QR-method lecture 1

SF2524 - Matrix Computations for Large-scale Systems

QR-method lecture 1 1 / 47

Methods suitable for large sparse matrices

- Power method
 - Computes largest eigenvalue

Methods suitable for large sparse matrices

- Power method
 - Computes largest eigenvalue
- Inverse iteration
 - Computes eigenvalue closest to a target

QR-method lecture 1 2 / 47

Methods suitable for large sparse matrices

- Power method
 - Computes largest eigenvalue
- Inverse iteration
 - Computes eigenvalue closest to a target
- Rayleigh Quotient Iteration
 - Computes one eigenvalue with a starting guess

QR-method lecture 1 2 / 47

Methods suitable for large sparse matrices

- Power method
 - Computes largest eigenvalue
- Inverse iteration
 - Computes eigenvalue closest to a target
- Rayleigh Quotient Iteration
 - Computes one eigenvalue with a starting guess
- Arnoldi method for eigenvalue problems
 - Computes extreme eigenvalue

QR-method lecture 1 2 / 47

Methods suitable for large sparse matrices

- Power method
 - Computes largest eigenvalue
- Inverse iteration
 - Computes eigenvalue closest to a target
- Rayleigh Quotient Iteration
 - Computes one eigenvalue with a starting guess
- Arnoldi method for eigenvalue problems
 - Computes extreme eigenvalue

Now: QR-method

- Compute all eigenvalues
- Suitable for dense problems
- Small matrices in relation to previous algorithms

Agenda QR-method

- Decompositions
 - Jordan form
 - Schur decomposition
 - QR-factorization
- Basic QR-method
- Improvement 1: Two-phase approach
 - Hessenberg reduction
 - Hessenberg QR-method
- Improvement 2: Acceleration with shifts
- Onvergence theory

Agenda QR-method

- Decompositions
 - Jordan form
 - Schur decomposition
 - QR-factorization
- Basic QR-method
- Improvement 1: Two-phase approach
 - Hessenberg reduction
 - Hessenberg QR-method
- Improvement 2: Acceleration with shifts
- Convergence theory

Reading instructions

Point 1: TB Lecture 24

Points 2-4: Lecture notes "QR-method" on course web page

Point 5: TB Chapter 28

(Extra reading: TB Chapter 25-26, 28-29)

- - Jordan form
 - Schur decomposition
 - QR-factorization
- Basic QR-method
- Improvement 1: Two-phase approach
 - Hessenberg reduction
 - ► Hessenberg QR-method
- Improvement 2: Acceleration with shifts
- 6 Convergence theory

QR-method lecture 1 4 / 47

Similarity transformation

Suppose $A \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{m \times m}$ is an invertible matrix. Then

Α

and

$$B = VAV^{-1}$$

have the same eigenvalues.

QR-method lecture 1 5 / 47

Similarity transformation

Suppose $A \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{m \times m}$ is an invertible matrix. Then

Α

and

$$B = VAV^{-1}$$

have the same eigenvalues.

Numerical methods based on similarity transformations

- ullet If B is triangular we can read-off the eigenvalues from the diagonal.
- Idea of numerical method: Compute V such that B is triangular.

QR-method lecture 1 5 / 47

First idea: compute the Jordan canonical form

Jordan canonical form

Suppose $A \in \mathbb{C}^{m \times m}$. There exists an invertible matrix $V \in \mathbb{C}^{m \times m}$ and a block diagonal matrix such that

$$A = V \Lambda V^{-1}$$

QR-method lecture 1 6 / 47

First idea: compute the Jordan canonical form

Jordan canonical form

Suppose $A \in \mathbb{C}^{m \times m}$. There exists an invertible matrix $V \in \mathbb{C}^{m \times m}$ and a block diagonal matrix such that

$$A = V \Lambda V^{-1}$$

where

$$\Lambda = \begin{pmatrix} J_1 & & \\ & \ddots & \\ & & J_k \end{pmatrix},$$

where

Common case: distinct eigenvalues

Suppose $\lambda_i \neq \lambda_j$, $i=1,\ldots,m$. Then,

$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_m \end{pmatrix}.$$

R-method lecture 1 7 / 47

Common case: distinct eigenvalues

Suppose $\lambda_i \neq \lambda_j$, $i=1,\ldots,m$. Then,

$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_m \end{pmatrix}.$$

Common case: symmetric matrix

Suppose $A = A^T \in \mathbb{R}^{m \times m}$. Then,

$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_m \end{pmatrix}.$$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り(で)

R-method lecture 1 7 / 47

Consider

$$A = \begin{pmatrix} 2 & 1 \\ & 2 & 1 \\ \varepsilon & & 2 \end{pmatrix}$$

Consider

$$A = \begin{pmatrix} 2 & 1 \\ & 2 & 1 \\ \varepsilon & & 2 \end{pmatrix}$$

If $\varepsilon = 0$. Then, the Jordan canonical form is

$$\Lambda = \begin{pmatrix} 2 & 1 \\ & 2 & 1 \\ & & 2 \end{pmatrix}.$$

QR-method lecture 1 8 / 47

Consider

$$A = \begin{pmatrix} 2 & 1 \\ & 2 & 1 \\ \varepsilon & & 2 \end{pmatrix}$$

If $\varepsilon = 0$. Then, the Jordan canonical form is

$$\Lambda = \begin{pmatrix} 2 & 1 \\ & 2 & 1 \\ & & 2 \end{pmatrix}.$$

If $\varepsilon > 0$. Then, the eigenvalues are distinct and

$$\Lambda = egin{pmatrix} 2 + O(arepsilon^{1/3}) & & & \ & 2 + O(arepsilon^{1/3}) & & \ & 2 + O(arepsilon^{1/3}) \end{pmatrix}.$$

4□ > 4□ > 4 = > 4 = > = 90

QR-method lecture 1 8 / 47

Consider

$$A = \begin{pmatrix} 2 & 1 \\ & 2 & 1 \\ \varepsilon & & 2 \end{pmatrix}$$

If $\varepsilon = 0$. Then, the Jordan canonical form is

$$\Lambda = \begin{pmatrix} 2 & 1 \\ & 2 & 1 \\ & & 2 \end{pmatrix}.$$

If $\varepsilon > 0$. Then, the eigenvalues are distinct and

$$\Lambda = egin{pmatrix} 2 + O(arepsilon^{1/3}) & & & \ & 2 + O(arepsilon^{1/3}) & & \ & 2 + O(arepsilon^{1/3}) \end{pmatrix}.$$

- \Rightarrow Not continuous with respect to ε
- \Rightarrow The Jordan form is often not numerically stable

Schur decomposition (essentially TB Theorem 24.9)

Suppose $A \in \mathbb{C}^{m \times m}$. There exists an unitary matrix P

$$P^{-1} = P^*$$

and a triangular matrix T such that

$$A = PTP^*$$
.

QR-method lecture 1 9 / 47

Schur decomposition (essentially TB Theorem 24.9)

Suppose $A \in \mathbb{C}^{m \times m}$. There exists an unitary matrix P

$$P^{-1} = P^*$$

and a triangular matrix T such that

$$A = PTP^*$$
.

The Schur decomposition is numerically stable.

Goal with QR-method: Numercally compute a Schur factorization

QR-method lecture 1 9 / 47

Outline:

- Decompositions
 - Jordan form
 - ► Schur decomposition
 - QR-factorization
- Basic QR-method
- 3 Improvement 1: Two-phase approach
 - ► Hessenberg reduction
 - ► Hessenberg QR-method
- Improvement 2: Acceleration with shifts
- 6 Convergence theory

QR-factorization

Suppose $A \in \mathbb{C}^{m \times m}$. There exists a unitary matrix Q and an upper triangular matrix R such that

$$A = QR$$

QR-factorization

Suppose $A \in \mathbb{C}^{m \times m}$. There exists a unitary matrix Q and an upper triangular matrix R such that

$$A = QR$$

Note: Very different from Schur factorization

$$A = QTQ^*$$

- QR-factorization can be computed with a finite number of iterations
- Schur decomposition directly gives us the eigenvalues

11 / 47

Didactic simplifying assumption: All eigenvalues are real

QR-method lecture 1 12 / 47

Didactic simplifying assumption: All eigenvalues are real

$\mathsf{Basic}\ \mathsf{QR}\text{-}\mathsf{method} = \mathsf{basic}\ \mathsf{QR}\text{-}\mathsf{algorithm}$

Simple basic idea: Let $A_0 = A$ and iterate:

- Compute QR-factorization of $A_k = QR$
- Set $A_{k+1} = RQ$.

R-method lecture 1 12 / 47

Didactic simplifying assumption: All eigenvalues are real

${\sf Basic}\ {\sf QR-method} = {\sf basic}\ {\sf QR-algorithm}$

Simple basic idea: Let $A_0 = A$ and iterate:

- Compute QR-factorization of $A_k = QR$
- Set $A_{k+1} = RQ$.

Note:

• $A_1=RQ=Q^*A_0Q\Rightarrow A_0,A_1,\ldots$ have the same eigenvalues

12 / 47

Didactic simplifying assumption: All eigenvalues are real

${\sf Basic}\ {\sf QR-method} = {\sf basic}\ {\sf QR-algorithm}$

Simple basic idea: Let $A_0 = A$ and iterate:

- Compute QR-factorization of $A_k = QR$
- Set $A_{k+1} = RQ$.

Note:

- $A_1 = RQ = Q^*A_0Q \Rightarrow A_0, A_1, ...$ have the same eigenvalues
- ullet More remarkable: $A_k
 ightarrow {
 m triangular\ matrix\ (except\ special\ cases)}$

12 / 47

$A_k \rightarrow \text{triangular matrix}$:

$A_k \rightarrow \text{triangular matrix}$:

* Time for matlab demo *

hod lecture 1 13 / 47

Elegant and robust but not very efficient:

Elegant and robust but not very efficient:

Disadvantages

 Computing a QR-factorization is quite expensive. One iteration of the basic QR-method

$$\mathcal{O}(m^3)$$
.

Elegant and robust but not very efficient:

Disadvantages

 Computing a QR-factorization is quite expensive. One iteration of the basic QR-method

$$\mathcal{O}(m^3)$$
.

The method often requires many iterations.

Improvement demo:

http://www.youtube.com/watch?v=qmgxzsWWsNc

Outline:

- Decompositions
 - Jordan form
 - Schur decomposition
 - QR-factorization
- Basic QR-method
- **10** Improvement 1: Two-phase approach
 - Hessenberg reduction
 - Hessenberg QR-method
- Improvement 2: Acceleration with shifts
- 6 Convergence theory

Improvement 1: Two-phase approach

We will separate the computation into two phases:

Improvement 1: Two-phase approach

We will separate the computation into two phases:

Phases:

• Phase 1: Reduce the matrix to a Hessenberg with similarity transformations (Section 2.2.1 in lecture notes)

Improvement 1: Two-phase approach

We will separate the computation into two phases:

Phases:

- Phase 1: Reduce the matrix to a Hessenberg with similarity transformations (Section 2.2.1 in lecture notes)
- Phase 2: Specialize the QR-method to Hessenberg matrices (Section 2.2.2 in lecture notes)

Idea for Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that

$$A = PHP^*$$

Idea for Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that

$$A = PHP^*$$

Unlike the Schur factorization, this can be computed with a finite number of operations.

R-method lecture 1 17 / 47

Idea for Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that

$$A = PHP^*$$

Unlike the Schur factorization, this can be computed with a finite number of operations.

Key method: Householder reflectors

R-method lecture 1 17 / 47

Definition

A matrix $P \in \mathbb{C}^{m \times m}$ of the form

$$P = I - 2uu^*$$
 where $u \in \mathbb{C}^m$ and $||u|| = 1$

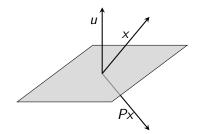
is called a Householder reflector.

Definition

A matrix $P \in \mathbb{C}^{m \times m}$ of the form

$$P = I - 2uu^*$$
 where $u \in \mathbb{C}^m$ and $||u|| = 1$

is called a Householder reflector.



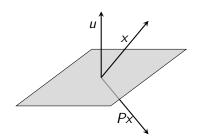
18 / 47

Definition

A matrix $P \in \mathbb{C}^{m \times m}$ of the form

$$P = I - 2uu^*$$
 where $u \in \mathbb{C}^m$ and $||u|| = 1$

is called a Householder reflector.



Properties

•
$$P^* = P^{-1} = P$$

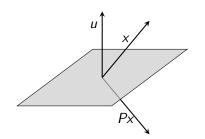
QR-method lecture 1 18 / 47

Definition

A matrix $P \in \mathbb{C}^{m \times m}$ of the form

$$P = I - 2uu^*$$
 where $u \in \mathbb{C}^m$ and $||u|| = 1$

is called a Householder reflector.



Properties

- $P^* = P^{-1} = P$
- $Pz = z 2u(u^*z)$ can be computed with O(m) operations.

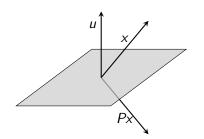
18 / 47

Definition

A matrix $P \in \mathbb{C}^{m \times m}$ of the form

$$P = I - 2uu^*$$
 where $u \in \mathbb{C}^m$ and $||u|| = 1$

is called a Householder reflector.



Properties

- $P^* = P^{-1} = P$
- $Pz = z 2u(u^*z)$ can be computed with O(m) operations.
- <u>。</u> . . .

Problem

Given a vector x compute a Householder reflector such that

$$Px = \alpha e_1.$$

Problem

Given a vector x compute a Householder reflector such that

$$Px = \alpha e_1$$
.

Solution (Lemma 2.2.3)

Let $\rho = \operatorname{sign}(x_1)$,

$$z := x - \rho \|x\| e_1 = \begin{bmatrix} x_1 - \rho \|x\| \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

and

$$u = z/||z||$$
.

Problem

Given a vector x compute a Householder reflector such that

$$Px = \alpha e_1.$$

Solution (Lemma 2.2.3)

Let $\rho = \operatorname{sign}(x_1)$,

$$z := x - \rho ||x|| e_1 = \begin{bmatrix} x_1 - \rho ||x|| \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

and

$$u = z/||z||$$
.

Then, $P = I - 2uu^*$ is a Householder reflector that satisfies $Px = \alpha e_1$.

Problem

Given a vector x compute a Householder reflector such that

$$Px = \alpha e_1$$
.

Solution (Lemma 2.2.3)

Let $\rho = \operatorname{sign}(x_1)$,

$$z := x - \rho ||x|| e_1 = \begin{bmatrix} x_1 - \rho ||x|| \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

and

$$u = z/||z||$$
.

Then, $P = I - 2uu^*$ is a Householder reflector that satisfies $Px = \alpha e_1$.

* Matlab demo showing Householder reflectors *

Elimination for first column

$$P_1 := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{bmatrix} = \begin{bmatrix} 1 & 0^T \\ 0 & I - 2u_1u_1^T \end{bmatrix}.$$

Elimination for first column

$$P_1 := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{bmatrix} = \begin{bmatrix} 1 & 0^T \\ 0 & I - 2u_1u_1^T \end{bmatrix}.$$

Use Lemma 2.2.1 with $x^T = [a_{21}, \dots, a_{n1}]$ to select u_1 such that

Elimination for first column

$$P_1 := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{bmatrix} = \begin{bmatrix} 1 & 0^T \\ 0 & I - 2u_1u_1^T \end{bmatrix}.$$

Use Lemma 2.2.1 with $x^T = [a_{21}, \dots, a_{n1}]$ to select u_1 such that

In order to have a similarity transformation mult from right:

$$P_1AP_1^{-1} = P_1AP_1 = \text{same structure as } P_1A.$$

21 / 47

Elimination for first column

$$P_1 := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{bmatrix} = \begin{bmatrix} 1 & 0^T \\ 0 & I - 2u_1u_1^T \end{bmatrix}.$$

Use Lemma 2.2.1 with $x^T = [a_{21}, \dots, a_{n1}]$ to select u_1 such that

In order to have a similarity transformation mult from right:

$$P_1AP_1^{-1} = P_1AP_1 = \text{same structure as } P_1A.$$

Elimination for second column

Repeat the process with:

$$P_2 = \begin{bmatrix} 1 & 0 & 0^T \\ 0 & 1 & 0^T \\ 0 & 0 & I - 2u_2u_2^T \end{bmatrix}$$

* Matlab demo of the first two steps of the Hessenberg reduction *

The iteration can be implemented without explicit use of the P matrices.

Algorithm 2 Reduction to Hessenberg form

Input: A matrix $A \in \mathbb{C}^{n \times n}$

Output: A Hessenberg matrix H such that $H = U^*AU$.

for k = 1, ..., n - 2 do

Compute u_k using (2.4) where $x^T = [a_{k+1,k}, \dots, a_{n,k}]$

Compute $P_k A$: $A_{k+1:n,k:n} := A_{k+1:n,k:n} - 2u_k(u_k^* A_{k+1:n,k:n})$

Compute $P_k A P_k^*$: $A_{1:n,k+1:n} := A_{1:n,k+1:n} - 2(A_{1:n,k+1:n}u_k)u_k^*$

end for

Let H be the Hessenberg part of A.

^{*} show it in matlab *