QR-method lecture 2

SF2524 - Matrix Computations for Large-scale Systems

< 3 > < 3 >

Agenda QR-method

- Decompositions (previous lecture)
 - Jordan form
 - Schur decomposition
 - QR-factorization
- Basic QR-method
- Improvement 1: Two-phase approach
 - Hessenberg reduction (previous lecture)
 - Hessenberg QR-method
- Improvement 2: Acceleration with shifts
- Onvergence theory

3 K K 3 K

Agenda QR-method

- Decompositions (previous lecture)
 - Jordan form
 - Schur decomposition
 - QR-factorization
- 2 Basic QR-method
- Improvement 1: Two-phase approach
 - Hessenberg reduction (previous lecture)
 - Hessenberg QR-method
- Improvement 2: Acceleration with shifts
- Onvergence theory

Reading instructions

Point 1: TB Lecture 24 Points 2-4: Lecture notes "QR-method" on course web page Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29)

Basic QR-method (previous lecture)

Basic QR-method = basic QR-algorithm

Simple basic idea: Let $A_0 = A$ and iterate:

- Compute QR-factorization of $A_k = QR$
- Set $A_{k+1} = RQ$.

Basic QR-method (previous lecture)

Basic QR-method = basic QR-algorithm

Simple basic idea: Let $A_0 = A$ and iterate:

- Compute QR-factorization of $A_k = QR$
- Set $A_{k+1} = RQ$.

Disadvantages

• Computing a QR-factorization is quite expensive. One iteration of the basic QR-method

 $\mathcal{O}(m^3)$.

▶ < ∃ ▶ < ∃ ▶</p>

Basic QR-method (previous lecture)

Basic QR-method = basic QR-algorithm

Simple basic idea: Let $A_0 = A$ and iterate:

- Compute QR-factorization of $A_k = QR$
- Set $A_{k+1} = RQ$.

Disadvantages

• Computing a QR-factorization is quite expensive. One iteration of the basic QR-method

 $\mathcal{O}(m^3)$.

• The method often requires many iterations.

・ 何 ト ・ ヨ ト ・ ヨ ト

Improvement 1: Two-phase approach

We will separate the computation into two phases:

Improvement 1: Two-phase approach

We will separate the computation into two phases:

Phases

• Phase 1: Reduce the matrix to a Hessenberg with similarity transformations (Section 2.2.1 in lecture notes)

Improvement 1: Two-phase approach

We will separate the computation into two phases:

Phases

- Phase 1: Reduce the matrix to a Hessenberg with similarity transformations (Section 2.2.1 in lecture notes)
- Phase 2: Specialize the QR-method to Hessenberg matrices (Section 2.2.2 in lecture notes)

Phase 1: Hessenberg reduction (previous lecture)

Phase 1: Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that

 $A = PHP^*$

Phase 1: Hessenberg reduction (previous lecture)

Phase 1: Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that

 $A = PHP^*$

Unlike the Schur factorization, this can be computed with a finite number of operations.

Phase 1: Hessenberg reduction (previous lecture)

Phase 1: Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that

 $A = PHP^*$

Unlike the Schur factorization, this can be computed with a finite number of operations.

Idea

• Householder reflector:

$$P = I - 2uu^*$$
 where $u \in \mathbb{C}^m$ and $||u|| = 1$,

• Apply one Householder reflector at a time to eliminate the column by column.

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg_is_hessenberg.m *

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg_is_hessenberg.m *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates A_k are Hessenberg matrices.

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg_is_hessenberg.m *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates A_k are Hessenberg matrices.

Recall: basic QR-step is $\mathcal{O}(m^3)$.

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg_is_hessenberg.m *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates A_k are Hessenberg matrices.

Recall: basic QR-step is $\mathcal{O}(m^3)$.

Hessenberg structure can be exploited such that we can carry out a QR-step with less operations.

A B M A B M

The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ corresponding to a Givens rotation is defined by

$$G(i,j,c,s) := egin{bmatrix} I & c & -s \ & I & \ & s & c \ & & & I \end{bmatrix},$$

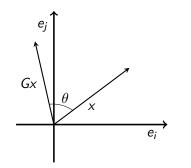
which deviates from identity at row and column i and j.

伺下 イヨト イヨト

The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ corresponding to a Givens rotation is defined by

$$G(i, j, c, s) := \begin{bmatrix} I & & & \\ & c & -s & \\ & & I & \\ & s & c & \\ & & & I \end{bmatrix}$$

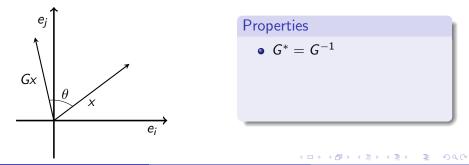
which deviates from identity at row and column i and j.



The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ corresponding to a Givens rotation is defined by

$$G(i, j, c, s) := \begin{bmatrix} I & & & & \\ & c & -s & & \\ & I & & & \\ & s & c & & \\ & & & & I \end{bmatrix}$$

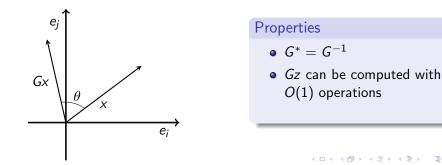
which deviates from identity at row and column i and j.



The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ corresponding to a Givens rotation is defined by

$$G(i, j, c, s) := \begin{bmatrix} I & & & & \\ & c & -s & & \\ & & I & & \\ & s & c & & \\ & & & & I \end{bmatrix}$$

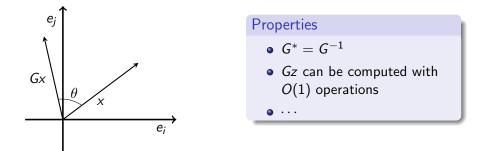
which deviates from identity at row and column i and j.



The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ corresponding to a Givens rotation is defined by

$$G(i, j, c, s) := \begin{bmatrix} I & & & & \\ & c & -s & & \\ & & I & & \\ & s & c & & \\ & & & & I \end{bmatrix}$$

which deviates from identity at row and column i and j.



· · · · · · · · ·

The Q-matrix in the QR-factorization of a Hessenberg matrix can be factorized as a product of m-1 Givens rotators.

3

The Q-matrix in the QR-factorization of a Hessenberg matrix can be factorized as a product of m - 1 Givens rotators.

Theorem (Theorem 2.2.6)

Suppose $A \in \mathbb{C}^{m \times m}$ is a Hessenberg matrix. Let H_i be generated as follows $H_1 = A$

$$H_{i+1} = G_i^T H_i, \quad i = 1, \dots, m-1$$

where $G_i = G(i, i + 1, (H_i)_{i,i}/r_i, (H_i)_{i+1,i}/r_i)$ and $r_i = \sqrt{(H_i)_{i,i}^2 + (H_i)_{i+1,i}^2}$ and we assume $r_i \neq 0$. Then, H_n is upper triangular and

$$A = (G_1 G_2 \cdots G_{m-1}) H_n = QR$$

is a QR-factorization of A.

The Q-matrix in the QR-factorization of a Hessenberg matrix can be factorized as a product of m - 1 Givens rotators.

Theorem (Theorem 2.2.6)

Suppose $A \in \mathbb{C}^{m \times m}$ is a Hessenberg matrix. Let H_i be generated as follows $H_1 = A$

$$H_{i+1} = G_i^T H_i, \ i = 1, \dots, m-1$$

where $G_i = G(i, i + 1, (H_i)_{i,i}/r_i, (H_i)_{i+1,i}/r_i)$ and $r_i = \sqrt{(H_i)_{i,i}^2 + (H_i)_{i+1,i}^2}$ and we assume $r_i \neq 0$. Then, H_n is upper triangular and

$$A = (G_1 G_2 \cdots G_{m-1}) H_n = QR$$

is a QR-factorization of A.

Proof idea: Only one rotator required to bring one column of a Hessenberg matrix to a triangular. * Matlab: Explicit QR-factorization of Hessenberg qr.g ivens.m *

イロト 不得下 イヨト イヨト 二日

- 4 週 ト - 4 三 ト - 4 三 ト

$$A_{k-1} = (G_1 G_2 \cdots G_{m-1}) R_m$$

and

$$A_k = R_m(G_1G_2\cdots G_{m-1}) =$$

- 4 目 ト - 4 日 ト - 4 日 ト

$$A_{k-1} = (G_1 G_2 \cdots G_{m-1}) R_m$$

and

$$A_k = R_m(G_1G_2\cdots G_{m-1}) = (\cdots ((R_mG_1)G_2)\cdots)G_m$$

3

イロト 不得 トイヨト イヨト

$$A_{k-1} = (G_1 G_2 \cdots G_{m-1}) R_m$$

and

$$A_k = R_m(G_1G_2\cdots G_{m-1}) = (\cdots ((R_mG_1)G_2)\cdots)G_m$$

Complexity of one QR-step for a Hessenberg matrix

We need to apply 2(m-1) givens rotators to compute one QR-step.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$A_{k-1} = (G_1 G_2 \cdots G_{m-1}) R_m$$

and

$$A_k = R_m(G_1G_2\cdots G_{m-1}) = (\cdots ((R_mG_1)G_2)\cdots)G_m$$

Complexity of one QR-step for a Hessenberg matrix

We need to apply 2(m-1) givens rotators to compute one QR-step.

One givens rotator applied to a vector can be computed in O(1) operations.

(日) (同) (三) (三)

$$A_{k-1} = (G_1 G_2 \cdots G_{m-1}) R_m$$

and

$$A_k = R_m(G_1G_2\cdots G_{m-1}) = (\cdots ((R_mG_1)G_2)\cdots)G_m$$

Complexity of one QR-step for a Hessenberg matrix

We need to apply 2(m-1) givens rotators to compute one QR-step.

- One givens rotator applied to a vector can be computed in O(1) operations.
- One givens rotator applied to matrix can be computed in O(m) operations.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$A_{k-1} = (G_1 G_2 \cdots G_{m-1}) R_m$$

and

$$A_k = R_m(G_1G_2\cdots G_{m-1}) = (\cdots ((R_mG_1)G_2)\cdots)G_m$$

Complexity of one QR-step for a Hessenberg matrix

We need to apply 2(m-1) givens rotators to compute one QR-step.

- One givens rotator applied to a vector can be computed in O(1) operations.
- One givens rotator applied to matrix can be computed in O(m) operations.

the complexity of one Hessenberg QR step = $\mathcal{O}(m^2)$

イロン 不聞と 不同と 不同と

Givens rotators only modify very few elements. Several optimizations possible. \Rightarrow

Algorithm 3 Hessenberg QR algorithm Input: A Hessenberg matrix $A \in \mathbb{C}^{n \times n}$ Output: Upper triangular T such that $A = UTU^*$ for an orthogonal matrix U. Set $A_0 \coloneqq A$ for k = 1, ..., do// One Hessenberg QR step $H = A_{k-1}$ for i = 1, ..., n - 1 do $[c_i, s_i] = givens(h_{i,i}, h_{i+1,i})$ $H_{i:i+1,i:n} = \begin{bmatrix} c_i & s_i \\ -s_i & c_i \end{bmatrix} H_{i:i+1,i:n}$ end for for i = 1, ..., n - 1 do $H_{1:i+1,i:i+1} = H_{1:i+1,i:i+1} \begin{bmatrix} c_i & -s_i \\ s_i & c_i \end{bmatrix}$ end for $A_{k} = H$ end for Return $T = A_{\infty}$

3

・ 伺 ト ・ ヨ ト ・ ヨ ト …

Show animation again:

http://www.youtube.com/watch?v=qmgxzsWWsNc

3

Show animation again:

```
http://www.youtube.com/watch?v=qmgxzsWWsNc
```

Acceleration still remains

3

伺下 イヨト イヨト

Outline:

- Basic QR-method
- Improvement 1: Two-phase approach
 - Hessenberg reduction
 - Hessenberg QR-method

• Improvement 2: Acceleration with shifts

• Convergence theory

3

A B M A B M

Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method

One step of shifted QR-method: Let $H_k = H$

Shifted QR-method

One step of shifted QR-method: Let $H_k = H$

$$egin{array}{rcl} H-\mu I&=&QR\ ar{H}&=&RQ+\mu I \end{array}$$

and $H_{k+1} := \overline{H}$.

Shifted QR-method

One step of shifted QR-method: Let $H_k = H$

$$egin{array}{rcl} H-\mu I&=&QR\ ar{H}&=&RQ+\mu I \end{array}$$

and $H_{k+1} := \bar{H}$.

Note:

$$H_{k+1} = \bar{H} = RQ + \mu I =$$

.

Shifted QR-method

One step of shifted QR-method: Let $H_k = H$

$$egin{array}{rcl} H-\mu I&=&QR\ ar{H}&=&RQ+\mu I \end{array}$$

and $H_{k+1} := \bar{H}$.

Note:

$$H_{k+1} = \overline{H} = RQ + \mu I = Q^{T}(H - \mu I))Q + \mu I$$

A B F A B F

Shifted QR-method

One step of shifted QR-method: Let $H_k = H$

$$egin{array}{rcl} H-\mu I&=&QR\ ar{H}&=&RQ+\mu I \end{array}$$

and $H_{k+1} := \bar{H}$.

Note:

$$H_{k+1} = \overline{H} = RQ + \mu I = Q^T (H - \mu I))Q + \mu I = Q^T H_k Q$$

A B F A B F

Shifted QR-method

One step of shifted QR-method: Let $H_k = H$

$$egin{array}{rcl} H-\mu I&=&QR\ ar{H}&=&RQ+\mu I \end{array}$$

and $H_{k+1} := \overline{H}$.

Note:

$$H_{k+1} = \overline{H} = RQ + \mu I = Q^T (H - \mu I))Q + \mu I = Q^T H_k Q$$

 \Rightarrow One step of shifted QR-method is a similarity transformation, with a different Q matrix.

通 ト イヨ ト イヨト

Idealized situation: Let $\mu = \lambda(H)$

Suppose μ is an eigenvalue: $\Rightarrow H - \mu I$ is a singular Hessenberg matrix.

通 ト イヨ ト イヨ ト

Idealized situation: Let $\mu = \lambda(H)$

Suppose μ is an eigenvalue: $\Rightarrow H - \mu I$ is a singular Hessenberg matrix.

QR-factorization of singular Hessenberg matrices (Lemma 2.3.1) The *R*-matrix in the QR-decomposition of a singular unreduced Hessenberg matrix has the structure

Idealized situation: Let $\mu = \lambda(H)$

Suppose μ is an eigenvalue: $\Rightarrow H - \mu I$ is a singular Hessenberg matrix.

QR-factorization of singular Hessenberg matrices (Lemma 2.3.1) The *R*-matrix in the QR-decomposition of a singular unreduced Hessenberg matrix has the structure

* Matlab demo: Show QR-factorization of singular Hessenberg matrix in matlab *

If $\mu = \lambda$ is an eigenvalue of H, then $H - \mu I$ is singular. Suppose Q, R a QR-factorization of a Hessenberg matrix and

Then,

* Prove on blackboard *

イロト イポト イヨト イヨト

If $\mu = \lambda$ is an eigenvalue of H, then $H - \mu I$ is singular. Suppose Q, R a QR-factorization of a Hessenberg matrix and

$$R = egin{bmatrix} imes & imes &$$

Then,

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

and

If $\mu = \lambda$ is an eigenvalue of H, then $H - \mu I$ is singular. Suppose Q, R a QR-factorization of a Hessenberg matrix and

Then,

and

* Prove on blackboard *

소리가 소문가 소문가 소문가 ...

If $\mu = \lambda$ is an eigenvalue of H, then $H - \mu I$ is singular. Suppose Q, R a QR-factorization of a Hessenberg matrix and

$$R = egin{bmatrix} imes & imes &$$

Then,

* Prove on blackboard *

소리가 소문가 소문가 소문가 ...

$$RQ = \begin{bmatrix} imes & imes$$

and

 $\Rightarrow \lambda$ is an eigenvalue of \overline{H} .

More precisely:

Lemma (Lemma 2.3.2)

Suppose λ is an eigenvalue of the Hessenberg matrix H. Let \overline{H} be the result of one shifted QR-step. Then,

$$ar{h}_{n,n-1} = 0$$

 $ar{h}_{n,n} = \lambda.$

How to select the shifts?

• Shifted QR-method with $\mu = \lambda$ computes an eigenvalue in one step.

How to select the shifts?

- Shifted QR-method with $\mu = \lambda$ computes an eigenvalue in one step.
- The exact eigenvalue not available. How to select the shift?

How to select the shifts?

- Shifted QR-method with $\mu = \lambda$ computes an eigenvalue in one step.
- The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate eigenvalue.

How to select the shifts?

- Shifted QR-method with $\mu = \lambda$ computes an eigenvalue in one step.
- The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate eigenvalue. Rayleigh shifts:

 $\mu := r_{m,m}.$

How to select the shifts?

- Shifted QR-method with $\mu = \lambda$ computes an eigenvalue in one step.
- The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate eigenvalue. Rayleigh shifts:

 $\mu := r_{m,m}.$

Explanation

• The QR-method can be interpreted as equivalent to variant of Power Method applied to A. (Will be shown later)

How to select the shifts?

- Shifted QR-method with $\mu = \lambda$ computes an eigenvalue in one step.
- The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate eigenvalue. Rayleigh shifts:

 $\mu := r_{m,m}.$

Explanation

- The QR-method can be interpreted as equivalent to variant of Power Method applied to A. (Will be shown later)
- The QR-method can be interpreted as equivalent to variant of Power Method applied to A⁻¹. (Proof sketched in TB Chapter 29) ⇒ Rayleigh shifts can be interpreted as Rayleigh quotient iteration.

QR-step on reduced Hessenberg matrix

Suppose

$$\mathcal{H} = \begin{pmatrix} \mathcal{H}_0 & \mathcal{H}_1 \\ 0 & \mathcal{H}_3 \end{pmatrix},$$

where H_3 is upper triangular and let

$$ar{H} = egin{pmatrix} ar{H}_0 & ar{H}_1 \ ar{H}_2 & ar{H}_3 \end{pmatrix},$$

be the result of one (shifted) QR-step.

$\ensuremath{\mathsf{QR}}\xspace$ on reduced Hessenberg matrix

Suppose

$$\mathcal{H} = \begin{pmatrix} \mathcal{H}_0 & \mathcal{H}_1 \\ 0 & \mathcal{H}_3 \end{pmatrix},$$

where H_3 is upper triangular and let

$$ar{H} = egin{pmatrix} ar{H}_0 & ar{H}_1 \ ar{H}_2 & ar{H}_3 \end{pmatrix},$$

be the result of one (shifted) QR-step. Then, $\bar{H}_2 = 0$, $\bar{H}_3 = H_3$ and \bar{H}_0 is the result of one (shifted) QR-step applied to H_0 .

$\mathsf{QR}\text{-}\mathsf{step}$ on reduced Hessenberg matrix

Suppose

$$\mathcal{H} = \begin{pmatrix} \mathcal{H}_0 & \mathcal{H}_1 \\ 0 & \mathcal{H}_3 \end{pmatrix},$$

where H_3 is upper triangular and let

$$ar{H} = egin{pmatrix} ar{H}_0 & ar{H}_1 \ ar{H}_2 & ar{H}_3 \end{pmatrix},$$

be the result of one (shifted) QR-step. Then, $\bar{H}_2 = 0$, $\bar{H}_3 = H_3$ and \bar{H}_0 is the result of one (shifted) QR-step applied to H_0 . * show proof *

QR-step on reduced Hessenberg matrix

Suppose

$$\mathcal{H} = \begin{pmatrix} \mathcal{H}_0 & \mathcal{H}_1 \\ 0 & \mathcal{H}_3 \end{pmatrix},$$

where H_3 is upper triangular and let

$$\bar{H} = \begin{pmatrix} \bar{H}_0 & \bar{H}_1 \\ \bar{H}_2 & \bar{H}_3 \end{pmatrix},$$

be the result of one (shifted) QR-step. Then, $\bar{H}_2 = 0$, $\bar{H}_3 = H_3$ and \bar{H}_0 is the result of one (shifted) QR-step applied to H_0 . * show proof *

 \Rightarrow We can reduce the active matrix when an eigenvalue is converged.

QR-step on reduced Hessenberg matrix

Suppose

$$\mathcal{H} = \begin{pmatrix} \mathcal{H}_0 & \mathcal{H}_1 \\ 0 & \mathcal{H}_3 \end{pmatrix},$$

where H_3 is upper triangular and let

$$\bar{H} = \begin{pmatrix} \bar{H}_0 & \bar{H}_1 \\ \bar{H}_2 & \bar{H}_3 \end{pmatrix},$$

be the result of one (shifted) QR-step. Then, $\bar{H}_2 = 0$, $\bar{H}_3 = H_3$ and \bar{H}_0 is the result of one (shifted) QR-step applied to H_0 . * show proof *

 \Rightarrow We can reduce the active matrix when an eigenvalue is converged.

This is called deflation.

Rayleigh shifts can be combined with deflation \Rightarrow

Algorithm 4 Hessenberg QR algorithm with Rayleigh quotient shift and deflation Input: A Hessenberg matrix $A \in \mathbb{C}^{n \times n}$ Set $H^{(0)} \coloneqq A$ for $m = n \dots 2$ do k = 0repeat k = k + 1 $\sigma_k = h_{m,m}^{(k-1)}$ $H_{k-1} - \sigma_k I =: Q_k R_k$ $H_k \coloneqq R_k Q_k + \sigma_k I$ until $|h_{m,m-1}^{(k)}|$ is sufficiently small Save $h_{m,m}^{(k)}$ as a converged eigenvalue Set $H^{(0)} = H^{(k)}_{1:(m-1),1:(m-1)} \in \mathbb{C}^{(m-1)\times(m-1)}$ end for

* show Hessenberg gr with shifts in matlab *

* http://www.youtube.com/watch?v=qmgxzsWWsNc *

- 4 週 ト - 4 三 ト - 4 三 ト

Outline:

- Basic QR-method
- Improvement 1: Two-phase approach
 - Hessenberg reduction
 - Hessenberg QR-method
- Improvement 2: Acceleration with shifts
- Convergence theory

(B)

Didactic simplification for convergence of QR-method: Assume $A = A^{T}$.

• • = • • = •

Didactic simplification for convergence of QR-method: Assume $A = A^{T}$.

Convergence characterization

(1) Artificial algorithm: USI - Unnormalized Simultaneous Iteration

Didactic simplification for convergence of QR-method: Assume $A = A^{T}$.

Convergence characterization

- (1) Artificial algorithm: USI Unnormalized Simultaneous Iteration
- (2) Show convergence properties of USI

Didactic simplification for convergence of QR-method: Assume $A = A^{T}$.

Convergence characterization

- (1) Artificial algorithm: USI Unnormalized Simultaneous Iteration
- (2) Show convergence properties of USI
- (3) Artificial algorithm: NSI Normalized Simultaneous Iteration

Didactic simplification for convergence of QR-method: Assume $A = A^{T}$.

Convergence characterization

- (1) Artificial algorithm: USI Unnormalized Simultaneous Iteration
- (2) Show convergence properties of USI
- (3) Artificial algorithm: NSI Normalized Simultaneous Iteration

(4) Show: USI \Leftrightarrow NSI \Leftrightarrow QR-method

A generalization of power method with n vectors "simultaneously"

A = A = A

A generalization of power method with n vectors "simultaneously"

$$V^{(0)} = [v_1^{(0)}, \dots, v_n^{(0)}] \in \mathbb{R}^{m \times n}$$

Define

$$V^{(k)} := A^k V^{(0)}.$$

• • = • • = •

A generalization of power method with n vectors "simultaneously"

$$V^{(0)} = [v_1^{(0)}, \dots, v_n^{(0)}] \in \mathbb{R}^{m \times n}$$

Define

$$V^{(k)} := A^k V^{(0)}.$$

A QR-factorization generalizes the normalization step:

 $\hat{Q}^{(k)}\hat{R}^{(k)} = V^{(k)}.$

留す くぼす くほす …

A generalization of power method with n vectors "simultaneously"

$$V^{(0)} = [v_1^{(0)}, \dots, v_n^{(0)}] \in \mathbb{R}^{m \times n}$$

Define

$$V^{(k)} := A^k V^{(0)}.$$

A QR-factorization generalizes the normalization step:

 $\hat{Q}^{(k)}\hat{R}^{(k)} = V^{(k)}.$

留す くぼす くほす …

QR-method lecture 2

2

イロト イヨト イヨト イヨト

Assumptions:

• Let eigenvalues ordered and assume:

 $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_{n+1}| \ge |\lambda_{n+2}| \ge \cdots \ge |\lambda_m|.$

3

Assumptions:

• Let eigenvalues ordered and assume:

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_{n+1}| \ge |\lambda_{n+2}| \ge \cdots \ge |\lambda_m|.$$

• Assume leading principal submatrices of $\hat{Q}^T V^{(0)}$ are nonsingular, where $\hat{Q} = (q_1, \dots, q_n)$ are the eigenvectors.

Assumptions:

• Let eigenvalues ordered and assume:

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_{n+1}| \ge |\lambda_{n+2}| \ge \cdots \ge |\lambda_m|.$$

• Assume leading principal submatrices of $\hat{Q}^T V^{(0)}$ are nonsingular, where $\hat{Q} = (q_1, \dots, q_n)$ are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with $V^{(0)}$ and assumptions above are satisfied. Let q_j , j = 1, ..., n be the first n eigenvectors of A. Then, as $k \to \infty$, the columns of the matrices $\hat{Q}^{(k)}$ convergence linearly to q_j

$$\|q_j^{(k)} - \pm q_j\| = \mathcal{O}(C^k), \ j = 1, \dots, n,$$

Assumptions:

• Let eigenvalues ordered and assume:

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_{n+1}| \ge |\lambda_{n+2}| \ge \cdots \ge |\lambda_m|.$$

• Assume leading principal submatrices of $\hat{Q}^T V^{(0)}$ are nonsingular, where $\hat{Q} = (q_1, \dots, q_n)$ are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with $V^{(0)}$ and assumptions above are satisfied. Let q_j , j = 1, ..., n be the first n eigenvectors of A. Then, as $k \to \infty$, the columns of the matrices $\hat{Q}^{(k)}$ convergence linearly to q_j

$$\|q_j^{(k)} - \pm q_j\| = \mathcal{O}(C^k), \ j = 1, \dots, n,$$

where $C = \max_{1 \le k \le n} |\lambda_{k+1}| / |\lambda_k|$.

- 4 同 6 4 日 6 4 日 6

Assumptions:

• Let eigenvalues ordered and assume:

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_{n+1}| \ge |\lambda_{n+2}| \ge \cdots \ge |\lambda_m|.$$

• Assume leading principal submatrices of $\hat{Q}^T V^{(0)}$ are nonsingular, where $\hat{Q} = (q_1, \dots, q_n)$ are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with $V^{(0)}$ and assumptions above are satisfied. Let q_j , j = 1, ..., n be the first n eigenvectors of A. Then, as $k \to \infty$, the columns of the matrices $\hat{Q}^{(k)}$ convergence linearly to q_j

$$\|q_j^{(k)} - \pm q_j\| = \mathcal{O}(C^k), \ j = 1, \dots, n,$$

where $C = \max_{1 \le k \le n} |\lambda_{k+1}| / |\lambda_k|$.

🗧 📑 Show matlab demo_on USI (video) 👌 🔿