
Lecture notes in numerical linear algebra
Arnoldi method convergence

1 Convergence of the Arnoldi method for
eigenvalue problems

Recall that, unless it breaks down, k steps of the Arnoldi method gener-
ates an orthogonal basis of a Krylov subspace, represented by a matrix
Q = (q1, . . . , qk) ∈ Cn×k such that Q∗Q = I and

span(q1, . . . , qk) = Kk(A, b) := span(b, Ab, . . . , Ak−1b).

The eigenvalue approximations (called Ritz values) are subsequently
found from the eigenvalues of

H = Q∗AQ.

The matrix H ∈ Ck×k is a Hessenberg matrix and can be generated as
a by-product of the Arnoldi method. We call a pair (µ, Qv) a Ritz pair
and Qv a Ritz vector, if v and µ safisfy

Hv = µv.

1.1 Bound for subspace-eigenvector angle

As a first indicator of the convergence we will characterize the follow-
ing quantity

Recall: Q ∈ Cn×k is an orthogonal
matrix which means that Q∗Q = I ∈
Ck×k . However, I 6= QQ∗ ∈ Cn×n.

error in eigenvector xi ∼ ‖(I −QQ∗)xi‖ (1.1)

where

Axi = λixi.

It is very natural to associate the accuracy of the eigenvector with this
quantity from a geometric perspective. The indicator in the right-hand
side of (1.1) is called (the norm of) the orthogonal complement of the
projection of xi onto the space spanned by Q and it can be interpreted
as the sine of the canonical angle between the Krylov subspace and an
eigenvector. For the moment, we will only justify this indicator with
this geometric reasoning and the following observation:
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Lemma 1.1.1 Suppoe (λi, xi) is an eigenpair A. If the Krylov subspace
contains the eigenvector (xi ∈ Kk(A, b)), then the indicator vanishes‖(I −
QQ∗)xi‖ = 0 and there is at least one Ritz value µ such that µ = λi. The Arnoldi method produces an exact

approximation if the Krylov subspace
contains an eigenvector, or equivalently
the indicator is zero.

In words:

• Suppose the Krylov subspace contains the eigenvector (xi ∈ Kk(A, b)).
Then, there exists a vector z ∈ Ck such that xi = Qz. More-
over, this is an eigenvector of H such that the Arnoldi method
will generate an exact eigenvalue of A. Moreover, the indicator is
‖(I −QQ∗)xi‖ = ‖(I −QQ∗)Qz‖ = 0.

• If, similar to above, xi ≈ x ∈ Kk(A, b), we expect the indicator to be
small and an eigenvalue of H also to be close λi.

The indicator can be bounded as follows, where we assume diago-
nalizability of the matrix.

Theorem 1.1.2 Suppose A ∈ Cn×n is diagonalizable and let the matrix
X = (x1, . . . , xn) ∈ Cn×n and diagonal matrix Λ ∈ Cn×n be the Jordan
decomposition such that

A = XΛX−1.

Suppose α1, . . . , αn ∈ C\{0} are such that
Recall: The eigenvectors of a diagonal-
izable matrix form a basis of Cn.b = α1x1 + · · ·+ αnxn (1.2)

and

ε
(m)
i := min

p∈Pm−1
p(λi)=1

max(|p(λ1)|, . . . , |p(λi−1)|, |p(λi+1)|, . . . , |p(λn)|)

where Pn denotes polynomials of degree n. Suppose the Arnoldi method does
not break down when applied to A and started with b. Let Q ∈ Cn×m be the
orthogonal basis generated after m iterations. Then, The indicator can be bounded by

a product consisting of two scalar

values: ε
(m)
i which only depends on the

eigenvalues and iteration number; and
ξi only depending on the starting vector
and eigenvectors.

‖(I −QQ∗)xi‖ ≤ ξiε
(m)
i , (1.3)

where

ξi =
n

∑
j=1
j 6=i

|αj|
|αi|

.

Proof The proof consists of three steps.

1. Consider any vector u ∈ Cn. Then

min
z∈Cm

‖u−Qz‖2
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is a linear least squares problem with a solution given by the normal
equations Q∗u = Q∗Qz. Hence, z = Q∗u. This implies that (for any
vector u) we have

min
z∈Cm

‖u−Qz‖2 = ‖u−QQ∗u‖ = ‖(I −QQ∗)u‖

2. Although we ultimately want to bound the left-hand side of (1.3),
the proof is simplified by considerations of a scaling the left-hand
side of (1.3) with αi as follows:

Apply step 1 reversely with u = αixi‖(I −QQ∗)αixi‖ = min
z∈Cm

‖αixi −Qz‖

= min
y∈Km(A,b)

‖αixi − y‖

Now note that the space Km(A, b) can be characterized with poly-
nomials. It is easy to verify that y ∈ Km(A, b) is equivalent to the
existance of a polynomial p ∈ Pm−1 such that y = p(A)b. Conse-
quently,

‖(I −QQ∗)αixi‖ = min
p∈Pm−1

‖αixi − p(A)b‖.

3. The final step consists of inserting the expansion of b in terms of
eigenvectors (1.2) and applying appropriate bounds:

Since xi eigenvector, p(A)xi = p(λi)xi

For any two sets S ⊂ Z:
minz∈Z g(z) ≤ minz∈S g(z)

‖(I −QQ∗)αixi‖ = min
p∈Pm−1

‖αixi − p(A)
n

∑
j=1

αjxj‖

= min
p∈Pm−1

∥∥∥∥∥αixi −
n

∑
j=1

αj p(λj)xj

∥∥∥∥∥
≤ min

p∈Pm−1
p(λi)=1

∥∥∥∥∥αixi −
n

∑
j=1

αj p(λj)xj

∥∥∥∥∥
= min

p∈Pm−1
p(λi)=1

‖αixi − αixi −
n

∑
j=1
j 6=i

αj p(λj)xj‖

= min
p∈Pm−1
p(λi)=1

‖
n

∑
j=1
j 6=i

αj p(λj)xj‖

≤ (
n

∑
j=1
j 6=i

|αj|) · min
p∈Pm−1
p(λi)=1

max
j 6=i

(|p(λj)|)

= (
n

∑
j=1
j 6=i

|αj|) · ε
(m)
i
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The conclusion of the theorem is established by dividing the equa-
tion by |αi|.

�

Note that ‖b‖ = 1 and ‖x1‖ = · · · = ‖xn‖ = 1. Hence the coeffi-
cients α1, . . . , αn are balanced. In particular they satisfy

1 = ‖α1x1 + · · ·+ αnxn‖ ≤ |α1|+ · · ·+ |αn|.

and

ξi =
1
|αi|

n

∑
j=1
|αj| − 1 ≥ 1

|αi|
− 1

From this we can easily identify a very good situation and a very bad
situation.

• Suppose for all j 6= i, αj = δ and suppose δ is small. We have that

ξi =
(n−1)δ

αi
. Due to balancing αi cannot be small. Hence, ξi is small,

showing fast convergence for this eigenvalue.

• On the other hand, if αi (the component of the starting vector in the
direction of the ith eigenvector) is very small, we have ξi � 1 which
implies that the right-hand side of (1.3) is large and we have slow
convergence.

This serves as a justification for a more general property.

Rule-of-thumb. Starting vector dependency. The Arnoldi
method for eigenvalue problems will “favor” eigenvectors
which have large components in the starting vector.

The word “favors” is purposely vague. It should be interpreted as the
situation that one observes often in practice, but certainly not always.
If we have a particular structure in the matrix or starting vector, we
might observe convergence to other eigenvalues.

1.1.1 Bounding ε
(m)
i

In the characterization of the indicator in Theorem 1.1.2 above we in-
troduced the quantity ε

(m)
i . This quantity bounds (up to a constant) the

error in eigenvector xi at iteration m. Although ε
(m)
i is defined through Think: ε

(m)
i measures how “difficult” it

is to push down a polynomial in points
λj, for all j 6= i and maintain p(λi) = 1.

a polynomial optimization problem, which is complicated to solve, it
is surprisingly easy to use this to obtain bounds providing qualitative
understanding of the convergence of the Arnoldi method for eigen-
value problems. We illustrate the power with a specific bound.

Lecture notes - Elias Jarlebring - Autumn 2015

4

version:2015-11-04



Lecture notes in numerical linear algebra
Arnoldi method convergence

Corollary 1.1.3 Suppose C(ρ, c) ⊂ C is a disk centered at c ∈ C with
radius ρ such that it contains all eigenvalues but λ1. That is, λ2, . . . , λn ∈
C(ρ, c) and λ1 6∈ C(ρ, c). Then,

ε
(m)
1 ≤

(
ρ

|λ1 − c|

)m−1
.

Proof The proof consists of selecting a particular polynomial in the
polynomial optimization problem,

ε
(m)
1 := min

p∈Pm−1
p(λ1)=1

max(|p(λ1)|, . . . , |p(λi−1)|, |p(λi+1)|, . . . , |p(λn)|)

= max
j 6=i
|q(λj)|,

for any q ∈ Pm−1 satisfying q(λ1) = 1, in particular

q(z) =
1

|λ1 − c|m−1 (z− c)m−1.

Hence, from the definition of ρ and c we have that

ε
(m)
1 ≤ max

i>1

|λi − c|m−1

|λ1 − c|m−1

≤ ρm−1

|λ1 − c|m−1 .

�

The result can be intuitively interpreted as follows. If we can construct
a small disc that encloses all eigenvalues but one eigenvalue we expect
fast (at least linear geometric) convergence for that eigenvalue. This
can be achieved for an eigenvalue which is well separated from the
rest of the eigenvalues and also in an outer part of the spectrum. We
call this “extreme” isolated eigenvalues.

Rule-of-thumb. Eigenvalue dependency. Arnoldi’s method
for eigenvalue problems favors convergence to “extreme” iso-
lated eigenvalues.

Note the difference between an “extreme” eigenvalue and the eigen-
values which are largest in modulus (absolute value). The Arnoldi
method will favor “extreme” whereas the power method will essen-
tially always converge to the eigenvalue largest in modulus.

1.2 Literature and further reading

The proof and reasoning above is inspired by [5]. Other convergence
bounds involving Schur factorizations, that lead to similar qualitative
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understanding can be found in [6], where also complications of the
non-generic cases are discussed. There are also further characteriza-
tions of convergence and the connection with potential theory [4]. In
the above reasoning we characterized the angle between the subspace
and the eigenvector. Although this serves as a very accurate prediction
of the error in practice, it does not directly give a rigorous bound on
the accuracy of Ritz pair. Several approaches to describe the conver-
gence of Ritz values and Ritz vectors have been done in for instance
[2, 3]. There is also considerable research on the effect of rounding
errors in Krylov methods. Unlike many other numerical methods, the
effect of finite arithmetic can improve the performance of the algo-
rithm. See also the recent summary of the convergence of the Arnoldi
method for eigenvalue problems [1].
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