
Lecture notes in numerical linear algebra
Additional notes for GMRES

x2 Additional notes for GMRES

x2.1 Derivation of GMRES

The GMRES method is a method for linear systems of equations Ax =

b. It is based on the idea that if the residual

r = Ax̃ − b

is small, x̃ is probably a good approximation to x. We try to minimize
the norm of the residual, over an appropriate space. It turns out that if
we minimize over a Krylov subspace, the minimizer can be elegantly
and efficiently computed from the Arnoldi method, and convergence
theory shows us that it can under certain conditions indeed provide
good approximations. We define the approximation xn generated after
n steps of GMRES as minimizers of the residual norm (with respect to
the 2-norm) over the Krylov subspace associated with A and the right-
hand side of b:

min
x∈Kn(A,b)

∥Ax − b∥2 = ∥Axn − b∥2.

The minimization problem can be explicitly solved in terms of the
Arnoldi factorization

AQn = Qn+1Hn. (2.1)

where Qn and Hn are generated by the Arnoldi method.

Lemma 2.1.1 (Minimization definition of GMRES iterates). Suppose Qn

and Hn satisfy the Arnoldi relation and q1 = b/∥b∥. Then,

min
x∈Kn(A,b)

∥Ax − b∥2 = min
z∈Cn
∥Hnz − ∥b∥e1∥2. (2.2)

Proof. During the proof we need the following property of orthogonal
matrices. If Q ∈ Rm×k with m ≥ k is an orthogonal matrix, then,

∥Qz∥22 = zTQTQz = zTz = ∥z∥22. (2.3)
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Since Kn(A, b) = span(q1, . . . , qn) we can reparameterize the set over
which we minimize. The conclusion of the theorem follows from (2.1)
and (2.3):

We start iteration with q1 = b/∥b∥

Use the Arnoldi relation (2.1) and
that q1 = Qn+1e1.

Use (2.3) with Q = Qn+1.

min
x∈Kn(A,b)

∥Ax − b∥2 = min
z∈Cn
∥AQnz − b∥2

= min
z∈Cn
∥AQnz − ∥b∥q1∥2

= min
z∈Cn
∥Qn+1Hnz − ∥b∥Qn+1e1∥2

= min
z∈Cn
∥Qn+1(Hnz − ∥b∥e1)∥2

= min
z∈Cn
∥Hnz − ∥b∥e1∥2

The approximations xn are computed by solving the linear least-
squares problem in the right-hand side of (2.2) and setting xn = Qnz.

x2.2 Convergence theory

Due to the definition of GMRES-approximations as solution to the
left-hand side of (2.2) we have a nice property that the solution can
in a certain sense not become worse by further iteration. The se-
quence of Krylov subspaces correspond to an expanding set Kn(A, b) ⊆
Kn+1(A, b), for any n. Therefore, the norm of the residual is not in-
creasing:

∥rn+1∥ = min
x∈Kn+1(A,b)

∥Ax − b∥ ≤ min
x∈Kn(A,b)

∥Ax − b∥ = ∥rn∥.

Further analysis of convergence is simplified by the use polymomial
sets.

Definition 2.2.1 (Polynomials and 0-normalized polynomials).

Pn ∶= {polynomials of degree at most n} (2.4a)

P0
n ∶= {p ∈ Pn ∶ p(0) = 1} (2.4b)

Lemma 2.2.2 (Krylov subspace equivalence). Suppose A ∈ Cm×m is in-
vertible. Let x ∈ Cn. The following statements are equivalent

(i) x ∈ Kn(A, b)

(ii) There exists p ∈ P0
n such that

b − Ax = p(A)b. (2.5)

Proof. (i)⇒(ii): Suppose x ∈ Kn(A, b) = span(b, Ab, . . . , An−1b). From
the definition of the Krylov subspace we have

x = α0b +⋯+ αk−1 Ak−1b = q(A)b
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where q(z) = q0 +⋯+ qnzn−1 and q ∈ Pn−1. In order to show (2.5), we
note that

b − Ax = b − Aq(A)b = p(A)b,

if we define p(z) = 1 − zq(z). The polynomial p is normalized since
p(0) = 1 and we have shown (ii).

(ii)⇒(i): Suppose (2.5) is satisfied. Any normalized polynomial p ∈ P0
n

of degree k satisfies
p(z) = 1+ zq(z)

for some polynomial q ∈ Pk−1. Hence, (2.5) implies that

b − Ax = p(A)b = (I + Aq(A))b

and −Ax = Aq(A)b. Since A is invertible by assumption

x = −q(A)b

and x ∈ Kn(A, b).

Theorem 2.2.3 (Main convergence theorem of GMRES). Suppose A ∈

Cm×m is an invertible and diagonalizable matrix. Let A = VΛV−1 be the
Jordan decomposition of A, where Λ is a diagonal matrix. Let xn, n = 1, . . .
be iterates generated by GMRES. Then,

∥Axn − b∥
∥b∥

≤ ∥V∥∥V−1
∥min

p∈P0
n

max
i=1,...,m

∣p(λi)∣.

Use Lemma 2.2.2

Use Jordan decomposition

Use that for any polynomial
p(VBV−1) = Vp(B)V−1.

Norm bounds

Proof.

∥rn∥ = min
x∈Kn(A,b)

∥b − Ax∥

= min
p∈P0

n

∥p(A)b∥

= min
p∈P0

n

∥p(VΛV−1
)b∥

= min
p∈P0

n

∥Vp(Λ)V−1b∥

≤ min
p∈P0

n

∥V∥∥V−1
∥∥p(Λ)∥∥b∥.

Since Λ is a diagonal matrix we

p(
⎛
⎜
⎜
⎝

λ1

⋱

λm

⎞
⎟
⎟
⎠

) =

⎛
⎜
⎜
⎝

p(λ1)

⋱

p(λm)

⎞
⎟
⎟
⎠

. (2.6)

Moreover, the two-norm of a diagonal matrix can be expressed explic-
itly. Since

∥

⎛
⎜
⎜
⎝

γ1

⋱

γn

⎞
⎟
⎟
⎠

∥
2
2 = λmax(

⎛
⎜
⎜
⎝

γ1

⋱

γn

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

γ1

⋱

γn

⎞
⎟
⎟
⎠

T

) = ( max
i=1,...,m

∣γi∣)

2

.

(2.7)
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If we combine (2.6) and (2.7) we have

∥rn∥ ≤ min
p∈P0

n

max
i=1,...,m

∥V∥∥V−1
∥∣p(λi)∣∥b∥,

which concludes the proof.

Corollary 2.2.4. Suppose A ∈ Cn×n satisfies the same conditions as in Theo-
rem 2.2.3. Moreover, suppose all eigenvalues are contained in a disk of radius
ρ centered at c ∈ C,

λi ∈ D̄(c, ρ), for i = 1, . . . , n.

Then,
∥Axn − b∥
∥b∥

≤ ∥V∥∥V−1
∥(

ρ

∣c∣
)

n

.

Proof. The result follows from Theorem 2.2.3 by considering the poly-
nomial q(z) ∶= (c − z)n/cn since q ∈ P0

n and

min
p∈P0

n

max
i=1,...,m

∣p(λi)∣ ≤ max
i=1,...,m

∣q(λi)∣ = max
i=1,...,m

∣c − λi∣
n

∣c∣n
≤

ρn

∣c∣n
.
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