## SF2524 Matrix Computations for Large-scale Systems Exam

**Aids: None Time: Four hours** 

Grades: E: 16 points, D: 19 points, C: 22 points, B: 25 points, A: 28 points (out of the possible 35 points, including bonus points from homeworks). Notation in exam / course:  $P_m := \{ \text{ polynomials of degree } m \}, P_m^0 := \{ p \in P_m : p(0) = 1 \}.$ 

Problem 1 (4p) We consider the special case of Rayleigh quotient for real matrices and real eigenpairs. Let  $r(v) := v^T A v / v^T v$  be the Rayleigh quotient where  $A \in \mathbb{R}^{n \times n}$ . Suppose  $v_* \in \mathbb{R}^n$  is a normalized real eigenvector corresponding to a real eigenvalue  $\lambda_* \in \mathbb{R}$ .

- (a) State the Rayleigh quotient iteration.
- (b) Derive formula for  $w \in \mathbb{R}^n$  such that  $r(v) = \lambda_* + w^T(v v_*) + \mathcal{O}(||v v_*||^2)$ . *Hint: For sufficiently small x, we have*  $\frac{1}{1+x} = 1 x + \mathcal{O}(x^2)$
- (c) In what sense is the Rayleigh quotient better for symmetric matrices?

**Problem 2** (3p) Erik the engineer discretizes a partial differential equation and finds out that he needs to solve Ax = b where  $A \in \mathbb{R}^{n \times n}$  is a large sparse symmetric positive definite matrix with condition number  $\kappa(A) := ||A|| ||A^{-1}|| \gg 1$ . He needs to decide if he should use an implementation of CG (Conjugate Gradients) or CGN (Conjugate Gradients Normal equations) for his problem.

- (a) What is the relationship between CG and CGN?
- (b) According to a theorem in the course, the error of CG is bounded by

$$\frac{\|\boldsymbol{e}_n\|_A}{\|\boldsymbol{e}_0\|_A} \le 2\left(\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\right)^m.$$
(1)

Derive a bound for the error in CGN in terms of  $\kappa(A)$  based on (1). Which method has in general faster convergence in Erik's case?

**Problem 3** (4p) Suppose the eigenvalues of a matrix A are given as in the figure to the right. Suppose eigenvalues are distinct and  $\kappa(V) = 1$ .

- (a) State a definition of the approximation generated by GMRES.
- (b) We apply *m* steps of GMRES to Ax = b and get approximation  $x_m$ . Derive a  $\alpha$  and  $\beta$  such that

$$\frac{\|Ax_m-b\|}{\|b\|} \leq \alpha\beta^m.$$

Clearly specify which theorems/results you use and what quantities you observe in the figure. You may use any theorem/result derived in the course.



## Problem 4 (4p) Let

 $A = \begin{bmatrix} 1 & -3 \\ -1 & 1 \end{bmatrix}.$ 

(a) Describe the basic QR-method and use the output to the right to compute one step for A. Describe clearly how you use the output. >> F=[1 1; -1 ,1]; >> T=[1,-2;0,-1]; ans = 1 -3 -1 1

(b) Describe the shifted QR-method and compute one step for A.

**Problem 5** (4p) Let  $T \in \mathbb{R}^{3 \times 3}$  be an **upper triangular matrix** with distinct eigenvalues and let

$$f(T) = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{13} \\ f_{31} & f_{32} & f_{33} \end{bmatrix},$$

where the matrix function is defined via the Jordan definition or Taylor definition.

- (a) Derive explicit formulas for  $f_{11}$ ,  $f_{21}$ ,  $f_{31}$ ,  $f_{22}$ ,  $f_{32}$ ,  $f_{33}$  involving only elements of T.
- (b) Derive an explicit formula for  $f_{12}$  involving only elements of T and the values in (a).

**Problem 6** (5p) Let  $Q_m$  and  $\underline{H}_m$  be an Arnoldi factorization of A.

- (a) How are the eigenvalue approximations computed from the Arnoldi factorization in Arnoldi's method for eigenvalue problems?
- (b) State the Krylov approximation  $f_m$  of f(A)b.
- (c) Under certain conditions on A and f, the error of the Krylov approximation is bounded by

$$||f(A)b - f_m|| \le 2||b|| \min_{p \in P_{m-1}} \max_{z \in \Omega} |f(z) - p(z)|$$

where  $\Omega$  is a compact set containing all eigenvalues. Suppose the eigenvalues are real and in the interval I = (0.5, 1.5). Determine  $\alpha$  and  $\beta$  such that

$$\|f(A)b-f_m\|\leq \alpha\frac{\beta^m}{m!}$$

for all *m* and for any function satisfying  $|f^{(k)}(x)| \leq C$  for all  $x \in I, k \in \mathbb{Z}$ . *Hint: The remainder of the truncated Taylor series satisfies*  $f(x) - \sum_{k=0}^{m-1} (x-\mu)^k \frac{f^{(k)}(\mu)}{k!} =$  $(x-\mu)^m \frac{f^{(m)}(\xi)}{m!}$ , for some value  $\xi \in [x,\mu]$ .

**Problem 7** (5p) Suppose  $A \in \mathbb{R}^{n \times n}$  is a symmetric matrix, such that  $A = V \Lambda V^T$  where  $V^T V = I$ and the columns of V are eigenvectors. We start the Arnoldi method with a vector b such that it is orthogonal to the first eigenvector:  $x_1^T b = 0$ . In this case, the error indicator for Arnoldi's method for eigenvalue problems (for the second eigenvalue  $\lambda_2$ ) is bounded by

$$\|(I - Q_m Q_m^T) x_2\| \le \xi_2 \tilde{\varepsilon}_2^{(m)} \tag{2}$$

for some constant  $\xi_2$ , where

$$\tilde{\varepsilon}_2^{(m)} := \min_{\substack{p \in P_{m-1} \\ p(\lambda_2) = 1}} \max(|p(\lambda_3)|, \dots, |p(\lambda_n)|).$$
(3)

- (a) Suppose  $\lambda_k = 1 + \sin\left(\frac{(k-1)\pi}{2(n-1)}\right)$ ,  $k = 1, \dots n$ . Use (2) to derive  $\beta$  such that  $\|(I QQ_m^T)x_2\| \le 1$  $\alpha\beta^{m-1}$  for some  $\alpha$ .
- (b) Prove (2) and (3) and derive a formula for the constant  $\xi_2$ .