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Outline QR-method:

1 Decompositions (last lecture)

2 Basic QR-method (last lecture)
3 Improvement 1: Two-phase approach

I Hessenberg reduction
I Hessenberg QR-method

4 Improvement 2: Acceleration with shifts

5 Convergence theory

Reading instructions

Point 1: TB Lecture 24
Points 2-4: Lecture notes “QR-method” on course web page
Point 5: TB Chapter 28
(Extra reading: TB Chapter 25-26, 28-29)
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Basic QR-method (repetition last lecture)

Method for dense eigenvalue problems

Computes a Schur factorization

A = Q∗TQ

by using QR-factorizations

B = QR.

Basic QR-method

Ak−1 = QkRk

Ak := RkQk

Generates a sequence of matrices Ak with same eigenvalues, and in
general converge to a triangular matrix.
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The basic QR-method is elegant and robust but not very efficient:

Disadvantages

Computing a QR-factorization is quite expensive. One iteration of the
basic QR-method

O(m3).

The method often requires many iterations. (HW3, problem 1)
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Improvement 1: Two-phase approach

We will separate the computation into two phases:


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 →
Phase 1


× × × × ×
× × × × ×

× × × ×
× × ×

× ×

 →
Phase 2


× × × × ×

× × × ×
× × ×

× ×
×



Phases:

Phase 1: Reduce the matrix to a Hessenberg with similarity
transformations (Section 2.2.1 in lecture notes)

Phase 2: Specialize the QR-method to Hessenberg matrices (Section
2.2.2 in lecture notes)
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Phase 1: Hessenberg reduction

We will need matrices called Householder reflectors.

Definition

A matrix P ∈ Cm×m of the form

P = I − 2uu∗ where u ∈ Cm and ‖u‖ = 1

is called a Householder reflector.

Px

u
x Properties

P∗ = P−1 = P

Pz = z − 2u(u∗z) can be
computed with O(m)
operations.

· · ·
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Householder reflectors satisfying Px = αe1

Problem

Given a vector x compute a Householder reflector such that

Px = αe1.

Solution (Lemma 2.2.3)

Let ρ = sign(x1),

z := x − ρ‖x‖e1 =


x1 − ρ‖x‖

x2
...

xn


and

u = z/‖z‖.

Then, P = I − 2uu∗ is a Householder reflector that satisfies Px = αe1.
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* Matlab demo showing Householder reflectors *
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We will be able to construct m − 2 householder reflectors that bring the
matrix to Hessenberg form.

Elimination for first column

P1 :=


1 0 0 0 0
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×

 =

[
1 0T

0 I − 2u1uT
1

]
.

Use Lemma 2.2.1 with xT = [a21, . . . , an1] to select u1 such that

P1A =


× × × × ×
× × × × ×
× × × ×
× × × ×
× × × ×


In order to have a similarity transformation mult from right:

P1AP−11 = P1AP1 = same structure as P1A.
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Elimination for second column

Repeat the process with:

P2 =

1 0 0T

0 1 0T

0 0 I − 2u2uT
2



where u2 is constructed from the n− 2 last elements of the second column
of P1AP∗1 .

P1AP1 =

[× × × × ×
× × × × ×

× × × ×
× × × ×
× × × ×

]
−→

mult. from
left with P2

[× × × × ×
× × × × ×

× × × ×
× × ×
× × ×

]

−→
mult. from

right with P2

[× × × × ×
× × × × ×

× × × ×
× × ×
× × ×

]
= P2P1AP1P2
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* Matlab demo of the first two steps of the Hessenberg reduction *
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The iteration can be implemented without explicit use of the P matrices.
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Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step of Hessenberg is Hessenberg *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates
Ak are Hessenberg matrices.

Recall: basic QR-step is O(m3).

Hessenberg structure can be exploited such that we can carry out a
QR-step with less operations.
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Definition (Givens rotation)

The matrix G (i , j , c , s) ∈ Rn×n corresponding to a Givens rotation is
defined by

G (i , j , c , s) :=


I

c −s
I

s c
I

 ,
which deviates from identity at row and column i and j .

ej

ei

x

Gx
θ

Properties

G ∗ = G−1

Gz can be computed with
O(1) operations

· · ·
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The Q-matrix in the QR-factorization of a Hessenberg matrix can be
factorized as a product of m − 1 Givens rotators.

Theorem

Suppose A ∈ Cm×m is a Hessenberg matrix. Let Hi be generated as
follows H1 = A

Hi+1 = GT
i Hi , i = 1, . . . ,m − 1

where Gi = G (i , i + 1, (Hi )i ,i/ri , (Hi )i+1,i/ri ) and ri =
√

(Hi )2i ,i + (Hi )2i+1,i

and we assume ri 6= 0. Then, Hn is upper triangular and

A = (G1G2 · · ·Gm−1)Hn = QR

is a QR-factorization of A.

Proof idea: Only one rotator required to bring one column of a Hessenberg
matrix to a triangular.
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Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrix
but only implicitly apply the Givens rotators

: Let

Ak−1 = (G1G2 · · ·Gm−1)Rm

and
Ak = Rm(G1G2 · · ·Gm−1) = (· · · ((RmG1)G2) · · · )Gm

Complexity of one QR-step of for a Hessenberg matrix

We need to apply 2(m − 1) givens rotators to compute one QR-step.

One givens rotator applied to a vector can be computed in O(1)
operations.

One givens rotator applied to matrix can be computed in O(m)
operations.

⇒
the complexity of one Hessenberg QR step = O(m2)
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Givens rotators only modify very few elements.
Several optimizations possible. ⇒
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Show animation again:

http://www.youtube.com/watch?v=qmgxzsWWsNc

Acceleration still remains
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Outline:

Basic QR-method

Improvement 1: Two-phase approach
I Hessenberg reduction
I Hessenberg QR-method

Improvement 2: Acceleration with shifts

Convergence theory
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Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method

One step of shifted QR-method:

H − µI = QR

H̄ = RQ + µI

Note:
H̄ = RQ + µI = QT (H − µI ))Q + µI = QTHQ

⇒ One step of shifted QR-method is a similarity transformation, with a
different Q matrix.
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Idealized situation: Let µ = λ(H)

Suppose µ is an eigenvalue:
⇒ H − µI is a singular Hessenberg matrix.

QR-factorization of singular Hessenberg matrices (Lemma 2.3.1)

The R-matrix in the QR-decomposition of a singular unreduced
Hessenberg matrix has the structure

R =


× × × × ×
× × × ×
× × ×
× ×

0

 .

* Show QR-factorization of singular Hessenberg matrix in matlab *
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Suppose Q, R a QR-factorization of a Hessenberg matrix and

R =

× × × × ×
× × × ×

× × ×
× ×

0

.
Then,

RQ =

× × × × ×
× × × × ×

× × × ×
× × ×

0


and

H̄ = RQ + λI =

× × × × ×
× × × × ×

× × × ×
× × ×

λ

.
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More precisely:

Lemma (Lemma 2.3.2)

Suppose λ is an eigenvalue of the Hessenberg matrix H. Let H̄ be the
result of one shifted QR-step. Then,

h̄n,n−1 = 0

h̄n,n = λ.
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Select the shift

How to select the shifts?

Shifted QR-method with µ = λ computes an eigenvalue in one step.

The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate
eigenvalue. Rayleigh shifts:

µ := rm,m.

Explanation

The QR-method can be interpreted as equivalent to variant of Power
Method applied to A. (Will be shown next)

The QR-method can be interpreted as equivalent to variant of Power
Method applied to A−1. (Proof sketched in TB Chapter 29) ⇒
Rayleigh shifts can be interpreted as Rayleigh quotient iteration.
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Deflation

QR-step on reduced Hessenberg matrix

Suppose

H =

(
H0 H1

0 H3

)
,

where H3 is upper triangular and let

H̄ =

(
H̄0 H̄1

H̄2 H̄3

)
,

be the result of one (shifted) QR-step.

Then, H̄2 = 0, H̄3 = H3 and H̄0 is
the result of one (shifted) QR-step applied to H0.

⇒ We can reduce the active matrix when an eigenvalue is converged.

This is called deflation.
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Rayleigh shifts can be combined with deflation ⇒

http://www.youtube.com/watch?v=qmgxzsWWsNc
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Outline:

Basic QR-method

Improvement 1: Two-phase approach
I Hessenberg reduction
I Hessenberg QR-method

Improvement 2: Acceleration with shifts

Convergence theory
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Convergence theory - TB Chapter 28

Didactic simplification for convergence of QR-method: Assume A = AT .

Convergence characterization

A generalization of power method: USI (Unnormalized simultaneous
iteration)

Show convergence properties of USI

A variant Normalized Simultaneous Iteration (NSI)

Show USI ⇔ NSI ⇔ QR-method
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Definition: Unnormalized simultaneous iteration (USI)

A generalization of power method with n vectors “simultaneously”

V (0) = [v
(0)
1 , . . . , v

(0)
n ] ∈ Rm×n.

Define
V (k) := AkV (0).

A QR-factorization generalizes the normalization step:

Q̂(k)R̂(k) = V (k).
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Convergence of USI

Assumptions:

Let eigenvalues ordered and assume:

|λ1| > |λ2| > · · · > |λn+1| ≥ |λn+2| ≥ · · · ≥ |λm|.

Assume leading principal submatrices of Q̂TV (0) are nonsingular,
where Q̂ = (q1, . . . , qm) are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with V (0) and assumptions
above are satisfied. Let qj , 1, . . . , n be the first n eigenvectors of A. Then,

as k →∞, the columns of the matrices Q̂(k) convergence linearly to qj

‖q(k)
j −±qj‖ = O(C k), j = 1, . . . , n,

where C = max1≤k≤n |λk+1|/|λk |.
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Normalized Simultaneous Iteration (NSI)

Variants of the power method. Equivalent:

(i) vk = Akv0
‖Akv0‖

(ii) vk =
Avk−1

‖Avk−1‖

USI is a generlization of (i).
NSI is a generalization of (ii).

Algorithm: (Normalized) Simultaneous Iteration

Input Q̂(0) ∈ Rm×n

For k = 1, . . . ,
I Set Z = AQ̂k−1

I Compute QR-factorization Q̂(k)R̂(k) = Z
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USI and NSI are equivalent.

More precisely:

Equivalence USI and NSI (TB Thm 28.2)

Suppose assumptions above are satisfied. If USI and NSI are started with
the same vector they will generate the same sequence of matrices Q̂k and
R̂k .
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Simultaneous iteration and QR-method

We will establish:

basic QR-method ⇔ Simultaneous iteration with Q̂(0) = I ∈ Rm×m.

Simultaneous iteration satisfies

Q0 = I

Zk = AQ(k−1)

Zk = Q(k)R(k)

A(k) := (Q(k))TA(Q(k))

QR-method satisfies

A(0) = A

A(k−1) = Q(k)R(k)

A(k) = R(k)Q(k)

Q(k) := Q(1) · · ·Q(k)

Define: R(k) := R(k) · · ·R(1)

Essentially: The above equations generate the same sequence of matrices
More precisely . . .
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TB Theorem 38.3:

Theorem (Equivalence simultaneous iteration and QR-method )

The above processes generate identical sequences of vectors. In particular,

Ak = Q(k)R(k)

and
A(k) = (Q(k))TA(Q(k)).

Beware: QR-factorization is not unique and equivalence only holds with
one QR-factorization.
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Important property:
A(k) = (Q(k))TAQ(k)

Consequences

Recall from USI-NSI equivalence and USI convergence. The columns
in Q̂(k) satisfy

q
(k)
i = ±qi + O(C k).

where C = max1<i<n |λi+1|/|λi |.

(Ak)i ,j = (q
(k)
i )TAq

(k)
j

I Diagonal i = j : (A(k))i,i = (q
(k)
i )TAq

(k)
i = r(q

(k)
i ) =Rayleigh quotient

⇒ (A(k))i,i = λi + O(C 2k)

I Off-diagonal i 6= j : (A(k))i,j= (q
(k)
i )TAq

(k)
j = O(C k)

Hence, A(k) will approach a triangular matrix
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* Matlab demo *
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