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SF2524 Matrix Computations for Large-scale Systems
Exam - solution

Aids: None Time: Four hours

Grades: E: 16 points, D: 19 points, C: 22 points, B: 25 points, A: 28 points (out of the
possible 35 points, including bonus points from homeworks).

Problem 1 (5p) Consider the linear system of equations Ax = b. The min-max bound for GMRES
states that

‖Axn−b‖ ≤ α min
p∈P0

n

max
λ∈λ (A)

|p(λ )|

where α is independent of n.

(a) Suppose A is diagonalizable and the eigenvalues of A are contained in a disk of radius ρ > 0
centered at c∈C and |c|> ρ . Derive a formula for a constant β < 1 such that ‖Axn−b‖ ≤ αβ n

for all n > 0.

(b) The modified linear system of equations Ãz= b̃, where Ã= γA and b̃= γb, has the same solution
as Ax = b for any γ 6= 0, since x = A−1b = Ã−1b̃ = z. Show that GMRES applied to Ãz = b̃
generates the same sequence of approximations as GMRES applied to Ax = b.

Solution:

(a) According to the min-max bound we have, for any p ∈ P0
n :

‖Axn−b‖ ≤ α max
λ∈λ (A)

|p(λ )|.

It holds in particular for q(z)= (c−z)n/cn because q∈P0
n = {p polynomial of degree n : p(0)=

1}. Since |c−λ | ≤ ρ for any eigenvalue λ , we have

‖Axn−b‖ ≤ α max
λ∈λ (A)

|c−λ |n

|c|n
≤ α

ρn

|c|n

and we can select β = ρ/|c|.

(b) The GMRES approximation is defined as the minimizer of ‖Ax−b‖2 over the set x ∈Kn(A,b).
We will first show that the Krylov subspace is the same for the pair A,b and Ã, b̃. From relations
of span we have

Kn(Ã, b̃) = span(b̃, Ãb̃, . . . , Ãn−1b̃)

= span(γb,γ2Ab, . . . ,γnAn−1b) = Kn(A,b)



Hence, if xn is the GMRES-approximation stemming from Ax = b and x̃n is the GMRES-
approximation stemming from Ãx = b̃, we have

‖Axn−b‖ = min
x∈Kn(A,b)

‖Ax−b‖

=
1
|γ|

min
x∈Kn(A,b)

‖γAx− γb‖

=
1
|γ|

min
x∈Kn(Ã,b̃)

‖Ãx− b̃‖= 1
γ
‖Ãx̃n− b̃‖

Problem 2 (4p) Consider a diagonalizable matrix A ∈ R(2N+1)×(2N+1) with eigenvalues

λ1 = 1+ ε

λ2k = 2+ sin(2kπ/N), k = 1, . . . ,N

λ2k+1 = 2+ icos(2kπ/N), k = 1, . . . ,N

(a) Suppose ε =−0.5. Let Qk be the orthogonal matrix generated by k steps of Arnoldi’s method.
Derive a constant α such that the indicator ‖(I−QkQT

k )x1)‖2 can be bounded by

‖(I−QkQT
k )x1)‖2 < ξ α

k,

for some value ξ > 0, where x1 is the eigenvector associated with eigenvalue λ1. You do not
have to specify the constant ξ and you may directly use theorems from the course.

(b) Suppose N = 100. To which eigenvalue will the power method converge if ε =−2, ε =−0.5,
ε = 1, ε = 3? Assume that the starting vector is such that it has components in all eigenvector
directions.

Solution:

(a) For ε = −0.5, λ1 = 0.5 and the other eigenvalues λ2, . . . ,λN are contained in a disk of radius
ρ = 1 centered at λ = 2. One can directly use a corollary in the lecture notes, which means that

α =
ρ

|c−λ1|
=

1
3/2

= 2/3

(Alternatively, carry out the proof of the corollary by using the main min-max bound of the
Arnoldi method and selecting p(z) = (c− z)n/|c−λ1|n.)

(b) The power method converges to the eigenvalue largest in magnitude, which will be different
depending on ε . Note that for N = 100, one eigenvalue is λ = 3. The power method converges
correspondingly to:

ε =−2: λ = 3

ε =−0.5: λ = 3

ε = 1: λ = 3

ε = 3: λ = 4
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Problem 3 (5p) Let f (A) = A1/3. Consider the iteration

Xk+1 = αXk +βX−1
k + γX−2

k

for k = 1, . . ., and X0 = A where A is symmetric positive definite. Derive constants α , β and γ such
that (if the iteration converges) it converges quadratically to f (A). Justify the quadratic convergence.

Solution: Analogous to the Newton-SQRT method we consider Newton’s method to compute the
cube root of a scalar. Let g(x) = x3−a. Newton’s method is

xk+1 = xk−
g(xk)

g′(xk)
= xk− (x3

k−a)/(3x2
k) =

2
3

xk +
a
3

x−2
k . (1)

A matrix function generalization is

Xk+1 =
2
3

Xk +
1
3

AX−2
k

where X0 = A. Quadratic convergence follows from the fact that the eigenvalues of Xk satisfy the
iteration (1).

(More rigorously: Let A =V T ΛV is the Jordan form. V is orthogonal since A is symmetric. From
X0 = A and induction we have Xk = V T ΛkV , where Λk is a diagonal matrix with diagonal elements
that satisfy (1). Hence, ‖Xk−X∗‖2 = ‖V T (Λk−Λ∗)V‖2 = ‖Λk−Λ∗‖2 which converges as fast as the
slowest convergent element in Λk.)

Problem 4 (3p) Let ‖z‖B :=
√

zT Bz. Consider the linear system of equations Ax∗ = b, where A ∈
Rm×m is symmetric positive definite.

(a) Let x be an approximation of x∗. Show that ‖x− x∗‖A = ‖Ax−b‖A−1 .

(b) Let en be the error in step n of CG. Show that ‖en+1‖A≤‖en‖A using the fact that the CG-iterates
minimize the error in the ‖ · ‖A-norm over an associated Krylov subspace.

(c) Let en be the error in step n of CG. A theorem in this course stated that

‖en‖A

‖e0‖A
≤ min

p∈P0
n

max
λ∈λ (A)

|p(λ )|.

Suppose all the eigenvalues are explicitly λ1 = 10 and λk = 2+1/k for k = 2, . . . ,100. What is
maximum (worst-case) error ‖en‖A after 100 iterations?

Solution:

(a)

‖x− x∗‖2
A = (x− x∗)T A(x− x∗)

= (x−A−1b)T A(x−A−1b)

= (x−A−1b)T (Ax−b)

= (Ax−b)T A−1(Ax−b)

= ‖Ax−b‖2
A−1
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(b) The iterates of CG are minimizers of the error with respect to the A-norm over the Krylov
subspace of dimension n. Therefore,

‖xn+1− x∗‖A = min
x∈Kn+1(A,b)

‖x− x∗‖A ≤ min
x∈Kn(A,b)

‖x− x∗‖A = ‖xn− x∗‖A

since Kn(A,b)⊂Kn+1(A,b).

(c) The matrix has 100 eigenvalues, and is therefore of size 100. After 100 iterations, the Krylov
subspace will be the same as the dimension of the problem and the Krylov subspace spans the
entire R100. The worst-case error is zero.

Problem 5 (3p) Let Q = (q1, . . . ,qn) ∈ Rm×n be an orthogonal matrix. Suppose b ∈ R is such that
b 6∈ span(q1, . . . ,qm).

(a) Derive the Gram-Schmidt procedure by computing explicit formulas for h = (h1, . . . ,hn) ∈ Rn

and qn+1 ∈ Rm such that QT qn+1 = 0, ‖qn+1‖= 1, span(q1, . . . ,qn+1) = span(q1, . . . ,qn,b) and

b = h1q1 + . . .+hnqn + γqn+1.

Express the procedure using only products of matrices and vectors (no for-loops).

(b) Describe the double Gram-Schmidt procedure (any version). What are the advantages and
disadvantages of classical Gram-Schmidt and double Gram-Schmidt?

Solution:

(a) We want to establish h ∈ Rn, γ and qn+1 such that

b = Qh+ γqn+1

where QT qn+1 = 0 and ‖qn+1‖= 1. We can multiply b by QT ,

QT b = QT Qh+ γQT qn+1

and find that h = QT b. We can now compute w with

w := b−Qh.

We can now set

γ = ‖w‖

qn+1 =
1
γ

w

which gives a computational formula for h, γ and qn+1.
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(b) Double Gram-Schmidt essentially corresponds to carrying out the steps in (a) twice:

h = QT b

w = b−Qh

g = QT w

w = w−Qg

h = h+g

Classical Gram-Schmidt can be carried out with essentially half as many operations. Double
Gram-Schmidt is in general less sensitive to round-off errors (better numerical stability).

Problem 6 (3p) Let

A =

α × ×
β × ×
γ × ×


Derive a formula (involving α , β and γ) for an orthogonal matrix Q such that QAQT has the structure

QAQT =

× × ×
× × ×
0 × ×


Solution: The derivation is analogous to the first step in the Hessenberg reduction of the QR-method.
We let,

Q =

(
1 0
0 P

)
where P is a Householder reflector defined by

P = I− 2
pT p

ppT

and

p =

(
β

γ

)
−
(√

β 2 + γ2

0

)
.

By construction, P satisfies

P
(

β

γ

)
= δe1

Hence,

QAQT =

α × ×
δ × ×
0 × ×

(1 0
0 PT

)
=

α × ×
δ × ×
0 × ×

 .

Problem 7 (6p) A matrix is called symmetric if AT = A and anti-symmetric if AT = −A. Suppose
more generally that A ∈ Rm×m satisfies AT = αA for some value α 6= 0. Let Qn+1 = (q1, . . . ,qn+1) ∈
Rm×(n+1) and Hn ∈ R(n+1)×n correspond to an Arnoldi factorization for A and let Hn ∈ Rn×n be the
top block of Hn.
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(a) Show that HT
n = αHn. Specify which elements of Hn will be zero (for any starting vector and

any A satisfying AT = αA). Separate between the two cases α = 1 and α 6= 1.

(b) Show that for any k > 1 there exist ck−1, ak and bk+1 such that

Aqk = ck−1qk−1 +akqk +bk+1qk+1.

(c) Derive a generalization of the Lanczos procedure for matrices satisfying AT = αA by deriving
formulas for the Arnoldi factorization corresponding to Qn+2, Hn+1 expressed in terms of the
Arnoldi factorization corresponding to Qn+1, Hn. The procedure should not be more computa-
tionally expensive than one step of the Lanczos procedure.

Solution:

(a) Suppose AQn = Qn+1Hn is an Arnoldi factorization. Let Hn ∈ Rn×n denote the leading (top)
submatrix of Hn ∈ R(n+1)×n. From the orthogonality of Qn we have Hn = QT

n AQn and conse-
quently,

HT
n = (QT

n AQn)
T = QT

n AT Qn = αQT
n AQn = αHn.

Two cases:

α = 1: Since Hn is a Hessenberg matrix, symmetry implies that HT
n = Hn is also a Hessenberg

matrix. Hence, Hn is a tridiagonal matrix:

Hn =


× ×

× . . . . . .
. . . . . . ×

× ×


α 6= 1: Since the diagonal is not changed when transposing a matrix, the diagonal elements of
Hn must satisfy hi,i = αhi,i and (1−α)hi,i = 0. Since α 6= 1, we must have hi,i = 0 and the
structure is

Hn =


0 ×

× . . . . . .
. . . . . . ×

× 0


(Good comment from student: If α 6= 1, we have that AT = αA, and A = (AT )T = αAT = α2A.
Hence, if A is not a zero matrix, α 6= 1 actually implies that we must have α =−1. )

(b) Consider column k (where k ≤ n) of the Arnoldi factorization AQn = Qn+1Hn:

Aqk =
k+1

∑
i=0

hi,kqi.

From (a) we know that hi,k = 0 if i < k−1 or i > k+1. Hence,

Aqk =
k+1

∑
i=k−1

hi,kqi = hk−1,kqk−1 +hk,kqk +hk+1,kqk,

which proves the question. In addition, if α 6= 1 the term involving hk,k vanishes.
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(c) Let Hn and Qn+1 be given and denote

Hn =


a0 c0

b1
. . . . . .
. . . . . . cn−1

bn an

bn+1

 .

We want to compute Hn+1 and Qn+2, which in the notation above can be seen as deriving
computational formulas for cn, an+1 and bn+2 and qn+2. We directly compute cn from symmetry

cn = αbn+1.

The rest of the derivation follows the same steps as the derivation of the Lanczos procedure.
From the existance result in (b) we know that

w = Aqn+1 = cnqn +an+1qn+1 +bn+2qn+2. (2)

By multiplication from the left with qT
n+1, we have

qT
n+1w = cnqT

n+1qn +an+1qT
n+1qn+1 +bn+2qT

n+1qn+2

and from the orthogonality of Qn+2 it follows that qT
n+1qn = 0, qT

n+1qn+1 = 1, qT
n+1qn+2 = 0.

Hence,
an+1 = qT

n+1w.

Since cn, an+1 can now be considered known, we can solve (2) for qn+2, yielding qn+2 =
1

bn+2
(w− cnqn− an+1qn+1), which is satisfied if we define (what is called the orthogonal com-

plement)
w⊥ := w− cnqn−an+1qn+1

and subsequently normalize by setting bn+2 := ‖w⊥‖ and

qn+2 := w⊥/bn+2

This can be summarized in the following generalization/variation of the Lanczos algorithm:

1. cn = αbn+1

2. w = Aqn+1

3. an+1 = qT
n+1w

4. w⊥ = w− cnqn−an+1qn+1

5. bn+2 := ‖w⊥‖
6. qn+2 = w⊥/bn+2
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