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SF2524 Matrix Computations for Large-scale Systems
Exam - solution

Aids: None Time: Four hours

Grades: E: 16 points, D: 19 points, C: 22 points, B: 25 points, A: 28 points (out of the
possible 35 points, including bonus points from homeworks).
Notation in exam / course: Pm := { polynomials of degree m}, P0

m := {p ∈ Pm : p(0) = 1}.

Problem 1 (4p) We consider the special case of Rayleigh quotient for real matrices and real eigen-
pairs. Let r(v) := vT Av/vT v be the Rayleigh quotient where A ∈ Rn×n. Suppose v∗ ∈ Rn is a normal-
ized real eigenvector corresponding to a real eigenvalue λ∗ ∈ R.

(a) State the Rayleigh quotient iteration.
(b) Derive formula for w ∈ Rn such that r(v) = λ∗+wT (v− v∗)+O(‖v− v∗‖2).

Hint: For sufficiently small x, we have 1
1+x = 1− x+O(x2)

(c) In what sense is the Rayleigh quotient better for symmetric matrices?

Solution:

(a) The Rayleigh quotient iteration is given by

µk = r(uk)

xk+1 = (A−µkI)−1uk

uk+1 =
xk+1

‖xk+1‖
.

(b) Define ∆ = v− v?. Then

r(v) = r(v?+∆) =
(v?+∆)T A(v?+∆)

(v?+∆)T (v?+∆)

(v?+∆)T A(v?+∆) = λ vT
? v?︸︷︷︸
=1

+λ∆
T v?+ vT

? A∆+∆
T A∆

(v?+∆)T (v?+∆) = vT
? v?︸︷︷︸
=1

+2vT
? ∆+∆

T
∆.

Therefore, from the hint with x := 2vT
? ∆+∆T ∆, we have

r(v) =
(v?+∆)T A(v?+∆)

1+2vT
? ∆+∆T ∆

=
(
λ?+

(
λvT

? + vT
? A
)

∆+∆
T A∆

)(
1−2vT

? ∆−∆
T

∆+O(‖∆‖2)
)

= λ?+(λvT
? + vT

? A−λ?2vT
? )∆+O(‖∆‖2).

Hence, the answer to the problem is

wT = vT
? A−λ?vT

? .



(c) RQ for symmetric matrices has cubic convergence. RQ for non-symmetric matrices has in
general only quadratic convergence.
Additional note not required for full points: In (b), this advantage can be seen from the fact that
vT
? A−λ?v? = 0 for symmetric problems, since the left and the right eigenvectors are equal for

symmetric matrices.

Problem 2 (3p) Erik the engineer discretizes a partial differential equation and finds out that he needs
to solve Ax = b where A ∈ Rn×n is a large sparse symmetric positive definite matrix with condition
number κ(A) := ‖A‖‖A−1‖ � 1. He needs to decide if he should use an implementation of CG
(Conjugate Gradients) or CGN (Conjugate Gradients Normal equations) for his problem.

(a) What is the relationship between CG and CGN?
(b) According to a theorem in the course, the error of CG is bounded by

‖en‖A

‖e0‖A
≤ 2

(√
κ(A)−1√
κ(A)+1

)m

. (1)

Derive a bound for the error in CGN in terms of κ(A) based on (1). Which method has in
general faster convergence in Erik’s case?

Solution:

(a) CGN is CG applied to the equations

Ãx = AT b

where Ã = AT A.
(b) We can directly compute a bound from the CG bound

‖en‖Ã
‖e0‖Ã

= 2

(√
κ(Ã)−1√
κ(Ã)+1

)n

= 2
(

κ(A)−1
κ(A)+1

)n

since
κ(Ã) = κ(AT A) := ‖AT A‖2︸ ︷︷ ︸

σn(A)2

‖(AT A)−1‖2︸ ︷︷ ︸
σ1(A)2

= ‖A‖2
2‖A−1‖2

2 = κ(A)2.

For symmetric positive definite matrices, CG is in general faster than CGN.
Additional note not required for full points: The advantage of CGN can be seen from the fact
that κ(Ã) = κ(A)2� κ(A) since κ(A)� 1 and (κ(Ã)−1)/(κ(Ã)+1)� (κ(A)−1)/(κ(A)+
1). Note, however, that the bounds are given in different norms ‖x‖A and ‖x‖AT A and a complete
theoretical justification would require relations between the norms.
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Problem 3 (4p) Suppose the eigenvalues of a matrix A are given as in the figure to the right. Suppose
eigenvalues are distinct and κ(V ) = 1.

(a) State a definition of the approximation generated by
GMRES.

(b) We apply m steps of GMRES to Ax = b and get ap-
proximation xm. Derive a α and β such that

‖Axm−b‖
‖b‖

≤ αβ
m.

Clearly specify which theorems/results you use and
what quantities you observe in the figure. You may
use any theorem/result derived in the course.
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Solution:

(a) The GMRES approximation is given by

x? = argmin
x∈Kn(A,b)

‖Ax−b‖2.

where Kn(A,b) = span(b,Ab, . . . ,An−1b).
(b) Direct application of the min-max bound:

‖rn‖
‖b‖
≤ κ(V )max

p∈P0
n

{|p(λ1)|, · · · , |p(λn)|}

corollary in lecture notes
≤ κ(V )

∣∣∣ρ
c

∣∣∣n ,
where C(c,ρ) is a disc with radius ρ centred at c. We can select c = 2 and ρ = 1 =⇒

‖Axn−b‖
‖b‖

≤ αβ
n,

where α = κ(V ) and β =
∣∣∣ρ

c

∣∣∣= 1
2

.

Problem 4 (4p)
Let

A =

[
1 −3
−1 1

]
.

(a) Describe the basic QR-method and use the output to the right to
compute one step for A. Describe clearly how you use the output.

(b) Describe the shifted QR-method and compute one step for A.

>> F=[1 1; -1 ,1];

>> T=[1,-2;0,-1];

>> F*T

ans =

1 -3

-1 1
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Solution:

(a) Basic QR-method:

A1 = A

Compute Qk,Rk : QkRk = Ak, where Qk orthogonal, and Rk upper triangular

Set Ak+1 = RkQk.

By the hint in matlab program

A1 = A =

[
1 −3
−1 1

]
=

[
1/
√

2 1/
√

2
−1/
√

2 1/
√

2

]
R,

where

R =
√

2
[

1 −2
0 −1

]
.

A2 = R1Q1 =
√

2
[

1 −2
0 −1

][
1 1
−1 1

]
1√
2
=

[
3 −1
1 −1

]
.

(b) The shifted QR-method (with Rayleigh quotient shift) is here given by, where µ = a22:

– Let Ã = A−µI
– Let Q,R be a QR-factorization of Ã = QR
– Let A1 = RQ+µI.

In formulas:

Ã = A−σ I σ=a22=1
=

[
0 −3
−1 0

]
.

QR = Ã if

Q =

[
0 1
1 0

]
, R =

[
−1 0
0 −3

]
.

Hence,

RQ+σ I =
[
−1 0
0 −3

][
0 1
1 0

]
+ I =

[
0 −1
−3 0

]
+ I =

[
1 −1
−3 1

]
.

Problem 5 (4p) Let T ∈ R3×3 be an upper triangular matrix with distinct eigenvalues and let

f (T ) =

 f11 f12 f13
f21 f22 f13
f31 f32 f33

 ,
where the matrix function is defined via the Jordan definition or Taylor definition.

(a) Derive explicit formulas for f11, f21, f31, f22, f32, f33 involving only elements of T .
(b) Derive an explicit formula for f12 involving only elements of T and the values in (a).
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Solution:

(a) Taylor definition

f (T ) =
∞

∑
i=0

f (i)(0)
i!

T i,

where

T i =


t i
11 × ·· · ×

0 t i
22

. . .
...

...
. . . . . . ×

0 · · · 0 t i
nn


and × denotes a non-zero element. Hence,

f (T ) =


∑

∞
i=0

f (i)(0)
i! t i

11 × ·· · ×

0
. . . . . .

...
...

. . . . . . ×
0 · · · 0 ∑

∞
i=0

f (i)(0)
i! t i

nn

=


f (t11) × ·· · ×

0
. . . . . .

...
...

. . . . . . ×
0 · · · 0 f (tnn)

 .
(b) The proof is essentially the first step in the derivation of the Schur-Parlett method, described in

the lectures and Golub and Van Loan. The derivation below is given in a more general form
than necessary for this specific problem, in order to illustrate the general principle.

First note that from the Taylor definition we know directly that f (T ) and T commute such that
f (T )T = T f (T ). From (a) we know that f (T ) is upper triangular and

f (T )T =

 f11 f12 f13
0 f22 f13
0 0 f33

t11 t12 t13
0 t22 t13
0 0 t33

=

t11 t12 t13
0 t22 t13
0 0 t33

 f11 f12 f13
0 f22 f13
0 0 f33,

= T f (T ) (*)

where fii = f (tii). Multiplication of (*) from the right with

J =

1 0
0 1
0 0


and from the left with JT essentially extracts the top left blocks of the matrices since

JT

 f11 f12 f13
0 f22 f13
0 0 f33

t11 t12 t13
0 t22 t13
0 0 t33

J =

[
f11 f12
0 f22

][
t11 t12
0 t22

]
and correspondingly for T f (T ). Hence,[

f11 f12
0 f22

][
t11 t12
0 t22

]
=

[
t11 t12
0 t22

][
f11 f12
0 f22

]
In particular the (1,2)-element gives the equation

f11t12 + f12t22 = t11 f12 + t12 f22.

We solve this equation explicitly for the only unknown quantity f12:

f12 = t12
f11− f22

t11− t22
= t12

f (t11)− f (t22)

t11− t22
.
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Problem 6 (5p) Let Qm and Hm be an Arnoldi factorization of A.

(a) How are the eigenvalue approximations computed from the Arnoldi factorization in Arnoldi’s
method for eigenvalue problems?

(b) State the Krylov approximation fm of f (A)b.
(c) Under certain conditions on A and f , the error of the Krylov approximation is bounded by

‖ f (A)b− fm‖ ≤ 2‖b‖ min
p∈Pm−1

max
z∈Ω

| f (z)− p(z)|

where Ω is a compact set containing all eigenvalues. Suppose the eigenvalues are real and in
the interval I = (0.5,1.5). Determine α and β such that

‖ f (A)b− fm‖ ≤ α
β m

m!
,

for all m and for any function satisfying | f (k)(x)| ≤C for all x ∈ I, k ∈ Z.
Hint: The remainder of the truncated Taylor series satisfies f (x)−∑

m−1
k=0 (x−µ)k f (k)(µ)

k! =

(x−µ)m f (m)(ξ )
m! , for some value ξ ∈ [x,µ].

Solution:

(a) If Hm ∈ R(m+1)×m, the approximate eigenvalues of A are eigenvalues of Hm ∈ Rm×m, which are
also known as Ritz values.

(b) The Arnoldi approximation for functions of matrices is given by fm = Qm f (Hm)e1 · ‖b‖
(c) We use the corollary and take the truncated Taylor series as p = q

f (x) = p(x)+
f (m)(ξ )

m!
(x−µ)m︸ ︷︷ ︸
‖·‖≤|0.5|m

=⇒

| f (z)− p(z)| ≤ 2‖b‖C 0.5m

m!
=⇒ α = 2‖b‖C,β = 0.5m.

Problem 7 (5p) Suppose A ∈ Rn×n is a symmetric matrix, such that A = V ΛV T where V TV = I
and the columns of V are eigenvectors. We start the Arnoldi method with a vector b such that it is
orthogonal to the first eigenvector: xT

1 b = 0. In this case, the error indicator for Arnoldi’s method for
eigenvalue problems (for the second eigenvalue λ2) is bounded by

‖(I−QmQT
m)x2‖ ≤ ξ2ε̃

(m)
2 (2)

for some constant ξ2, where

ε̃
(m)
2 := min

p∈Pm−1

p(λ2)=1

max(|p(λ3)|, . . . , |p(λn)|). (3)

(a) Suppose λk = 1+ sin
(
(k−1)π
2(n−1)

)
, k = 1, . . .n. Use (2) to derive β such that ‖(I−QQT

m)x2‖ ≤
αβ m−1 for some α .
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(b) Prove (2) and (3) and derive a formula for the constant ξ2.

Solution:

(a)

λ1 = 1

λ2 = 1+ sin(
π

2(n−1)
)

λ3 = 1+ sin(
2π

2(n−1)
) = 1+ sin(

π

n−1
)

...

λn = 1+ sin(
(n−1)π
2(n−1)

) = 2.

Note that the eigenvalues λ3, . . . ,λn are contained in the interval I = [1+ sin( π

n−1),2]. We use
the polynomial defined via a disk that we have used in several proofs in the course. We can
select

c =
1+ sin( π

n−1)+2
2

=
3
2
+

1
2

sin(
π

n−1
),

and
ρ = 2− c = 0.5− 1

2
sin(

π

n−1
),

such that λ3, . . . ,λn are contained in a disk of radius ρ centered at c. By using the polynomial

p(z) =
(

z− c
λ2− c

)m−1

,

we obtain for any z = λi, i = 3, . . . ,n, that

|p(z)| ≤
∣∣∣∣ ρ

λ2− c

∣∣∣∣m−1

=

(
1− sin( π

n−1)

1−2sin( π

2(n−1))+ sin( π

n−1)

)m−1

= β
m−1.

(b) The starting vector can be expressed as a linear combination of eigenvectors (since the eigen-
vectors span Rn),

b = α1x1 + · · ·+αnxn,

where the eigenvectors are normalized. Since, xT
1 b = 0 from the assumption in the question and

the eigenvectors are orthogonal we have

0 = xT
1 b = α1xT

1 x1 + · · ·+αnxT
1 xn = α1xT

1 x1.

Due to the fact that the eigenvectors are normalied, we have

α1 = 0.

7



The proof follows the same line of reasoning as the proof in the lecture notes, except “step 3”.
The following sequence of equalities is the same as in the lecture notes except equality (**),
where we use that α1 = 0.

‖(I−QQT )α2x2‖= min
p∈Pm−1

‖α2x2− p(A)
n

∑
j=1

α jx j‖

= min
p∈Pm−1

∥∥∥∥∥α2x2−
n

∑
j=1

α j p(λ j)x j

∥∥∥∥∥
= min

p∈Pm−1

∥∥∥∥∥α2x2−
n

∑
j=1, j 6=1

α j p(λ j)x j

∥∥∥∥∥ (**)

≤ min
p∈Pm−1

p(λ2)=1

∥∥∥∥∥α2x2−
n

∑
j=1, j 6=1

α j p(λ j)x j

∥∥∥∥∥
= min

p∈Pm−1

p(λ2)=1

‖α2x2−α2x2−
n

∑
j=1, j 6=1

j 6=2

α j p(λ j)x j‖

= min
p∈Pm−1

p(λ2)=1

‖
n

∑
j=1

j 6=2, j 6=1

α j p(λ j)x j‖

≤ (
n

∑
j=1
j 6=2

|α j|) · min
p∈Pm−1

p(λ2)=1

max
j 6=2, j 6=1

(|p(λ j)|)

= (
n

∑
j=1
j 6=2

|α j|) · ε̃(m)
2

The conclusion is established by dividing the equation by |α2|.
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