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SF2524 Matrix Computations for Large-scale Systems
Exam

Aids: None Time: Four hours

Grades: E: 16 points, D: 19 points, C: 22 points, B: 25 points, A: 28 points (out of the
possible 35 points, including bonus points from homeworks).
Notation in exam / course: Pm := { polynomials of degree m}, P0

m := {p ∈ Pm : p(0) = 1}.

Problem 1 (4p) We consider the special case of Rayleigh quotient for real matrices and real eigen-
pairs. Let r(v) := vT Av/vT v be the Rayleigh quotient where A ∈ Rn×n. Suppose v∗ ∈ Rn is a normal-
ized real eigenvector corresponding to a real eigenvalue λ∗ ∈ R.

(a) State the Rayleigh quotient iteration.
(b) Derive formula for w ∈ Rn such that r(v) = λ∗+wT (v− v∗)+O(‖v− v∗‖2).

Hint: For sufficiently small x, we have 1
1+x = 1− x+O(x2)

(c) In what sense is the Rayleigh quotient better for symmetric matrices?

Problem 2 (3p) Erik the engineer discretizes a partial differential equation and finds out that he needs
to solve Ax = b where A ∈ Rn×n is a large sparse symmetric positive definite matrix with condition
number κ(A) := ‖A‖‖A−1‖ � 1. He needs to decide if he should use an implementation of CG
(Conjugate Gradients) or CGN (Conjugate Gradients Normal equations) for his problem.

(a) What is the relationship between CG and CGN?
(b) According to a theorem in the course, the error of CG is bounded by

‖en‖A

‖e0‖A
≤ 2

(√
κ(A)−1√
κ(A)+1

)m

. (1)

Derive a bound for the error in CGN in terms of κ(A) based on (1). Which method has in
general faster convergence in Erik’s case?

Problem 3 (4p) Suppose the eigenvalues of a matrix A are given as in the figure to the right. Suppose
eigenvalues are distinct and κ(V ) = 1.

(a) State a definition of the approximation generated by
GMRES.

(b) We apply m steps of GMRES to Ax = b and get ap-
proximation xm. Derive a α and β such that

‖Axm−b‖
‖b‖

≤ αβ
m.

Clearly specify which theorems/results you use and
what quantities you observe in the figure. You may
use any theorem/result derived in the course.
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Problem 4 (4p)
Let

A =

[
1 −3
−1 1

]
.

(a) Describe the basic QR-method and use the output to the right to
compute one step for A. Describe clearly how you use the output.

(b) Describe the shifted QR-method and compute one step for A.

>> F=[1 1; -1 ,1];

>> T=[1,-2;0,-1];

>> F*T

ans =

1 -3

-1 1

Problem 5 (4p) Let T ∈ R3×3 be an upper triangular matrix with distinct eigenvalues and let

f (T ) =

 f11 f12 f13
f21 f22 f13
f31 f32 f33

 ,
where the matrix function is defined via the Jordan definition or Taylor definition.

(a) Derive explicit formulas for f11, f21, f31, f22, f32, f33 involving only elements of T .
(b) Derive an explicit formula for f12 involving only elements of T and the values in (a).

Problem 6 (5p) Let Qm and Hm be an Arnoldi factorization of A.

(a) How are the eigenvalue approximations computed from the Arnoldi factorization in Arnoldi’s
method for eigenvalue problems?

(b) State the Krylov approximation fm of f (A)b.
(c) Under certain conditions on A and f , the error of the Krylov approximation is bounded by

‖ f (A)b− fm‖ ≤ 2‖b‖ min
p∈Pm−1

max
z∈Ω

| f (z)− p(z)|

where Ω is a compact set containing all eigenvalues. Suppose the eigenvalues are real and in
the interval I = (0.5,1.5). Determine α and β such that

‖ f (A)b− fm‖ ≤ α
β m

m!
,

for all m and for any function satisfying | f (k)(x)| ≤C for all x ∈ I, k ∈ Z.
Hint: The remainder of the truncated Taylor series satisfies f (x)−∑

m−1
k=0 (x−µ)k f (k)(µ)

k! =

(x−µ)m f (m)(ξ )
m! , for some value ξ ∈ [x,µ].

Problem 7 (5p) Suppose A ∈ Rn×n is a symmetric matrix, such that A = V ΛV T where V TV = I
and the columns of V are eigenvectors. We start the Arnoldi method with a vector b such that it is
orthogonal to the first eigenvector: xT

1 b = 0. In this case, the error indicator for Arnoldi’s method for
eigenvalue problems (for the second eigenvalue λ2) is bounded by

‖(I−QmQT
m)x2‖ ≤ ξ2ε̃

(m)
2 (2)

for some constant ξ2, where

ε̃
(m)
2 := min

p∈Pm−1

p(λ2)=1

max(|p(λ3)|, . . . , |p(λn)|). (3)

(a) Suppose λk = 1+ sin
(
(k−1)π
2(n−1)

)
, k = 1, . . .n. Use (2) to derive β such that ‖(I−QQT

m)x2‖ ≤
αβ m−1 for some α .

(b) Prove (2) and (3) and derive a formula for the constant ξ2.
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