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Agenda QR-method

@ Decompositions (previous lecture)

Jordan form
Schur decomposition
QR-factorization

@ Basic QR-method
© Improvement 1: Two-phase approach

Hessenberg reduction (previous lecture)
Hessenberg QR-method

@ Improvement 2: Acceleration with shifts

© Convergence theory
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Agenda QR-method

@ Decompositions (previous lecture)

Jordan form
Schur decomposition
QR-factorization

@ Basic QR-method

© Improvement 1: Two-phase approach

Hessenberg reduction (previous lecture)
Hessenberg QR-method

@ Improvement 2: Acceleration with shifts

© Convergence theory

Reading instructions

Point 1: TB Lecture 24

Points 2-4: Lecture notes “QR-method” on course web page
Point 5: TB Chapter 28

(Extra reading: TB Chapter 25-26, 28-29)
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Basic QR-method (previous lecture)

Basic QR-method = basic QR-algorithm

Simple basic idea: Let Ag = A and iterate:
o Compute QR-factorization of Ay = QR
@ Set Ax11 = RQ.
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Basic QR-method (previous lecture)

Basic QR-method = basic QR-algorithm

Simple basic idea: Let Ag = A and iterate:
o Compute QR-factorization of Ay = QR
@ Set Ax11 = RQ.

Disadvantages

o Computing a QR-factorization is quite expensive. One iteration of the
basic QR-method

o(m®).
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Basic QR-method (previous lecture)

Basic QR-method = basic QR-algorithm

Simple basic idea: Let Ag = A and iterate:
o Compute QR-factorization of Ay = QR
@ Set Ax11 = RQ.

Disadvantages

o Computing a QR-factorization is quite expensive. One iteration of the
basic QR-method

o(m®).

@ The method often requires many iterations.
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Improvement 1: Two-phase approach

We will separate the computation into two phases:

X X X X X

X X X X

— X — X
Phase 1 Phase 2

X X X X X
X X X X
X X X X

X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X

X X X X X
[
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Improvement 1: Two-phase approach

We will separate the computation into two phases:

X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

X X X X X — X X X X — X X X

x X X X X Phase 1 x x x Phase 2 X X

X X X X X X X X
Phases

@ Phase 1: Reduce the matrix to a Hessenberg with similarity
transformations (Section 2.2.1 in lecture notes)
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Improvement 1: Two-phase approach

We will separate the computation into two phases:

X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

X X X X X — X X X X — X X X

x X X X X Phase 1 x x x Phase 2 X X

X X X X X X X X
Phases

@ Phase 1: Reduce the matrix to a Hessenberg with similarity
transformations (Section 2.2.1 in lecture notes)

@ Phase 2: Specialize the QR-method to Hessenberg matrices (Section
2.2.2 in lecture notes)
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Phase 1: Hessenberg reduction (previous lecture)

Phase 1: Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that

A = PHP*
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Phase 1: Hessenberg reduction (previous lecture)

Phase 1: Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that
A = PHP*

Unlike the Schur factorization, this can be computed with a finite number
of operations.
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Phase 1: Hessenberg reduction (previous lecture)

Phase 1: Hessenberg reduction
Compute unitary P and Hessenberg matrix H such that

A = PHP*

Unlike the Schur factorization, this can be computed with a finite number
of operations.

Idea

@ Householder reflector:
P =1—-2uu* where u e C™ and |Ju| =1,

@ Apply one Householder reflector at a time to eliminate the column by
column.

v

QR-method lecture 2 5/23



Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg_is_hessenberg.m *
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Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:
* Matlab demo showing QR-step: hessenberg_is_hessenberg.m *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates
Ay are Hessenberg matrices.
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Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:
* Matlab demo showing QR-step: hessenberg_is_hessenberg.m *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates
Ay are Hessenberg matrices.

Recall: basic QR-step is O(m?).
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Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:
* Matlab demo showing QR-step: hessenberg_is_hessenberg.m *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates
Ay are Hessenberg matrices.

Recall: basic QR-step is O(m?).

Hessenberg structure can be exploited such that we can carry out a
QR-step with less operations.
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Definition (Givens rotation)
The matrix G(i,/, c,s) € R™" corresponding to a Givens rotation is

defined by
/

G(i,j,c,s) = / ,

which deviates from identity at row and column / and j.
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Definition (Givens rotation)
The matrix G(i,/, c,s) € R™" corresponding to a Givens rotation is

defined by
/

G(i,j,c,s) = / ,

which deviates from identity at row and column / and j.

N

&

Gx

(N
7

€i

QR-method lecture 2

7/23



Definition (Givens rotation)
The matrix G(i,/, c,s) € R™" corresponding to a Givens rotation is

defined by
/

G(i,j,c,s) = / ,

which deviates from identity at row and column / and j.

N

€ Properties
o G*=G1
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Definition (Givens rotation)
The matrix G(i,/, c,s) € R™" corresponding to a Givens rotation is

defined by
/

G(i,j,c,s) = / ,

which deviates from identity at row and column / and j.

N

€ Properties
o G* =G

@ Gz can be computed with

G
X O(1) operations
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Definition (Givens rotation)
The matrix G(i,/, c,s) € R™" corresponding to a Givens rotation is

defined by
/

G(i,j,c,s) = / ,

which deviates from identity at row and column / and j.

N

€ Properties
o G* =G

@ Gz can be computed with

G
X O(1) operations
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The Q-matrix in the QR-factorization of a Hessenberg matrix can be
factorized as a product of m — 1 Givens rotators.
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The Q-matrix in the QR-factorization of a Hessenberg matrix can be
factorized as a product of m — 1 Givens rotators.

Theorem (Theorem 2.2.6)

Suppose A € C™*™M s a Hessenberg matrix. Let H; be generated as
follows H; = A
H,'+1 = G,-TH,', I = 1,...,m—1

where G; = G(i,i+ 1, (H,'),'7,‘/r,', (H,-);+17,-/r,-) and ri = \/(H,'),%,- + (Hi)lz-‘rl,l.
and we assume r; # 0. Then, H, is upper triangular and

A= (GG Gm_1)Hn = QR

is a QR-factorization of A.
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The Q-matrix in the QR-factorization of a Hessenberg matrix can be
factorized as a product of m — 1 Givens rotators.

Theorem (Theorem 2.2.6)

Suppose A € C™*™M s a Hessenberg matrix. Let H; be generated as
follows H; = A
H,'+1 = G,-TH,', izl,...,m—l

where G; = G(i,i+ 1, (H;),-7,'/r,', (H,-),~+17,-/r,') and ri = \/(H,'),?,,- + (Hi)lg+1,i

and we assume r; # 0. Then, H, is upper triangular and

A= (GG Gm_1)Hn = QR

is a QR-factorization of A.

v

Proof idea: Only one rotator required to bring one column of a Hessenberg
matrix to a tria ngu|ar. * Matlab: Explicit QR-factorization of Hessenberg qrgivens.m *
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Idea of Hessenberg QR-method: Do not explicitly compute the @Q-matrix
but only implicitly apply the Givens rotators
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Idea of Hessenberg QR-method: Do not explicitly compute the @Q-matrix
but only implicitly apply the Givens rotators: Let

Ak-1=(G1G2 - Gm—1)Rm

and
Ak = Rm(Gi1Ga--- Gp1) =
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Idea of Hessenberg QR-method: Do not explicitly compute the @Q-matrix
but only implicitly apply the Givens rotators: Let

Ak-1=(G1G2 - Gm—1)Rm

and
Ak = Rm(G1Gy - Gpm_1) = (- ((RmG1)G2) - - - ) Gy

QR-method lecture 2 9 /23



Idea of Hessenberg QR-method: Do not explicitly compute the @Q-matrix
but only implicitly apply the Givens rotators: Let

Ak-1=(G1G2 - Gm—1)Rm
and

Ak = Rn(G1Ga - Gp—1) = (- ((RmG1)G2) - - - ) Gy

Complexity of one QR-step for a Hessenberg matrix
We need to apply 2(m — 1) givens rotators to compute one QR-step.
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Idea of Hessenberg QR-method: Do not explicitly compute the @Q-matrix
but only implicitly apply the Givens rotators: Let

Ak-1=(G1Gy - Gm—1)Rm

and
Ak = Rm(G1G2 -+ Gp-1) = (- ((RmG1)G2) - -+ ) Gy

Complexity of one QR-step for a Hessenberg matrix
We need to apply 2(m — 1) givens rotators to compute one QR-step.

@ One givens rotator applied to a vector can be computed in O(1)
operations.
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Idea of Hessenberg QR-method: Do not explicitly compute the @Q-matrix
but only implicitly apply the Givens rotators: Let

Ak-1=(61G2 - Gm—1)Rnm

and
Ak = Rn(G1Ga - Gp—1) = (- ((RmG1)G2) - - - ) Gy

Complexity of one QR-step for a Hessenberg matrix
We need to apply 2(m — 1) givens rotators to compute one QR-step.
@ One givens rotator applied to a vector can be computed in O(1)
operations.
@ One givens rotator applied to matrix can be computed in O(m)
operations.
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Idea of Hessenberg QR-method: Do not explicitly compute the @Q-matrix
but only implicitly apply the Givens rotators: Let

Ak-1=(61G2 - Gm—1)Rnm

and
Ak = Rn(G1Ga - Gp—1) = (- ((RmG1)G2) - - - ) Gy

Complexity of one QR-step for a Hessenberg matrix
We need to apply 2(m — 1) givens rotators to compute one QR-step.
@ One givens rotator applied to a vector can be computed in O(1)
operations.
@ One givens rotator applied to matrix can be computed in O(m)
operations.

=
the complexity of one Hessenberg QR step = O(m?)
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Givens rotators only modify very few elements.
Several optimizations possible. =
Algorithm 3 Hessenberg QR algorithm
Input: A Hessenberg matrix A e C"*"
Output: Upper triangular T such that A = UTU* for an orthogonal
matrix U.
Set Ag:=A
fork=1,... do
/ / One Hessenberg QR step
H= Ay,
fori=1,...,n-1do
[cirsi] = givens(hi i, hivqi)
Hiijm = [_C;l ::] Hisi1,im
end for

fori=1,...,n-1do

¢ s
Huyivtiia = Hiawiaa |
S G

end for
Ap=H
end for
Return T= A,
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Show animation again:

http://www.youtube.com/watch?v=qmgxzsWWsNc
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http://www.youtube.com/watch?v=qmgxzsWWsNc

Show animation again:
http://www.youtube.com/watch?v=qmgxzsWWsNc

Acceleration still remains
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Outline:
@ Basic QR-method

® Improvement 1: Two-phase approach
» Hessenberg reduction

» Hessenberg QR-method

o Improvement 2: Acceleration with shifts
o Convergence theory
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Improvement 2: Acceleration with shifts (Section 2.3)
Shifted QR-method

One step of shifted QR-method: Let H, = H
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Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method
One step of shifted QR-method: Let H, = H
H—ul = QR
H = RQ+ul

I
_Il

and Hk+1 3
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Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method
One step of shifted QR-method: Let H, = H
H—ul = QR
H = RQ+ul

I
;EI

and Hk+1 3

Note:

Hiy1 = H=RQ+ ul =
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Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method
One step of shifted QR-method: Let H, = H
H—ul = QR
H = RQ+ul

and Hk+1 = Fl

Note:

Hip1=H=RQ+ul = QT(H — pl))Q + pl
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Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method
One step of shifted QR-method: Let H, = H
H—ul = QR
H = RQ+ul

and Hk+1 = Fl

Note:

Hipr = H=RQ+pul = QT(H— pul))Q + pul = QT H,Q
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Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method
One step of shifted QR-method: Let H, = H

H—pul = QR
H = RQ+ul

and Hk+1 = Fl

Note:
Hipi=H=RQ+pul = QT(H—ul))Q+ ul = QTHcQ

= One step of shifted QR-method is a similarity transformation, with a
different @ matrix.
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|dealized situation: Let p = A\(H)

Suppose p is an eigenvalue:

= H — pul is a singular Hessenberg matrix.
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D

o & = wa
QR-method lecture 2



|dealized situation: Let p = A\(H)

Suppose p is an eigenvalue:
= H — pul is a singular Hessenberg matrix.
QR-factorization of singular Hessenberg matrices (Lemma 2.3.1)

The R-matrix in the QR-decomposition of a singular unreduced
Hessenberg matrix has the structure

X X
X

X X X
X X X X
o X X X X
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|dealized situation: Let p = A\(H)

Suppose p is an eigenvalue:
= H — pul is a singular Hessenberg matrix.
QR-factorization of singular Hessenberg matrices (Lemma 2.3.1)

The R-matrix in the QR-decomposition of a singular unreduced
Hessenberg matrix has the structure

X X
X

X X X
X X X X
o X X X X

v

* Matlab demo: Show QR-factorization of singular Hessenberg matrix in matlab *
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Shifted QR for exact shift: =\

If w = X is an eigenvalue of H, then H — u/ is singular. Suppose Q, R a
QR-factorization of a Hessenberg matrix and

X X X
X X

R: X

X X X X
o X X X X

Then, * Prove on blackboard *
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Shifted QR for exact shift: =\

If w = X is an eigenvalue of H, then H — u/ is singular. Suppose Q, R a
QR-factorization of a Hessenberg matrix and

X X X
X X

R: X

X X X X
o X X X X

Then, * Prove on blackboard *

By
D
Il
X X
X X X
X X X X
X X X X
o X X X X

and
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Shifted QR for exact shift: © = A
If w = X is an eigenvalue of H, then H — u/ is singular. Suppose Q, R a
QR-factorization of a Hessenberg matrix and
X X X X X
X X X X
R = X X X
X X
0
Then, * Prove on blackboard *
X X X X X
X X X X X
RQ = X X X X
X X X
0
and
X X X X X
- X X X
H=RQ -+ \ = X X X X
X X X
A
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Shifted QR for exact shift: =\

If w = X is an eigenvalue of H, then H — u/ is singular. Suppose Q, R a
QR-factorization of a Hessenberg matrix and

X X X
X X

R: X

X X X X
o X X X X

Then, * Prove on blackboard *

X

X
X X X X
X X X X
o X X X X

and

X X
X X X X
X X X X

H=RQ+ )\ =

> X X X X

= ) is an eigenvalue of H.
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More precisely:

Lemma (Lemma 2.3.2)

Suppose \ is an eigenvalue of the Hessenberg matrix H. Let H be the
result of one shifted QR-step. Then,
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Select the shift

How to select the shifts?

@ Shifted QR-method with 4z = A computes an eigenvalue in one step.
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Select the shift

How to select the shifts?
@ Shifted QR-method with 4z = A computes an eigenvalue in one step.

@ The exact eigenvalue not available. How to select the shift?
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Select the shift

How to select the shifts?
@ Shifted QR-method with 4z = A computes an eigenvalue in one step.

@ The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate
eigenvalue.
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Select the shift

How to select the shifts?
@ Shifted QR-method with 4z = A computes an eigenvalue in one step.

@ The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate
eigenvalue. Rayleigh shifts:

W= rmm.
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Select the shift

How to select the shifts?
@ Shifted QR-method with 4z = A computes an eigenvalue in one step.

@ The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate
eigenvalue. Rayleigh shifts:

W= rmm.

Explanation

@ The QR-method can be interpreted as equivalent to variant of Power
Method applied to A. (Will be shown later)
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Select the shift

How to select the shifts?
@ Shifted QR-method with 4z = A computes an eigenvalue in one step.

@ The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate
eigenvalue. Rayleigh shifts:

W= rmm.

Explanation

@ The QR-method can be interpreted as equivalent to variant of Power
Method applied to A. (Will be shown later)

@ The QR-method can be interpreted as equivalent to variant of Power
Method applied to A~1. (Proof sketched in TB Chapter 29) =
Rayleigh shifts can be interpreted as Rayleigh quotient iteration.
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Deflation

QR-step on reduced Hessenberg matrix

Suppose
_(Ho Hi
= ( 0 H3> ’

where Hj3 is upper triangular and let

e Py
H_(”z /:’3)’

be the result of one (shifted) QR-step.
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Deflation
QR-step on reduced Hessenberg matrix
Suppose
_ (Ho Hy

H = ( 0 H3) ’
where Hj3 is upper triangular and let

- (Ho Hi

= ("72 ":’3) ’

be the result of one (shifted) QR-step. Then, H, = 0, H3 = Hs and Hy is
the result of one (shifted) QR-step applied to Hp.
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Deflation

QR-step on reduced Hessenberg matrix

Suppose
_(Ho Hi
= ( 0 H3) ’

where Hj3 is upper triangular and let

(R Fy
"= ("72 ":’3) ’

be the result of one (shifted) QR-step. Then, H, = 0, H3 = Hs and Hy is

the result of one (shifted) QR-step applied to Hp.

* show proof *

v
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Deflation
QR-step on reduced Hessenberg matrix
Suppose
_(Ho Hi

H = ( 0 H3) ’
where Hj3 is upper triangular and let

o (Ho Hi

"= ("72 ":’3) ’

be the result of one (shifted) QR-step. Then, H, = 0, H3 = Hs and Hy is
the result of one (shifted) QR-step applied to Hp.

* show proof *

v

= We can reduce the active matrix when an eigenvalue is converged.
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Deflation
QR-step on reduced Hessenberg matrix
_(Ho Hi
H = ( 0 Hg) ’
where Hj3 is upper triangular and let
- (Ho Hi
H= (f:lz /:/3) ’

be the result of one (shifted) QR-step. Then, H, = 0, H3 = Hs and Hy is
the result of one (shifted) QR-step applied to Hp. H<howlprooftt

Suppose

v

= We can reduce the active matrix when an eigenvalue is converged.

This is called deflation.
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Rayleigh shifts can be combined with deflation =

Algorithm 4 Hessenberg QR algorithm with Rayleigh quotient shift
and deflation
Input: A Hessenberg matrix A ¢ C"*"
Set HO = A
form=n,...,2do
k=0
repeat

k=k+1

Hy = R.Qx + o 1
until |h'(ﬂ'fl(_1\ is sufficiently small
Save h,(,f ?ﬁ as a converged eigenvalue
k m—1)x(m—
Set H(®) :Hg:()m—l),l:(m—l) e Clmiix(m=D
end for

* show Hessenberg qr with shifts in matlab *
* http://www.youtube.com/watch?v=qmgxzsWWsNc *
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Outline:
@ Basic QR-method

® Improvement 1: Two-phase approach
» Hessenberg reduction
» Hessenberg QR-method

@ Improvement 2: Acceleration with shifts
e Convergence theory
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Convergence theory - TB Chapter 28

Didactic simplification for convergence of QR-method: Assume A= AT.
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Convergence theory - TB Chapter 28

Didactic simplification for convergence of QR-method: Assume A= AT.

Convergence characterization

(1) Artificial algorithm: USI - Unnormalized Simultaneous Iteration
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Convergence theory - TB Chapter 28

Didactic simplification for convergence of QR-method: Assume A= AT.

Convergence characterization
(1) Artificial algorithm: USI - Unnormalized Simultaneous Iteration

(2) Show convergence properties of USI
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Convergence theory - TB Chapter 28

Didactic simplification for convergence of QR-method: Assume A= AT.

Convergence characterization
(1) Artificial algorithm: USI - Unnormalized Simultaneous Iteration
(2) Show convergence properties of USI

(3) Artificial algorithm: NSI - Normalized Simultaneous Iteration
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Convergence theory - TB Chapter 28

Didactic simplification for convergence of QR-method: Assume A= AT.

Convergence characterization

(1) Artificial algorithm: USI - Unnormalized Simultaneous Iteration
2

(2) Show convergence properties of USI
(3) Artificial algorithm: NSI - Normalized Simultaneous Iteration
(4)

4) Show: US| < NSI & QR-method
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Definition: Unnormalized simultaneous iteration (USI)

A generalization of power method with n vectors “simultaneously”
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Definition: Unnormalized simultaneous iteration (USI)

A generalization of power method with n vectors “simultaneously”
VO = O, O] e R,

Define
vk .— Ak
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Definition: Unnormalized simultaneous iteration (USI)

A generalization of power method with n vectors “simultaneously”
VO = O, O] e R,

Define
VK = Aky(0)

A QR-factorization generalizes the normalization step:

Ok R — ),
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Definition: Unnormalized simultaneous iteration (USI)

A generalization of power method with n vectors “simultaneously”
VO = O, O] e R,

Define
VK = Aky(0)

A QR-factorization generalizes the normalization step:

Ok R — ),
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Convergence of USI
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Convergence of USI

Assumptions:

@ Let eigenvalues ordered and assume

A1l > Ao > > [Apsa] = [Ang2| = = [Am.
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Convergence of USI

Assumptions:
@ Let eigenvalues ordered and assume:

A1l > Ao > > [Apsa] = [Ang2| = = [Am.

@ Assume leading principal submatrices of QRTVO are nonsingular,
where Q = (q1,...,qn) are the eigenvectors.
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Convergence of USI
Assumptions:
@ Let eigenvalues ordered and assume:

A1l > Ao > > [Apsa] = [Ang2| = = [Am.

@ Assume leading principal submatrices of QTVO are nonsingular,
where Q = (q1,...,qn) are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with V(©) and assumptions above
are satisfied. Let q;, j = 1,...,n be the first n eigenvectors of A. Then, as
k — 00, the columns of the matrices Q%) convergence linearly to qj

gt — £q;ll = O(C¥), j=1,...,n,
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Convergence of USI
Assumptions:
@ Let eigenvalues ordered and assume:

A1l > Ao > > [Apsa] = [Ang2| = = [Am.

@ Assume leading principal submatrices of QTVO are nonsingular,
where Q = (q1,...,qn) are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with V(©) and assumptions above
are satisfied. Let qj, j = 1,...,n be the first n eigenvectors of A. Then, as
k — 00, the columns of the matrices Q%) convergence linearly to qj

gt — £q;ll = O(C¥), j=1,...,n,

where C = maxy<k<n |Ak+1|/| k|-
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Convergence of USI
Assumptions:
@ Let eigenvalues ordered and assume:

A1l > Ao > > [Apsa] = [Ang2| = = [Am.

@ Assume leading principal submatrices of QTVO are nonsingular,
where Q = (q1,...,qn) are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with V(©) and assumptions above
are satisfied. Let qj, j = 1,...,n be the first n eigenvectors of A. Then, as
k — 00, the columns of the matrices Q%) convergence linearly to qj

gt — £q;ll = O(C¥), j=1,...,n,

where C = maxy<k<n |Ak+1|/| k|-

v

* Show matlab demo-on USI-{video) *
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