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Agenda QR-method

1 Decompositions (previous lecture)
I Jordan form
I Schur decomposition
I QR-factorization

2 Basic QR-method
3 Improvement 1: Two-phase approach

I Hessenberg reduction (previous lecture)
I Hessenberg QR-method

4 Improvement 2: Acceleration with shifts

5 Convergence theory

Reading instructions

Point 1: TB Lecture 24
Points 2-4: Lecture notes “QR-method” on course web page
Point 5: TB Chapter 28
(Extra reading: TB Chapter 25-26, 28-29)
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Basic QR-method (previous lecture)

Basic QR-method = basic QR-algorithm

Simple basic idea: Let A0 = A and iterate:

Compute QR-factorization of Ak = QR

Set Ak+1 = RQ.

Disadvantages

Computing a QR-factorization is quite expensive. One iteration of the
basic QR-method

O(m3).

The method often requires many iterations.
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Improvement 1: Two-phase approach

We will separate the computation into two phases:


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 →
Phase 1


× × × × ×
× × × × ×

× × × ×
× × ×

× ×

 →
Phase 2


× × × × ×

× × × ×
× × ×

× ×
×



Phases

Phase 1: Reduce the matrix to a Hessenberg with similarity
transformations (Section 2.2.1 in lecture notes)

Phase 2: Specialize the QR-method to Hessenberg matrices (Section
2.2.2 in lecture notes)
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Phase 1: Hessenberg reduction (previous lecture)

Phase 1: Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that

A = PHP∗

Unlike the Schur factorization, this can be computed with a finite number
of operations.

Idea

Householder reflector:

P = I − 2uu∗ where u ∈ Cm and ‖u‖ = 1,

Apply one Householder reflector at a time to eliminate the column by
column.
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Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg is hessenberg.m *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates
Ak are Hessenberg matrices.

Recall: basic QR-step is O(m3).

Hessenberg structure can be exploited such that we can carry out a
QR-step with less operations.
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Definition (Givens rotation)

The matrix G (i , j , c , s) ∈ Rn×n corresponding to a Givens rotation is
defined by

G (i , j , c , s) :=


I

c −s
I

s c
I

 ,
which deviates from identity at row and column i and j .

ej

ei

x

Gx
θ

Properties

G ∗ = G−1

Gz can be computed with
O(1) operations

· · ·
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The Q-matrix in the QR-factorization of a Hessenberg matrix can be
factorized as a product of m − 1 Givens rotators.

Theorem (Theorem 2.2.6)

Suppose A ∈ Cm×m is a Hessenberg matrix. Let Hi be generated as
follows H1 = A

Hi+1 = GT
i Hi , i = 1, . . . ,m − 1

where Gi = G (i , i + 1, (Hi )i ,i/ri , (Hi )i+1,i/ri ) and ri =
√

(Hi )2i ,i + (Hi )2i+1,i

and we assume ri 6= 0. Then, Hn is upper triangular and

A = (G1G2 · · ·Gm−1)Hn = QR

is a QR-factorization of A.

Proof idea: Only one rotator required to bring one column of a Hessenberg
matrix to a triangular. * Matlab: Explicit QR-factorization of Hessenberg qrg ivens.m ∗

QR-method lecture 2 8 / 23



The Q-matrix in the QR-factorization of a Hessenberg matrix can be
factorized as a product of m − 1 Givens rotators.

Theorem (Theorem 2.2.6)

Suppose A ∈ Cm×m is a Hessenberg matrix. Let Hi be generated as
follows H1 = A

Hi+1 = GT
i Hi , i = 1, . . . ,m − 1

where Gi = G (i , i + 1, (Hi )i ,i/ri , (Hi )i+1,i/ri ) and ri =
√

(Hi )2i ,i + (Hi )2i+1,i

and we assume ri 6= 0. Then, Hn is upper triangular and

A = (G1G2 · · ·Gm−1)Hn = QR

is a QR-factorization of A.

Proof idea: Only one rotator required to bring one column of a Hessenberg
matrix to a triangular. * Matlab: Explicit QR-factorization of Hessenberg qrg ivens.m ∗

QR-method lecture 2 8 / 23



The Q-matrix in the QR-factorization of a Hessenberg matrix can be
factorized as a product of m − 1 Givens rotators.

Theorem (Theorem 2.2.6)

Suppose A ∈ Cm×m is a Hessenberg matrix. Let Hi be generated as
follows H1 = A

Hi+1 = GT
i Hi , i = 1, . . . ,m − 1

where Gi = G (i , i + 1, (Hi )i ,i/ri , (Hi )i+1,i/ri ) and ri =
√

(Hi )2i ,i + (Hi )2i+1,i

and we assume ri 6= 0. Then, Hn is upper triangular and

A = (G1G2 · · ·Gm−1)Hn = QR

is a QR-factorization of A.

Proof idea: Only one rotator required to bring one column of a Hessenberg
matrix to a triangular. * Matlab: Explicit QR-factorization of Hessenberg qrg ivens.m ∗

QR-method lecture 2 8 / 23



Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrix
but only implicitly apply the Givens rotators

: Let

Ak−1 = (G1G2 · · ·Gm−1)Rm

and
Ak = Rm(G1G2 · · ·Gm−1) = (· · · ((RmG1)G2) · · · )Gm

Complexity of one QR-step for a Hessenberg matrix

We need to apply 2(m − 1) givens rotators to compute one QR-step.

One givens rotator applied to a vector can be computed in O(1)
operations.

One givens rotator applied to matrix can be computed in O(m)
operations.

⇒
the complexity of one Hessenberg QR step = O(m2)
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Givens rotators only modify very few elements.
Several optimizations possible. ⇒
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Show animation again:

http://www.youtube.com/watch?v=qmgxzsWWsNc

Acceleration still remains
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Outline:

Basic QR-method

Improvement 1: Two-phase approach
I Hessenberg reduction
I Hessenberg QR-method

Improvement 2: Acceleration with shifts

Convergence theory
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Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method

One step of shifted QR-method: Let Hk = H

H − µI = QR

H̄ = RQ + µI

and Hk+1 := H̄.

Note:

Hk+1 = H̄ = RQ + µI = QT (H − µI ))Q + µI = QTHkQ

⇒ One step of shifted QR-method is a similarity transformation, with a
different Q matrix.
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Idealized situation: Let µ = λ(H)

Suppose µ is an eigenvalue:
⇒ H − µI is a singular Hessenberg matrix.

QR-factorization of singular Hessenberg matrices (Lemma 2.3.1)

The R-matrix in the QR-decomposition of a singular unreduced
Hessenberg matrix has the structure

R =


× × × × ×
× × × ×
× × ×
× ×

0

 .

* Matlab demo: Show QR-factorization of singular Hessenberg matrix in matlab *
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Shifted QR for exact shift: µ = λ

If µ = λ is an eigenvalue of H, then H − µI is singular. Suppose Q, R a
QR-factorization of a Hessenberg matrix and

R =

× × × × ×
× × × ×

× × ×
× ×

0

.
Then, * Prove on blackboard *

RQ =

× × × × ×
× × × × ×

× × × ×
× × ×

0


and

H̄ = RQ + λI =

× × × × ×
× × × × ×

× × × ×
× × ×

λ

.
⇒ λ is an eigenvalue of H̄.
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More precisely:

Lemma (Lemma 2.3.2)

Suppose λ is an eigenvalue of the Hessenberg matrix H. Let H̄ be the
result of one shifted QR-step. Then,

h̄n,n−1 = 0

h̄n,n = λ.
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Select the shift

How to select the shifts?

Shifted QR-method with µ = λ computes an eigenvalue in one step.

The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate
eigenvalue. Rayleigh shifts:

µ := rm,m.

Explanation

The QR-method can be interpreted as equivalent to variant of Power
Method applied to A. (Will be shown later)

The QR-method can be interpreted as equivalent to variant of Power
Method applied to A−1. (Proof sketched in TB Chapter 29) ⇒
Rayleigh shifts can be interpreted as Rayleigh quotient iteration.
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Deflation

QR-step on reduced Hessenberg matrix

Suppose

H =

(
H0 H1

0 H3

)
,

where H3 is upper triangular and let

H̄ =

(
H̄0 H̄1

H̄2 H̄3

)
,

be the result of one (shifted) QR-step.

Then, H̄2 = 0, H̄3 = H3 and H̄0 is
the result of one (shifted) QR-step applied to H0. * show proof *

⇒ We can reduce the active matrix when an eigenvalue is converged.

This is called deflation.
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Rayleigh shifts can be combined with deflation ⇒

* show Hessenberg qr with shifts in matlab *
* http://www.youtube.com/watch?v=qmgxzsWWsNc *
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Outline:

Basic QR-method

Improvement 1: Two-phase approach
I Hessenberg reduction
I Hessenberg QR-method

Improvement 2: Acceleration with shifts

Convergence theory
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Convergence theory - TB Chapter 28

Didactic simplification for convergence of QR-method: Assume A = AT .

Convergence characterization

(1) Artificial algorithm: USI - Unnormalized Simultaneous Iteration

(2) Show convergence properties of USI

(3) Artificial algorithm: NSI - Normalized Simultaneous Iteration

(4) Show: USI ⇔ NSI ⇔ QR-method
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Definition: Unnormalized simultaneous iteration (USI)

A generalization of power method with n vectors “simultaneously”

V (0) = [v
(0)
1 , . . . , v

(0)
n ] ∈ Rm×n.

Define
V (k) := AkV (0).

A QR-factorization generalizes the normalization step:

Q̂(k)R̂(k) = V (k).
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Convergence of USI

Assumptions:

Let eigenvalues ordered and assume:

|λ1| > |λ2| > · · · > |λn+1| ≥ |λn+2| ≥ · · · ≥ |λm|.

Assume leading principal submatrices of Q̂TV (0) are nonsingular,
where Q̂ = (q1, . . . , qn) are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with V (0) and assumptions above
are satisfied. Let qj , j = 1, . . . , n be the first n eigenvectors of A. Then, as

k →∞, the columns of the matrices Q̂(k) convergence linearly to qj

‖q(k)
j −±qj‖ = O(C k), j = 1, . . . , n,

where C = max1≤k≤n |λk+1|/|λk |.

* Show matlab demo on USI (video) *
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