Convergence and restart of Arnoldi method for eigenvalue problems SF2524 - Matrix Computations for Large-scale Systems

2015-11-05

Convergence and restart of Arnoldi method fc

2015-11-05 1 / 3

* Illustrate convergence with matlab demo *

< □ > < ---->

→ 3 → 4 3

Example of convergence theory of the Arnoldi method for eigenvalue problems:

Theorem (Jia, SIAM J. Matrix. Anal. Appl. 1995)

Let Q_n and H_n be generated by the Arnoldi method and suppose $\lambda_i^{(n)}$ is an eigenvalue of H_n . Assume that $\ell_i = 1$ and the associated value $\|(I - Q_n Q_n^T) x_i\|$ is sufficiently small. Let $P_i^{(n)}$ be the spectral projector associated with $\lambda_i^{(n)}$. Then,

$$|\lambda_{i}^{(n)} - \lambda_{i}| \leq \|P_{i}^{(n)}\|\gamma_{n}\frac{\|(I - Q_{n}Q_{n}^{T})x_{i}\|}{\|Q_{n}Q_{n}^{T}x_{i}\|} + \mathcal{O}\left(\frac{\|(I - Q_{n}Q_{n}^{T})x_{i}\|^{2}}{\|Q_{n}Q_{n}^{T}x_{i}\|^{2}}\right)$$

Example of convergence theory of the Arnoldi method for eigenvalue problems:

Theorem (Jia, SIAM J. Matrix. Anal. Appl. 1995)

Let Q_n and H_n be generated by the Arnoldi method and suppose $\lambda_i^{(n)}$ is an eigenvalue of H_n . Assume that $\ell_i = 1$ and the associated value $\|(I - Q_n Q_n^T) x_i\|$ is sufficiently small. Let $P_i^{(n)}$ be the spectral projector associated with $\lambda_i^{(n)}$. Then,

$$|\lambda_{i}^{(n)} - \lambda_{i}| \leq \|P_{i}^{(n)}\|\gamma_{n}\frac{\|(I - Q_{n}Q_{n}^{T})x_{i}\|}{\|Q_{n}Q_{n}^{T}x_{i}\|} + \mathcal{O}\left(\frac{\|(I - Q_{n}Q_{n}^{T})x_{i}\|^{2}}{\|Q_{n}Q_{n}^{T}x_{i}\|^{2}}\right)$$

The theorem is not a part of the course. In this course we will gain qualitative understanding by bounding

$$\|(I-Q_nQ_n^T)x_i\|.$$