

Homework 3

Deadline (for bonus points): 2015-12-10

- 1. Exercise about basic QR-method. Implement the basic QRmethod. Apply it to alpha_example.m from the course web page. Measure the error with the maximum value below the diagonal errfun=@(A) max(max(abs(tril(A,-1)))).
 - (a) Plot the number of iterations required to achieve error 10^{-10} , as a function of α . More precisely, generate the following plot.

- (b) Suppose the eigenvalues are ordered by magnitude $|\lambda_1| < 1$ $\cdots < |\lambda_m|$. From the lecture notes we know that the elements below the diagonal will asymptotically after n iterations be proportional to $|\lambda_i / \lambda_j|^n$ with i < j. For large α the error will be dominated by one particular choice of *i* and *j*. Which ones?
- (c) Use (b) to establish an estimated number of iterations required to reach a specified tolerance, for different choices of α . Add a plot of the predicted number of iterations in the plot generated in (a), for tolerance 10^{-10} , and discuss the result.

2. Exercises about Hessenberg reduction and shifted QR-method.

(a) Generalize Lemma 2.2.3 in the lecture notes as follows. Given a vector $x \in \mathbb{R}^n$ and a vector $y \in \mathbb{R}^n$ with $y \neq 0$ and $x \neq 0$,

For the theoretical reasoning in (b) and (c) you may use the function eig

Hint for (c): Show that if the error behaves as $e_k = |\beta|^k$, then $e_N = \text{TOL}$ if $N = \ln(\text{TOL}) / \ln(|\beta|).$

Hint for (a): First derive a formula first for the case ||y|| = 1.

version:2015-12-03

derive a formula for a Householder reflector (represented by a normal direction $u \in \mathbb{R}^n$) such that $Px = \alpha y$ for some value α .

- (b) Implement a naive (inefficient) Hessenberg reduction by completing the program naive_hessenberg_red.m on the course web page.
- (c) Implement Algorithm 2 in the lecture notes and compare the computation time with the algorithm in (b). Carry out the comparison by computing a Hessenberg reduction of A=alpha_example(1,m), which generates an m × m-matrix. Complete the following table.

	CPU-time Algorithm 2	CPU-time of algorithm in (b)
m=10		
m=100		
m=200		
m=300		
m=400		

(d) Let \bar{H} be the result of one step of the shifted QR-method with shift σ for the matrix

$$A = \begin{bmatrix} 3 & 2 \\ \varepsilon & 1 \end{bmatrix}.$$

Run the shifted QR for two different choices of σ and complete the following table

ε	$ \bar{h}_{2,1} $	
	$\sigma = 0$	$\sigma = a_{2,2}$
0.4	0.0961	0.0769
0.1		
0.01		
:		
10 ⁻¹⁰		
0		

Interpret the result in the table. What do the values in the table correspond to? Which choice of σ is better in this case?

- Download the template schur_parlett.m from the course web page
 - (a) Complete the template code and compute sin(A) where

$$A = \begin{bmatrix} 1 & 4 & 4 \\ 3 & -1 & 3 \\ -1 & 4 & 4 \end{bmatrix}$$

(b) Let A=rand(100, 100). Use the Schur-Parlett method from(a) to compute A^N, and compare with the naive method to compute A^N:

version:2015-12-03

Hint: What does the shifted QR-method reduce to when you select $\sigma = 0$?

version:2015-12-03

B=A; for i=1:N-1; B=B*A; end.

Complete the following table. Increase *N* until you see that the best method changes, or see a tendency.

	CPU-time naive	CPU-time Schur-Parlett
N=2		
N=10		
N=100		
N=200		
:		

(c) What are the computational complexities of the two methods in (b) as a function of the size of the matrix and *N*?

4. Let
$$A = \begin{bmatrix} \pi & 1 \\ 0 & \pi + \varepsilon \end{bmatrix}$$
 where $\varepsilon > 0$.

- (a) Prove (for instance using the Jordan definition) that if *p* is a polynomial which interpolates *g* in the eigenvalues of *A*, then p(A) = g(A). Find exact expressions for α and β when $p(z) = \alpha + \beta z$ for the matrix *A*.
- (b) Give a formula for the exact value of exp(A) using (a).
- (c) Let *F* be the result of computing exp(*A*) with the Jordan definition as in the last example in Section 3.1.2. Compare the exact result in (b) with the computed value for different *ε*. Generate the following figure (using loglog()) and explain the result.

The MATLAB command A^N for large N will actually not do the naive method but do a procedure similar to Schur-Parlett.

Only for PhD students taking the course *Numerical linear algebra*:

- 5. Exercise about exploitation of structure in specific application. The purpose of this exercise is to learn some techniques to derive more efficient methods by taking problem-specific structure into account. (The new method you will derive is not necessarily in general the best for this problem-type.)
 - (a) Prove that

$$\frac{d}{dt}\exp(tA) = A\exp(tA) = \exp(tA)A$$

(b) Let $G(t) := \exp(-tA)B\exp(tA)$ and let $[\cdot, \cdot]$ denote a commutator, i.e., [A, B] := AB - BA. Show that

$$G(t) = B + t[B,A] + \frac{t^2}{2!}[[B,A],A] + \frac{t^3}{3!}[[[B,A],A],A] + \cdots \quad (*)$$

(c) Suppose A is anti-symmetric $A^T = -A$. Let

$$P := \int_0^\tau \exp(tA^T) B \exp(tA) \, dt$$

Derive an expression for *P* involving commutators of *A* and *B*.

- (d) Let $C_k = [C_{k-1}, A]$ with $C_0 = B$. Show that $||C_k|| \le 2^k ||A||^k ||B||$.
- (e) Suppose $||A|| < \frac{1}{2}$ and $t \le 1$. Let G_N be the truncation of G,

$$G_N(t) := B + t[B,A] + \dots + \frac{t^N}{N!} [\dots [[B,A],A] \dots ,A].$$

Derive a bound for $||G_N(t) - G(t)||$, which converges to zero as $N \to \infty$ for any $t \le 1$.

- (f) Combine (c)-(e) and derive a numerical method to compute *P* where *A* is anti-symmetric and ||A|| < 1/2. Construct the algorithm such that the user can specify a tolerance.
- (g) Compare your numerical method with the naive numerical integration approach:

P=integral(@(t) expm(t*A')*B*expm(t*A),0,T,'arrayvalued',true);

Use $\tau = 1$ and the matrices generated by:

A=gallery('neumann',20^2); A=A-A'; A=A/(2*norm(A,1)); B=sprandn(length(A),length(A),0.05);

How much better is the new method?

Connection with current research: In the field of quantum chemistry, the relation (*) for t = 1 is commonly called the Baker-Campbell-Hausdorff expansion. It is fundamental in one of the leading numerical methods in that field - the so-called coupled cluster approach.

The quantity *P* is called a Gramian, and it is often used in system and control in order to study controllability, observability and to derive optimal control as well as carrying out "model order reduction".

Not a part of the exercise: Can you derive a similar algorithm which does not require the matrix to be antisymmetric?

version:2015-12-03