

Homework 1

Information about homework: If correct solutions to all questions are handed in before the deadline, two bonus points will be awarded to the final written exam. If a solution that is handed in before that date is not correct, it has to be redone, but the second time without yielding bonus points for the exam. Solutions must be clearly written, and easy to follow. If not, they will not generate bonus points, and must be redone. It is highly recommended that the answers are done on a computer (for instance LaTeX or word). Please submit, not later than midnight of the date of the deadline:

- a written report with the solutions (hard-copy) during the lecture or in the "homework mailbox" next to the mathematics studentexpedition on Lindstedsvägen 25; and
- the source code of your programs by e-mail to the lecturer (eliasj at kth.se).

Deadline Homework 1: Nov. 12, 2015

1. Consider the following matrix:

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 9 \end{array}\right).$$

Plot the eigenvalue error as a function of iterate for the following algorithms in a semilog plot, and relate with the convergence theory.

- (a) Power method with the starting vector $x_0^T = (1, 1, 1)$.
- (b) Rayleigh qoutient iteration with the starting vector $x_0^T = (1, 1, 1)$.
- (c) Change the entry of the matrix in element row 1, column 3, to $a_{1,3} = 4$ and again run the Rayleigh quatient iteration with $x_0^T = (1,1,1)$. Explain why we obtain slower convergence in comparison to (b).
- 2. In this exercise we will investigate the performance of different versions of the Gram-Schmidt orthogonalization when it is combined with the Arnoldi method. Consider the matrix A constructed with the following command

rand('seed',0); A=gallery('wathen',nn,nn); (1)

> Lecture notes - Elias Jarlebring - Autumn 2015 1

You may in this exercise use eig(A) as a reference/exact solution.

	single GS		modified GS		double GS		triple GS	
	time	orth	time	orth	time	orth	time	orth
m = 5								
m = 10								
m = 20								
m = 50								
m = 100								

Select nn > 10 such that the maximum computation time for m =100 is approximately 10 minutes on your computer.

- (b) Interpret the result in (a). Is one version "best" in this setting? If so, in what sense is it "best"? Discuss the fairness of the comparison.
- 3. We shall here investigate a primitive variant of the Arnoldi method. Let K_m be a matrix with the iterates of the power method, that is, let $K_m := [b, Ab/||Ab||, ..., A^{m-1}b/||A^{m-1}b||] \in \mathbb{R}^{n \times m}$.
 - (a) The approximation stemming from Galerkin method applied to the bilinear form associated with the eigenvalue problem (a(u, v) = $u^T Av - \mu u^T v$, f(v) = 0) for the subspace spanned by the columns of K_m satisfies

$$\mu K_m^T K_m w = K_m^T A K_m w \tag{2}$$

You may assume that $\mathcal{K}_m(A, b)$ has dimension *m*. Prove that the approximation (2) is identical to the approximation generated by Arnoldi's method for eigenvalue problem. No prior knowledge about the Galerkin method is required to solve the problem.

(b) By solving (2) directly with eig, we have a method which requires only computation of $K_m^T K_m$ and $K_m^T A K_M$, and does not require any orthogonalization. Apply this method to (1) and compare with the Arnoldi method. Use double GS as orthogonalization. Generate the following figure for m = 1, 2, ...: Use a random starting vector, with the same starting vector for all simulations.

Background Galerkin method: The Galerkin method is a fundamental technique in the finite element method for partial differential equations. The approximation is generated from the bilinear form $a(\cdot, \cdot)$ and $f(\cdot)$ on vector space $V = \operatorname{span}(v_1, \ldots, v_m)$ and is defined by the equality

$$\sum_{i=1}^m w_i a(v_i, v_j) = f(v_j)$$

for all $v_i, i = 1, ..., m$.

Hint: Recall that if V_m is an orthogonal basis of $\mathcal{K}_m(A, b)$, then the Arnoldi approximation is eigenvalues of $V_m^T A V_m$. Maybe there exists a non-singular matrix R such that $K_m = V_m R$? Show that $R^T R = K_m^T K_m$ by considering $V_m^T V_m$.

Use MATLAB-commands tic and toc to measure CPU-time.

- (c) Interpret the result of (a)-(b). What do we expect in exact arithmetic? What do we observe? Which approach is better? Why?
- 4. Download and load the matrix

http://www.math.kth.se/na/SF2524/matber14/Bwedge.mat

- (a) Accurate estimations of the eigenvalues are given in B_eigvals. Plot these and use the convergence theory for Arnoldi method for eigenvalue problems to
 - identify which eigenvalues will be approximated first, and
 - estimate a convergence factor of the eigenvector angle (by estimating circles in a plot with the eigenvalues) corresponding to the first three eigenvalues that will be approximated.
- (b) Generate figures with the Ritz values for the Arnoldi method with a random starting vector, and verify and relate with (a) for m = 2, 4, 8, 10, 20, 30, 40.
- (c) Repeat (b) with shift-and-invert Arnoldi method instead of Arnoldi method. Use shift $\sigma = -11 + 2i$. Carry out an LU-factorization of $C = B \sigma I = LU$ and modify the reference implementation arnoldi.m such that in every step you need to solve one upper-triangular and one lower-triangular system of equations. Plot the approximations of *B* and relate to the eigenvalues of C^{-1} .

Only for PhD students taking the course *SF*3580 Numerical linear algebra:

- 5. Exercise about restarting. Use the matrix Bwedge.mat in the simulations.
 - (a) Implement an explicit restarting strategy for the Arnoldi method as follows. Take a linear combination (with unit weights) of the Ritz vectors generated by *m* iterations of the Arnoldi method as a new starting vector. Use the Ritz vectors corresponding to the *k* largest Ritz values. Extract the Ritz vectors as follows:

Use the command load('Bwedge.mat') to access the matrix *B* and eigenvalues.

The convergence factor is constant α such that error~ α^n .

Use MATLAB command [L,U,P]=lu(C) to compute a (variant of a) LU-factorization. Note that this function computes a factorization PC = LU such that C = U(L(P * z)).

version: 2015-11-01

version: 2015-11-01

```
[Q,H]=arnoldi(A,b,m);
[V,D]=eig(H(1:end-1,1:end)); d=diag(D);
[Y,I]=sort(-abs(d));
ritz_vals=d(I(1:k));
ritz_vecs=Q(:,1:end-1)*V(:,I(1:k));
```

Carry out the experiments for m = 10, k = 5 and m = 20, k = 10 with 100 restarts. Plot the eigenvalue approximation as a function of restart. Does the restart strategy work in practice?

(b) Use the reference code arnupd.mand arnoldi_sorensen.mwhich are implementations of an implicit restarting strategy. Run the algorithm with same restarting parameters as in (a) and explain the difference. Implicit restarting is in general to prefer over explicit restarting. Why? The programs arnoldi_sorensen.m and arnupd.m are reference implementations of *Implicit application of polynomial filters in a k-step arnoldi method*, *D. C. Sorensen*, *SIAM J. Matrix Anal. Appl. Vol.* 13, *No.* 1, *pp.* 357-385, 1992. It is not necessary to read the details of the paper to solve the homework. The programs are available from http://www.math. kth.se/~eliasj/NLA/arnupd.m Another good reference for implicit restarting are provided in the lecture notes: http://people.inf.ethz.ch/arbenz/ ewp/Lnotes/chapter10.pdf