QR-method lecture 1
SF2524 - Matrix Computations for Large-scale Systems
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So far we have in the course learned about...

Methods suitable for large sparse matrices

@ Power method
Computes largest eigenvalue
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So far we have in the course learned about...

Methods suitable for large sparse matrices
@ Power method
Computes largest eigenvalue
@ Inverse iteration
Computes eigenvalue closest to a target
@ Rayleigh Quotient Iteration
Computes one eigenvalue with a starting guess
@ Arnoldi method for eigenvalue problems
Computes extreme eigenvalue

Now: QR-method
@ Compute all eigenvalues
@ Suitable for dense problems

@ Small matrices in relation to previous algorithms
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Agenda QR-method

© Decompositions

Jordan form
Schur decomposition
QR-factorization

@ Basic QR-method
© Improvement 1: Two-phase approach

Hessenberg reduction
Hessenberg QR-method

@ Improvement 2: Acceleration with shifts

© Convergence theory
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Agenda QR-method

© Decompositions

Jordan form
Schur decomposition
QR-factorization

@ Basic QR-method
© Improvement 1: Two-phase approach

Hessenberg reduction
Hessenberg QR-method

@ Improvement 2: Acceleration with shifts

© Convergence theory

Reading instructions

Point 1: TB Lecture 24

Points 2-4: Lecture notes “QR-method” on course web page
Point 5: TB Chapter 28

(Extra reading: TB Chapter 25-26, 28-29)
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©@ Decompositions
» Jordan form

» Schur decomposition
» QR-factorization

@ Basic QR-method

© Improvement 1: Two-phase approach
» Hessenberg reduction

» Hessenberg QR-method

@ Improvement 2: Acceleration with shifts
© Convergence theory
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Similarity transformation
Suppose A € C™*™ and V € C™*™ is an invertible matrix. Then

A

and
B =vAy!

have the same eigenvalues.

QR-method lecture 1 5 /47



Similarity transformation
Suppose A € C™*™ and V € C™*™ is an invertible matrix. Then

A

and
B =vAy!

have the same eigenvalues.

Numerical methods based on similarity transformations

o If B is triangular we can read-off the eigenvalues from the diagonal.

@ ldea of numerical method: Compute V such that B is triangular.
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First idea: compute the Jordan canonical form

Jordan canonical form
Suppose A € C™*™_ There exists an invertible matrix V € C™*™ and a
block diagonal matrix such that

A= VAV
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First idea: compute the Jordan canonical form

Jordan canonical form
Suppose A € C™*™_ There exists an invertible matrix V € C™*™ and a
block diagonal matrix such that
A=VAVTE
where
S
A= ,
Ik
where
A1
JI = 5 I = 1, ,k
1
Ai
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Common case: distinct eigenvalues
Suppose A; # Aj, i =1,...,m. Then,

A1
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Common case: distinct eigenvalues
Suppose A; # Aj, i =1,...,m. Then,

A1
A=
Am
Common case: symmetric matrix
Suppose A= AT € R™™_ Then,
A1
A=
Am

QR-method lecture 1 7 /47



Example - numerical stability of Jordan form
Consider
2 1
2 1
2

()

it
D
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Example - numerical stability of Jordan form

Consider
2 1
A= 2 1
€ 2

If ¢ = 0. Then, the Jordan canonical form is

2 1
A= 2 1
2
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Example - numerical stability of Jordan form

Consider
2

1
A= 2 1
€ 2

If ¢ = 0. Then, the Jordan canonical form is

2 1
A= 2 1
2
If € > 0. Then, the eigenvalues are distinct and

2+ 0(e/3)
A= 2+ O(1/3)
2+ O(e'/3)
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Example - numerical stability of Jordan form

Consider
2

1
A= 2 1
€ 2

If ¢ = 0. Then, the Jordan canonical form is

2 1
A= 2 1
2
If € > 0. Then, the eigenvalues are distinct and

2+ 0(e/3)
N = 2 + O(e'/3)
2+ O(e'/3)

= Not continuous with respect to ¢
= The Jordan form is often not numerically stable
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Schur decomposition (essentially TB Theorem 24.9)

Suppose A € C™*™_ There exists an unitary matrix P
Pyt =Pt
and a triangular matrix T such that

A= PTP".
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Schur decomposition (essentially TB Theorem 24.9)

Suppose A € C™*™_ There exists an unitary matrix P
Pyt =Pt
and a triangular matrix T such that

A= PTP".

The Schur decomposition is numerically stable.
Goal with QR-method: Numercally compute a Schur factorization
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Outline:

©® Decompositions
» Jordan form

» Schur decomposition
» QR-factorization

@ Basic QR-method
© Improvement 1. Two-phase approach
» Hessenberg reduction

» Hessenberg QR-method

© Convergence theory
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@ Improvement 2: Acceleration with shifts



QR-factorization

Suppose A € C™*™_ There exists a unitary matrix @ and an upper
triangular matrix R such that

A= QR
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QR-factorization

Suppose A € C™*™_ There exists a unitary matrix @ and an upper
triangular matrix R such that

A= QR

Note: Very different from Schur factorization

A=QTQ"

@ QR-factorization can be computed with a finite number of iterations

@ Schur decomposition directly gives us the eigenvalues
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Basic QR-method

Didactic simplifying assumption: All eigenvalues are real
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Basic QR-method

Didactic simplifying assumption: All eigenvalues are real
Basic QR-method = basic QR-algorithm
Simple basic idea: Let Ag = A and iterate:

o Compute QR-factorization of Ay = QR
@ Set Axr1 = RQ.
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Basic QR-method

Didactic simplifying assumption: All eigenvalues are real

Basic QR-method = basic QR-algorithm

Simple basic idea: Let Ag = A and iterate:
o Compute QR-factorization of Ay = QR
@ Set Axr1 = RQ.

Note:
o A = RQ = Q*AsQ = Ao, A1,... have the same eigenvalues

@ More remarkable: Ay — triangular matrix (except special cases)
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Ay — triangular matrix:

B T T D Y

QR-method lecture 1 13 / 47



Ay — triangular matrix:

il

k

A

* Time for matlab demo *

QR-method lecture 1

13 / 47



Elegant and robust but not very efficient:
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http://www.youtube.com/watch?v=qmgxzsWWsNc

Elegant and robust but not very efficient:

Disadvantages
o Computing a QR-factorization is quite expensive. One iteration of the
basic QR-method
O(m?).
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Elegant and robust but not very efficient:

Disadvantages
o Computing a QR-factorization is quite expensive. One iteration of the
basic QR-method
O(m?).

@ The method often requires many iterations.

Improvement demo:

http://www.youtube.com/watch?v=gmgxzsWWsNc
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http://www.youtube.com/watch?v=qmgxzsWWsNc

Outline:
©® Decompositions

» Jordan form
» Schur decomposition
» QR-factorization

@ Basic QR-method
© Improvement 1: Two-phase approach

» Hessenberg reduction
» Hessenberg QR-method

@ Improvement 2: Acceleration with shifts

© Convergence theory
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Improvement 1: Two-phase approach

We will separate the computation into two phases:

X X X X X X X
X X X X X X
X — X X — X
x Phase 1 x Phase 2

X

X X X X

X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X

X X X X X
[ ——)

QR-method lecture 1 16 / 47



Improvement 1: Two-phase approach

We will separate the computation into two phases:

X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

X X X X X — X X X X — X X X

x x X x x Phase 1 x x x Phase 2 x x

X X X X X X X X
Phases:

@ Phase 1: Reduce the matrix to a Hessenberg with similarity
transformations (Section 2.2.1 in lecture notes)
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Improvement 1: Two-phase approach

We will separate the computation into two phases:

X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

X X X X X — X X X X — X X X

x x x x x Phase 1 x x x Phase 2 x x

X X X X X X X X
Phases:

@ Phase 1: Reduce the matrix to a Hessenberg with similarity
transformations (Section 2.2.1 in lecture notes)

@ Phase 2: Specialize the QR-method to Hessenberg matrices (Section
2.2.2 in lecture notes)
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Phase 1: Hessenberg reduction

Idea for Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that

A= PHP*
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Phase 1: Hessenberg reduction

Idea for Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that
A = PHP*

Unlike the Schur factorization, this can be computed with a finite number
of operations.
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Phase 1: Hessenberg reduction

Idea for Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that
A = PHP*

Unlike the Schur factorization, this can be computed with a finite number
of operations.

Key method: Householder reflectors
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Phase 1: Hessenberg reduction
Definition
A matrix P € C™*™ of the form

P =1—2uu* where u e C™ and |Ju]| =1

is called a Householder reflector.
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Phase 1: Hessenberg reduction
Definition
A matrix P € C™*™ of the form

P =1—2uu* where u e C™ and |Ju]| =1
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X Properties
o Pr=pl=p
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Householder reflectors satisfying Px = ae;
Problem

Given a vector x compute a Householder reflector such that

Px = «ey.

o & E DA
QR-method lecture 1



Householder reflectors satisfying Px = ae;
Problem

Given a vector x compute a Householder reflector such that

Px = aey. )
Solution (Lemma 2.2.3)
Let p = sign(x1),
x1 = pllx|l
X2
zimx—plxle=|
Xn

and

u=z/|zl.
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* Matlab demo showing Householder reflectors *
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We will be able to construct m — 2 householder reflectors that bring the
matrix to Hessenberg form.
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We will be able to construct m — 2 householder reflectors that bring the
matrix to Hessenberg form.

Elimination for first column
1 0

P =

o O O o

X X X X O
X X X X O
X X X X ©

X
X
X
X

QR-method lecture 1 21 / 47



We will be able to construct m — 2 householder reflectors that bring the
matrix to Hessenberg form.

Elimination for first column
1 0

P =

o O O o

X X X X O
X X X X O
X X X X ©

X
X
X
X

Use Lemma 2.2.1 with x” = [az1,. .., an1] to select uy such that

X
X

PIA =

X X X X X
X X X X X
X X X X X
X X X X X
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We will be able to construct m — 2 householder reflectors that bring the

matrix to Hessenberg form.

Elimination for first column
1 0

P =

X X X X O
X X X X O
X X X X ©

X
X
X
X

O O O o

Use Lemma 2.2.1 with x” = [az1,. .., an1] to select uy such that

X
X

PIA =

X X X X X
X X X X X
X X X X X
X X X X X

In order to have a similarity transformation mult from right:
P1AP; - P1AP; = same structure as PiA.
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Elimination for second column
Repeat the process with:




* Matlab demo of the first two steps of the Hessenberg reduction *
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The iteration can be implemented without explicit use of the P matrices.

Algorithm 2 Reduction to Hessenberg form
Input: A matrix A e C"*"
Output: A Hessenberg matrix H such that H = U*AU.
fork=1,...,n-2do
Compute 1y, using (2.4) where xT = [Bkstir -+ @]

ComPUte PA: Apn e T Apn m bk~ 2u.ic(M,k;"Jei.lc+1:w,k:ﬂ )
ComPUte PkA Py:: Al:ﬂ,k+1:ﬂ = Al:n,k+1:n - Z(AI:H,’H—I:H uk)uj:
end for

Let H be the Hessenberg part of A.

* show it in matlab *
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