QR-method - Lecture 2 SF2524 - Matrix Computations for Large-scale Systems

< 3 > < 3 >

Outline QR-method:

- Decompositions (last lecture)
- Basic QR-method (last lecture)
- Improvement 1: Two-phase approach
 - Hessenberg reduction
 - Hessenberg QR-method
- Improvement 2: Acceleration with shifts
- Onvergence theory

Reading instructions

Point 1: TB Lecture 24 Points 2-4: Lecture notes "QR-method" on course web page Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29)

Basic QR-method (repetition last lecture)

- Method for dense eigenvalue problems
- Computes a Schur factorization

$$A = Q^* T Q$$

by using QR-factorizations

B = QR.

< 3 > < 3 >

Basic QR-method (repetition last lecture)

- Method for dense eigenvalue problems
- Computes a Schur factorization

$$A = Q^* T Q$$

by using QR-factorizations

$$B = QR.$$

Basic QR-method $A_{k-1} = Q_k R_k$ $A_k := R_k Q_k$

- A I I I A I I I I

Basic QR-method (repetition last lecture)

- Method for dense eigenvalue problems
- Computes a Schur factorization

$$A = Q^* T Q$$

by using QR-factorizations

$$B = QR$$
.

Basic QR-method

$$\begin{array}{rcl} A_{k-1} &=& Q_k R_k \\ A_k &:=& R_k Q_k \end{array}$$

Generates a sequence of matrices A_k with same eigenvalues, and in general converge to a triangular matrix.

The basic QR-method is elegant and robust but not very efficient:

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The basic QR-method is elegant and robust but not very efficient:

Disadvantages

• Computing a QR-factorization is quite expensive. One iteration of the basic QR-method

 $\mathcal{O}(m^3).$

The basic QR-method is elegant and robust but not very efficient:

Disadvantages

• Computing a QR-factorization is quite expensive. One iteration of the basic QR-method

 $\mathcal{O}(m^3).$

• The method often requires many iterations. (HW3, problem 1)

Improvement 1: Two-phase approach

We will separate the computation into two phases:

Γ×	\times	\times	\times	۲×		Γ×	×	\times	\times	۲×		Γ×	\times	\times	\times	×٦
×	×	×	\times	×		×	\times	\times	\times	×			\times	\times	×	×
×	\times	\times	\times	×	\rightarrow		\times	\times	\times	×	\rightarrow			\times	\times	×
×	\times	\times	\times	×	Phase 1	Phase 1 X X X Phase 2			\times	×						
L×	×	×	\times	×		L			\times	×		L				×

.

Improvement 1: Two-phase approach

We will separate the computation into two phases:

Γ×	×	\times	\times	۲×		Γ×	\times	\times	\times	۲×		Γ×	\times	\times	\times	×
×	\times	×	\times	×		×	\times	×	\times	×			\times	×	×	×
×	\times	×	\times	×	\rightarrow		\times	×	\times	×	\rightarrow			×	×	×
×	\times	\times	\times	×	Phase 1			\times	\times	×	Phase 2				\times	×
L×	\times	\times	\times	×J		L			\times	×J		L				×

Phases:

• Phase 1: Reduce the matrix to a Hessenberg with similarity transformations (Section 2.2.1 in lecture notes)

Improvement 1: Two-phase approach

We will separate the computation into two phases:

Γ×	\times	\times	\times	۲×		Γ×	\times	\times	\times	۲×		Γ×	×	\times	\times	×
×	\times	×	\times	×		×	\times	×	\times	×			\times	\times	×	×
×	\times	\times	\times	×	\rightarrow		\times	\times	\times	×	\rightarrow			\times	\times	×
×	\times	\times	\times	×	Phase 1			\times	\times	×	Phase 2				\times	×
L×	\times	\times	\times	×J		L			\times	×J		L				×

Phases:

- Phase 1: Reduce the matrix to a Hessenberg with similarity transformations (Section 2.2.1 in lecture notes)
- Phase 2: Specialize the QR-method to Hessenberg matrices (Section 2.2.2 in lecture notes)

We will need matrices called Householder reflectors.

Definition

A matrix $P \in \mathbb{C}^{m \times m}$ of the form

 $P = I - 2uu^*$ where $u \in \mathbb{C}^m$ and ||u|| = 1

is called a Householder reflector.

We will need matrices called Householder reflectors.

Definition

A matrix $P \in \mathbb{C}^{m \times m}$ of the form

$$P = I - 2uu^*$$
 where $u \in \mathbb{C}^m$ and $||u|| = 1$

is called a Householder reflector.

We will need matrices called Householder reflectors.

Definition

A matrix $P \in \mathbb{C}^{m \times m}$ of the form

$$P = I - 2uu^*$$
 where $u \in \mathbb{C}^m$ and $||u|| = 1$

is called a Householder reflector.

イロト イポト イヨト イヨト

We will need matrices called Householder reflectors.

Definition

A matrix $P \in \mathbb{C}^{m \times m}$ of the form

$$P = I - 2uu^*$$
 where $u \in \mathbb{C}^m$ and $||u|| = 1$

is called a Householder reflector.

Properties

•
$$P^* = P^{-1} = P$$

 Pz = z - 2u(u*z) can be computed with O(m) operations.

イロト イポト イヨト イヨト

We will need matrices called Householder reflectors.

Definition

A matrix $P \in \mathbb{C}^{m \times m}$ of the form

$$P = I - 2uu^*$$
 where $u \in \mathbb{C}^m$ and $||u|| = 1$

is called a Householder reflector.

Properties

• • • •

•
$$P^* = P^{-1} = P$$

 Pz = z - 2u(u*z) can be computed with O(m) operations.

イロト イポト イヨト イヨト

Problem

Given a vector x compute a Householder reflector such that

 $Px = \alpha e_1.$

通 ト イヨ ト イヨト

Problem

Given a vector x compute a Householder reflector such that

 $Px = \alpha e_1.$

Solution (Lemma 2.2.3) Let $\rho = sign(x_1)$,

$$z := x - \rho \|x\| e_1 = \begin{bmatrix} x_1 - \rho \|x\| \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

and

$$u=z/\|z\|.$$

Problem

Given a vector x compute a Householder reflector such that

 $Px = \alpha e_1.$

Solution (Lemma 2.2.3) Let $\rho = \operatorname{sign}(x_1)$,

$$z := x - \rho \|x\| e_1 = \begin{bmatrix} x_1 - \rho \|x\| \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

and

$$u=z/\|z\|.$$

Then, $P = I - 2uu^*$ is a Householder reflector that satisfies $Px = \alpha e_1$.

Problem

Given a vector x compute a Householder reflector such that

 $Px = \alpha e_1.$

Solution (Lemma 2.2.3) Let $\rho = \operatorname{sign}(x_1)$,

$$z := x - \rho \|x\| e_1 = \begin{bmatrix} x_1 - \rho \|x\| \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

and

$$u=z/\|z\|.$$

Then, $P = I - 2uu^*$ is a Householder reflector that satisfies $Px = \alpha e_1$.

* Matlab demo showing Householder reflectors *

3

イロン イヨン イヨン イヨン

We will be able to construct m-2 householder reflectors that bring the matrix to Hessenberg form.

Elimination for first column

$$P_{1} := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{bmatrix} = \begin{bmatrix} 1 & 0^{T} \\ 0 & I - 2u_{1}u_{1}^{T} \end{bmatrix}.$$

We will be able to construct m - 2 householder reflectors that bring the matrix to Hessenberg form.

Elimination for first column

$$P_{1} := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{bmatrix} = \begin{bmatrix} 1 & 0^{T} \\ 0 & I - 2u_{1}u_{1}^{T} \end{bmatrix}$$

Use Lemma 2.2.1 with $x^T = [a_{21}, \ldots, a_{n1}]$ to select u_1 such that

We will be able to construct m - 2 householder reflectors that bring the matrix to Hessenberg form.

Elimination for first column

$$P_{1} := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{bmatrix} = \begin{bmatrix} 1 & 0^{T} \\ 0 & I - 2u_{1}u_{1}^{T} \end{bmatrix}$$

Use Lemma 2.2.1 with $x^T = [a_{21}, \ldots, a_{n1}]$ to select u_1 such that

In order to have a similarity transformation mult from right:

$$P_1AP_1^{-1} = P_1AP_1 = \text{same structure as } P_1A.$$

We will be able to construct m - 2 householder reflectors that bring the matrix to Hessenberg form.

Elimination for first column

$$P_{1} := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{bmatrix} = \begin{bmatrix} 1 & 0^{T} \\ 0 & I - 2u_{1}u_{1}^{T} \end{bmatrix}$$

Use Lemma 2.2.1 with $x^T = [a_{21}, \ldots, a_{n1}]$ to select u_1 such that

In order to have a similarity transformation mult from right:

$$P_1AP_1^{-1} = P_1AP_1 = \text{same structure as } P_1A.$$

Elimination for second column

Repeat the process with:

$$P_2 = \begin{bmatrix} 1 & 0 & 0^T \\ 0 & 1 & 0^T \\ 0 & 0 & I - 2u_2u_2^T \end{bmatrix}$$

э

<ロ> (日) (日) (日) (日) (日)

Elimination for second column

Repeat the process with:

$$P_2 = \begin{bmatrix} 1 & 0 & 0^T \\ 0 & 1 & 0^T \\ 0 & 0 & I - 2u_2u_2^T \end{bmatrix}$$

where u_2 is constructed from the n-2 last elements of the second column of $P_1AP_1^*$.

Elimination for second column

Repeat the process with:

$$P_2 = \begin{bmatrix} 1 & 0 & 0^T \\ 0 & 1 & 0^T \\ 0 & 0 & I - 2u_2u_2^T \end{bmatrix}$$

where u_2 is constructed from the n-2 last elements of the second column of $P_1AP_1^*$.

* Matlab demo of the first two steps of the Hessenberg reduction *

3

(日) (周) (三) (三)

The iteration can be implemented without explicit use of the *P* matrices.

Algorithm 2 Reduction to Hessenberg form Input: A matrix $A \in C^{n \times n}$ Output: A Hessenberg matrix H such that $H = U^*AU$. for k = 1, ..., n - 2 do Compute u_k using (2.4) where $x^T = [a_{k+1,k}, ..., a_{n,k}]$ Compute P_kA : $A_{k+1:n,k:n} := A_{k+1:n,k:n} - 2u_k(u_k^*A_{k+1:n,k:n})$ Compute $P_kAP_k^*$: $A_{1:n,k+1:n} := A_{1:n,k+1:n} - 2(A_{1:n,k+1:n}u_k)u_k^*$ end for Let H be the Hessenberg part of A.

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step of Hessenberg is Hessenberg *

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step of Hessenberg is Hessenberg *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates A_k are Hessenberg matrices.

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step of Hessenberg is Hessenberg *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates A_k are Hessenberg matrices.

Recall: basic QR-step is $\mathcal{O}(m^3)$.

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step of Hessenberg is Hessenberg *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates A_k are Hessenberg matrices.

Recall: basic QR-step is $\mathcal{O}(m^3)$.

Hessenberg structure can be exploited such that we can carry out a QR-step with less operations.

Definition (Givens rotation)

The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ corresponding to a Givens rotation is defined by

$$G(i, j, c, s) := \begin{bmatrix} I & & & & \\ & c & -s & & \\ & & I & & \\ & s & c & & \\ & & & & I \end{bmatrix}$$

which deviates from identity at row and column i and j.

通 ト イヨ ト イヨト

Definition (Givens rotation)

The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ corresponding to a Givens rotation is defined by

$$G(i, j, c, s) := \begin{bmatrix} I & & & \\ & c & -s & \\ & & I & \\ & s & c & \\ & & & I \end{bmatrix}$$

which deviates from identity at row and column i and j.

Definition (Givens rotation)

The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ corresponding to a Givens rotation is defined by

$$G(i, j, c, s) := \begin{bmatrix} I & & & & \\ & c & -s & & \\ & & I & & \\ & s & c & & \\ & & & & I \end{bmatrix}$$

which deviates from identity at row and column i and j.

Definition (Givens rotation)

The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ corresponding to a Givens rotation is defined by

$$G(i, j, c, s) := egin{bmatrix} I & & & \ c & & -s & \ & I & & \ s & c & & \ & & & I \end{pmatrix},$$

which deviates from identity at row and column *i* and *j*.

•
$$G^* = G^{-1}$$

• Gz can be computed with O(1) operations

Definition (Givens rotation)

The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ corresponding to a Givens rotation is defined by

$$G(i, j, c, s) := egin{bmatrix} I & & & \ c & -s & \ & I & \ s & c & \ & & I \end{bmatrix}$$

which deviates from identity at row and column i and j.

· · · · · · · · ·

The Q-matrix in the QR-factorization of a Hessenberg matrix can be factorized as a product of m-1 Givens rotators.

3

(日) (周) (三) (三)

The Q-matrix in the QR-factorization of a Hessenberg matrix can be factorized as a product of m - 1 Givens rotators.

Theorem

Suppose $A \in \mathbb{C}^{m \times m}$ is a Hessenberg matrix. Let H_i be generated as follows $H_1 = A$ $H_{i+1} = G_i^T H_i, \quad i = 1, ..., m-1$ where $G_i = G(i, i+1, (H_i)_{i,i}/r_i, (H_i)_{i+1,i}/r_i)$ and $r_i = \sqrt{(H_i)_{i,i}^2 + (H_i)_{i+1,i}^2}$ and we assume $r_i \neq 0$. Then, H_n is upper triangular and

$$A = (G_1 G_2 \cdots G_{m-1}) H_n = QR$$

is a QR-factorization of A.

- 本間 と く ヨ と く ヨ と 二 ヨ

The Q-matrix in the QR-factorization of a Hessenberg matrix can be factorized as a product of m - 1 Givens rotators.

Theorem

Suppose $A \in \mathbb{C}^{m \times m}$ is a Hessenberg matrix. Let H_i be generated as follows $H_1 = A$ $H_{i+1} = G_i^T H_i, \quad i = 1, ..., m-1$ where $G_i = G(i, i+1, (H_i)_{i,i}/r_i, (H_i)_{i+1,i}/r_i)$ and $r_i = \sqrt{(H_i)_{i,i}^2 + (H_i)_{i+1,i}^2}$ and we assume $r_i \neq 0$. Then, H_n is upper triangular and

$$A = (G_1 G_2 \cdots G_{m-1}) H_n = QR$$

is a QR-factorization of A.

Proof idea: Only one rotator required to bring one column of a Hessenberg matrix to a triangular.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

- 4 週 ト - 4 三 ト - 4 三 ト

$$A_{k-1} = (G_1 G_2 \cdots G_{m-1}) R_m$$

and

$$A_k = R_m(G_1G_2\cdots G_{m-1}) =$$

- 4 目 ト - 4 日 ト - 4 日 ト

$$A_{k-1} = (G_1 G_2 \cdots G_{m-1}) R_m$$

and

$$A_k = R_m(G_1G_2\cdots G_{m-1}) = (\cdots ((R_mG_1)G_2)\cdots)G_m$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

$$A_{k-1} = (G_1 G_2 \cdots G_{m-1}) R_m$$

and

$$A_k = R_m(G_1G_2\cdots G_{m-1}) = (\cdots ((R_mG_1)G_2)\cdots)G_m$$

Complexity of one QR-step of for a Hessenberg matrix We need to apply 2(m-1) givens rotators to compute one QR-step.

(日) (周) (三) (三)

$$A_{k-1} = (G_1 G_2 \cdots G_{m-1}) R_m$$

and

$$A_k = R_m(G_1G_2\cdots G_{m-1}) = (\cdots ((R_mG_1)G_2)\cdots)G_m$$

Complexity of one QR-step of for a Hessenberg matrix

We need to apply 2(m-1) givens rotators to compute one QR-step.

One givens rotator applied to a vector can be computed in O(1) operations.

(日) (同) (三) (三)

$$A_{k-1} = (G_1 G_2 \cdots G_{m-1}) R_m$$

and

$$A_k = R_m(G_1G_2\cdots G_{m-1}) = (\cdots ((R_mG_1)G_2)\cdots)G_m$$

Complexity of one QR-step of for a Hessenberg matrix

We need to apply 2(m-1) givens rotators to compute one QR-step.

- One givens rotator applied to a vector can be computed in O(1) operations.
- One givens rotator applied to matrix can be computed in O(m) operations.

(日) (周) (三) (三)

$$A_{k-1} = (G_1 G_2 \cdots G_{m-1}) R_m$$

and

 \Rightarrow

$$A_k = R_m(G_1G_2\cdots G_{m-1}) = (\cdots ((R_mG_1)G_2)\cdots)G_m$$

Complexity of one QR-step of for a Hessenberg matrix

We need to apply 2(m-1) givens rotators to compute one QR-step.

- One givens rotator applied to a vector can be computed in O(1) operations.
- One givens rotator applied to matrix can be computed in O(m) operations.

the complexity of one Hessenberg QR step = $\mathcal{O}(m^2)$

イロン 不聞と 不同と 不同と

Givens rotators only modify very few elements. Several optimizations possible. \Rightarrow

Algorithm 3 Hessenberg QR algorithm Input: A Hessenberg matrix $A \in \mathbb{C}^{n \times n}$ Output: Upper triangular T such that $A = UTU^*$ for an orthogonal matrix U. Set $A_0 \coloneqq A$ for k = 1, ..., do// One Hessenberg QR step $H = A_{k-1}$ for i = 1, ..., n - 1 do $[c_i, s_i] = givens(h_{i,i}, h_{i+1,i})$ $H_{i:i+1,i:n} = \begin{bmatrix} c_i & s_i \\ -s_i & c_i \end{bmatrix} H_{i:i+1,i:n}$ end for for i = 1, ..., n - 1 do $H_{1:i+1,i:i+1} = H_{1:i+1,i:i+1} \begin{bmatrix} c_i & -s_i \\ s_i & c_i \end{bmatrix}$ end for $A_{k} = H$ end for Return $T = A_{\infty}$

3

・ 何 ト ・ ヨ ト ・ ヨ ト …

Show animation again:

http://www.youtube.com/watch?v=qmgxzsWWsNc

3

Show animation again:

```
http://www.youtube.com/watch?v=qmgxzsWWsNc
```

Acceleration still remains

3

通 ト イヨ ト イヨ ト

Outline:

- Basic QR-method
- Improvement 1: Two-phase approach
 - Hessenberg reduction
 - Hessenberg QR-method

• Improvement 2: Acceleration with shifts

• Convergence theory

3

A B F A B F

Shifted QR-method

One step of shifted QR-method:

Shifted QR-method

One step of shifted QR-method:

$$\begin{array}{rcl} H-\mu I &=& QR \\ \bar{H} &=& RQ+\mu I \end{array}$$

Shifted QR-method

One step of shifted QR-method:

 $\begin{array}{rcl} H - \mu I &=& QR \\ \bar{H} &=& RQ + \mu I \end{array}$

Note:

$$\bar{H} = RQ + \mu I =$$

通 ト イヨト イヨト

Shifted QR-method

One step of shifted QR-method:

 $\begin{array}{rcl} H - \mu I &=& QR \\ \bar{H} &=& RQ + \mu I \end{array}$

Note:

$$\bar{H} = RQ + \mu I = Q^{T}(H - \mu I))Q + \mu I$$

• • = • • = •

Shifted QR-method

One step of shifted QR-method:

 $\begin{array}{rcl} H - \mu I &=& QR \\ \bar{H} &=& RQ + \mu I \end{array}$

Note:

$$\bar{H} = RQ + \mu I = Q^{T}(H - \mu I))Q + \mu I = Q^{T}HQ$$

通 ト イヨト イヨト

Shifted QR-method

One step of shifted QR-method:

 $\begin{array}{rcl} H - \mu I &=& QR \\ \bar{H} &=& RQ + \mu I \end{array}$

Note:

$$\bar{H} = RQ + \mu I = Q^{T}(H - \mu I))Q + \mu I = Q^{T}HQ$$

 \Rightarrow One step of shifted QR-method is a similarity transformation, with a different Q matrix.

通 ト イヨ ト イヨト

Idealized situation: Let $\mu = \lambda(H)$

Suppose μ is an eigenvalue: $\Rightarrow H - \mu I$ is a singular Hessenberg matrix.

通 ト イヨト イヨト

Idealized situation: Let $\mu = \lambda(H)$

Suppose μ is an eigenvalue: $\Rightarrow H - \mu I$ is a singular Hessenberg matrix.

QR-factorization of singular Hessenberg matrices (Lemma 2.3.1) The *R*-matrix in the QR-decomposition of a singular unreduced Hessenberg matrix has the structure

Idealized situation: Let $\mu = \lambda(H)$

Suppose μ is an eigenvalue: $\Rightarrow H - \mu I$ is a singular Hessenberg matrix.

QR-factorization of singular Hessenberg matrices (Lemma 2.3.1) The *R*-matrix in the QR-decomposition of a singular unreduced Hessenberg matrix has the structure

* Show QR-factorization of singular Hessenberg matrix in matlab *

Suppose Q, R a QR-factorization of a Hessenberg matrix and

Then,

and

3

・ロト ・聞ト ・ヨト ・ヨト

Suppose Q, R a QR-factorization of a Hessenberg matrix and

Then,

and

 $R = \begin{vmatrix} \hat{} & \hat{} & \hat{} & \hat{} & \hat{} \\ & & \hat{} & \hat{} & \hat{} \\ & & & \hat{} & \hat{} \\ & & & & \hat{} & \hat{} \end{vmatrix}.$

< □ > < □ > < □ > < □

More precisely:

Lemma (Lemma 2.3.2)

Suppose λ is an eigenvalue of the Hessenberg matrix H. Let \overline{H} be the result of one shifted QR-step. Then,

$$ar{h}_{n,n-1} = 0$$

 $ar{h}_{n,n} = \lambda.$

How to select the shifts?

• Shifted QR-method with $\mu = \lambda$ computes an eigenvalue in one step.

- - E + - E +

How to select the shifts?

- Shifted QR-method with $\mu = \lambda$ computes an eigenvalue in one step.
- The exact eigenvalue not available. How to select the shift?

How to select the shifts?

- Shifted QR-method with $\mu = \lambda$ computes an eigenvalue in one step.
- The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate eigenvalue.

How to select the shifts?

- Shifted QR-method with $\mu = \lambda$ computes an eigenvalue in one step.
- The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate eigenvalue. Rayleigh shifts:

 $\mu := r_{m,m}.$

How to select the shifts?

- Shifted QR-method with $\mu = \lambda$ computes an eigenvalue in one step.
- The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate eigenvalue. Rayleigh shifts:

 $\mu := r_{m,m}.$

Explanation

• The QR-method can be interpreted as equivalent to variant of Power Method applied to A. (Will be shown next)

How to select the shifts?

- Shifted QR-method with $\mu = \lambda$ computes an eigenvalue in one step.
- The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate eigenvalue. Rayleigh shifts:

 $\mu := r_{m,m}.$

Explanation

- The QR-method can be interpreted as equivalent to variant of Power Method applied to A. (Will be shown next)
- The QR-method can be interpreted as equivalent to variant of Power Method applied to A⁻¹. (Proof sketched in TB Chapter 29) ⇒ Rayleigh shifts can be interpreted as Rayleigh quotient iteration.

Deflation

QR-step on reduced Hessenberg matrix

Suppose

$$\mathcal{H} = \begin{pmatrix} \mathcal{H}_0 & \mathcal{H}_1 \\ 0 & \mathcal{H}_3 \end{pmatrix},$$

where H_3 is upper triangular and let

$$ar{H} = egin{pmatrix} ar{H}_0 & ar{H}_1 \ ar{H}_2 & ar{H}_3 \end{pmatrix},$$

be the result of one (shifted) QR-step.
Deflation

$\mathsf{QR}\text{-}\mathsf{step}$ on reduced Hessenberg matrix

Suppose

$$\mathcal{H} = \begin{pmatrix} \mathcal{H}_0 & \mathcal{H}_1 \\ 0 & \mathcal{H}_3 \end{pmatrix},$$

where H_3 is upper triangular and let

$$ar{H} = egin{pmatrix} ar{H}_0 & ar{H}_1 \ ar{H}_2 & ar{H}_3 \end{pmatrix},$$

be the result of one (shifted) QR-step. Then, $\bar{H}_2 = 0$, $\bar{H}_3 = H_3$ and \bar{H}_0 is the result of one (shifted) QR-step applied to H_0 .

Deflation

$\mathsf{QR}\text{-}\mathsf{step}$ on reduced Hessenberg matrix

Suppose

$$\mathcal{H} = \begin{pmatrix} \mathcal{H}_0 & \mathcal{H}_1 \\ 0 & \mathcal{H}_3 \end{pmatrix},$$

where H_3 is upper triangular and let

$$ar{H} = egin{pmatrix} ar{H}_0 & ar{H}_1 \ ar{H}_2 & ar{H}_3 \end{pmatrix},$$

be the result of one (shifted) QR-step. Then, $\bar{H}_2 = 0$, $\bar{H}_3 = H_3$ and \bar{H}_0 is the result of one (shifted) QR-step applied to H_0 .

 \Rightarrow We can reduce the active matrix when an eigenvalue is converged.

Deflation

$\mathsf{QR}\text{-}\mathsf{step}$ on reduced Hessenberg matrix

Suppose

$$\mathcal{H} = \begin{pmatrix} \mathcal{H}_0 & \mathcal{H}_1 \\ 0 & \mathcal{H}_3 \end{pmatrix},$$

where H_3 is upper triangular and let

$$ar{H} = egin{pmatrix} ar{H}_0 & ar{H}_1 \ ar{H}_2 & ar{H}_3 \end{pmatrix},$$

be the result of one (shifted) QR-step. Then, $\bar{H}_2 = 0$, $\bar{H}_3 = H_3$ and \bar{H}_0 is the result of one (shifted) QR-step applied to H_0 .

 \Rightarrow We can reduce the active matrix when an eigenvalue is converged.

This is called deflation.

Rayleigh shifts can be combined with deflation \Rightarrow

Algorithm 4 Hessenberg QR algorithm with Rayleigh quotient shift and deflation

```
Input: A Hessenberg matrix A \in \mathbb{C}^{n \times n}

Set H^{(0)} := A

for m = n, \dots, 2 do

k = 0

repeat

k = k + 1

\sigma_k = h_{m,m}^{(k-1)}

H_{k-1} - \sigma_k I =: Q_k R_k

H_k := R_k Q_k + \sigma_k I

until |h_{m,m-1}^{(k)}| is sufficiently small

Save h_{m,m}^{(k)} as a converged eigenvalue

Set H^{(0)} = H_{1:(m-1),1:(m-1)}^{(k)} \in \mathbb{C}^{(m-1) \times (m-1)}

end for
```

http://www.youtube.com/watch?v=qmgxzsWWsNc

3

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Rayleigh shifts can be combined with deflation \Rightarrow

Algorithm 4 Hessenberg QR algorithm with Rayleigh quotient shift and deflation

```
Input: A Hessenberg matrix A \in \mathbb{C}^{n \times n}

Set H^{(0)} := A

for m = n, \dots, 2 do

k = 0

repeat

k = k + 1

\sigma_k = h_{m,m}^{(k-1)}

H_{k-1} - \sigma_k I =: Q_k R_k

H_k := R_k Q_k + \sigma_k I

until |h_{m,m-1}^{(k)}| is sufficiently small

Save h_{m,m}^{(k)} as a converged eigenvalue

Set H^{(0)} = H_{1:(m-1),1:(m-1)}^{(k)} \in \mathbb{C}^{(m-1) \times (m-1)}

end for
```

http://www.youtube.com/watch?v=qmgxzsWWsNc

3

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Outline:

- Basic QR-method
- Improvement 1: Two-phase approach
 - Hessenberg reduction
 - Hessenberg QR-method
- Improvement 2: Acceleration with shifts
- Convergence theory

(B)

Didactic simplification for convergence of QR-method: Assume $A = A^{T}$.

Convergence characterization

• A generalization of power method: USI (Unnormalized simultaneous iteration)

Didactic simplification for convergence of QR-method: Assume $A = A^{T}$.

Convergence characterization

- A generalization of power method: USI (Unnormalized simultaneous iteration)
- Show convergence properties of USI

Didactic simplification for convergence of QR-method: Assume $A = A^{T}$.

Convergence characterization

- A generalization of power method: USI (Unnormalized simultaneous iteration)
- Show convergence properties of USI
- A variant Normalized Simultaneous Iteration (NSI)

Didactic simplification for convergence of QR-method: Assume $A = A^{T}$.

Convergence characterization

- A generalization of power method: USI (Unnormalized simultaneous iteration)
- Show convergence properties of USI
- A variant Normalized Simultaneous Iteration (NSI)
- Show USI \Leftrightarrow NSI \Leftrightarrow QR-method

A generalization of power method with n vectors "simultaneously"

A B A A B A

A generalization of power method with n vectors "simultaneously"

$$V^{(0)} = [v_1^{(0)}, \dots, v_n^{(0)}] \in \mathbb{R}^{m \times n}$$

Define

$$V^{(k)} := A^k V^{(0)}.$$

• • = • • = •

A generalization of power method with n vectors "simultaneously"

$$V^{(0)} = [v_1^{(0)}, \dots, v_n^{(0)}] \in \mathbb{R}^{m \times n}$$

Define

$$V^{(k)} := A^k V^{(0)}.$$

A QR-factorization generalizes the normalization step:

 $\hat{Q}^{(k)}\hat{R}^{(k)} = V^{(k)}.$

通 ト イヨ ト イヨ ト

A generalization of power method with n vectors "simultaneously"

$$V^{(0)} = [v_1^{(0)}, \dots, v_n^{(0)}] \in \mathbb{R}^{m \times n}$$

Define

$$V^{(k)} := A^k V^{(0)}.$$

A QR-factorization generalizes the normalization step:

 $\hat{Q}^{(k)}\hat{R}^{(k)} = V^{(k)}.$

通 ト イヨ ト イヨ ト

QR-method - Lecture 2

æ

<ロ> (日) (日) (日) (日) (日)

Assumptions:

• Let eigenvalues ordered and assume:

```
|\lambda_1| > |\lambda_2| > \cdots > |\lambda_{n+1}| \ge |\lambda_{n+2}| \ge \cdots \ge |\lambda_m|.
```

3

- 4 週 ト - 4 三 ト - 4 三 ト -

Assumptions:

• Let eigenvalues ordered and assume:

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_{n+1}| \ge |\lambda_{n+2}| \ge \cdots \ge |\lambda_m|.$$

• Assume leading principal submatrices of $\hat{Q}^T V^{(0)}$ are nonsingular, where $\hat{Q} = (q_1, \dots, q_m)$ are the eigenvectors.

Assumptions:

• Let eigenvalues ordered and assume:

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_{n+1}| \ge |\lambda_{n+2}| \ge \cdots \ge |\lambda_m|.$$

• Assume leading principal submatrices of $\hat{Q}^T V^{(0)}$ are nonsingular, where $\hat{Q} = (q_1, \dots, q_m)$ are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with $V^{(0)}$ and assumptions above are satisfied. Let q_j , 1,..., n be the first n eigenvectors of A. Then, as $k \to \infty$, the columns of the matrices $\hat{Q}^{(k)}$ convergence linearly to q_j

$$\|q_j^{(k)} - \pm q_j\| = \mathcal{O}(C^k), \ j = 1, \dots, n,$$

Assumptions:

• Let eigenvalues ordered and assume:

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_{n+1}| \ge |\lambda_{n+2}| \ge \cdots \ge |\lambda_m|.$$

• Assume leading principal submatrices of $\hat{Q}^T V^{(0)}$ are nonsingular, where $\hat{Q} = (q_1, \dots, q_m)$ are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with $V^{(0)}$ and assumptions above are satisfied. Let q_j , 1,..., n be the first n eigenvectors of A. Then, as $k \to \infty$, the columns of the matrices $\hat{Q}^{(k)}$ convergence linearly to q_j

$$\|q_j^{(k)} - \pm q_j\| = \mathcal{O}(C^k), \ j = 1, \dots, n,$$

where $C = \max_{1 \le k \le n} |\lambda_{k+1}| / |\lambda_k|$.

Variants of the power method. Equivalent:

(i)
$$v_k = \frac{A^k v_0}{\|A^k v_0\|}$$

• • = • • = •

Variants of the power method. Equivalent:

(i)
$$v_k = \frac{A^k v_0}{\|A^k v_0\|}$$

(ii) $v_k = \frac{A v_{k-1}}{\|A v_{k-1}\|}$

• • = • • = •

Variants of the power method. Equivalent:

(i)
$$v_k = \frac{A^k v_0}{\|A^k v_0\|}$$

(ii) $v_k = \frac{A v_{k-1}}{\|A v_{k-1}\|}$

USI is a generlization of (i).

.

Variants of the power method. Equivalent:

(i)
$$v_k = \frac{A^k v_0}{\|A^k v_0\|}$$

(ii) $v_k = \frac{Av_{k-1}}{\|Av_{k-1}\|}$
USI is a generization of (i).

NSI is a generalization of (ii).

Variants of the power method. Equivalent:

(i)
$$v_k = \frac{A^k v_0}{\|A^k v_0\|}$$

(ii) $v_k = \frac{A v_{k-1}}{\|A v_{k-1}\|}$
USI is a generlization of (i).

NSI is a generalization of (ii).

Algorithm: (Normalized) Simultaneous Iteration

• Input
$$\hat{Q}^{(0)} \in \mathbb{R}^{m \times n}$$

• For $k = 1, \dots,$
Set $Z = A\hat{Q}^{k-1}$

• Compute QR-factorization $\hat{Q}^{(k)}\hat{R}^{(k)}=Z$

USI and NSI are equivalent.

æ

イロト イヨト イヨト イヨト

USI and NSI are equivalent. More precisely:

Equivalence USI and NSI (TB Thm 28.2)

Suppose assumptions above are satisfied. If USI and NSI are started with the same vector they will generate the same sequence of matrices \hat{Q}^k and \hat{R}^k .

We will establish:

basic QR-method \Leftrightarrow Simultaneous iteration with $\hat{Q}^{(0)} = I \in \mathbb{R}^{m \times m}$.

We will establish:

basic QR-method \Leftrightarrow Simultaneous iteration with $\hat{Q}^{(0)} = I \in \mathbb{R}^{m \times m}$.

Simultaneous iteration satisfies • $\underline{Q}^0 = I$ • $Z_k = A\underline{Q}^{(k-1)}$ • $Z_k = \underline{Q}^{(k)}R^{(k)}$

回下 くぼと くぼとう

We will establish:

basic QR-method \Leftrightarrow Simultaneous iteration with $\hat{Q}^{(0)} = I \in \mathbb{R}^{m \times m}$.

Simultaneous iteration satisfies

•
$$\underline{Q}^0 = I$$

•
$$Z_k = A\underline{Q}^{(k-1)}$$

•
$$Z_k = \underline{Q}^{(k)} R^{(k)}$$

QR-method satisfies • $A^{(0)} = A$ • $A^{(k-1)} = Q^{(k)}R^{(k)}$ • $A^{(k)} = R^{(k)}Q^{(k)}$

通 と く ヨ と く ヨ と

We will establish:

basic QR-method \Leftrightarrow Simultaneous iteration with $\hat{Q}^{(0)} = I \in \mathbb{R}^{m \times m}$.

Simultaneous iteration satisfies

•
$$\underline{Q}^0 = I$$

•
$$Z_k = A\underline{Q}^{(k-1)}$$

•
$$Z_k = \underline{Q}^{(k)} R^{(k)}$$

•
$$A^{(k)} := (\underline{Q}^{(k)})^T A(\underline{Q}^{(k)})$$

QR-method satisfies

•
$$A^{(0)} = A$$

•
$$A^{(k-1)} = Q^{(k)} R^{(k)}$$

•
$$A^{(k)} = R^{(k)}Q^{(k)}$$

•
$$\underline{Q}^{(k)} := Q^{(1)} \cdots Q^{(k)}$$

• • = • • = •

We will establish:

basic QR-method \Leftrightarrow Simultaneous iteration with $\hat{Q}^{(0)} = I \in \mathbb{R}^{m \times m}$.

Simultaneous iteration satisfies

•
$$\underline{Q}^0 = I$$

•
$$Z_k = A\underline{Q}^{(k-1)}$$

•
$$Z_k = \underline{Q}^{(k)} R^{(k)}$$

•
$$A^{(k)} := (\underline{Q}^{(k)})^T A(\underline{Q}^{(k)})$$

QR-method satisfies

•
$$A^{(0)} = A$$

•
$$A^{(k-1)} = Q^{(k)} R^{(k)}$$

•
$$A^{(k)} = R^{(k)}Q^{(k)}$$

•
$$\underline{Q}^{(k)} := Q^{(1)} \cdots Q^{(k)}$$

• • = • • = •

We will establish:

basic QR-method \Leftrightarrow Simultaneous iteration with $\hat{Q}^{(0)} = I \in \mathbb{R}^{m \times m}$.

Simultaneous iteration satisfies • $\underline{Q}^0 = I$ • $Z_k = A\underline{Q}^{(k-1)}$ • $Z_k = \underline{Q}^{(k)}R^{(k)}$ • $A^{(k)} := (\underline{Q}^{(k)})^T A(\underline{Q}^{(k)})$

Define: $\underline{R}^{(k)} := R^{(k)} \cdots R^{(1)}$

QR-method satisfies • $A^{(0)} = A$ • $A^{(k-1)} = Q^{(k)}R^{(k)}$ • $A^{(k)} = R^{(k)}Q^{(k)}$ • $\underline{Q}^{(k)} := Q^{(1)}\cdots Q^{(k)}$

通 ト イヨ ト イヨ ト 二 ヨ

We will establish:

basic QR-method \Leftrightarrow Simultaneous iteration with $\hat{Q}^{(0)} = I \in \mathbb{R}^{m \times m}$.

Simultaneous iteration satisfies
• $\underline{Q}^0 = I$
• $Z_k = A\underline{Q}^{(k-1)}$
• $Z_k = \underline{Q}^{(k)} R^{(k)}$
• $A^{(k)} := (\underline{Q}^{(k)})^T A(\underline{Q}^{(k)})$

Define: $\underline{R}^{(k)} := R^{(k)} \cdots R^{(1)}$

QR-method satisfies • $A^{(0)} = A$ • $A^{(k-1)} = Q^{(k)}R^{(k)}$ • $A^{(k)} = R^{(k)}Q^{(k)}$ • $\underline{Q}^{(k)} := Q^{(1)}\cdots Q^{(k)}$

イロト 不得下 イヨト イヨト 二日

Essentially: The above equations generate the same sequence of matrices

We will establish:

basic QR-method \Leftrightarrow Simultaneous iteration with $\hat{Q}^{(0)} = I \in \mathbb{R}^{m \times m}$.

Simultaneous iteration satisfies
• $\underline{Q}^0 = I$
• $Z_k = A\underline{Q}^{(k-1)}$
• $Z_k = \underline{Q}^{(k)} R^{(k)}$
• $A^{(k)} := (\underline{Q}^{(k)})^T A(\underline{Q}^{(k)})$

Define: $\underline{R}^{(k)} := R^{(k)} \cdots R^{(1)}$

QR-method satisfies • $A^{(0)} = A$ • $A^{(k-1)} = Q^{(k)}R^{(k)}$ • $A^{(k)} = R^{(k)}Q^{(k)}$ • $\underline{Q}^{(k)} := Q^{(1)}\cdots Q^{(k)}$

ヘロト 人間ト 人間ト 人間ト

Essentially: The above equations generate the same sequence of matrices More precisely . . .

TB Theorem 38.3:

Theorem (Equivalence simultaneous iteration and QR-method) The above processes generate identical sequences of vectors. In particular,

$$A^k = \underline{Q}^{(k)} \underline{R}^{(k)}$$

and

$$A^{(k)} = (\underline{Q}^{(k)})^T A(\underline{Q}^{(k)}).$$

TB Theorem 38.3:

Theorem (Equivalence simultaneous iteration and QR-method) $% \label{eq:constraint}$

The above processes generate identical sequences of vectors. In particular,

$$A^k = \underline{Q}^{(k)} \underline{R}^{(k)}$$

and

$$A^{(k)} = (\underline{Q}^{(k)})^T A(\underline{Q}^{(k)}).$$

Beware: QR-factorization is not unique and equivalence only holds with one QR-factorization.
$$A^{(k)} = (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$$

Consequences

• Recall from USI-NSI equivalence and USI convergence. The columns in $\hat{Q}^{(k)}$ satisfy

$$q_i^{(k)} = \pm q_i + O(C^k).$$

where $C = \max_{1 < i < n} |\lambda_{i+1}| / |\lambda_i|$.

$$A^{(k)} = (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$$

Consequences

Recall from USI-NSI equivalence and USI convergence. The columns in Q^(k) satisfy

$$q_i^{(k)} = \pm q_i + O(C^k).$$

where $C = \max_{1 \le i \le n} |\lambda_{i+1}| / |\lambda_i|$. • $(A^k)_{i,j} = (q_i^{(k)})^T A q_j^{(k)}$ Diagonal i = j: $(A^{(k)})_{i,i} = (q_i^{(k)})^T A q_i^{(k)}$

$$A^{(k)} = (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$$

Consequences

• Recall from USI-NSI equivalence and USI convergence. The columns in $\hat{Q}^{(k)}$ satisfy

$$q_i^{(k)} = \pm q_i + O(C^k).$$

where
$$C = \max_{1 \le i \le n} |\lambda_{i+1}| / |\lambda_i|$$
.
• $(A^k)_{i,j} = (q_i^{(k)})^T A q_j^{(k)}$
Diagonal $i = j$: $(A^{(k)})_{i,i} = (q_i^{(k)})^T A q_i^{(k)} = r(q_i^{(k)})$ =Rayleigh quotient

< 3 > < 3 >

$$A^{(k)} = (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$$

Consequences

• Recall from USI-NSI equivalence and USI convergence. The columns in $\hat{Q}^{(k)}$ satisfy

$$q_i^{(k)} = \pm q_i + O(C^k).$$

where
$$C = \max_{1 < i < n} |\lambda_{i+1}| / |\lambda_i|$$
.
• $(A^k)_{i,j} = (q_i^{(k)})^T A q_j^{(k)}$
Diagonal $i = j$: $(A^{(k)})_{i,i} = (q_i^{(k)})^T A q_i^{(k)} = r(q_i^{(k)}) = \text{Rayleigh quotient}$
 $\Rightarrow (A^{(k)})_{i,i} = \lambda_i + O(C^{2k})$

- E > - E >

$$A^{(k)} = (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$$

Consequences

• Recall from USI-NSI equivalence and USI convergence. The columns in $\hat{Q}^{(k)}$ satisfy

$$q_i^{(k)} = \pm q_i + O(C^k).$$

where
$$C = \max_{1 \le i \le n} |\lambda_{i+1}| / |\lambda_i|$$
.
• $(A^k)_{i,j} = (q_i^{(k)})^T A q_j^{(k)}$
Diagonal $i = j$: $(A^{(k)})_{i,i} = (q_i^{(k)})^T A q_i^{(k)} = r(q_i^{(k)}) = \text{Rayleigh quotient}$
 $\Rightarrow (A^{(k)})_{i,i} = \lambda_i + O(C^{2k})$
• Off-diagonal $i \ne j$: $(A^{(k)})_{i,i}$

- ∢ ∃ ▶

$$A^{(k)} = (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$$

Consequences

• Recall from USI-NSI equivalence and USI convergence. The columns in $\hat{Q}^{(k)}$ satisfy

$$q_i^{(k)} = \pm q_i + O(C^k).$$

where
$$C = \max_{1 < i < n} |\lambda_{i+1}| / |\lambda_i|$$
.
• $(A^k)_{i,j} = (q_i^{(k)})^T A q_j^{(k)}$
• Diagonal $i = j$: $(A^{(k)})_{i,i} = (q_i^{(k)})^T A q_i^{(k)} = r(q_i^{(k)}) = \text{Rayleigh quotient}$
 $\Rightarrow (A^{(k)})_{i,i} = \lambda_i + O(C^{2k})$
• Off-diagonal $i \neq j$: $(A^{(k)})_{i,j} = (q_i^{(k)})^T A q_i^{(k)} = O(C^k)$

()

$$A^{(k)} = (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$$

Consequences

 Recall from USI-NSI equivalence and USI convergence. The columns in Q^(k) satisfy

$$q_i^{(k)} = \pm q_i + O(C^k).$$

where
$$C = \max_{1 \le i \le n} |\lambda_{i+1}| / |\lambda_i|$$
.
• $(A^k)_{i,j} = (q_i^{(k)})^T A q_j^{(k)}$
Diagonal $i = j$: $(A^{(k)})_{i,i} = (q_i^{(k)})^T A q_i^{(k)} = r(q_i^{(k)}) = \text{Rayleigh quotient}$
 $\Rightarrow (A^{(k)})_{i,i} = \lambda_i + O(C^{2k})$
Off-diagonal $i \ne j$: $(A^{(k)})_{i,j} = (q_i^{(k)})^T A q_j^{(k)} = O(C^k)$

Hence, $A^{(k)}$ will approach a triangular matrix

A B F A B F

* Matlab demo *

イロン イ理 とくほと くほとう