa |
S G

end for
Ap=H
end for
Return T= A,
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Show animation again:

http://www.youtube.com/watch?v=qmgxzsWWsNc
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http://www.youtube.com/watch?v=qmgxzsWWsNc

Show animation again:
http://www.youtube.com/watch?v=qmgxzsWWsNc

Acceleration still remains
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Outline:
@ Basic QR-method

® Improvement 1: Two-phase approach
» Hessenberg reduction

» Hessenberg QR-method

o Improvement 2: Acceleration with shifts
o Convergence theory
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Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method

One step of shifted QR-method:
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Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method
One step of shifted QR-method:
H—ul = QR
H

RQ + ul
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Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method
One step of shifted QR-method:

H—ul = QR
H = RQ+ul

Note: B
H=RQ+ pul =
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Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method
One step of shifted QR-method:

H—ul = QR
H = RQ+ul

Note: B
H=RQ+ul =Q"(H—ul)Q + ul
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Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method
One step of shifted QR-method:

H—ul = QR
H = RQ+ul

Note: B
H=RQ+ul =Q"(H—u)Q+pul = QTHQ
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Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method
One step of shifted QR-method:
H—ul = QR
H = RQ+ul

Note: B
H=RQ+ul =Q"(H—-ph)Q+u =QTHQ

= One step of shifted QR-method is a similarity transformation, with a
different @ matrix.
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|dealized situation: Let p = A\(H)

Suppose p is an eigenvalue:

= H — pl is a singular Hessenberg matrix.

o & E DA
QR-method - Lecture 2



|dealized situation: Let p = A\(H)

Suppose p is an eigenvalue:
= H — pl is a singular Hessenberg matrix.

QR-factorization of singular Hessenberg matrices (Lemma 2.3.1)

The R-matrix in the QR-decomposition of a singular unreduced
Hessenberg matrix has the structure

X X
X

X X X
X X X X
o X X X X
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|dealized situation: Let p = A\(H)

Suppose p is an eigenvalue:
= H — pl is a singular Hessenberg matrix.

QR-factorization of singular Hessenberg matrices (Lemma 2.3.1)

The R-matrix in the QR-decomposition of a singular unreduced
Hessenberg matrix has the structure

X X
X

X X X
X X X X
o X X X X

* Show QR-factorization of singular Hessenberg matrix in matlab *
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Suppose @, R a QR-factorization of a Hessenberg matrix and

X X X X X
X X X X
R = X X X
X X
0
Then,
X X X X X
X X X X X
RQ = X X X 0
X X X
0
and
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Suppose @, R a QR-factorization of a Hessenberg matrix and

X X X X X
X X X X
R = X X X
X X
0
Then,
X X X X 0x
X X X X X
RQ = X X X 0
X X X
0
and
X X X X X
_ X X X
H=RQ+ M\ = X X X X
X X X
A
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More precisely:

Lemma (Lemma 2.3.2)

Suppose \ is an eigenvalue of the Hessenberg matrix H. Let H be the
result of one shifted QR-step. Then,
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Select the shift

How to select the shifts?

@ Shifted QR-method with 4z = A computes an eigenvalue in one step.
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Select the shift

How to select the shifts?
@ Shifted QR-method with 4z = A computes an eigenvalue in one step.

@ The exact eigenvalue not available. How to select the shift?
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Select the shift

How to select the shifts?
@ Shifted QR-method with 4z = A computes an eigenvalue in one step.

@ The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate
eigenvalue.
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Select the shift

How to select the shifts?
@ Shifted QR-method with 4z = A computes an eigenvalue in one step.

@ The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate
eigenvalue. Rayleigh shifts:

W= rmm.
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Select the shift

How to select the shifts?
@ Shifted QR-method with 4z = A computes an eigenvalue in one step.

@ The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate
eigenvalue. Rayleigh shifts:

W= rmm.

Explanation

@ The QR-method can be interpreted as equivalent to variant of Power
Method applied to A. (Will be shown next)
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Select the shift

How to select the shifts?
@ Shifted QR-method with 4z = A computes an eigenvalue in one step.

@ The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate
eigenvalue. Rayleigh shifts:

W= rmm.

Explanation

@ The QR-method can be interpreted as equivalent to variant of Power
Method applied to A. (Will be shown next)

@ The QR-method can be interpreted as equivalent to variant of Power
Method applied to A~1. (Proof sketched in TB Chapter 29) =
Rayleigh shifts can be interpreted as Rayleigh quotient iteration.
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Deflation

QR-step on reduced Hessenberg matrix

Suppose
_(Ho Hi
= ( 0 H3> ’

where Hj3 is upper triangular and let

e Py
H_(”z /:’3)’

be the result of one (shifted) QR-step.
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Deflation
QR-step on reduced Hessenberg matrix
Suppose
_ (Ho Hy

H = ( 0 H3) ’
where Hj3 is upper triangular and let

- (Ho Hi

= ("72 ":’3) ’

be the result of one (shifted) QR-step. Then, H, = 0, H3 = Hs and Hy is
the result of one (shifted) QR-step applied to Hp.
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Deflation
QR-step on reduced Hessenberg matrix
Suppose
_(Ho Hi

H = ( 0 H3) ’
where Hj3 is upper triangular and let

o (Ho Hi

"= ("72 ":’3) ’

be the result of one (shifted) QR-step. Then, H, = 0, H3 = Hs and Hy is
the result of one (shifted) QR-step applied to Hp.

= We can reduce the active matrix when an eigenvalue is converged.
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Deflation
QR-step on reduced Hessenberg matrix
_(Ho Hi
H = ( 0 Hg) ’
where Hj3 is upper triangular and let
- (Ho Hi
H= (f:lz /:/3) ’

be the result of one (shifted) QR-step. Then, H, = 0, H3 = Hs and Hy is
the result of one (shifted) QR-step applied to Hp.

Suppose

= We can reduce the active matrix when an eigenvalue is converged.

This is called deflation.
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Rayleigh shifts can be combined with deflation =

Algorithm 4 Hessenberg QR algorithm with Rayleigh quotient shift
and deflation
Input: A Hessenberg matrix A ¢ C"*"
Set H(O == A
form=n,...,2do
k=0

repeat

Hi = R.Qx +op 1
until |hg?ﬂ_1\ is sufficiently small
Save h,(,f ?ﬂ as a converged eigenvalue
k ~1)x(m=1
Set H(® = H}:()m—l),l:(m—l) e Clmiix(m=D
end for

http://www.youtube.com/watch?v=qmgxzsWWsNc
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Rayleigh shifts can be combined with deflation =

Algorithm 4 Hessenberg QR algorithm with Rayleigh quotient shift
and deflation
Input: A Hessenberg matrix A ¢ C"*"
Set H(O == A
form=n,...,2do
k=0

repeat

Hi = R.Qx +op 1
until |hg?ﬂ_1\ is sufficiently small
Save h,(,f ?ﬂ as a converged eigenvalue
k ~1)x(m=1
Set H(® = H}:()m—l),l:(m—l) e Clmiix(m=D
end for

http://www.youtube.com/watch?v=qmgxzsWWsNc
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Outline:
@ Basic QR-method

® Improvement 1: Two-phase approach
» Hessenberg reduction
» Hessenberg QR-method

@ Improvement 2: Acceleration with shifts
e Convergence theory

o & = E DA
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Convergence theory - TB Chapter 28

Didactic simplification for convergence of QR-method: Assume A= AT,

Convergence characterization

@ A generalization of power method: US| (Unnormalized simultaneous
iteration)
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Convergence theory - TB Chapter 28

Didactic simplification for convergence of QR-method: Assume A= AT,

Convergence characterization

@ A generalization of power method: US| (Unnormalized simultaneous
iteration)

@ Show convergence properties of USI
@ A variant Normalized Simultaneous lteration (NSI)
@ Show USI < NSI < QR-method
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Definition: Unnormalized simultaneous iteration (USI)

A generalization of power method with n vectors “simultaneously”

QR-method - Lecture 2 29 / 36



Definition: Unnormalized simultaneous iteration (USI)

A generalization of power method with n vectors “simultaneously”
VO = O, O] e R,

Define
vk .= Aky(0)
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A QR-factorization generalizes the normalization step:

Ok R — ),
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Convergence of USI

o & = E DA
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Convergence of USI
Assumptions:

@ Let eigenvalues ordered and assume

(Al > [A2] > > [Anga| = [Ang2| = -+ = [Am].

it
D

o & = wa
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Convergence of USI
Assumptions:
@ Let eigenvalues ordered and assume:

A1l > [A2| >0 > [Apgal = [Apg2] = -0 = [Aml.

@ Assume leading principal submatrices of QTVO are nonsingular,
where @ = (g1, ...,9m) are the eigenvectors.
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Convergence of USI
Assumptions:

@ Let eigenvalues ordered and assume:

A1l > [A2| >0 > [Apgal = [Apg2] = -0 = [Aml.

@ Assume leading principal submatrices of QTVO are nonsingular,
where @ = (g1, ...,9m) are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with V(©) and assumptions
above are satisfied. Let qj, 1,...,n be the first n eigenvectors of A. Then,
as k — 0o, the columns of the matrices Q%) convergence linearly to qj

()

g — £qill = O(C*), j=1,....n,
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Convergence of USI
Assumptions:

@ Let eigenvalues ordered and assume:

A1l > [A2| >0 > [Apgal = [Apg2] = -0 = [Aml.

@ Assume leading principal submatrices of QTVO are nonsingular,
where @ = (g1, ...,9m) are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with V(©) and assumptions
above are satisfied. Let qj, 1,...,n be the first n eigenvectors of A. Then,
as k — 0o, the columns of the matrices Q%) convergence linearly to qj

()

g — £qill = O(C*), j=1,....n,

where C = maxy<k<n |Ak+1|/| k|-
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Normalized Simultaneous Iteration (NSI)

Variants of the power method. Equivalent:
. ARy
() vi = amer

o = £ DA
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Normalized Simultaneous Iteration (NSI)

Variants of the power method. Equivalent:
. _ Ak y,

() vie = qarer

. _ Aveg
() vk = [y

o & E DA
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Normalized Simultaneous Iteration (NSI)

Variants of the power method. Equivalent:

. _ AkVQ
(i) vk = (k]

.. Avy_
(i) vk = gt

USI is a generlization of (i).
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.. Avy_
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Normalized Simultaneous Iteration (NSI)

Variants of the power method. Equivalent:
. Ak

(i) vi = mara
.. _ Aveg

(i) vie = v

USI is a generlization of (i).

NSl is a generalization of (ii).

Algorithm: (Normalized) Simultaneous Iteration

o Input (AQ(O) e Rmxn

@ Fork=1,...,
Set Z = AQx! -
Compute QR-factorization QWR*) = 7
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USI and NSI are equivalent.

o & = E DA
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USI and NSI are equivalent. More precisely:

Equivalence USI and NSI (TB Thm 28.2)

Suppose assumptions above are satisfied. If USI and NSI are started with
the same vector they will generate the same sequence of matrices Q¥ and

R-.
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Simultaneous iteration and QR-method

We will establish:

basic QR-method <> Simultaneous iteration with Q) = | € R™xm
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Simultaneous iteration and QR-method

We will establish:

basic QR-method <> Simultaneous iteration with Q) = | € R™xm

Simultaneous iteration satisfies

0 Q=1

o Z=AQK

o 7 = QE)R(k)

o AlK) .— (Q(k))TA(Q(k))

Define: RK) .= R(K) ... R(1)

QR-method satisfies
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Simultaneous iteration and QR-method

We will establish:

basic QR-method <> Simultaneous iteration with Q) = | € R™xm

Simultaneous iteration satisfies

0 Q=1

o Z=AQK

o 7 = QE)R(k)

o AlK) .— (Q(k))TA(Q(k))

Define: R(K) .= R(K) ... R(1)

QR-method satisfies
o AD) =4
o Alk=1) — (k) R(K)
o AK) = R(K) k)
o QW .= Q1) ... QK

Essentially: The above equations generate the same sequence of matrices
More precisely ...
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TB Theorem 38.3:

Theorem (Equivalence simultaneous iteration and QR-method )

The above processes generate identical sequences of vectors. In particular,
Ak = QU R(K)

and

Ak — (Q(k)) TA(Q(k)),
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TB Theorem 38.3:

Theorem (Equivalence simultaneous iteration and QR-method )

The above processes generate identical sequences of vectors. In particular,
Ak = QU R(K)

and

Ak — (Q(k))TA(Q(")).

Beware: QR-factorization is not unique and equivalence only holds with
one QR-factorization.
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Important property:
Ak) — (Q(k))TAQ

Consequences

@ Recall from USI-NSI equivalence and USI convergence. The columns
in QMK satisfy
g\ = +q; + 0(C¥).

where C = maxi<j<n |[Ait1|/|Ail-
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Important property:
AK) — Q)T AQ(¥)

Consequences
@ Recall from USI-NSI equivalence and USI convergence. The columns
in Q) satisfy
(k) = +q; + O(CH).
where C = maxi<icn|Ait1]/|Nil-
o (AN = (q\)TAq
Diagonal i = j: (A®),; = (") T Aq¥
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Important property:
AK) — Q)T AQ(¥)

Consequences
@ Recall from USI-NSI equivalence and USI convergence. The columns
in Q) satisfy
(k) = +q; + O(CH).
where C = maxi<icn|Ait1]/|Nil-
(Ak)u (q (k))TAq(k)
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Important property:
Al — (Q(k)) Q( )

Consequences
@ Recall from USI-NSI equivalence and USI convergence. The columns
in Q) satisfy
(k) = +q; + O(CH).
where C = maxi<icn|Ait1]/|Nil-
(Ak)l,,l (q (k))TAq(k)

Diagonal i = j: (A(),; (q(k))TAq(k = r(qfk)) =Rayleigh quotient
= (AW);; = XN + O(C2 )
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Important property:
Al — (Q k)) AQ(K)

Consequences

@ Recall from USI-NSI equivalence and USI convergence. The columns
in QMK satisfy
g\ = +q; + 0(C¥).

where C = maxi<icn|Ait1]/|Nil-
(Ak)l,,l (q (k))TAq(k)
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Important property:
Al — (Q k)) AQ(K)

Consequences

@ Recall from USI-NSI equivalence and USI convergence. The columns
in QMK satisfy
g\ = +q; + 0(C¥).

where C = maxi<icn|Ait1]/|Nil-
(Ak)l,,l (q (k))TAq(k)

Diagonal i = j: (A(K);; (q(k))TAq(k r(qfk)) =Rayleigh quotient
= (AW);; = XN + O(CZk)
Off-diagonal i # j: (A®)); ;= (q{)TAq¥ = O(C)

Hence, A(K) will approach a triangular matrix
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* Matlab demo *

o & = E DA
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