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Chapter 2

Geometry of
Second-Order Random
Processes

In this book, modeling and estimation problems of random processes are treated in
a unified geometric framework. For this, we need some basic facts about the Hilbert
space theory of stochastic vector processes that have finite second order moments
and are stationary in the wide sense. Such a process {y(t)}t∈Z is a collection of
random variables yk(t), k = 1, 2, . . . ,m, t ∈ Z, which generate a Hilbert space H
with inner product

〈ξ, η〉 = E{ξη},

where E denotes mathematical expectation. This Hilbert space is endowed with a
shift, i.e., a unitary operator U : H→ H with the property that

yk(t+ 1) = Uyk(t), k = 1, 2, . . . , t ∈ Z.

In this chapter we introduce some basic geometric facts for such Hilbert spaces.
Although we shall assume that the reader has some knowledge of elementary Hilbert
space theory, for the benefit of the reader, some relevant facts are collected in
Appendix A.1.

2.1 Hilbert space of second-order random variables

A real random variable, ξ, is just a real-valued measurable function defined on some
underlying probability space {Ω,A, P} (P is the probability measure on Ω and A
the σ-algebra1 of events). The symbol E{ξ} :=

∫
Ω ξ dP denotes mathematical

expectation of the random variable ξ. Random variables which have finite second
moment, E{|ξ|2} <∞, are commonly called second order random variables.

The set of real or complex-valued second-order random variables f defined on
the same probability space {Ω,A, P} is obviously a linear vector space under the
usual operations of sum and multiplication by real (or complex ) numbers. This

1Knowledge of general measure-theoretic probability theory (and concepts such as σ-algebra)
will not be needed for reading this book.

3
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4 Chapter 2. Geometry of Second-Order Random Processes

vector space comes naturally equipped with an inner product

〈ξ, η〉 = E ξη̄,

which is just the correlation of the random variables ξ, η. Note that the norm
‖ξ‖ = 〈ξ, ξ〉1/2 induced by this inner product (the square root of the second moment
of ξ) is positive, i.e. ‖ξ‖ = 0⇔ ξ = 0, only if we agree to identify random variables
which are equal almost surely, i.e. differ on a set of probability zero. Consider the
set of equivalence classes of second-order random variables f with respect to almost
sure equality. This set, once equipped with the inner product 〈·, ·〉, becomes an
inner product space, denoted L2(Ω,A, P ). Convergence with respect to the norm
of this space is called convergence in mean square. It is a very well-known fact that
L2(Ω,A, P ) is actually closed with respect to convergence in mean square and is
therefore a Hilbert space.

Notations and conventions

In this book the term subspace of a Hilbert space H, will in general mean closed
subspace. For finite-dimensional vectors, |v| will denote Euclideannorm (or absolute
value in the scalar case).

The sum of two linear vector spaces X+Y, is, by definition, the linear vector
space {x + y | x ∈ X, y ∈ Y}. Even when X and Y are both (closed) subspaces,
this linear manifold may fail to be closed. The (closed) vector sum of X and Y,
denoted X ∨Y, is the closure of X + Y.

In this book, the symbols +, ∨, u and ⊕ will denote sum, (closed) vector sum,
direct sum, and orthogonal direct sum of subspaces. The symbol X⊥ denotes the
orthogonal complement of the subspace X with respect to some predefined ambient
space. The linear vector space generated by a family of elements {xα}α∈A ⊂ H,
denoted span {xα | α ∈ A}, is the vector space whose elements are all finite linear
combinations of the generators {xα}. The subspace generated by the family {xα}α∈A

is the closure of this linear vector space and is denoted by span {xα | α ∈ A}.
In Appendix A.1 one can find more details and comments on these concepts.

2.2 Orthogonal projections

Consider now the following problem: a second order random variable x, whose values
are not accessible to direct observation, can be measured indirectly by some mea-
surement (or observation) device. This device produces a sequence of real valued-
observations which we model as sample values of a family of random variables (a
stochastic process) y = {y(t) | t ∈ T} defined in the same probability space of x.
From an observed trajectory of y we want to get the best possible reconstruction
of the value, say x̄, of x, which occurred during the measurement. This means that
we want to find a function of the observed data (an “estimator”), ϕ(y), which best
approximates x, i.e. produces, “in the average”, the smallest possible estimation
error x − ϕ(y) (note that this quantity is itself a random variable). Both x and
the scalar components of y are assumed with finite second order moments, so we
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2.2. Orthogonal projections 5

may regard them as elements of the Hilbert space L2(Ω,A, P ) of the underlying
probability space. It is then natural to require that ϕ(y) should also have finite
second-order moment.

Now, the second-order functions of the process y form a closed subspace of
L2(Ω,A, P ) which can be identified with L2(Ω,Y, P ), Y ⊂ A being the σ-algebra
generated by the process y. In other words, any admissible ϕ(y) is just an element
of the subspace L2(Ω,Y, P ) of the Hilbert space L2(Ω,A, P ).

It is then natural to formulate the problem in the following way: find a random
variable z in L2(Ω,Y, P ) for which the estimation error x−z has the smallest possible
L2 norm, namely solve the following optimization problem

min
z∈L2(Ω,Y,P )

‖x− z‖ (2.2.1)

where ‖x− z‖2 = E{|x− z|2}.
It is well-known that this minimum distance problem has a unique solution and

that this solution is the orthogonal projection of x onto the subspace L2(Ω,Y, P ).
For future reference we shall recall here without proof the following basic result
which is sometimes referred to as the Orthogonal Projection Lemma.

Lemma 2.2.1. Let Y be a closed subspace of a Hilbert space H. Given x ∈ H, the
element z ∈ Y which has shortest distance from x, i.e. minimizes ‖x− z‖ is unique
and is the orthogonal projection of x onto Y.

A necessary and sufficient condition for z to be equal to the orthogonal projec-
tion of x onto Y is that x − z ⊥ Y, or, equivalently, for any system of generators
{yα; α ∈ A} of Y it should hold that

〈x− z, yα〉 = 0, α ∈ A (2.2.2)

(orthogonality principle).

If we take as generators of L2(Ω,Y, P ) the indicator functions {IA, A ∈ Y} we
may rewrite the orthogonality relation (2.2.2) as

E{xIA} = E{zIA}, A ∈ Y

which is the well-known defining relation of the conditional expectation

z = E [x | Y ] ≡ E [x | y ]

Hence the best estimator of the random variable x, based on the observed data
y = {y(t) | t ∈ T} in the sense of the smallest “mean square error” (the distance in
L2), is just the conditional expectation of x given the data.

Unfortunately this insight is not of much use since, except in the notable case
when x and y have a jointly Gaussian distribution, the conditional expectation is
most of the times practically impossible to compute.

In a non-Gaussian setting, or more realistically, when there is not enough
information about the probability law of the variables involved, one needs to restrict
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6 Chapter 2. Geometry of Second-Order Random Processes

“a priori” the class of functions ϕ of the data which constitute admissible estimators.
We shall henceforth restrict ourselves to estimators which are linear functions of the
data. As we shall see in a moment, minimum mean-square error linear estimators
are completely determined by the second order statistics of the variables of the
problem. Moreover, since in the Gaussian case the conditional expectation turns
out to be a linear function of the data, the best linear estimator coincides in this
case with the best (non linear) function of the data.

Linear estimation and orthogonal projections

We shall first consider the “static” finite-dimensional case where the observable y
is a random vector with m components. Let x be an n-dimensional inaccessible
random vector of dimension n. Assume that the joint covariance matrix of x and y

Σ =

[
Σx Σxy

Σyx Σy

]
(2.2.3)

is given. It will be convenient to subtract off the expected values from all random
quantities involved (which will henceforth assumed to have zero-mean). Let

H(y) := span {yk | k = 1, . . . ,m}

be the (finite dimensional) subspace of L2(Ω,A, P ) linearly generated by the compo-
nents of y. The best linear estimator of x based on (or given) y, is the n-dimensional
random vector x̂, whose components x̂k ∈ H(y), k = 1, . . . , n, individually solve
the minimum problems

min
zk∈H(y)

‖xk − zk‖ k = 1, . . . , n, (2.2.4)

In view of Lemma 2.2.1, x̂k is just the orthogonal projection of xk onto H(y). Ac-
cording to our previous conventions, we shall denote this projection by the symbols

E [xk | H(y) ] or EH(y) xk

More generally, the orthogonal projection onto an arbitrary (closed) subspace Y ⊂
L2(Ω,A, P ) will be denoted by E [· | Y], or by the shorthand EY. The abuse of
notation will be harmless since in this book we shall have no occasion of using the
conditional expectation operator other than for Gaussian variables. The notation
E [x | Y] will be used also when x is vector-valued. The symbol will then just
denote the vector with components E [xk | Y] , k = 1, . . . n. When the projection
is expressed in terms of some specific set of generators say y = {yα} (i.e. Y =
span {yα}), we shall denote it E [x | y].

Remark 2.2.2. Since each xk has zero mean, searching for the optimum in the
seemingly more general class of affine functions of the vector y of the form ϕ(y) =
a′y + b would be futile, as b = 0 is trivially a necessary condition for minimizing
the distance2. This is the reason why it is enough to project onto the subspace of

2For the same reason the squared norm of the difference ‖xk − x̂k‖
2 is a variance.
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2.2. Orthogonal projections 7

linear functionals H(y), which is generated by the observation variables, centered
to mean zero.

Clearly the n scalar optimization problems (2.2.4) can be reformulated as one
single equivalent problem where one seeks to minimize

var (x− z) :=
n∑

k=1

‖xk − zk‖2, zk ∈ H(y)

which is the scalar variance of the error vector x − z. The scalar variance is the
trace of the matrix

Var (x− z) := E{(x− z)(x− z)′}.

Proposition 2.2.3. Let x and y be zero-mean second-order random vectors of
dimensions n and m respectively with covariance matrix (2.2.3). Then the orthog-
onal projection (minimum variance linear estimator) of x onto the linear subspace
spanned by the components of y is given by

E [x | y ] = ΣxyΣ†
y y (2.2.5)

where † denotes the Moore-Penrose pseudoinverse.3 The (residual) error vector has
covariance matrix,

Λ := Var (x− E [x | y]) = Σx − ΣxyΣ†
yΣyx. (2.2.6)

This is the smallest error covariance matrix obtainable in the class of all linear
functions of the data, i.e. Λ ≤ Var (x − Ay) for any matrix A ∈ Rn×m, where the
inequality is understood in the sense of the positive semidefinite ordering among
symmetric matrices.

Proof. Writing the vector z as z = Ay, and invoking the orthogonality condition
(2.2.2) for each component xk, we obtain

E{(x−Ay)y′} = 0 (n×m)

which is equivalent to Σxy −AΣy = 0. If Σy is non-singular the pseudoinverse is a
true inverse, and (2.2.5) is proven. The case when Σy is singular is discussed in the
following two Lemmas.

Lemma 2.2.4. Let rank Σy = r ≤ m and let the columns of U ∈ Rm×r form a
basis for the range space Im Σy. Then the components of the r-dimensional random
vector v defined by

v = U ′y (2.2.7)

form a basis for H(y). The Moore-Penrose pseudoinverse of Σy can be written as

Σ†
y = U(U ′ΣyU)−1U ′ (2.2.8)

3See Section A.3 in the appendix for the definition of the Moore-Penrose pseudoinverse.
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8 Chapter 2. Geometry of Second-Order Random Processes

and does not depend on the particular choice of U .

Proof. Let the columns of U and V form an orthonormal basis for Im Σy and
Ker Σy respectively, and define y

U
:= U ′ y and y

V
:= V ′ y. Note that T :=

[
U V

]

is an orthogonal (in particular nonsingular) m×m matrix so that the components
of y

U
and y

V
together span H(y). Observe however that

Σy
V

= E[V ′yy′V ] = V ′ E[yy′]V = V ′ΣyV = 0

i.e. the variance of y
V

is zero, so that the random vector y
V

is also zero. It follows
that

T ′ y =

[
U ′

V ′

]
y =

[
y

U

0

]
. (2.2.9)

Since T ′ is non singular, H(y) = H(T ′y) = H(y
U
). Moreover Σy

U
= U ′ΣyU is non

singular. In fact, w ∈ Ker Σy
U

i.e. ΣyU w = 0 can hold true only when Uw = 0
since the columns of U are a basis for the orthogonal complement of kerΣy. But
the columns of U are linearly independent so that w = 0.

Now we check that U(U ′ΣyU)−1U ′ is the Moore-Penrose pseudoinverse of Σy.
Using the property of the pseudo-inverse, [T−′AT−1]† = TA†T ′, we see that

Σ†
y =




T−′

[
U ′

V ′

]

︸ ︷︷ ︸
T ′

Σy

[
U V

]
︸ ︷︷ ︸

T

T−1





†

= T

[[
U ′

V ′

]
Σy

[
U V

]]†
T ′ =

T

[
U ′ΣyU 0

0 0

]†
T ′ =

[
U V

] [ (U ′ΣyU)−1 0
0 0

] [
U ′

V ′

]
=

U(U ′ΣyU)−1U ′

and this concludes the proof of the lemma.

Using the generators (2.2.7) we can now reduce the general singular covariance
case to the nonsingular one. In this case (2.2.5) yields

E [x | y ] = E [x | v ] = ΣxvΣ
−1
v U ′y = ΣxyUΣ−1

v U ′y

and by (2.2.8) the general formula (2.2.5) follows.
The formula for the error covariance follows easily from the orthogonality con-

dition. For what concerns the minimum matrix variance property of the estimator,
we readily see that for arbitrary A ∈ Rn×m, one has

Var (x−Ay) = Var (x− E [x | y] + E [x | y]−Ay) = Λ + Var (E [x | y]− Ay)

as E [x | y]−Ay has components in H(y) and hence is (componentwise) orthogonal
to x− E [x | y]. From this the minimum property is obvious.

Since in the Gaussian (zero-mean) case the conditional expectation E[x | y ]
is a linear function of y, for Gaussian vectors the orthogonal projection (2.2.5)
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2.2. Orthogonal projections 9

coincides with the true conditional expectation. Note that in this case, among all
square integrable functions of the data, the best, for the purpose of mean-square
approximation of x, turns out to be linear.

Facts about orthogonal projections

Below we shall list some useful technical facts about orthogonal projection oper-
ators. Henceforth the symbol EX Y will denote the closure of {EX η | η ∈ Y}.

Lemma 2.2.5. Let A and B be orthogonal subspaces of a Hilbert space H. Then

EA⊕B λ = EA λ+ EB λ, λ ∈ H (2.2.10)

Lemma 2.2.6. Let A and B be subspaces of a Hilbert space H. Then

A = EA B⊕A ∩B⊥ (2.2.11)

where B⊥ is the orthogonal complement of B in any space containing A ∨B.

Proof. Set C := A	 EA B. We want to show that C = A ∩B⊥. Let α ∈ A and
β ∈ B. Then, since (β − EA β) ⊥ A,

(α,EA β) = (α, β)

so that α ⊥ EA B if and only if α ⊥ B. Consequently C = A∩B⊥ as claimed.

Let A and B be subspaces of H. Consider the restricted orthogonal projection

EA |B : B→ A, (2.2.12)

mapping a random variable ξ ∈ B into its orthogonal projection on the subspace
A.

Lemma 2.2.7. Let A and B be subspaces of H. Then the adjoint of EA |B is
EB |A; i.e.,

(EA |B)∗ = EB |A. (2.2.13)

Proof. Follows since
(α,EA β) = (α, β) = 〈EB α, β〉

for all α ∈ A and β ∈ B.

Let the Hilbert space H be equipped with a unitary operator U : H → H.
An important special case of the restricted projection operator EB |A occurs when
B is a U -invariant subspace and A is a U∗- invariant subspace of H; for example,
the future and past subspaces at time zero of a stationary process y; see (2.5.4). In
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10 Chapter 2. Geometry of Second-Order Random Processes

this case the operator EB |A is called a Hankel operator. This kind of operator will
play a major role in this book.

Lemma 2.2.8. Let U be a unitary operator on a Hilbert space H. Then we have

U EY ξ = EUY Uξ, ξ ∈ H (2.2.14)

for any subspace Y ⊂ H.

Proof. By the orthogonal projection lemma, h := E[Uξ | UY ] is the unique
solution of

〈Uξ − h, Uy〉 = 0 y ∈ Y

which is equivalent to saying that U∗h is the unique solution of 〈ξ − U∗h, y〉 = 0
for all y ∈ Y. Therefore U∗h = E[ξ | Y ] and this proves the lemma.

2.3 Angles and singular values

Let A and B be two subspaces of a Hilbert space H. Since the number

ρ := sup{〈α, β〉 | α ∈ A, β ∈ B, ‖α‖ = 1, ‖β‖ = 1 }

= sup{ |〈α, β〉|‖α‖ ‖β‖ | α ∈ A, β ∈ B}

is always between zero (when A and B are orthogonal) and one (when A and B
have a nonzero vector in common), there is a unique γ := γ(A,B), 0 ≤ γ ≤ π/2,
such that ρ = cos γ. The number γ(A,B), is called the angle between the two
subspaces A and B.

Now, since 〈α, β〉 = 〈EB α, β〉 ≤ ‖EB α‖‖β‖,

ρ ≤ sup
α∈A

‖EB α‖
‖α‖ = ‖EB |A‖.

However,

sup
α∈A

‖EB α‖
‖α‖ = sup

α∈A

|〈EBα,EBα〉|
‖α‖‖EBα‖ ≤ sup

α∈A, β∈B

|〈EB α, β〉|
‖α‖‖β‖ = ρ,

and therefore

ρ = cos γ(A,B) = ‖EB |A‖ = ‖EA |B‖, (2.3.1)

where the last equality follows by symmetry or from Lemma 2.2.7.
This is just part of a more general circle of ideas involving the principal angles

between the subspaces ‖EB |A‖ and the singular value decomposition of the operator
‖EB |A‖. In this book, we shall often consider operators EB |A of finite rank (i.e.,
finite dimensional range space), which is special case of a compact operator. Recall
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that a compact operator 4 T : H1 → H2 is an operator that maps a bounded set
into a compact set; i.e., for every bounded sequence (λk)∞1 in H1, the sequence
(Tλk)∞1 has a convergent subsequence in H2; see e.g. [2, 23].

If T : H1 → H2 is compact, T ∗T : H1 → H1 and TT ∗ : H2 → H2 are
compact, self-adjoint and positive operators. In particular, T ∗T has an orthogo-
nal sequence (u1, u2, u3, . . . ) of eigenvectors that span (kerT )⊥ and which can be
extended5 to kerT to form a complete orthonormal sequence in H1. We number
the eigenvectors so that the corresponding eigenvectors, which must be real and
nonnegative, are in nonincreasing order, repeated according to multiplicity. Hence,

T ∗Tuk = σkuk, k = 1, 2, 3, . . . ,

where
σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ 0. (2.3.2)

For σk > 0, set vk := σ−1
k Tuk. Then

T ∗vk = σkuk, Tuk = σkvk, k = 1, 2, 3, . . . . (2.3.3)

The pair (uk, vk) is called the Schmidt pair for T corresponding to the singular
value σk. Clearly,

TT ∗vk = σkvk, k = 1, 2, 3, . . . ,

so T ∗T and TT ∗ have identical eigenvalues. The eigenvalues (v1, v2, v3, . . . ) form
a sequence of orthonormal eigenvectors that span rangeT = (kerT ∗)⊥ and can be
extended to a complete orthonormal sequence in H2. For further details, see, e.g.,
[12, 132], where proofs of the following theorem can also be found.

Theorem 2.3.1 (Singular value decomposition). Let T : H1 → H2 be a
compact operator from the Hilbert space H1 to the Hilbert space H2 with singular
values (2.3.2) and Schmidt pairs (uk, vk), k = 1, 2, 3, . . . . Then σk → 0 as k →∞,
and

Tx =

+∞∑

k=1

σk〈x, uk〉 vk, x ∈ H1, (2.3.4)

which should be interpreted in the sense that the finite rank approximants

Tn =

n∑

k=1

σk〈 ·, vk〉uk (2.3.5)

converge to T as n → ∞, both in the strong and in the uniform operator topology.
Moreover, setting T0 = 0, the approximation error is given by

‖T − Tn‖ = min
8

<

:

R : H1 → H2,
rank R ≤ n

9

=

;

‖T −R‖ = σn+1 (2.3.6)

4In the Russian literature a compact operator is called completely continuous.
5Provided the Hilbert space is separable, which is a standard assumption in this book.
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12 Chapter 2. Geometry of Second-Order Random Processes

for n = 0, 1, 2, . . .. In particular,

σ1 = ‖T ‖. (2.3.7)

In view of (2.3.1), we have in particular the following corollary.

Corollary 2.3.2. The singular values of the operator EB |A belong to the interval
[0, 1]. In particular, σ1 = ρ = cos γ(A,B).

In this setting, with T := EB |A, the normalized eigenvectors (u1, u2, u3, . . . )
and (v1, v2, v3, . . . ) are called the principal directions of the subspaces A and B, and
αk := arccosσk the k-th principal angle. Using the approximation property (2.3.6),
it can be shown that σn+1 = cosαn+1 is the solution of the following minimization
problem

σn+1 = 〈un+1, vn+1〉 = max
u∈A, v∈B

{〈u, v〉} (2.3.8a)

subject to:
〈u, uk〉 = 0 k = 1, . . . , n
〈v, vk〉 = 0 k = 1, . . . , n
‖uk‖ = ‖vk‖ = 1

(2.3.8b)

which is a generalization of the well-known Rayleigh quotient iteration of linear
algebra. A proof for the finite-dimensional case can also be found in [41, p.584].

In the statistical literature, where A and B are spaces of random variables,
σ1, σ2, σ3, . . . are also called canonical correlation coefficients and (u1, u2, u3, . . . )
and (v1, v2, v3, . . . ) the canonical variables. As it will be seen in the following, these
notions play an important role in various problems of model reduction, approxima-
tion and identification of stochastic systems. We shall embark in a detailed study
of these concepts in Chapter 11.

Canonical correlation analysis

Canonical correlation analysis (CCA) is an old concept in statistics. Given two
finite-dimensional subspaces A, B of zero-mean random variables of dimension n
andm, one wants to find two orthonormal bases, {u1, . . . , un} for A and {v1, . . . , vm}
for B, such that

E{uk vj} = σk δkj , k = 1, . . . , n, j = 1, . . . ,m.

This is the same as requiring that the covariance matrix of the two random vectors
u := (u1, . . . , un)′ and v := (v1, . . . , vm)′ formed from the elements of the two bases,
be diagonal; i.e.,

E{uv′} =





σ1 0 . . . 0 . . . 0
0 σ2 . . . 0 . . . 0
...

. . . . . .
...

0 σr . . . 0
0 0 . . . 0 . . . 0




,
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2.3. Angles and singular values 13

where r ≤ min(n,m). Moreover, one requires that σ1, σ2, . . . , σr be nonnegative and
ordered in decreasing magnitude. That two such orthonormal bases always exist
follows from the singular value decomposition of the projection operator EB |A,
which we have just encountered in Section 2.3. Choosing the principal directions u
and v of EB |A as orthonormal bases in A and B, respectively, (2.3.3) yields

EB uk = σkvk, k = 1, 2, . . .min(n,m),

from which it follows that

〈uk, vj〉 = 〈EB uk, vj〉 = σk〈vk, vj〉 = σjδkj ,

and hence the bases have the required properties. Uniqueness is guaranteed when
and only when the singular values σ1, σ2, . . . , σmin(n,m), which in this context are
called canonical correlation coefficients, are distinct. The variables (u1, . . . , un) and
(v1, . . . , vm) are called the canonical variables..

We have introduced canonical correlation analysis in a coordinate-free setting,
but one could also work with a matrix representation of the operator EB |A. To this
end, choose an arbitrary pair of bases x, y in A and B, respectively, Then, choosing
an arbitrary ξ = a′x ∈ A, Proposition 2.2.3 yields

EB ξ = a′ E{xy′}Λ−1
y y, Λy := E{yy′}.

and therefore the representation of EB |A in the chosen bases amounts to the matrix
multiplication a′ → a′ E{xy′}Λ−1

y from the right. Note, however, that in order to
express the inner product of random elements in A, B in terms of their coordinates,
we must introduce appropriate weights to form the inner products in the coordinate
spaces. In fact, the inner product of two elements ξi = a′ix ∈ A, i = 1, 2, induces
in Rn the inner product

〈a1, a2〉Λx
:= a′1Λxa2, Λx := E{xx′}.

Similarily, there is an inner product 〈b1, b2〉Λy
:= b′1Λyb2 corresponding to the basis

y for B. To obtain the usual Euclidean inner product in Rn, the bases need to be
orthonormal, and it is only in this case that the matrix representation of the adjoint
EA |B is the transpose of the matrix representation of EB |A.

The canonical variables and the canonical correlation coefficients can be com-
puted by the following sequence of operations. Let Lx and Ly be the lower triangular
Cholesky factors of the covariance matrices Λx and Λy, respectively; i.e.,

Lx L
′
x = Λx, Ly L

′
y = Λy

and let
νx := L−1

x x, νy := L−1
y y (2.3.9)

be the corresponding orthonormal bases in A and B respectively. Then,

EB a′νx = a′Hy,
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14 Chapter 2. Geometry of Second-Order Random Processes

where H is the n×m matrix

H := E{νxνy} = L−1
x E{xy′}(L′

y)−1

The canonical variables are then obtained from the singular value decomposition

H = UΣV ′, UU ′ = Im, V V ′ = In

as

u = U ′νx, v = V ′νy.

The canonical correlation coefficients of the subspaces A and B are the singular
values of H ; i.e., the nonzero elements of Σ.

2.4 Conditional orthogonality

We say that two subspaces A and B of a Hilbert space H are conditionally orthog-
onal given a third subspace X if

〈α− EX α, β − EX β〉 = 0 for all α ∈ A, β ∈ B (2.4.1)

and we shall denote this A ⊥ B | X. When X = 0, this reduces to the usual
orthogonality A ⊥ B. Conditional orthogonality is orthogonality after subtracting
the projections on X. Using the definition of the projection operator EX, it is
straightforward to see that (2.4.1) may also be written

〈EX α,EX β〉 = 〈α, β〉 for all α ∈ A, β ∈ B. (2.4.2)

The following lemma is a trivial consequence of the definition.

Lemma 2.4.1. If A ⊥ B | X, then A0 ⊥ B0 | X for all A0 ⊂ A and B0 ⊂ B.

Let A ⊕ B denote the orthogonal direct sum of A and B. If C = A ⊕ B,
then B = C	A is the orthogonal complement of A in C. There are several useful
alternative characterizations of conditional orthogonality.

Proposition 2.4.2. The following statements are equivalent.

(i) A ⊥ B | X

(ii) B ⊥ A | X

(iii) (A ∨X) ⊥ B | X

(iv) EA∨X β = EX β for all β ∈ B

(v) (A ∨X)	X ⊥ B

(vi) EAβ = EAEXβ for all β ∈ B
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2.4. Conditional orthogonality 15

Proof. The equivalence of (i), (ii) and (iii) follows directly from the definition.
Since (β − EX β) ⊥ X, the conditional orthogonality (2.4.1) may be written

〈α, β − EX β〉 = 0 for all α ∈ A, β ∈ B. (2.4.3)

Hence (iii) is equivalent to (β − EX β) ⊥ A ∨X, i.e.

EA∨X(β − EX β) = 0 for all β ∈ B,

and hence to (iv). Moreover, (2.4.3) is equivalent to

EA(β − EX β) = 0 for all β ∈ B,

i.e. to (vi). Finally, set Z := (A ∨X)	X. Then A ∨X = X⊕ Z, i.e.

EA∨X β = EX β + EZ β for all β ∈ B.

Hence (iv) is equivalent to EZ β = 0 for all β ∈ B, i.e. Z ⊥ B, which is the same as
(v).

Next we give an important example of conditional orthogonality.

Proposition 2.4.3. For any subspaces A and B,

A ⊥ B | EA B. (2.4.4)

Moreover, any X ⊂ A such that A ⊥ B | X contains EA B.

Proof. If X ⊂ A, by Proposition 2.4.2 (v), A ⊥ B | X is equivalent to A	X ⊥ B
or, which is the same, to

A	X ⊂ A ∩B⊥.

But, in view of Lemma 2.2.6,

A	 EA B = A ∩B⊥.

Consequently (2.4.4) holds, and EA B ⊂ X for all X such that A ⊥ B | X.

The distributive law

X ∩ (A + B) = (X ∩A) + (X ∩B) (2.4.5)

is of course not valid for arbitrary subspaces X, A, and B but holds only in very
special situations. See for example Proposition A.2.1 in Appendix A.2. However,
(2.4.5) is always true when A ⊥ B | X. In fact, this is a corollary of a more general
result.

Proposition 2.4.4. Let A1,A2, . . . ,An and X be subspaces such that

Ai ⊥ Aj | X for all (i, j) such that i 6= j. (2.4.6)
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16 Chapter 2. Geometry of Second-Order Random Processes

Then

X ∩ (A1 + A2 + · · ·+ An) = (X ∩A1) + (X ∩A2) + . . . (X ∩An). (2.4.7)

Proof. First note that

X ∩ (A1 + A2 + · · ·+ An) ⊃ (X ∩A1) + (X ∩A2) + . . . (X ∩An)

holds trivially. To prove the reversed inclusion, note that any

ξ ∈ X ∩ (A1 + A2 + · · ·+ An)

can be written as
ξ = ξ1 + ξ2 + · · ·+ ξn,

where ξk ∈ Ak, k = 1, 2, . . . , n. We need to show that ξk ∈ X, k = 1, 2, . . . , n. To
this end, note that

n∑

k=1

(ξk − EX ξk) = ξ − EX ξ = ξ − ξ = 0.

But, in view of (2.4.6),

(ξ1 − EX ξ1) ⊥ (ξ2 − EX ξ2) ⊥ · · · ⊥ (ξn − EX ξn),

and hence ξk−EX ξk = 0 for k = 1, 2, . . . , n, implying that ξk ∈ X for k = 1, 2, . . . , n.

Generalizing the definition given at the beginning of this section, shall say
that A1,A2, . . . ,An are conditionally orthogonal given X if (2.4.6) holds, and we
shall denote this

A1 ⊥ A2 ⊥ · · · ⊥ An | X.

2.5 Second-order processes and the shift operator

A stochastic process y is an ordered collection of random variables y := {y(t)}, all
defined in the same probability space. The time variable t will in general be discrete
(t ∈ Z), but occasionally we shall discuss also continuous-time processes (t ∈ R).
A generic symbol used for the time set will be T. Typically we shall deal with
discrete-time processes in this book, modifications to continuous time usually being
straightforward. Whenever the modifications needed to carry the results over to
continuous time case are nontrivial, we shall discuss this case separately.

The random variables y(t) could take values in either R or C, in which case
we shall talk about a scalar (real or complex) process, or, more generally, y(t) could
be vector-valued, taking values in Rm or Cm. In this case we shall write y(t) as
a column vector. In this book we shall normally consider real vector valued, say
Rm-valued, processes, just referring to them as “m-dimensional processes”.
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The objective of this book is to study dynamical descriptions of stochastic
processes by means of linear models and to understand the statistical problems of
process estimation and identification in this framework. For this, it will normally
suffice to assume that the only available statistical description of the process consists
of the mean m(t) := E y(t), t ∈ T and the covariance function

Λ(t, s) := E{[y(t)−m(t)][y(s)−m(s)]∗}, t, s ∈ T. (2.5.1)

where ∗ denotes conjugate transpose. A covariance function is a function of positive
type in the sense that

N∑

k,j=1

a∗kΛ(tk, tj)aj ≥ 0 (2.5.2)

for arbitrary vector coefficients ak ∈ Cm and all finite choices of t1, . . . , tN .
On a given space {Ω,A} one can define an equivalence class of random pro-

cesses having prescribed first and second-order moments. This class is normally
called a second-order process. A second order process contains in particular a Gaus-
sian process, whose probability law is uniquely determined by the given moments.
As the mean m(t) is known for all t, it can be subtracted from the y(t), so without
loss of generality, second order processes may be assumed to have zero mean. In
what follows we shall adhere to this convention. Also the attribute “second-order”
will be omitted hereafter.

Consider the vector space linearly generated by the scalar components of an
m-dimensional processes y := {y(t); t ∈ T}, i.e., the vector space of all real random
variables which are finite linear combinations (with real coefficients) of these scalar
components. This space is a vector space contained in L2(Ω,A, P ), which we shall
denote span{y(t); t ∈ T}. At first sight, this notation may be a bit misleading; note
that the intended meaning is

span{y(t); t ∈ T} := {
∑

a′ty(t) | t ∈ T, at ∈ Rm}. (2.5.3)

where, in the sum, all but a finite number of vector coefficients at are zero. Closing
this vector space in L2(Ω,A, P ), i.e., adding all limits in mean square of fundamental
sequences, we obtain a Hilbert space denoted

H(y) = span {y(t) | t ∈ T}.
This space contains all scalar random variables which depend linearly on the random
variables of y. The space H(y) is called the Hilbert space (linearly) generated by the
process y.

In discrete time, the Hilbert space H(y) is separable, as it admits a countable
dense set by construction. In continuous time, H(y) is separable if the process y is,
say, continuous in mean square, in which case {yk(r) | k = 1, . . . ,m, r rational} is
a countable dense set of random variables..

The past space and the future space at time t, H−
t (y) and H+

t (y), respectively,
are the subspaces of H(y) constructed from the past and the future histories of the
process respectively, i.e.,

H−
t (y) := span{y(s) | s < t} H+

t (y) := span{y(s) | s ≥ t} (2.5.4)
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18 Chapter 2. Geometry of Second-Order Random Processes

According to a widely accepted convention, in discrete time the present is included
in the future only and not in the past. Other choices are of course possible, but the
condition

H−
t (y) ∨H+

t (y) = H(y), for all t

must be respected.
For a continuous-time process that is continuous in mean square, it makes no

difference whether or not the present random variable y(t) is included in the defini-
tions of past and future, since y(t) is a limit of past (or future) values (lims→t y(s) =
y(t)), Indeed, {y(s) | s < t} and as {y(s) | s ≤ t} generate the same subspace, as
do {y(s) | s > t} and {y(s) | s ≥ t}.

Although H−
t (y) is monotonically increasing in t, and H+

t (y) is monotonically
decreasing, the past and future subspaces of an arbitrary process can vary abruptly
with time. In fact, there are scalar mean-square continuous processes y for which
H−

t (y) = 0 and for which the germ space

lim
s↓t

H−
s (y) := ∩ε>0H

−
t+ε(y).

is infinite-dimensional. (See [?] for an example.) This cannot happen for stationary
processes, which we shall consider next.

Stationarity

The process y is said to be wide-sense stationary if the covariance matrix (2.5.1) is a
function of the difference, t− s, of the arguments. With a slight abuse of notations,
we shall write

Λ(t, s) = Λ(t− s).
In the following we shall write simply “stationarity”, omitting the attribute “wide
sense”. If y is a stationary discrete-time process, one can define a linear isometric
operator U : H(y)→ H(y), called the shift of the process y, such that

Uyk(t) = yk(t+ 1), t ∈ Z, k = 1, . . . ,m.

More pecisely, for both discrete-time and continuous-time processes, the forward
shift of t units of time, Ut, t ∈ T, is first defined on the subset Y := {yk(t); k =
1, 2, . . . ,m, t ∈ T} by setting

Utyk(s) := yk(s+ t), k = 1, . . . ,m. (2.5.5)

Then, by stationarity, we have

〈Utξ, Utη〉 = 〈ξ, η〉 ξ, η ∈ Y, (2.5.6)

i.e., Ut is isometric. Hence, Ut can be extended to the closure H(y) by continuity
(see Theorem A.1.5 of Appendix A.1). In fact, it is clear that the extended operator
Ut maps H(y) onto itself. Hence Ut is a unitary operator on H(y) and the adjoint,
U∗

t , satisfies the relations
U∗

t Ut = UtU
∗
t = I.
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That is, Ut is invertible, and U∗
t = U−1

t . In particular,

U∗
t yk(s) = yk(s− t), t, s ∈ T, k = 1, . . . ,m.

i.e., U∗
t is the backward shift.
In conclusion, the family {Ut | t ∈ T} is a group of unitary operators on the

Hilbert space H(y). In discrete time this just means that Ut = U t for all t ∈ Z, U
being the shift of one step ahead in time. In continuous-time, to avoid pathologies
it is normally assumed that the stationary process {y(t); t ∈ R} is mean-square
continuous. Then, it is easy to show that

lim
t→s

Utξ = Usξ, for all ξ ∈ H(y).

This property is just strong continuity in H(y). The shift of a continuous-time
mean-square continuous process, is therefore a strongly continuous group of unitary
operators on the Hilbert space H(y).

Estimation and modeling of stationary processes on infinite or semi-infinite
time intervals, naturally involve various linear operations on the random variables
of the process which are time-invariant, i.e. independent of the particular instant
of time chosen as the“present”. In this context, one may fix the present instant of
time to an arbitrary value, say t = 0. Whenever needed, one can shift to any other
time instant by merely applying the unitary operator Ut to the data.

In particular, the future and past subspaces of the process will normally be
considered at time t = 0 and denoted simply H+(y) and H−(y). Then, for an
arbitrary present instant t, we have

H+
t (y) = UtH

+(y), H−
t (y) = UtH

−(y).

As we have noted, H+
t (y) is decreasing with t while H−

t (y) is increasing in time.
This, together with stationarity, is an important property of the future and past
subspaces that can be expressed as an invariance relation for the shift and its
adjoint, namely

UH+(y) ⊂H+(y), U∗H−(y) ⊂ H−(y). (2.5.7)

Shift-invariant subspaces have been studied intensively in operator theory and have
nice analytic characterizations. We shall return to this in more detail in Chapter 4.
For the moment, we just mention some elementary general facts.

Let U be a unitary operator on a Hilbert space H. A subspace X that is
invariant for both U and U∗ is said to be doubly invariant for U . Trivial examples
of doubly invariant subspaces are the zero space and the whole space H(y). An
invariant subspace X is called reducing if there is a complementary subspace Y,
i.e., H = X + Y, which is also invariant. The following result follows from Lemma
A.1.6 of Appendix A.1.

Lemma 2.5.1. Let U be a unitary operator on a Hilbert space H. Then X is
doubly invariant if and only if so is X⊥ and the orthogonal sum X⊕X⊥ is reducing
for both U and U∗.
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20 Chapter 2. Geometry of Second-Order Random Processes

As a simple example, the subspaces H(yk), k = 1, . . . ,m generated by the
scalar components yk of a stationary process, are doubly invariant for the shift of
the process.

2.6 Conditional orthogonality and modeling

Conditional orthogonality is a concept related to that of sufficient statistic and has
to do with modeling and data reduction. Below we shall discuss a few examples.

The Markov property

The Markov property is just the mathematical formalization of the idea of state,
in a stochastic setting. It will play a crucial role later, in the study of stochastic
systems.

Suppose we have a time-indexed family of subspaces {Xt; t ∈ T} of a common
ambient Hilbert space H, and define the past and the future of the family at time t
as

X−
t := span {Xs; s ≤ t}, X+

t := span {Xs; s ≥ t} (2.6.1)

We shall say that the family {Xt; t ∈ T} is Markovian6 if, for every t ∈ T, the
future and the past are conditionally orthogonal given the present, i.e.

X−
t ⊥ X+

t | Xt (2.6.2)

which can be written also in the two equivalent ways

EX
−

t λ = EXt λ for all λ ∈ X+
t , (2.6.3a)

EX
+
t µ = EXt µ for all µ ∈ X−

t . (2.6.3b)

Note that in this notion past and future play a completely symmetric role.
A stationary Markovian family propagates in time by a unitary shift, {Ut},

i.e.
Xt+s = UsXt, t, s ∈ T

In this case we may simplify notations denoting X0 as X and denoting past and
future of the family at time zero by X−, X+ respectively. We shall also let

H := ∨tXt

play the role of ambient Hilbert space.
As for deterministic dynamical models, one expects that the state property

should lead to some kind of “local description” of the time evolution of the family
(like for example a differential equation for deterministic systems in continuous
time). In the following we shall study the local description of Markov processes in
discrete time, and hence Ut = U t, where U is the unit shift.

6Here, to conform with the standard terminology in the literature, we should add the attribute
“wide sense”, but since we shall never talk about “strict sense” properties in this book, we shall
refrain to do so.
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It follows from property (v) of Proposition 2.4.2 that for a Markovian family

X− = X⊕ (X+)⊥ X+ = X⊕ (X−)⊥ (2.6.4)

so that we have the orthogonal decomposition

H = (X+)⊥ ⊕X⊕ (X−)⊥ (2.6.5)

Now, X− is invariant for {U∗
t | t ≥ 0}, a semigroup of unitary operators, which

we shall call the left (or backward) shift. Dually, X+ is invariant for the right (or
forward) shift semigroup {Ut | t ≥ 0}. It follows from Lemma A.1.6 that (X+)⊥ is
an U∗

t -invariant subspace of X− and hence its orthogonal complement X in X− is
invariant for the adjoint, {Tt | t ≥ 0}, of {U∗

t | t ≥ 0} on X−. This adjoint is a
semigroup which is no longer unitary, called the compressed right shift, which can
be easily seen to admit the representation

Tt : X− → X−, ξ 7→ EX−

Utξ, t ≥ 0

We can now give the following characterization of the Markov property in terms of
semigroups and invariant subspaces.

Proposition 2.6.1. The family of subspaces {Xt, t ∈ Z} generated by a unitary
group

Xt = UtX, t ∈ Z

is Markovian if and only if X is an invariant subspace for the compressed right
shift, namely

EX−

Ut|X = EX Ut|X. (2.6.6a)

Equivalently, {Xt} is Markovian if and only if X is an invariant subspace for the
left shift compressed to X+, namely

EX+

U∗
t |X = EX U∗

t |X. (2.6.6b)

The characterizations (2.6.6) are rather obvious from a statistical point of view
and are an equivalent formulation of properties (2.6.3). Stated in the semigroup
language, these characterizations will be used later in this book for obtaining explicit
functional representations of stationary Markov processes.

In the discrete-time setting, it is useful to define the shift U := U1. Then the
map U(X) := EX U|X is called the generator of the Markovian family. Using the
relation (2.2.14), it is easy to check that

Ut(X) := EX−

U t|X = EX−

U t−1 U(X) = · · · = U(X)t, t ≥ 0 (2.6.7)

so that {Ut(X) | t ≥ 0} is a semigroup with generator U(X). An analogous property
holds for the adjoint.
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22 Chapter 2. Geometry of Second-Order Random Processes

There is a difference-equation representation of such a stationary Markovian
family. This evolution equation will be further discussed and generalized in Chapter
8, so we shall not go into too much detail here.

Define the subspaces

Vt = UX−
t 	X−

t

representing the “new information” carried by Xt+1 which was not already con-
tained in X−

t . The subspaces {Vt} are stationary and by construction

Vs ⊥ Vt s 6= t. (2.6.8)

Theorem 2.6.2. For any random variable ξ ∈ X, the stationary translate ξ(t) =
Utξ evolves in time according to a linear equation of the type

ξ(t+ 1) = U(Xt)ξ(t) + vξ(t), t ∈ Z (2.6.9)

where {vξ(t) ∈ Vt, t ∈ Z} is a stationary sequence of orthogonal random variables
(white noise).

Proof. By Lemma 2.2.5,

ξ(t+ 1) = EXt Uξ(t) + EVt ξ(t+ 1) = U(Xt)ξ(t) + vξ(t).

By (2.6.8), {vξ(t)} is a stationary sequence of orthogonal random variables.

This geometric theory accommodates the study of infinite-dimensional Markov
processes. In fact, given a Markov process {x(t); t ∈ T} that takes values in a
separable Hilbert space X, the subspaces

Xt := span {〈a, x(t)〉X | a ∈ X}, t ∈ T (2.6.10)

is a Markovian family. This leads naturally to the next example.

Stochastic dynamical systems

A fundamental concept in this book is the notion of stochastic system.

Definition 2.6.3. A stochastic system on H is a pair (x, y) of zero-mean stochastic
processes {x(t); t ∈ T} and {y(t); t ∈ T}, taking values in a real separable Hilbert
space X and Rm, respectively, such that Xt, t ∈ T, defined by (2.6.10), and H(y)
are contained in H and

(H−
t (y) ∨X−

t ) ⊥ (H+
t (y) ∨X+

t ) | Xt, t ∈ T, (2.6.11)

where X−
t and X+

t are defined by (2.6.1). The processes x and y are called the state
process and output process, respectively, and Xt is the state space at time t. The
stochastic system is finite-dimensional if dimX <∞.
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In particular, (2.6.11) implies that, for each t ∈ T,

H−
t (y) ⊥ H+

t (y) | Xt. (2.6.12)

That is, Xt is a splitting subspace with respect to the past space H−
t (y) and the

future space H+
t (y). Moreover,

X−
t ⊥ X+

t | Xt. (2.6.13)

In other words, {Xt; t ∈ T} is a Markovian family and, equivalently, {x(t); t ∈ T}
is a Markov process.

We shall say that two stochastic systems are equivalent if, for each t ∈ T, their
output processes agree a.s. and their state spaces are the same.

As an example, we consider discrete-time stochastic systems with T = Z+. To
this end recall that a normalized white noise w is a sequence of orthogonal random
vectors with a unit variance; i.e.,

E{w(t)w(s)′} = Iδts :=

{
I if s = t

0 if s 6= t.
(2.6.14)

Theorem 2.6.4. Suppose that T = Z+. Then, all finite-dimensional stochastic
systems have a representation of the type

{
x(t+ 1) = A(t)x(t) +B(t)w(t), x(0) = x0,

y(t) = C(t)x(t) +D(t)w(t),
(2.6.15)

where {A(t), B(t), C(t), D(t); t ∈ T} are matrices of appropriate dimensions, x0 a
zero-mean random vector, and w a normalized white noise that is orthogonal to x0.
Conversely, any pair (x, y) of stochastic processes satisfying (2.6.15) is a stochastic
system.

Proof. Let (x, y) be a stochastic system with T = Z+ and the state process x
taking values in Rn. We shall first prove that (x, y) has a representation (2.6.15).
To this end, first note that

[
x(t+ 1)
y(t)

]
= EH

−
t (y)∨X

−
t

[
x(t+ 1)
y(t)

]
+ E(H−

t (y)∨X
−
t )⊥

[
x(t + 1)
y(t)

]
. (2.6.16)

Now, in view of (2.6.11) and Proposition 2.4.2,

EH
−

t (y)∨X
−

t λ = EXt λ for all λ ∈ H+
t (y) ∨X+

t ,

and consequently there are matrices A(t) and C(t) such that

EH
−

t (y)∨X
−

t

[
x(t+ 1)
y(t)

]
=

[
A(t)
C(t)

]
x(t).
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24 Chapter 2. Geometry of Second-Order Random Processes

The second term in (2.6.16) is an orthogonal sequence and can be normalized to a
normalized white noise w so that

E(H−

t (y)∨X
−

t )⊥
[
x(t+ 1)
y(t)

]
=

[
B(t)
D(t)

]
w(t),

where B(t) and D(t) are matrices such that

[
B(t)
D(t)

]
has full rank. Hence (x, y)

satisfies (2.6.15), as claimed. It remains to prove that x0 ⊥ H(w). Since however[
B(t)
D(t)

]
has full rank, w(t) ∈ (H−

t (y) ∨X−
t )⊥ for all t ∈ Z+, and hence x0 ⊥ H(w).

Conversely, suppose that (x, y) satisfies (2.6.15). For each t ∈ Z+, set Xt :=
span {a′x(t) | a ∈ R}. Since w is a white noise process and x0 ⊥ H(w), the space
X0 ⊕ H−(w) is orthogonal to H+(w), which, in view of Proposition 2.4.2(v), is
equivalent to

(X0 ⊕H−(w)) ⊥ (H+(w)⊕Xt) | Xt.

However, from (2.6.15) it is easy to see that H−(y) ∨X− ⊂ X0 ⊕H−(w) and that
H+(y) ∨X+

t ⊂ H+(w) ⊕Xt, and hence (2.6.11) holds (Lemma 2.4.1). Therefore
(x, y) is a stochastic system.

Similar results hold for continuous-time processes and for stationary processes
defined on the whole real line. This is a major topic in Chapters 6, 8 and 10.

Factor analysis

A (static) factor analysis model is a representation

y = Ax + e, (2.6.17)

of m observable variables y = [ y1 . . . ym ]′, having zero-mean and finite variance,
as linear combinations of n common factors x = [x1 . . . xn ]′, plus uncorrelated
“noise” or “error” terms e = [ e1 . . . em ]′. The m components of the error e should
be zero-mean and mutually uncorrelated random variables, i.e.

Σxe := E{xe′} = 0, (2.6.18a)

∆ := E ee′ = diag {σ2
1 , . . . , σ

2
m}. (2.6.18b)

The purpose of these models is to provide an explanation of the mutual interrela-
tion between the observable variables y in terms of a (hopefully) small number of
common factors. In this respect, setting

ŷi := a′ix, (2.6.19)

where a′i is the i-th row of the matrix A, one has exactly

E{yiyj} = E{ŷiŷj}, (2.6.20)
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for all i 6= j. In other words, the predictions of the yi’s based on the factor vector
have the same mutual correlation as the observed variables yi. Clearly this property
is equivalent to

〈ei, ej〉 = 〈yi − ŷi, yj − ŷj〉 = 0, i 6= j

which, in view of (2.4.1) just conditional orthogonality of {y1, . . . , ym}, given x. We
define this concept formally below.

Definition 2.6.5. The random variables {y1, . . . , ym} are conditionally orthogonal
given x if for all i 6= j we have yi ⊥ yj | x.

It is rather easy to see that y admits a representation of the type (2.6.17) if
and only if {y1, . . . , ym} are conditionally orthogonal given x.

The property of making {y1, . . . , ym} conditionally orthogonal, is really a prop-
erty of the subspace of random variables linearly generated by the scalar components
of the vector x

X := span {xk, k = 1, . . . , n} (2.6.21)

which we shall call the factor subspace of the model. A factor subspace X makes
the components of y conditionally orthogonal given X. The variables ŷi are then
just the orthogonal projections ŷi = E[yi | X].

Introducing a matrix A⊥ such that A⊥A = 0 one can eliminate the factors
from the model (2.6.17), obtaining an “external” description in terms of the “true”
(unmeasurable) variables ŷ and the additive errors ε, of the following type

A⊥ŷ = 0, y = ŷ + ε (2.6.22)

which is called an errors in variables (EIV) model. The study of models of this type
in the statistical literature goes back to the early years of the twentieth century.

A factor subspace may be unneccessarily large just because it carries unnec-
essary random variables which are uncorrelated (i.e. orthogonal) to the variables y
to be represented. This redundancy can be eliminated by imposing that X satisfies
the “non-redundancy” condition X = X̂ where

X̂ = span {E[yi | X]; i = 1, . . . ,m} = EX Y (2.6.23)

or, equivalently X̂ = span {[Ax]i; i = 1, . . . ,m}. Since, by Lemma 2.2.6, X =

X̂ ⊕ (X ∩ Y⊥), we have E[yi | X] = E[yi | X̂] and hence an arbitrary factor

space X can always be substituted by its non-redundant subspace X̂ preserving the
conditional orthogonality property. From now on, we shall assume that condition
(2.6.23) is satisfied.

Any set of generating variables for X can serve as a common factor vector. In
particular it is no loss of generality to choose the generating vector x of minimal
cardinality (a basis) and normalized, i.e.

E{xx′} = I, (2.6.24)

which we shall do in the following. We may then call n = dim x = dim X the rank
of the model. Obviously by virtue of condition (2.6.23), for a model of rank n we
automatically have rank A = n as well (i.e. A will always be left invertible).
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26 Chapter 2. Geometry of Second-Order Random Processes

Two factor analysis models for the same observable y, whose factors span the
same subspace X will be regarded as equivalent. The convention for the choice
of generators implies that two equivalent factor analysis models will have factor
vectors related by a real orthogonal transformation matrix.

The common factors are nonobservable quantities (also called latent variables
in the econometric literature) which, although representing the same output vari-
ables y, could in principle be chosen in many different ways giving rise to represen-
tations (i.e. models) with different properties and of a different complexity. In the
applications one would like to have models with n � m and possibly have some
idea about the minimal possible number of factors necessary to represent y. Models
with a minimal number of factors correspond to factor subspaces X of minimal
dimension. These models will be called minimal henceforth.

It is known that there are in general many (in fact infinitely many) minimal
factor subspaces for a given family of observables {y1, . . . , ym}. Hence there are
in general many nonequivalent minimal factor analysis models (with normalized
factors) representing a fixed m-tuple of random variables y.

For example, by choosing for each k ∈ {1, . . . ,m}, as a factor the m − 1-
dimensional vector x := [ y1 . . . yk−1 yk+1 . . . ym ]′, one obtains m “extremal” mod-
els called elementary regressions, of the form






y1 = [ 1 . . . 0 ]x+ 0
...
yk = â′kx + ek

...
ym = [ 0 . . . 1 ]x+ 0

(2.6.25)

where â′k = E ykx
′(E xx′)−1. Note that in each elementary regression model there

is just one nonzero element in the error variance matrix ∆. Clearly, the elementary
regression (2.6.25) corresponds to EIV models with errors affecting only the k-th
true variable.

In this example the factor subspaces are spanned bym−1 observable variables.
A subspace X contained in the data space Y := span {y1 . . . ym} (i.e. generated by
linear functionals of y) is called internal. Accordingly, factor analysis models whose
factor x is made of linear functionals of y, are called internal models.

Identifiability. The inherent nonuniqueness of factor analysis models brings up
the question of which model one should use in identification. This is called “fac-
tor indeterminacy” (or unidentifiability) in the literature and the term is usually
referred to parameter unidentifiability as it may appear that in these models there
are always “too many” parameters to be estimated. It may be argued that once
a model (in essence, a factor subspace) is selected, it can always be parametrized
in a one-to-one (and hence identifiable) way. The difficulty seems more a question
of understanding the properties of the different possible models, i.e. a question of
classification. Unfortunately, the classification of all possible (minimal) factor sub-
spaces and an explicit characterization of minimality are, to a large extent, still an
open problem.
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We shall address here only very superficially the question of identifiability. To
this end, we need to consider the additive decomposition of the covariance matrix
Λ := E{yy′} of the observables induced by a factor analysis model, namely

Λ = AA′ + ∆. (2.6.26)

This is called a factor analysis decomposition of Λ. The rank of the model is also
called the rank of the decomposition.

Note that for any fixed Λ ∈ Sm×m
+ (the space of m × m symmetric positive

definite matrices), once a diagonal matrix ∆ such that rank {Λ−∆} = n has been
found, the matrix A in the decomposition (2.6.26) is just a full rank factor of Λ−∆,
i.e. an m×n matrix satisfying AA′ = Λ−∆. Such a factor can be rendered unique
by choosing an appropriate canonical form in the equivalence class7 of A ∈ Rm×n

∗
defined modulo right multiplication by n× n orthogonal matrices. The following is
the main question concerning identifiability.

Hidden rank. What is the minimal n for which a given Λ admits a factor anal-
ysis decomposition of rank n. This number, n∗(Λ), (often denoted mr(Λ) in the
literature) will be called the hidden rank of Λ. Clearly n∗(Λ) ≤ m − 1 for all Λ.
Note that diagonal Λ’s admit a (unique) trivial factor analysis decomposition of
rank zero. Conditions for Λ to admit a factor analysis decomposition of rank one
(n∗(Λ) = 1) have been known since the beginning of the 20th century, (in the litera-
ture a positive definite covariance matrix admitting a factor analysis decomposition
of rank one is called a Spearman matrix). The hidden rank question is unsolved.

The decompositions of rank m−1 are particularly simple to describe. In fact,
the solutions are described in terms of the coordinates {σ2

1 , . . . , σ
2
m} in the space

of nonnegative definite diagonal matrices ∆ = diag {σ2
1 , . . . , σ

2
m} by the polynomial

equation det(Λ−∆) = 0, subject to the constraint that all principal minors of order
m − 1 of Λ − ∆ be nonnegative with at least one being nonzero. These algebraic
conditions define a smooth hypersurface (an hyperboloid with concavity facing the
origin) in the positive orthant of Rm. Moreover, this hypersurface intersects the
k-th coordinate axis exactly at the value σ2

k equal to the error variance of the k-th
elementary regressor.

Factor estimation. In identification of a factor analysis model from observed data
there is yet another source of difficulty which has to do with the factor vector. How
does one obtain an estimate of x? This problem is often overlooked in textbooks
because the models most often used are of the “elementary regression” type, and
hence it is known that x is a function of the observed data. For example, the
ARMAX models used in dynamic system identification are of this type, since a
component of the observed variables (the input usually denoted by the letter u)
is treated as a“true” variables with a tacit assumption of no “observation noise”
superimposed. In all internal models the auxiliary variables (say the state variables
in a state-space model, or the white noise input variable in ARMAX models) are
deterministic functions of the observed data (in fact causal functions for innovations-
like models). These functions have known structure depending only on the unknown

7We denote by R
m×n
∗ the space of full rank m × n real matrices.
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28 Chapter 2. Geometry of Second-Order Random Processes

parameters of the model. Estimation of the auxiliary variables is then automatically
accomplished after model-parameter estimation. In more general situations however
this does not happen. When the model is noninternal, the estimation of the auxiliary
variables eventually has to be handled by an appropriate methodology. For most
factor analysis models the factor variables are indeed noninternal.

Proposition 2.6.6. All internal factor analysis models are regressions. All non-
trivial factor analysis models with ∆ > 0 are noninternal.

Proof. To prove the first statement notice that a model is internal if and only if

X ∩ (Y1 + Y2 + · · ·+ Yn) = X

but by virtue of splitting, the first member is equal to the vector sum X ∩Y1 +
. . .+ X ∩Yn (Proposition 2.4.4). Since dimYk = 1, either X ∩Yk is equal to Yk

or is the zero subspace. Hence

X =
∨

Yk⊂X

Yk

i.e. X is spanned by a finite number of yk’s, and the model is a regression.
Next, assume x 6= 0 and internal. Then there is some n ×m matrix B such

that x = By. Imposing the orthogonality x ⊥ e we get

BΛ(I −AB)′ = 0 (2.6.27)

Moreover by definition of ∆ the matrix B satisfies also

(I −AB)Λ(I −AB)′ = ∆.

Now, by (2.6.27) this last equation can be rewritten as

Λ(I −AB)′ = ∆

which combined again with (2.6.27) yields B∆ = 0. Since ∆ > 0 it follows that
B must be zero and hence x = 0, the degenerate situation which has just been
excluded. It follows that x cannot be a linear function of y.

Estimation of auxiliary variables in factor analysis models may be approached
from the point of view of stochastic realization theory. The following Theorem
describes how to construct the auxiliary variable x starting from the observable
random quantities and from the knowledge of the parameters (A,∆) of the struc-
tured covariance matrix of the data.

Theorem 2.6.7. Every normalized common-factors vector for the factor analysis
model y = Ax+ e, E{ee′} = ∆, has the form

x = A′Λ−1y + z, (2.6.28)
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where z is an n-dimensional zero-mean random vector orthogonal to Y with covari-
ance I −A′Λ−1A.

Proof. Necessity: let x and e be as in the statement of the theorem. The factor
vector x can be written as the orthogonal sum

x = E[x | Y] + z

where E[x | Y] = A′Λ−1y and z is the “estimation error” of the vector x based on
y. It is immediate to check that the covariance matrix of z has the required form.

Sufficiency: let x be as stated. Define B := A′Λ−1 and w := y − Ax =
(I − AB)y − Az (so that y = Ax + w by construction). We proceed to check that
x ⊥ w and that the covariance matrix of w is exactly ∆. For

E{xw′} = E{(By + z)((I −AB)y −Az)′} (2.6.29)

= = BΛ(I −B′A′)− (I −BΛB′)A′ = 0. (2.6.30)

Moreover,

E{ww′} = (I −AB)Λ(I −AB)′ +A(I −BΛB′)A′ = Λ−AA′ = ∆,

as claimed.

In practice we must estimate both the parameters (identification) and the
auxiliary variable x (factor estimation) of the model, starting from the observed
data. In this problem we have both deterministic and random parameters which
must be treated differently. It is actually not obvious how to carry out this program
from first principles.

Causality and feedback-free processes

In the 1960’s there was a long debate in the econometric literature regarding the no-
tion of causality of time series. In mathematical terms, one would like an “intrinsic”
(and testable) definition of when one stochastic process “causes” another.

Let y and u be two vector stochastic processes, which we shall assume jointly
stationary. This property is assumed here for reasons of simplicity but is not needed
in the definition, as the concept applies to much more general situations. In general
one may express both y and u as a sum of the best linear estimate based on the
past and present of the other variable, plus error terms:

y(t) = E[y(t) | H−
t+1(u)] + v(t) (2.6.31a)

u(t) = E[u(t) | H−
t+1(y)] + r(t) (2.6.31b)

so that each variable y(t) and u(t) can be expressed as a sum of a causal linear
transformation of the past of the other, plus noise. Here the noise terms are un-
correlated with the past of u and y respectively but may in general be mutually
correlated.
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To carry on the discussion we shall need to anticipate some of the notions
which will be introduced later on. As it will be explained in Chapter 4, each of the
linear estimators above can be expressed as the output of a linear filter, represented
by a causal transfer function, F (z) and H(z) respectively, so that the joint model
(2.6.31) corresponds to a block diagram of the type

+

+

+

+

ye2 u

e1

H(z) �

-j-F (z)-j-K(z)-

6

?

G(z)

?

Figure 2.6.1. Joint model of the signals y and u.

This diagram shows that there is an intrinsic feedback mechanism relating the two
processes. The concept of causality will have to be related to this mechanism.

Following Granger [42], we say that there is no feedback from y to u if the
future of u is conditionally uncorrelated with the past of y, given the past of u itself.
In our Hilbert space framework this is written as

H+
t (u) ⊥ H−

t (y) | H−
t (u). (2.6.32)

Equation (2.6.32) expresses the fact that the future time evolution of the process
u is not influenced by the past of y once the past of u is known. This captures in
a coordinate free way the absence of feedback (from y to u). Taking A = H+

t (u)
and B = H−

t (y), condition (iii) of Proposition 2.4.2 shows that the feedback-free
condition is equivalent to H−

t (y) ⊥ H(u) | H−
t (u) and hence, by (iv), to E[H−

t (y) |
H(u)] = E[H−

t (y) | H−
t (u)] for all t ∈ Z, so that, using t+ 1 instead of t, we get in

particular
E[y(t) | H(u)] = E[y(t) | H−

t+1(u)] for all t ∈ Z. (2.6.33)

namely, the noncausal estimate of y(t), E[y(t) | H(u)], given the whole history of u,
depends only on the past and present values of the process u and not on its future
history. Equation (2.6.33) can be taken as a definition of causality. In this case, it
is appropriate to call u an input variable as one can interpret u as an exogenous
cause of the evolution of y but not conversely. One says that there is causality from
u to y (or that u “causes” y). If this condition holds, it can be shown that, if there
are no cancellations in forming the transfer function, H = 0 in the feedback loop of
Figure 2.6.1. This is discussed, for example, in [38].
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It also follows from 2.6.33 that

ys(t) := y(t)− E[y(t) | H−
t+1(u)] = y(t)− E[y(t) | H(u)]

= E[y(t) | H(u)⊥], t ∈ Z (2.6.34)

so that ys(t) ⊥ H(u) for all t, i.e. the “causal estimation error” is uncorrelated
with the whole history of the input process u. We shall call the process ys the
stochastic component of y. (In the feedback-free case, this notation is used for the
”estimation error” v of (2.6.31)). Similarly, the stochastic process yd defined by the
complementary projection

yd(t) := E[y(t) | H(u)], t ∈ Z (2.6.35)

is called the deterministic component of y.
Note that not only do we have H(y)∨H(u) = H(ys)⊕H(u), but in virtue of

causality,

H−
t (y) ∨H(u) = H−

t (ys)⊕H(u) (2.6.36)

for all t. We stress that the stochastic and deterministic components in the decom-
position

y(t) = ys(t) + yd(t) (2.6.37)

are completely uncorrelated, i.e., E{ys(t)yd(τ)
′} = 0 for all t, τ ∈ Z.

If there is no causality, or, equivalently, if there is feedback from y to u, the very
notion of input looses its meaning. In fact, as shown in (2.6.31), the variable u(t)
is then also determined by a dynamical relation involving the past output process
y, which in turn is now playing the role of an exogenous variable determining u.

Identification in the presence of feedback (and, of course, in the absence of
any other specific information on the feedback loop) is in general equivalent to
identification of the joint process (y, u), in the sense of time-series identification.
Let es(t) be the one-step prediction error of the process ys based on its own past
H−

t (ys); i.e.,

es(t) = ys(t)− E[ys(t) | H−
t (ys)] (2.6.38)

The process es is the (forward) innovation process of ys.

Proposition 2.6.8. In the feedback-free case, the innovation of the process ys is
the conditional innovation of y given observations of u up to the present time. More
precisely, if (2.6.33) holds, then

es(t) = y(t)− E{y(t) | H−
t+1(u) ∨H−

t (y)} =

= y(t)− E{y(t) | H−
t (y) ∨H(u)}

Proof. From the first of equations (2.6.34) and the fact that yd(t) ⊥ H−
t (ys), we

have that

es(t) = y(t)− E[y(t) | H−
t+1(u)]− E[y(t) | H−

t (ys)].
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However, H−
t+1(u)∨H−

t (y) = H−
t+1(u)⊕H−

t (ys), and hence, in view of Lemma 2.2.5,
the first of the equations in the statement of the proposition follows. The second
statement follows in the same way from the second equation in (2.6.34) by observing
(2.6.36).

2.7 Stationary increments processes in
continuous-time

All the concepts introduced in the previous sections for stationary discrete-time
processes have obvious continuous-time counterparts. However, in continuous time,
the notion of stationary process may not be the most interesting concept from
the point of view of applications. Most of the interesting continuous-time signals
in engineering are modeled as “wideband” signals, and often the mathematically
simplest description is a process with a superimposed “white noise” component. For
this reason we shall now introduce the notion of a stationary increments process,
which will allow us to deal rather naturally with this class of objects.

Let z := {z(t); t ∈ R} be an m-dimensional continuous-time process defined
on some probability space {Ω,F , P}. We shall assume that the increments {zk(t)−
zk(s) ; t, s ∈ R, k = 1, 2, . . . ,m} have zero mean and finite second moment. If all
covariances

E{(zk(t+ h)− zk(s+ h))(zj(t)− zj(s))}; t, s ∈ R, k, j = 1, 2, . . . ,m (2.7.1)

are independent of h, we say that z has stationary increments.
Consider the Hilbert subspace of L2{Ω,F , P} linearly generated by the incre-

ments of z

H(dz) := span {zk(t)− zk(s) ; t, s ∈ R, k = 1, 2, . . . ,m} (2.7.2)

It is clear that, if z has stationary increments, the operators Uh, defined, for any
h ∈ R, on a dense subset of H(dz), by

Uh(zk(t)− zk(s)) = zk(t+ h)− zk(s+ h); t, s ∈ R, k = 1, 2, . . . ,m (2.7.3)

are isometric, and can be extended to the whole of H(dz) to form a one-parameter
unitary group {Ut ; , t ∈ R}.

In what follows all processes with stationary increments that we shall en-
counter will have increments which are continuous in mean square; i.e. zk(t+ h)−
zk(s+ h)→ zk(t)− zk(s) as h→ 0 for all t, s ∈ R, k = 1, 2, . . . ,m. In this case the
unitary group {Ut ; , t ∈ R} will be strongly continuous.

Generally speaking, processes with stationary increments are integrated ver-
sions of the random signals which are being modelled, and the only thing of interest
are the increments. For this reason each such process {z(t)} is viewed as an equiv-
alence class defined up to an additive constant random vector z0. This equivalence
class is denoted by the symbol dz. Obviously, in case {z(t)} is differentiable in
mean square, there exists a (mean-square) derivative process {s(t)} for which we
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can write z(t)− z(s) =
∫ t

s
s(τ)dτ , or symbolically, dz(t) = s(t)dt. It easy to check

that the derivative must be stationary; i.e. s(t + h) = Uhs(t). However in general
this will not be the case in many applications of interest. In general, under a very
mild conditional Lipschitz condition, which is discussed in detail in [86], a stationary
increments process admits semimartingale representations of the type,

dz(t) = s(t)dt+Ddw(t) (2.7.4)

where {s(t)} is stationary, D is a constant m× p matrix and dw is a p-dimensional
normalized Wiener process, that is a process with stationary orthogonal increments,
which plays the role of integrated white noise. These processes will be studied in
detail in the next chapter.

2.8 Bibliographical notes

The material of Section 2.2 is standard. Proofs of the orthogonal projection Lemma
can be found in the textbooks [45, 127]. The modern definition of conditional
expectation was given by Kolmogorov in [68], see also [24]. The interpretation as
orthogonal projection operator in L2 can be found in the first chapter of [101]. The
role of the Moore-Penrose pseudoinverse (see e.g. [41, p.139]) in the expression of
the conditional expectation of (conditionally) Gaussian random vectors has been
emphasized by [90].

Section 2.3. The singular value decomposition (SVD) for compact operators
is discussed for example in [23, p. 333]; conditions for compactness of the operator
EB |A are discussed in [104]. Proof of Theorem 2.3.1 can be found in [12, 132].
The optimization characterization of the singular values, which generalizes the so-
called Rayleigh quotient iteration in Euclidean spaces, is elegantly discussed in [132,
p.204]. The SVD for finite dimensional operators is now a standard device in linear
algebra. See e.g. [41] and the references therein. The original reference on canonical
correlation analysis is [53].

Section 2.4. Conditional uncorrelation and conditional independence are stan-
dard notions in probability theory. These concepts play a very important role in
modeling and realization of stochastic systems. For this reason they have been
deepened and reformulated in various equivalent ways in the stochastic realization
literature in view of answering basic system-theoretic questions like stochastic min-
imality etc. Proposition 2.4.2 is as formulated in [87].

Section 2.5. Besides Komogorov’s original papers, [67, 65], the classical ref-
erences for the material discussed here are the papers by Cramèr [18, 20], who
in particular stressed the notion of multiplicity and its relation with stationarity
[21, 22], Karhunen, [64], Wold [126]. A basic reference for the linear theory of
stationary stochastic processes is Rozanov’s boook [109].

Section 2.6. The operator-theoretic formulation of the Markov property dis-
cussed in this section seems to be originally due to [81]. It plays an important role
in the rest of this book. Theorem 2.6.4 and its proof is taken from [89]. Factor
analysis (and EIV) modeling is an old problem in statistics and econometrics which
has been revitalized in recent years by Kalman [59, 60, 61]. Our discussion here is
based on [9, 8, 72, 73, 106].
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The concepts of causality and its relation to (absence of) feedback between
stochastic processes has been introduced by Granger in [42]. The study of feedback
between stochastic processes has generated a large literature. See for example [16,
38, 3]. That Granger definition of absence of feedback is a conditional orthogonality
(or, more generally, a conditional independence) condition is nearly obvious but does
not seem to have been appreciated in the literature.

Stationary increments processes in continuous time are discussed in Chapter
1 of [39].
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Chapter 3

Spectral Representation
of Stationary Processes

In this chapter we review the so-called spectral representation of stationary pro-
cesses. This representation theory is useful for at least two reasons. First it leads
to concrete representation results of stationary processes in terms of white noise.
These representations are basic for filtering and prediction and also for state-space
modeling of random signals. Second, spectral representation theory provides a
functional calculus for random variables and processes in terms of functions of a
complex variable, much in the same spirit of the Fourier transform for deterministic
signals. Unfortunately the Fourier transform of a stationary process cannot be de-
fined in a deterministic pathwise sense. For it is well-known that the sample paths
of a discrete-time stationary Gaussian process of, say, independent random variables
(discrete time white noise) are neither in `2 nor uniformly bounded with probability
one, and hence as functions of time they do not admit a Fourier transform.

The Fourier transform of a stationary process can however be defined in a
(global) mean-square sense, but this transform will not provide a stochastic process
in the ordinary sense but rather an equivalence class of processes with orthogonal
increments, or an orthogonal random measure, as these objects are commonly called
in the literature.

3.1 Orthogonal-increments processes and the Wiener
integral

Let I be a subinterval (possibly infinite) of the real line R. A scalar continuous-
time process x = {x(t); t ∈ I}, is said to have orthogonal increments if whenever
s1 < t1 ≤ s2 < t2 we have

E{(x(t2)− x(s2))((x(t1)− x(s1))} = 0 (3.1.1)

where the overline denotes complex conjugation. To this requirement we shall also
add the zero mean condition,

E(x(t) − x(s)) = 0 t, s ∈ I. (3.1.2)

35
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We alert the reader to the fact that complex orthogonal increment processes defined
on a imaginary “time” axis will play an important role in spectral representation,
discussed in Section 3.3.

Proposition 3.1.1. Let x be a process with orthogonal increments, then there is a
real monotone nondecreasing function F , uniquely determined by x up to an additive
constant, such that,

E{|x(t)− x(s)|2} = F (t)− F (s), t ≥ s (3.1.3)

Proof. Let us fix an arbitrary t0 and define,

F0(t) :=

{
E{|x(t)− x(t0)|2}, t ≥ t0
−E{|x(t)− x(t0)|2}, t < t0

Then by using the property (3.1.1), it is immediate to check that F0 is monotone
and satisfies (3.1.3). The function F0 is clearly the unique function satisfying (3.1.3)
normalized at t0 so as F0(t0) = 0. Hence any function F (t) := F0(t) + an arbitrary
constant, also satisfies (3.1.3) and is independent of t0.

The relation (3.1.3) is often written symbolically as

E{|dx(t)|2} = dF (t).

It follows from (3.1.3) that an orthogonal increments process has the same continuity
properties (in mean square) as the monotone function F . In particular x has right
and left limits at every point t and an at most countable set of points of discontinuity
which can only be jumps. Without much loss of generality x can be modified at
the jump points so as to have x(t+) = x(t) (and hence also F (t+) = F (t) ) for all
t ∈ T. If say T = (a, b] then in this way the process is automatically extended to
the closure [a, b].

A mean-square continuous process w := {w(t)}, t ∈ R, with stationary or-
thogonal increments will be called a (wide-sense) Wiener process. Note that, by
stationarity of the increments, F (t+h)−F (t) = F (h)−F (0) for all t, so that for a
Wiener process the derivative F ′(t) (which a priori exists almost everywhere) is in-
dependent of t. By continuity, one finds a unique monotone nondecreasing solution
of the form

F (t) = σ2t+ constant

where σ2 is a positive constant. Hence for a Wiener process, we have E{|dw(t)|2} =
σ2dt. In other words the variance of the process grows linearly in time. If σ2 = 1
the Wiener process is said to be normalized.

The Wiener process is a mathematically tractable version of the concept of
“continuous-time stationary white noise” which, intuitively, is a process with com-
pletely uncorrelated variables and should correspond to the derivative

n(t) =
dw(t)

dt
.
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It is easy to see that this derivative cannot exist in mean square. It has been shown
in many ways that it is actually impossible to give n a precise interpretation as a
stochastic process in the sense we understand this term in probability theory, see
e.g. [127]. On the other hand, white noise and representations of various random
variables as functionals of white noise constitute an extremely useful tool in the
analysis of stationary proceses. For this reason there is a need for a rigorous theory
of white-noise representation involving in particular integrals with respect to the
Wiener process, which we shall now proceed to define.

Definition 3.1.2. Let {Ω,A, µ} be a probability space and let R be the family
of bounded semi-open intervals {(a, b]} of the real line8. An orthogonal stochastic
measure on R is a family of random variables ζ : {ζ(∆); ∆ ∈ R} where ζ(∆) :
{Ω,A, µ} → C such that

1. For each interval ∆ ∈ R, ζ(∆) is a random variable with zero mean and finite
variance

m(∆) = E{|ζ(∆)|2} <∞, ∆ ∈ R (3.1.4)

2. For any pair of disjoint intervals ∆1,∆2 with ∆1 ∩∆2 = ∅,

E{ζ(∆1)ζ(∆2)} = 0 (3.1.5)

3. ζ is σ-additive, i.e. for any ∆ ∈ R which is the disjoint union of countably
many sets ∆k ∈ R,

ζ(∆) =

∞∑

k=1

ζ(∆k), a.s. (3.1.6)

where the series at the second member converges in mean square.

Note that by Lemma A.1.1 in Appendix A.1 the series of orthogonal random
variables (3.1.6) converges if and only if

m(∆) =

∞∑

k=1

E{|ζ(∆k)|2} =

∞∑

k=1

m(∆k) <∞

so that m is a nonnegative σ-additive set function which can be extended as a σ-
finite measure on the the Borel σ-algebra of sets generated by R see e.g. [43, 39].
Conversely, m being σ-additive on R implies that ζ is σ-additive in the sense of
(3.1.6) above. In this sense, it is then possible to extend ζ to the σ-ring generated
by R, where m(∆) < ∞, see also [109, p. 5]. Note that ζ may not be extendable
to unbounded sets.

The measure ζ is called finite if E |ζ(R)|2 <∞. This is clearly the case if and
only if m is a finite Borel measure.

8The family R is a semi-ring of sets, see [43, p. 22]. A semi-ring is sometimes also called a
decomposable class of sets. More generally, a stochastic orthogonal measure could be defined on
an arbitrary semi-ring of sets.
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The notion of orthogonal stochastic measure is the natural starting point to
discuss stochastic integration. Before embarking into this, we remark that any
orthogonal increments process x defines a stochastic orthogonal measure, which we
shall denote dx, by the assignement,

dx((a, b]) := x(b)− x(a), a < b.

The “variance” measure m associated to dx is uniquely determined by the variance
function F of the process as

m((a, b]) := F (b)− F (a), a < b.

Conversely, any orthogonal random measure ζ determines an orthogonal increments
process z by the position

z(t) :=

{
ζ( (t0, t ]), t ≥ t0
−ζ( (t, t0]), t < t0

where t0 is an arbitrary fixed time instant. The orthogonal increments process z
is normalized so that z(t0) = 0; in fact ζ determines a whole equivalence class of
orthogonal increments processes, all differing from the just defined z by an arbitrary
additive random variable.

In particular, the stochastic orthogonal measure corresponding to the normal-
ized Wiener process w, has m = Lebesgue measure. Since in this book the only
thing that will matter will be the increments of w, it will be convenient to identify
a Wiener process with the corresponding orthogonal stochastic measure dw, so in
the future, whenever we shall talk about a Wiener process we will always refer to a
whole equivalence class of processes defined modulo an arbitrary additive random
variable. Note that the stochastic measure dw is not finite.

We shall now proceed to define the stochastic integral with respect to an
orthogonal random measure ζ. Let I∆ denote the indicator function of the set ∆,
i.e. I∆(t) = 1 if t ∈ ∆ and zero otherwise. For a scalar simple function

f(t) =

N∑

k=1

ckI∆k
(t), ∆k ∈ R, ∆k ∩∆j = ∅ k 6= j,

the integral of f with respect to ζ is defined as follows,

∫

R

f(t)dζ(t) :=

N∑

k=1

ckζ(∆k). (3.1.7)

Note that the integrals of simple functions are just the (zero-mean) random variables
which populate the linear vector space

L(ζ) := span{ζ(∆) |∆ ∈ R} = span{ζ((a, b]) | −∞ < a < b < +∞} (3.1.8)

generated by the increments of ζ.
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The fundamental property of the stochastic integral of simple functions is

E{|
∫

R

f(t)dζ(t)|2} =

N∑

k=1

|ck|2m(∆k) =

∫

R

|f(t)|2dm, (3.1.9)

showing that the integral is an isometric map mapping the dense linear manifold of
simple functions in the Lebesgue space L2(R, dm), onto L(ζ). We denote this map
by the symbol Iζ . Using this compact notation the formula (3.1.9) reads

‖Iζ(f)‖ = ‖f‖L2(R,dm),

where the norm in the first member is the variance norm in the linear manifold
L(ζ).

Let us now take an arbitrary function f ∈ L2(R, dm). Then f is the limit in
mean square of a sequence of simple square integrable functions fn,

∫

R

|f(t)− fn(t)|2dm→ 0, n→∞,

so that by the isometric property of the integral

‖Iζ(fn)− Iζ(fk)‖ = ‖fn − fk‖L2(R,dm) → 0

as n, k → ∞. Therefore the sequence {Iζ(fn)} is a fundamental sequence in
L2(Ω,A, µ) and converges to a random variable with finite variance which we shall
define to be the integral of f with respect to the stochastic measure ζ. In other
words, for an arbitrary f ∈ L2(R, dm), the stochastic integral of f with respect to
ζ is the mean square limit

Iζ(f) =

∫

R

f(t)dζ(t) := lim
n→∞

∫

R

fn(t) dζ(t). (3.1.10)

It is easy to check that the limit is indeed independent of the particular sequence
of simple functions. The fundamental property of the integral is recorderd in the
following Theorem. The proof is straightforward and will be omitted.

Theorem 3.1.3. The stochastic integral Iζ is a linear bijective map from L2(R, dm)
onto the Hilbert space H(ζ) = closure L(ζ) which preserves inner product,

E{
∫

R

f(t)dζ(t)

∫

R

g(t)dζ(t)} =

∫

R

f(t)ḡ(t) dm (3.1.11)

in other words, Iζ is a unitary map L2(R, dm)→ H(ζ).

We shall also omit the proof of the following immediate corollary of Theorem
3.1.3.

Corollary 3.1.4. The map assigning to any Borel set ∆ ⊂ R the random variable

η(∆) :=

∫

∆

f(t)dζ(t) =

∫

R

I∆(t)f(t)dζ(t) (3.1.12)
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is a finite stochastic orthogonal measure if and only if f ∈ L2(R, dm).

This measure we shall conventionally denote by dη = fdζ.

3.2 Harmonic analysis of a stationary process

There is a fundamental result in analysis which provides the harmonic representation
of the covariance function of a stationary process. This result, which we report
below without proof, is known, for the discrete-time case as Herglotz Theorem and
as Bochner Theorem in continuous time.

Let τ → Λ(τ) be the covariance function of a scalar stationary random process9

y, where τ ∈ Z if the process is discrete time and τ ∈ R in the continuous time case.
In continuous time Λ will be assumed to be a continuous function10 of τ ∈ R.

Theorem 3.2.1 (Herglotz, Bochner). There is a finite positive measure dF on
the Borel subsets of the interval [−π, π] (discrete time) or (−∞,+∞) (continuous
time), such that

Λ(τ) =

∫
eiθτdF (θ) . (3.2.1)

the limits of the integral being (−π, π) (discrete time) or (−∞,+∞) (continuous
time). The measure dF is uniquely determined by Λ.

An equivalent (although a bit more cumbersome) way of formulating the result
is to say that there is a real right-continuous monotone non-decreasing function F
defined on the interval [−π, π] (discrete time) or (−∞,+∞) (continuous time), such
that (3.2.1) holds. The monotone function F , uniquely determined by Λ modulo
an arbitrary additive constant, is called the spectral distribution function of the
process y. One can make F unique by imposing say F (−π) = 0 (in this case dF
has no mass at θ = −π). Since

∞ > E{|y(t)|2} = Λ(0) =

∫ π

−π

dF (θ) = F (π),

the function F must actually be bounded. This spectral distribution function de-
scribes how the “statistical power” E{|y(t)|2} = Λ(0), of the process y is distributed
in frequency. For this reason it is called power spectral distribution function in the
engineering literature.

Example 3.2.2. Consider a random process sum of simple harmonic oscillations

y(t) =
N∑

k=−N

yke
iθkt

9Recall that all stationary processes considered in this book will have finite second-order mo-
ments.

10This is equivalent to assuming y mean-square continuous.



“Book”
2007/1/28
page 41

i

i

i

i

i

i

i

i
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where −π < θk ≤ π are deterministic frequencies and yk are mutually uncorrelated
zero-mean random variables with variance σ2

k. This process is stationary with a
quasi-periodic covariance function

Λ(τ) =

N∑

k=−N

σ2
ke

iθkτ .

Since we can formally rewrite Λ(τ) in the form (3.2.1) with F the monotone function

F (θ) :=

N∑

k=−N

σ2
k1(θ − θk) − π ≤ θ ≤ π

where 1(θ) is the indicator function of the half line {θ ≥ 0}, it follows that F is
the distribution function of the process. In this simple example the power spectral
distribution function increases only at the jumps of F and the statistical power
of the process Λ(0) =

∑N
k=−N σ2

k is all concentrated at the discrete frequencies
θk. In more general situations the power of the process will also be distributed
continuously on the interval −π < θ ≤ π.

Like every real monotone function, the spectral distribution function F can
be split in two components

F = F1 + F2 (3.2.2)

where F1 is the absolutely continuous component,

F1(θ) =

∫ θ

−π

Φ(λ)
dλ

2π

and F2 is the singular component of F , whose points of increase are a set of Lebesgue
measure zero. F2 carries all discontinuities (finite jumps) of F . The non-negative
function Φ is called the spectral density function of the process.

If Λ is a summable function, i.e.
∑+∞

τ=−∞ |Λ(τ)| <∞ then the series

+∞∑

τ=−∞
e−iθτΛ(τ) (3.2.3)

converges pointwise uniformly in the interval [−π, π] to a periodic function Λ̂(θ),
and then the Λ(τ)’s must necessarily be the Fourier-series coefficients of Λ̂(θ); i.e.,

Λ(τ) =

∫ +π

−π

eiθτ Λ̂(θ)
dθ

2π
. (3.2.4)

It follows that in this case the distribution function is absolutely continuous and
the spectral density function is just Λ̂(θ), namely

Φ(θ) = Λ̂(θ).



“Book”
2007/1/28
page 42

i

i

i

i

i

i

i

i

42 Chapter 3. Spectral Representation of Stationary Processes

Remark 3.2.3. To make contact with the Fourier transform of ordinary functions
(which we shall need to do later on), it turns out to be convenient to extend the
distribution function F in the Herglotz representation as a periodic function to the
whole real axis. Equivalently, one can always think of F as being a function defined
on the unit circle, T := {z = eiθ; −π < θ ≤ π}, of the complex plane. Therefore
it is more natural to define the density Φ as a function defined on the unit circle
and hence as a function of eiθ. In view of this, with a slight misuse of notation, we
write F (eiθ) or Φ(eiθ) instead of F (θ) or Φ(θ) whenever convenient, without further
notice. Similarly in continuous time, it turns out to be convenient to regard the
spectral distribution F or Φ as a function on the imaginary axis I; i.e., as a function
of iω.

3.3 The spectral representation theorem

The Fourier-like representation of the covariance function of a stationary process
provided by Herglotz’s Theorem lies at the grounds of a stochastic Fourier-like
representation for the process y itself. This representation theorem is important
as it provides very precise informations about the structure of the elements of the
space H(y).

We shall define a linear map, which for the moment we shall denote by I

(a more descriptive notation will be introduced in the following), mapping the

functions f̂ , square integrable with respect to the spectral distribution dF , f̂ ∈
L2{[−π, π], dF}, into random elements belonging to H(y). This map will be first
defined on a dense set of functions and then extended by continuity.

Let I map the elementary trigonometric functions θ → ek(θ) := eiθk into the
random variables y(k); k ∈ Z. We extend I by linearity so that,

I(
∑

k

ckek) :=
∑

k

cky(k), k ∈ ζ, ck ∈ C (3.3.1)

for all finite linear combinations, called trigonometric polynomials,
∑

k ckek. In this
way I maps the linear manifold of all trigonometric polynomials: E ⊂ L2{[−π, π], dF}
onto the dense linear manifold L(y) ⊂ H(y) spanned by the random variables of
the process

L(y) := span{y(t) ; t ∈ Z}. (3.3.2)

Now, it follows from Weierstrass approximation theorem that the manifold E is
dense in L2{[−π, π], dF}; a proof of this fact can for example be found in [99, 100].
Then, by a simple application of Herglotz’s Theorem one can see that the map I is
isometric, as

〈ek, ej〉L2{[−π,π],dF} = Λ(k − j) = 〈y(k), y(j)〉H(y) (3.3.3)

and hence, since any f̂ ∈ L2{[−π, π], dF} is the mean square limit of a sequence

of trigonometric polynomials f̂k, I can be extended by continuity to the whole of
L2{[−π, π], dF}. In fact, by (3.3.3), I(f̂k) also converges in mean square to some
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random variable in H(y). We just define I(f̂) to be this limit

I(f̂) := lim
k→∞

I(f̂k)

in L2(Ω,A, µ). In this way the extended map (still denoted by) I, becomes a unitary
map from L2{[−π, π], dF} onto H(y). This leads to the following fundamental
result.

Theorem 3.3.1. There is a finite orthogonal stochastic measure dŷ on the (Borel
sets of the) interval −π < θ ≤ π, such that

I(f̂) =

∫ +π

−π

f̂(θ)dŷ(θ), f̂ ∈ L2{[−π, π], dF}, (3.3.4)

so that, in particular

y(t) =

∫ π

−π

eiθtdŷ(θ), t ∈ Z. (3.3.5)

The orthogonal stochastic measure is uniquely determined by the process y and sat-
isfies

E{dŷ(θ)} = 0, E{|dŷ(θ)|2} = dF (θ) (3.3.6)

where F is the spectral distribution function of y.

It is implicit in the statement of the theorem that every discrete-time station-
ary process admits an integral representation of the form (3.3.5). Formula (3.3.5) is
normally called the spectral representation of the discrete-time stationary process y.
The stochastic measure dŷ will be referred to as the Fourier transform of the process
y in this book. The map I corresponding to a specific process y will hereafter be
denoted by Iŷ.

Proof. Let ∆ := (θ1, θ2] be a subinterval of [−π, π], let I∆ be the indicator function
of ∆ and define

ŷ(∆) := I(I∆) (3.3.7)

so that by the isometric character of I we have E{|ŷ(∆)|2} = ‖I∆‖2L2{[−π,π],dF} =

F (∆). Here we have denoted by F also the Borel measure induced by the spectral
distribution function F . Also, for an arbitrary pair of intervals ∆1, ∆2 we have

E{ŷ(∆1)ŷ(∆2)} = 〈I∆1 , I∆2〉L2{[−π,π],dF} = F (∆1 ∩∆2)

from which, taking ∆1 ∩∆2 = ∅, it is easily seen that ŷ is a stochastic orthogonal
measure defined on the semi-open intervals of [−π, π] satisfying (3.3.7). Obviously
this measure is finite as E{|ŷ((−π, π])|2} = dF ((−π, π]) = F (π) <∞ and can then
be extended to the Borel sets of the interval [−π, π].

We now proceed to show that (3.3.4) holds for all f̂ ∈ L2{[−π, π], dF}. This
is certainly true for simple functions since in this case

I(f̂) =

N∑

k=1

ckI(I∆k
) =

N∑

k=1

ckŷ(∆k) =

∫ π

−π

f̂(θ)dŷ(θ)
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44 Chapter 3. Spectral Representation of Stationary Processes

by the very definition of the stochastic integral. Now, simple functions are dense
in L2{[−π, π], dF} and by the isometry described above, the family of random

variables {I(f̂)| f̂ simple} is dense in H(y). Hence any random variable ξ ∈ H(y)

being the limit in mean square of a sequence I(f̂k) with f̂k simple functions, is at
the same time the limit of a sequence of stochastic integrals of simple functions
Iŷ(f̂k). Therefore every random variable of H(y) is a stochastic integral of some

function f̂ ∈ L2{[−π, π], dF} with respect to the stochastic measure ŷ.
Note that the converse of this statement is obviously also true as all ŷ(∆)’s are

random variables in H(y) by definition and the stochastic integral of all functions

f̂ ∈ L2{[−π, π], dF} are then also in H(y).

Connections with the classical definition of stochastic Fourier
transform

It is instructive to examine the relation of the spectral representation, as it has been
introduced in this section, with the classical early definition of stochastic Fourier
transform. This is done below, in a series of conceptual steps. The details of the
procedure can be found in the early literature or in condensed form in Rozanov’s
book [109, p. 26–27 ].

1. Let t be a discrete time parameter. One may first try to formally define the
Fourier transform of a stationary second-order process y as the limit (in mean
square)

Y (θ) = lim
N→∞

+N∑

t=−N

e−iθty(t). (3.3.8)

but for a stationary process this mean square limit cannot exist (the case that
y is white noise is quite obvious).

2. Then one formally integrates (3.3.8) with respect to θ on an interval ∆ :=
[θ1, θ2] ⊂ [−π, π]. Setting

χt(∆) =

{
e−iθ2t−e−iθ1t

−2πit , t 6= 0
θ2−θ1

2π , t = 0

the integrated Fourier series

lim
N→∞

+N∑

t=−N

χt(∆)y(t) (3.3.9)

now converges in mean square and converges to the stochastic orthogonal
measure ( which we defined as the Fourier transform of y) ŷ(∆). Hence ŷ(∆)
is an integrated version of the formal Fourier transform and we may write

ŷ(∆) :=

∫ θ2

θ1

Y (λ)
dλ

2π
.
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One can show convergence by working out the following steps

(a) The deterministic Fourier series

SN (θ) :=
+N∑

t=−N

χt(∆)eiθt (3.3.10)

converges pointwise as N → ∞ to the indicator function I∆(θ) of the
interval ∆ := [θ1, θ2]. Actually, for this to be literally true one needs to
modify slightly the definition of I∆ at the extreme points of the interval,
in order to have pointwise convergence also at θ1, θ2.

(b) Since SN (θ) converges boundedly pointwise to I∆(θ), we also have

SN → I∆ inL2([−π, π], dF )

where F is the spectral distribution of the process y. Hence, by the
well-known isometric property of the stochastic integral,

ŷ(∆) =

∫ π

−π

I∆(θ)dŷ(θ) = lim
N→∞

∫ π

−π

SN (θ)dŷ(θ).

(c) The last integral in the equation is just the integrated Fourier series
(3.3.9).

3. In this sense one may say that the formal Fourier series (3.3.8) converges to
the white noise Y (θ) on [−π, π] as N →∞.

Continuous-time spectral representation

The continuous-time analog of Theorem 3.3.1 is as follows.

Theorem 3.3.2. Every stationary process y := {y(t) ; t ∈ R} continuous in
mean-square, admits a representation

y(t) =

∫ +∞

−∞
eiωtdŷ(iω), t ∈ R. (3.3.11)

where dŷ is a finite orthogonal stochastic measure uniquely determined by the pro-
cess, which satisfies

E{dŷ(iω)} = 0, E{|dŷ(iω)|2} = dF (iω) (3.3.12)

where F is the spectral distribution function of y. The map Iŷ defined by the stochas-
tic integral

Iŷ(f̂) =

∫ +∞

−∞
f̂(iω)dŷ(iω), f̂ ∈ L2{(−∞,+∞), dF}, (3.3.13)
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46 Chapter 3. Spectral Representation of Stationary Processes

is an isometry from L2{(−∞,+∞), dF} onto H(y).

The orthogonal stochastic measure ŷ (more commonly denoted dŷ in the fol-
lowing) is called the Fourier transform of the stationary process y.

The following corollary describes explicitely the fundamental isomorphism
by which random elements of H(y) correspond to elements of the function space
L2{[−π, π], dF} and the corresponding action of the shift group.

Corollary 3.3.3 (Spectral Isomorphism Theorem). Let y be a station-
ary discrete-time process. Every random element ξ ∈ H(y) can be written in a

unique way as a stochastic integral Iŷ(f̂) with respect to the Fourier transform ŷ

of the process y, of some function f̂ ∈ L2{[−π, π], dF}. In fact the map Iŷ :
L2{[−π, π], dF} → H(y) is isometric and bijective, i.e. unitary. It transforms
the shift operator U into the operator of multiplication by the exponential function
e(θ) : θ → eiθ, acting on L2{[−π, π], dF}, i.e.

Uξ = Iŷ(ef̂), ξ = Iŷ(f̂). (3.3.14)

A totally analogous statement holds for continuous-time process provided one sub-
stitutes [−π, π] with (−∞,+∞), the unitary operator U with the shift group {Ut ; t ∈
R} and eiθ with eiωt; t ∈ R.

A generalization of this result to vector-valued processes will be given in the
next sections.

Remark on discrete-time white noise

A very simple but important kind of discrete-time stationary process is (wide-sense)
stationary white noise. This is a stationary process w = {w(t), t ∈ Z} with uncorre-
lated (i.e. orthogonal) variables. The covariance function of this process is a scalar
multiple of the delta function, say Λ(τ) = σ2δ(τ) where δ(τ) = 1 for τ = 0 and zero
otherwise. Since Λ is trivially a summable function, this process has an absolutely
continuous spectral distribution function with a ( spectral) density, which is just a
constant function Φ(θ) = σ2, θ ∈ [−π, π]. The “flat” spectral density is the reason
why this process is called white.

It follows that the spectral measure ŵ, of a white noise process has the fol-
lowing property

E{dŵ(θ)dŵ(θ)∗} = σ2 dθ

2π

i.e. ŵ is a Wiener process on [−π, π]. It is easy to see that, conversely, every process
w with a spectral measure of the Wiener type,

w(t) =

∫ π

−π

eiθtdŵ(θ), t ∈ Z.

is white noise.
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Real processes

If the process y is real, its spectral measure has some special symmetry properties.

Proposition 3.3.4. If y is a real stationary process, its spectral measure ŷ is such
that

ŷ(∆) = ŷ(−∆) (3.3.15)

for every Borel set ∆ of the interval [−π, π], where −∆ = {θ | − θ ∈ ∆}. Moreover
the real and imaginary parts of ŷ(∆) = r(∆) + is(∆), are mutually orthogonal
stochastic measures, i.e.

E{r(∆1)s(∆2)} = 0 (3.3.16)

for all Borel sets ∆1, ∆2.

Proof. Notwithstanding the fact that the y(t)’s are real random variables, we shall
keep on working in the complex Hilbert space H(y).

It is easy to see that if f̂(θ) corresponds under Iŷ to the random variable η,

then the complex conjugate η̄ must be associated to the function f̂(−θ). This fact

is true for all trigonometric polynomials f̂(θ) =
∑

k ckek(θ) which correspond under
Iŷ to finite linear combinations η :=

∑
k cky(k), ck ∈ C, since clearly the complex

conjugate η̄ =
∑

k c̄ky(k) is associated to the function
∑

k c̄kek(θ) = f̂(−θ). Then,
since Iŷ : I∆ → ŷ(∆) we also have Iŷ : Ī−∆ → ŷ(∆), but Ī−∆ = I−∆, since the
indicator is a real function and therefore (3.3.15) follows.

To prove the remaining statement first notice that r and s are both σ-additive
real stochastic measures and that from (3.3.15) we get,

r(∆) = r(−∆), s(∆) = −s(−∆) (3.3.17)

for all Borel sets ∆. Moreover, since E{ŷ(∆1)ŷ(∆2)} = E |ŷ(∆1 ∩ ∆2)|2 ≥ 0 it
follows that Im E{ŷ(∆1)ŷ(∆2)} = 0, i.e.

E[s(∆1)r(∆2)− r(∆1)s(∆2)] = 0.

Combining this relation with the analogous one obtained by substituting −∆1 in
place of ∆1 and using (3.3.17) one gets the orthogonality relation (3.3.16). Hence
E{ŷ(∆1)ŷ(∆2)} = E{r(∆1 ∩∆2)

2 + s(∆1 ∩∆2)
2} and ∆1 ∩∆2 = ∅ yields E{r(∆1 ∩

∆2)} = E{s(∆1 ∩∆2)} = 0. This shows that r and s are also orthogonal measures
and concludes the proof.

For real processes the spectral representation (3.3.5) can be written completely
in terms of real quantities. From (3.3.17) one easily obtains

y(t) =

∫ π

−π

cos θt dr(θ) −
∫ π

−π

sin θt ds(θ), t ∈ Z.
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48 Chapter 3. Spectral Representation of Stationary Processes

3.4 Vector-valued processes

If we denote by dŷk, k = 1, . . . ,m the spectral measure corresponding to the k-th
component of an m-dimensional stationary process y, we can write the spectral
representation of an m-dimensional process in vector form as

y(t) =

∫
eiθtdŷ(θ), t ∈ Z

where ŷ is now a vector stochastic orthogonal measure

ŷ(∆) =





ŷ1(∆)
ŷ2(∆)

...
ŷm(∆)




(3.4.1)

The limits of integration are −π, π in discrete time and −∞, +∞ in continuous
time. It is useful to use matrix notations. Introduce the m×m matrix

F (∆) := [E{ŷk(∆)ŷj(∆)}]kj=1,...,m (3.4.2)

where ∆ is a Borel set in [−π, π]. Then F (∆)∗ = F (∆), i.e. F (∆) is Hermitian,
moreover by Schwartz’ inequality

|Fkj(∆)| ≤ ‖ŷk(∆)‖‖ŷj(∆)‖ = Λkk(0)1/2Λjj(0)1/2

so that F (∆) is bounded for all Borel subsets ∆.
Since for any a ∈ Cm, a∗F a is the spectral measure of the scalar process

a∗y(t), it follows also immediately that F is a positive semidefinite, σ-additive
function of ∆, i.e. a matrix measure. We shall call F (or dF ) the spectral matrix
measure of the process y. Naturally, to the matrix measure F we may associate
an equivalence class of Hermitian matrix valued functions θ → F (θ), each defined
modulo an additive arbitrary constant matrix, which are monotonic nondecreasing
in the sense that F (θ2)−F (θ1) ≥ 0 (positive semidefinite) for θ2 ≥ θ1. The vector-
valued generalization provides readily the representation of the covariance matrix
of the process as a “Fourier-like” integral of the form,

Λ(τ) =

∫ π

−π

eiθτdF (θ), τ ∈ Z; Λ(τ) =

∫ ∞

−∞
eiωτdF (ω), τ ∈ R

where we have taken the liberty of denoting by the same symbol dF , the two
(obviously different) matrix measures of the discrete-time and of the continuous time
processes. The above are the matrix versions of Herglotz and Bochner Theorems .

As in the scalar case we have the canonical decomposition

F = F1 + F2

where F1 is the the absolutely continuous component and F2 the singular part of
F .
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The absolutely continuous part is the indefinite integral of a spectral density
matrix Φ which is Hermitian and positive semidefinite (Φ(θ) ≥ 0, θ ∈ [−π, π]). For
processes taking values in Rm, which will be also called real for short, the symmetry
relation (3.3.15) translates into Fkj(∆) = Fjk(−∆), kj = 1, . . . ,m which, for the
spectral density matrix reads Φ(θ)∗ = Φ(−θ)′ or, equivalently, Φ(−θ)′ = Φ(θ).
With the notational convention described in Remark 3.2.3 this can be rewritten as,

Φ(e−iθ)′ = Φ(eiθ). (3.4.3)

This property is sometimes called parahermitian symmetry.
The vector analogue of the spectral isomorphism theorem requires a prelim-

inary brief digression on integration with respect to the matrix measure F . De-
terministic vector-valued functions will be written as row vectors hereafter. As
in the scalar case, the integral of f with respect to F is first defined for simple
m-dimensional functions

f(θ) =
N∑

k=1

ckI∆k
(θ), ∆k ⊂ [−π, π], ∆k ∩∆j = ∅ k 6= j,

where ck are row vectors in Cm, as

∫ π

−π

f(θ)dF (θ) :=

N∑

k=1

ckF (∆k)

and is then extended to all measurablem-dimensional functions by the usual limiting
procedure. This clearly applies to matrix-valued simple functions as well. The
integral of bilinear (or quadratic) forms of the type

∫ π

−π

f(θ)dF (θ)g(θ)∗

may also be defined in terms of sequences of vector simple functions {fk} and {gj}
approximating f and g (so that {fkg

∗
j } is a sequence of simple matrix functions

approximating fg∗) as the limit

∫ π

−π

f(θ)dF (θ)g(θ)∗ := lim
k,j→∞

trace{
∫ π

−π

fk(θ)gj(θ)
∗dF (θ)}.

The space of m-dimensional square integrable functions with respect to the
matrix measure F is denoted by L2

m([−π, π], dF ). It has been shown [26, p. 1349],
that this space is complete and hence a Hilbert space with respect to the scalar
product

〈f, g〉 :=
∫ π

−π

f(θ)dF (θ)g(θ)∗ (3.4.4)

provided one agrees to identify vector functions whose difference has norm equal to
zero. Functions f1, f2 such that ‖f1−f2‖ = 0 (the norm being induced by the inner
product defined above) are said to be equal F -almost everywhere. If F happens to
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50 Chapter 3. Spectral Representation of Stationary Processes

be singular on “large” subsets, it may happen that f1 and f2 are equal F -almost
everywhere but are widely different pointwise.

The fundamental isometric property of the stochastic integral with respect to
a vector stochastic measure can now be stated in the following form,

E{Iŷ(f)Iŷ(g)∗} = E{
∫ π

−π

f(θ) dŷ(θ)[

∫ π

−π

g(θ) dŷ(θ)]∗} =

∫ π

−π

f(θ)dF (θ)g(θ)∗ = 〈f, g〉L2
m([−π,π],dF ) (3.4.5)

where f and g are functions in L2
m([−π, π], dF ) and F is the spectral matrix measure

of ŷ.
The vector version of the spectral isomorphism theorem follows.

Theorem 3.4.1 (Spectral Isomorphism Theorem). Let y be an m-dimensional
stationary process with stochastic Fourier transform ŷ. Every random functional
ξ ∈ H(y) can be written as a stochastic integral Iŷ(f̂) for a unique function f̂ ∈
L2

m{[−π, π], dF}. In fact the map Iŷ : L2
m{[−π, π], dF} → H(y) is unitary. It maps

the elementary exponential functions [0, . . . , et, . . . , 0] (et(θ) = eiθt in the k-th place)
into the random variable yk(t) and transforms the shift operator U of the process y
into the operator Me, of multiplication by the exponential function e(θ) : θ → eiθ,
acting on L2

m{[−π, π], dF}. In other words, the following diagram commutes,

H(y)
U−−−−→ H(y)

Iŷ

x
xIŷ

L2
m{[−π, π], dF} −−−−→

Me

L2
m{[−π, π], dF}

A totally analogous statement holds for continuous-time process provided one sub-
stitutes [−π, π] with (−∞,+∞), the unitary operator U with the shift group {Ut ; t ∈
R} and eiθ with eiωt; t ∈ R.

3.5 Functionals of white noise

Recall the well-known Hilbert space `2m ≡ `2m(Z), of square summablem-dimensional
functions (sequences) f : Z→ Cm, endowed with the inner product

〈f, g〉 :=
+∞∑

−∞
f(t)g(t)∗.

In the engineering literature `2m is sometimes referred to as the space of signals with
finite energy, the energy being just the squared norm

‖f‖2 =
+∞∑

−∞
|f(t)|2,
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where | � | denotes the Euclidean norm. For m = 1 (scalar square-summable se-
quences) the subscript will be dropped.

Functions which are zero for negative [positive] values of the argument, f(t) =
0, t < 0, [t > 0] are called causal [anticausal ]. If f(t) = 0, t ≤ 0, [t ≥ 0], f is
called strictly causal [strictly anticausal ]. The subspaces of causal and anticausal
functions in `2m(Z) will be denoted by the symbols `2+m and by `2−m respectively.
They are clearly isomorphic to `2m(Z+) and to `2m(Z−).

A vector-valued, say m-dimensional white noise process w, is just a stationary
vector process whose random variables are pairwise uncorrelated,

E{w(t)w(s)∗} = Qδ(t− s). (3.5.1)

where the variance matrix Q is a Hermitian positive-semidefinite matrix. In the
following we shall assume that Q is nonsingular and denote by Q1/2 an arbitrary
square root of Q; i.e. a square matrix A satisfying AA′ = Q. In this case we may as
well consider the normalized white noise process w̃ := Q−1/2w which has variance
matrix equal to the identity and obviously generates the same Hilbert space H(w),
of w.

Note that if w has a singular covariance matrix, there are matrices A, which
are rectangular but with linearly independent columns, such that AA′ = Q is a rank
factorization. In this case define u := A−Lw where −L denotes left-inverse and set
w̃ := Au where the dimension of u is equal to the rank of Q. Since (I −AA−L)Q =
(I −AA−L)AA′ = 0, the difference w − w̃ = (I −AA−L)w has covariance zero and
hence w̃ = w = Au almost surely. It follows that H(w) = H(u), i.e. the space can
also be generated by a normalized white noise (u) of a smaller dimension.

The elements (linear functionals) in the Hilbert space H(w) of a white noise
process have an explicit and particularly simple form. The following representation
theorem will describe their structure. Although rather elementary, this result will
turn out to be extremely useful.

Theorem 3.5.1. Let w be an m-dimensional normalized white noise process. The
linear functionals η ∈ H(w) have the form

η =

+∞∑

s=−∞
f(−s)w(s), f ∈ `2m (3.5.2)

where the function f is uniquely determined by η. The linear map Iw : `2m → H(w)
defined by equation (3.5.2) is unitary and transforms the translation operator T in
`2m into the shift U acting on random variables of H(w), namely, if [T tf ](s) =
f(t+ s); i.e.,

η(t) := U tη =

+∞∑

s=−∞
f(t− s)w(s) = Iw(T tf) (3.5.3)

Note that we have been abusing notations as the symbol Iw denotes a transfor-
mation which strictly speaking is not a stochastic integral (but is the discrete-time
analog of one).
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Proof. The proof is particularly simple in the scalar case. Then the representation
formula (3.5.2) follows readily from the fact that the random variables {w(s) | s ∈ Z}
form an orthonormal basis for the Hilbert space H(w). In fact,

f(−s) = E{ηw(s)}

is just the s-th Fourier coefficient of η with respect to that basis. It is very well-
known that these coefficients are unique and form a square summable sequence.
The last part of the statement also follows since U−tw(s) = w(s− t) and

E{η(t)w(s)} = 〈U tη, w(s)〉 = 〈η, U−tw(s)〉 = f(t− s).

We shall leave the details of the generalization of this argument to the vector case
to the reader.

Note that the continuous-time analog of Theorem 3.5.1 is contained as a partic-
ular case in Theorem 3.1.3: we just need to take ζ to be (the orthogonal stochastic
measure defined by) an m-dimensional normalized Wiener process w. Then the
following is just an immediate corollary of that result.

Corollary 3.5.2. Let w be an m-dimensional normalized Wiener process. The
linear functionals η ∈ H(dw) have the form

η =

∫ +∞

−∞
f(−s)dw(s), f ∈ L2

m(R) (3.5.4)

where the function f is uniquely determined by η. The linear map Iw : L2
m(R) →

H(dw) defined by equation (3.5.4) is unitary and transforms the translation oper-
ator Tt in L2

m into the shift Ut acting on random variables of H(dw), namely, if
[Ttf ](s) = f(t+ s), then

η(t) := U tη =

∫ +∞

−∞
f(t− s)dw(s) = Iw(Ttf) (3.5.5)

For white noise processes we have two representation theorems of H(w): the
general spectral representation theorem 3.4.1 and the time-domain representation
that we have just seen. These two representations in the frequency and in the time
domain are related by the Fourier transform.

The Fourier transform

Related to the well-known fact that the trigonometric functions

et(θ) := eiθt t ∈ Z

form a complete orthonormal system (an orthonormal basis) in L2([−π, π], dθ
2π ), is

the following basic result in harmonic analysis (the so-called Fourier-Plancherel
Theorem).
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Theorem 3.5.3. The Fourier transform,

F : `2m → L2
m([−π, π],

dθ

2π
), F(f) :=

+∞∑

t=−∞
e−iθtf(t)

the sum being convergent (for all f ∈ `2m) in the metric of the space L2
m([−π, π], dθ

2π ),

is a norm preserving and onto, i.e. a unitary , map from `2m onto L2
m([−π, π], dθ

2π ).

Proof. The norm preserving property, i.e. the equality of the energy norm of the
time signal f to the integral with respect to frequency of the square norm of its
Fourier transform f̂(θ) = F(f)(θ),

+∞∑

t=−∞
|f(t)|2 =

∫ π

−π

|f̂(θ)|2 dθ
2π

is known as Parseval’s identity. It is easy to check that this property holds for
functions (sequences) with compact support and since these sequences are obviously
dense in `2m, the theorem can be proved by the same isometric extension argument
which was used for the definition of the stochastic integral earlier on.

One reason for the importance of the Fourier transform in the study of dy-
namical models of time sequences, is the fact that the translation operator T in
`2m,

T (f)(t) := f(t+ 1)

corresponds, in the frequency domain, to the algebraic operation of multiplication
by the scalar exponential function e(θ) : θ → eiθ, acting on L2

m([−π, π], dθ
2π ). In other

words F(Tf) = MeF(f) where Me is the multiplication operator by the function

e; i.e. Me[f̂ ](θ) = eiθf̂(θ). The importance of this property and its numerous
consequences in the study of deterministic signals and systems are assumed to be
known.

In continuous-time there is a perfectly analogous version of Theorem 3.5.3
which is also known as Fourier-Plancherel Theorem.

Theorem 3.5.4. Let I denote the imaginary axis. The Fourier transform,

F : L2
m(R)→ L2

m(I,
dω

2π
), F(f) :=

∫ +∞

−∞
e−iωtf(t) dt

the integral being defined as a limit in the metric of the space L2
m(I, dω

2π ), is well-
defined for all f ∈ L2

m(R) and is a norm preserving and onto, i.e. a unitary , map
from L2

m(R) onto L2
m(I, dω

2π ).

The norm preserving property, i.e. the equality of the energy norm of the
continuous-time signal f to the integral with respect to frequency of the square
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norm of its Fourier transform f̂(iω) = F(f)(iω),

∫ +∞

−∞
|f(t)|2 dt =

∫ +∞

−∞
|f̂(iω)|2 dω

2π

is also known as Parseval’s identity.
In continuous time the translation operator Tt ; t ∈ R, acting in L2

m(R), is
defined as

Tt(f)(s) := f(t+ s), s ∈ R

and corresponds, in the frequency domain, to the algebraic operation of multiplica-
tion by the scalar exponential function et : iω → eiωt, acting on L2

m(I, dω
2π ). In other

words F(Ttf) = Met
F(f) where Met

is the multiplication operator by the function

et; i.e. Met
[f̂ ](iω) = eiωtf̂(iω). The family of translations {Tt ; t ∈ R} forms a

group of unitary operators in L2
m(R) which, via Fourier transform, corresponds (in

fact is unitarily equivalent) to the unitary group of multiplication operators by eiωt

acting in L2
m(I, dω

2π ).
The following fundamental representation theorem relates the the spectral rep-

resentation of random functionals of white noise in H(w) to the Fourier-Plancherel
transform.

Theorem 3.5.5. Let w be an m-dimensional normalized white noise process. The
unitary representation map Iw : `2m → H(w) defined by equation (3.5.2) admits a
factorization as the composite map

Iw = IŵF (3.5.6)

i.e., the frequency-domain representative function of any linear functional in H(w)
is just the Fourier transform of the time-domain function f in (3.5.2). In other

words η = Iŵ(f̂) = Iw(f) if and only if f̂ = Ff . In fact, the two unitary represen-
tation maps Iŵ and Iw are related as in the following commutative diagram

H(w)
U−−−−→ H(w)

Iŵ

x
xIŵ

L2
m([−π, π], dθ

2π ) −−−−→
Me

L2
m([−π, π], dθ

2π )

F

x
xF

`2m(Z) −−−−→
T

`2m(Z)

Proof. The frequency-domain isomorphism Iŵ maps trigonometric polynomials
p(θ) =

∑M
−N f(−k)eiθk into finite linear combinations η =

∑M
−N f(−k)w(k) =

Iw(f), where f is an `2 function of bounded support. It is obvious that p(θ) =∑N
−M f(k)e−iθk is the Fourier transform of f , i.e. p = f̂ . Hence it follows that

Iw(f) = Iŵ(f̂) = Iŵ(Ff)
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for the dense linear manifold of finite support functions f . Since both maps Iw and
IŵF are unitary, (3.5.6) follows. The rest follows by well-know properties of the
Fourier transform.

The continuous-time analog is immediate and will be stated without proof.

Theorem 3.5.6. Let w be an m-dimensional normalized Wiener process. The
unitary representation map Iw : L2

m(R) → H(dw) defined in Corollary 3.5.2 fac-
torizes exactly as the composite map (3.5.6) in Theorem 3.5.5. In other words, the
representative function in the frequency-domain of any linear functional in H(dw)
is just the Fourier transform of the time-domain function f in (3.5.4). Hence,

η = Iŵ(f̂) = Iw(f) if and only if f̂ = Ff . In fact, the two representation maps Iŵ

and Iw are related as in the following commutative diagram

H(dw)
Ut−−−−→ H(dw)

Iŵ

x
xIŵ

L2
m(I, dω

2π ) −−−−→
Met

L2
m(I, dω

2π )

F

x
xF

L2
m(R) −−−−→

Tt

L2
m(R)

3.6 Spectral representation of stationary increment
processes

Let I[ω1,ω2](iω) be the indicator function of a finite subinterval [iω1, iω2] of the
imaginary axis (equal to one for ω ∈ [ω1, ω2] and zero otherwise) and consider the
following elementary identity,

e−iω2t − e−iω1t

2πit
= (F−1I[ω1,ω2])(−t) . (3.6.1)

Since these are trivially square integrable functions, given a p-dimensional Wiener
process dw, we can define a process ŵ on the imaginary axis I with increments,

ŵ(iω2)− ŵ(iω1) =

∫ ∞

−∞

e−iω2t − e−iω1t

2πit
dw(t) (3.6.2)

Now, by the isometric property of the Fourier-Plancherel transform, one readily sees
that the process ŵ has orthogonal increments. In fact,

E{dŵdŵ∗} = I
dω

2π
(3.6.3)

where ∗ denotes transpose and conjugation. Hence, dŵ is a p-dimensional Wiener
process on the imaginary axis. Now, (3.6.2) may be written

∫ ∞

−∞
I[ω1,ω2](iω)dŵ(iω) =

∫ ∞

−∞
(F−1I[ω1,ω2])(−t)dw(t)
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and since the indicator functions are dense in L2, one has, for all f ∈ L2(R)

∫ ∞

−∞
f̂(iω)dŵ =

∫ ∞

−∞
f(−t)dw , (3.6.4)

the function f̂ being the Fourier-Plancherel transform of f . Incidentally, we have
just proven that the spectral representation map Iŵ : L2

p(I,
dω
2π ) → H(dw) defined

by

Iwf̂ =

∫ ∞

−∞
f̂(iω)dŵ(iω)

factorizes as in (3.5.6) in Theorem 3.5.6. Dually, by choosing f to be the indicator
function of the interval [t1, t2], (3.6.4) yields

w(t2)− w(t1) =

∫ ∞

−∞

eiωt2 − eiωt1

iω
dŵ(iω) (3.6.5)

This is a particular instance of spectral representation of a stationary increments
process; in fact, of the stationary increments (Wiener) process dw, [24]. Note that
the spectral measure of dw is also of the Wiener type, being precisely the orthogonal
random measure dŵ defined in (3.6.2).

More generally, one can prove the following result.

Theorem 3.6.1. Every Rm-valued process with finite second moments and contin-
uous stationary increments, dz, admits a spectral representation

z(t)− z(s) =

∫ +∞

−∞

eiωt − eiωs

iω
dẑ(iω) , t, s ∈ R (3.6.6)

where dẑ is an m-dimensional orthogonal random measure (or an orthogonal in-
crements process) on the imaginary axis I uniquely determined by dz. The matrix
spectral distribution of dz, defined by,

E{dẑ(iω)dẑ(iω)∗} = dZ(iω) (3.6.7)

is a (not necesserily finite) nonnegative definite Hermitian matrix measure on the
Borel sets of the imaginary axis.

The orthogonal stochastic measure dẑ will also be called the Fourier transform
of dz.

Example 3.6.2. As an example consider the process dz defined as the output of
the linear stochastic system

{
dx = Axdt+Bdw

dz = Cxdt+Ddw
, (3.6.8)
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where all eigenvalues of the matrix A have negative real parts. In the time domain
(3.6.8) has the following solution

x(t) =

∫ t

−∞
eA(t−τ)Bdw (3.6.9)

z(t)− z(s) =

∫ t

s

Cx(τ)dτ +D[w(t) − w(s)] (3.6.10)

Applying (3.6.4) to the first of these equations, we obtain

x(t) =

∫ ∞

−∞
eiωt(iωI −A)−1Bdŵ (3.6.11)

which then inserted into (3.6.10) together with (3.6.5) yields the spectral represen-
tation

z(t)− z(s) =

∫ ∞

−∞

eiωt − eiωs

iω
dẑ(iω) (3.6.12)

where dẑ = W (iω)dŵ(iω), the matrix function W being the transfer function of the
system (3.6.8) given by

W (s) = C(sI −A)−1B +D. (3.6.13)

In this example dz has an absolutely continuous spectral distribution

E{dẑdẑ∗} = Φ(iω)
dω

2π

where the spectral density Φ is given by Φ(s) = W (s)W (−s)′. Note that ifD 6= 0 the
spectral distribution is not a finite measure and hence an expression like

∫∞
−∞ eiωtdẑ

does not make sense.

Proposition 3.6.3. If the spectral measure dẑ in Theorem 3.6.1 is finite, the
process dz has a (stationary) derivative in mean square; i.e. dz(t) = y(t)dt, with

y(t) =

∫ +∞

−∞
eiωtdẑ (3.6.14)

in which case dŷ = dẑ.

Proof. Let y(t) be defined as in (3.6.14), then

z(t+ h)− z(t)
h

− y(t) =

∫ +∞

−∞
∆h(iω)eiωt dẑ(iω) ,

where the function

∆h(iω) :=
eiωh − 1

iωh
− 1 = eiωh/2 sin(ωh/2)

ωh/2
− 1

converges boundedly pointwise to zero for h→ 0.
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3.7 Multiplicity and the module structure of H(y)

An important property of the Hilbert space H(y) generated by a stochastic process
y, is to be finitely generated by the shift U , in the following sense: there is a finite
number of generators namely elements y1, . . . , ym ∈ H(y) that are “cyclic” for the
shift, i.e., having the property

span {U tyk | k = 1, . . . ,m, t ∈ Z} = H(y). (3.7.1)

The cardinality of the smallest set of generators is called the multiplicity of the shift
U on the Hilbert space H(y); see [45], [35, p.105]. Here, for short, this number will
be called the multiplicity of y or of H(y). In H(y) we trivially have m generators,
yk = yk(0), k = 1, . . . ,m, and hence H(y) has a finite multiplicity, less or equal to
m.

The concept of multiplicity has to do with the algebraic concept of basis in
module theory. This technical observation (which may sound a bit extraneous to
the general spirit of this book), may help in understanding certain striking similar-
ities between stochastic system theory and certain concepts which are commonly
introduced in the deterministic system theoretic setting. A basic reference for this
is Fuhrmann’s book [35]. The main fact here is that the shift operator acting on
the Hilbert space H(y) induces a natural module structure on this space.

The starting point to see this is the observation that there is a natural multi-
plication p · η between trigonometric polynomials

p(eiθ) :=

k1∑

k=k0

pke
ikθ , k0 ≤ k1 ∈ Z

and elements η ∈ H(y), namely

p · η := p(U) · η =

[
k1∑

k=k0

pkU
k

]
η =

∫ π

−π

p(eiθ) f̂(eiθ) dŷ(eiθ), (3.7.2)

where f̂ ∈ L2
m{[−π, π], dF} is the spectral representative of η with respect to the

Fourier transform dŷ, of the process y; compare Theorem 3.3.3.
Now, it is a well-known consequence of Weierstrass’ Approximation Theorem,

that the trigonometric polynomials are dense in the sup norm in the space of contin-
uous functions on the interval [−π, π]. Consequently, any function ϕ ∈ L∞[−π, π]
is the (almost everywhere uniform) limit of sequences of trigonometric polynomials
{pk}. Hence we may define the product

ϕ(U) · η := lim
k→∞

pk(U) · η, η ∈ H(y)

for every ϕ in the ring L∞[−π, π], of scalar essentially bounded functions on [−π, π],
which thereby becomes a ring of scalars by which we may multiply elements of
H(y). It is immediate to check that, endowed with this multiplication, H(y) is a
(Hilbert) module unitarily isomorphic to L2

m{[−π, π], dF} as a L∞[−π, π]-module.
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It follows readily from (3.7.1) that the module H(y) is in fact free, as it admits the m
generators {yk(0) , k = 1, . . . ,m}. These generators correspond in the isomorphism
to the m unit vector functions {ek, k = 1, 2, . . . ,m} in L2

m{[−π, π], dF}, where the
k-th component of ek is identically equal to one while the others are zero a.e..

The module-theoretic concept of basis corresponds to a set of generators of
minimal cardinality. Hence the multiplicity of a stationary process is just the di-
mension of a basis for the Hilbert module H(y). How do we check if the generators
{yk(0) , k = 1, . . . ,m} form a basis? In what follows we shall try to give an answer
to this question.

First we would like the reader to appreciate that this question is more subtle
than it may appear at first sight. Consider for example a scalar normalized white
noise process with spectral measure dŵ and let us define a stationary process y with
spectral measure

dŷ := I∆dŵ

where I∆ is the indicator of some proper Borel subset ∆ ( [−π, π) of normalized

Lebegue measure |∆|
2π ≤ 1. It is nearly obvious that w(0) is a generator of H(w)

(for proving this we just need to notice that L∞[−π, π] is dense in L2[−π, π]); i.e. a
basis for the Hilbert module H(w). The question is if y(0) is also a basis of H(w).
In a vector space setting the answer would obviously be yes, but in this case the
answer is generally negative.

Proposition 3.7.1. Unless ∆ has full Lebesgue measure, H(y) is a doubly invariant
subspace properly contained in H(w). In fact, for any ϕ ∈ L∞[−π, π] the stationary
process y with spectral measure dŷ := ϕdŵ generates the whole space; i.e. H(y) =
H(w) if and only if ϕ is nonzero almost everywhere in [−π, π].

Proof. We shall rely on a characterization of doubly invariant subspaces of L2[−π, π]
which can be found e.g. in Helson’s book [46, Theorem 2, p. 7], according to which
all doubly invariant subspaces are of the form I∆L

2[−π, π]. Hence a doubly invari-
ant subspace is the whole of L2[−π, π] if and only if ∆ has full Lebesgue measure
(equivalently, is nonzero almost everywhere). Note that every ϕ ∈ L∞[−π, π] can
be written as a product ϕI∆(ϕ) where ∆(ϕ) is the essential support of ϕ.

We start with the following lemma.

Lemma 3.7.2. Let y and u be m- and p-dimensional jointly stationary stochastic
processes with spectral distribution measures dFy and dFu, such that H(y) = H(u).
Then there exist matrix functions M and N with rows Mk, k = 1, 2, . . . ,m belonging
to L2

p{[−π, π], dFu} and Nj, j = 1, 2, . . . , p belonging to L2
m{[−π, π], dFy}, such that,

dŷ(eiθ) = M(eiθ)dû(eiθ), dû(eiθ) = N(eiθ)dŷ(eiθ) , (3.7.3)

which can be expressed by saying that the two vector stochastic measures dŷ and dû
are equivalent. Moreover

M(eiθ)N(eiθ) = Im, N(eiθ)M(eiθ) = Ip (3.7.4)
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dFy (and also dFu)-almost everywhere.

Proof. Since all yk(t)’s, k = 1, 2, . . . ,m, belongs to H(u), there are m row vector
functions Mk ∈ L2

p{[−π, π], dFu} such that,

yk(t) =

∫ +π

−π

eiθtMk(eiθ)dû(eiθ) k = 1, 2, . . . ,m

and, by uniqueness of spectral representation, it then follows that dŷk(eiθ) =
Mk(eiθ)dû(eiθ), k = 1, 2, . . . ,m. This proves the first relation in (3.7.3). A symmet-
ric argument yields the second equality. Finally, (3.7.4) are obtained by substituting
one of the (3.7.3) into the other, getting for example

dŷ(eiθ) = M(eiθ)N(eiθ)dŷ(eiθ)

which, again by uniqueness of the spectral measure, implies the first equality in
(3.7.4), dFy-almost everywhere.

Theorem 3.7.3. Assume as before that H(y) = H(u) and let dFu be of the scalar
type; i.e., dFu = Ipdµ with µ a positive Borel measure on [−π, π]. Then {uk(0), k =
1, . . . , p} are a set of generators of H(y) of smallest cardinality, i.e. a minimal set
of generators. In this case

rank M(eiθ) = p, µ− almost everywhere. (3.7.5)

In particular for p = 1, the m×1 function M(eiθ) must be a nonzero vector µ-almost
everywhere.

Proof. We have

E{dûk(eiθ)dûj(e
iθ)∗} = dFu,k,j(e

iθ) = δkjdµ

hence, for k 6= j, uk(t) = U tuk(0) and uj(s) = Usuj(0) are orthogonal for all t, s ∈
Z. Clearly the module generated by any proper subset of the {uk(0), k = 1, . . . , p}
must then be a proper submodule of H(u). Hence the random variables {uk(0), k =
1, . . . , p} are a minimal set of generators. Since the {yk(0), k = 1, . . . ,m} are also
generators, it follows that m ≥ p. Now the condition (3.7.5) follows from the second
of the (3.7.4), which in this case is just saying that M(eiθ) has µ-almost everywhere
a left inverse (of dimension p×m).

Remark 3.7.4. Under the assumptions of Theorem 3.7.3 we have

dFy(eiθ) = M(eiθ)M(eiθ)∗dµ (3.7.6)

so that dFy has a density, equal to the m×m matrix M(eiθ)M(eiθ)∗, with respect
to the scalar type measure Idµ. It follows from Sylvester inequalities (see [36, p.
66]) that this density has constant rank p, µ-almost everywhere.
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There is a notion of rank of a stationary process that is usually defined only for
orthonormalizable processes (see Chapter 4). In this setting, the rank of y is equal
to the rank almost everywhere of the spectral density matrix of the process. This
notion turns out to coincide with the (more general) notion of multiplicity given
above. That the two notions reduce to the same thing (in the particular context of
orthonormalizable processes) is a consequence of the spectral factorization theorem
which we shall prove in Chapter 4 (Theorem 4.2.1).

3.8 Bibliographical notes

Most of the material in this section is classical. The spectral representation theorem
is due to Cramèr, [18, 19, 20], see also the work of his former student K. Karhunen,
[63, 64]. The proof given here is adapted from [39, p. 203 ]. A more direct approach
in [109] uses the full power of the spectral representation of unitary groups in Hilbert
space. In relation to this, it has been remarked by J.L. Doob [24, p. 635-636] that
the stochastic integral, first introduced by Wiener in [121], was defined in exactly
the same way as the spectral integrals commonly introduced in spectral theory in
Hilbert spaces. The spectral representation of stationary processes could then be
seen as a chapter of spectral theory in Hilbert spaces. For this reason most of the
abstract properties of the pair (H(y), U ) which are used in this book are also valid
for any pair (H, U ) where, instead of a stationary process on a probabilty space,
one has just a (separable) Hilbert space H and a unitary operator U on H with
finite multiplicity.

The concept of multiplicity can be defined for more general classes of processes
than stationary, see e.g. [21], [50]. The module theory of section 3.7 is inspired by
Fuhrmann’s book, [35] where it is introduced for self-adjoint operators; see chapter
II, especially p. 101-102. The rank condition of Theorem 3.7.3 seems to be new;
it explains why spectral factorization of stationary processes must be of “constant
rank”, a fact which may appear rather mysterious from the way it is normally
introduced in the literature.
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Chapter 4

Innovations, Wold
Decomposition, and
Spectral Factorization

We shall begin this chapter by reviewing some basic concepts of the theory of
dynamic estimation in the classical setup of Wiener and Kolmogorov. The theory
leads naturally to consider certain white noise representations of the observation
process which are prototypes of stochastic dynamical systems described in input-
output form. These representations have been first introduced by geometrical means
in the seminal work of H. Wold’s on stationary processes and prediction theory.
Wold’s ideas have been generalized in many directions. One such generalization
will be discussed in this chapter. It will form the basis of representation theorems
which will be used throughout the book. Generalizations of Wold Decomposition
theory have become part of functional analysis and have led to a unifying view of
certain fundamental problems in operator theory and Hardy spaces. The operator
theoretic (and Hardy space) results which stems from this idea can, in a sense,
be seen as function-analytic counterparts of results in stationary processes and
prediction theory. In Section 4.6 we take advantage of this conceptual connection
of the fields, to review, in an economical and essentially self-contained way, some
basic parts of Hardy space theory that will be needed in various parts of the book.

4.1 The Wiener-Kolmogorov theory of filtering and
prediction

From now on we shall deal with real (vector-valued) stationary processes only. Let
x be an n-dimensional inaccessible random signal and y an m-dimensional process
which is to be interpreted as an observation or measurement of x. We want to find
the best (in the sense of minimum error variance) linear estimator of the random
value x(t) of the signal x at some instant of time t, based on an observed sample
trajectory of the random process y on a certain interval of time T. Certain particular
classes of linear estimation problems of this kind have been extensively studied in
the past decades. In particular the filtering problem where one wants to compute the
best linear estimate of x(t), given the observed data y up to time t, and the k-step
ahead prediction problem, a special filtering problem where x(t) = y(t + k), k > 0,

63
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64 Chapter 4. Innovations, Wold Decomposition, and Spectral Factorization

were first formulated and studied in the 1940s by A.N. Kolmogorov and N. Wiener.
Filtering and prediction are causal problems where one is allowed to use only

the information contained in the past observations. These problems often occur
in applications to communication and control systems. In these applications the
estimates need to be computed in real-time or “on-line”. This means that special
computational schemes should allow to update easily the estimate at time t, to the
new estimate which must be computed at time t+1 as the new observation y(t+1)
becomes available.

Instead, the problems of smoothing and interpolation are estimation problems
where one is given a fixed observation record (a finite window of data) which may be
processed off-line to generate the estimate. This class of problems is conceptually
easier to solve.

The role of Fourier transform and spectral representation

The theory of Wiener and Kolmogorov deals with stationary processes and leads
to linear minimum-variance estimators which also evolve in time as stationary pro-
cesses, so it deals, in a certain sense, with steady-state estimation. As for determin-
istic systems, the stationary setup is best dealt with by Fourier analysis methods
and for this reason in this chapter we shall make quite an extensive use of the tools
of harmonic analysis of stationary processes introduced in the previous chapter.

We stress that the stochastic Fourier transform, which is commonly called
spectral representation of stationary processes, has the same properties and serves
exactly the same purpose as the Fourier transform defined for deterministic signals
and systems. In the stochastic setting one replaces the deterministic translation
operator by the stochastic shift U . One has to accept the additional complication
that the Fourier transform becomes a random function of frequency, but this random
function of frequency is of a very special type and turns out to be easy to work with.
As for deterministic signals, linear time-invariant operators on an input stationary
process will in general be convolution operators, a typical example being

y(t) =
+∞∑

t=−∞
F (t− s)w(s)

where w is a p dimensional white noise process and the rows Fk, k = 1, 2, . . . ,m of F
are square summable sequences with Fourier transforms F̂k. This can be represented
in the frequency domain as multiplication of the signal Fourier transform by the
transfer function F̂ , namely

dŷ(eiθ) = F̂ (eiθ)dŵ(eiθ)

These operations can be visualized by block diagrams consisting of blocks, represent-
ing transfer functions and arrows, representing (Fourier transforms of) stochastic
signals. These elements can be composed according to simple algebraic composition
rules (e.g. multiplications and sums). In fact, with the above convention, we can
apply to the stochastic setting exactly the same rules valid for Fourier transforms
of deterministic signals and transfer functions of (linear time-invariant) systems of
linear system theory.
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Acausal and causal Wiener filters

There are two main assumptions on the data of the problem which guarantee sta-
tionarity of the estimator:

1. The second order processes x and y are jointly stationary. Their joint spectral
distribution function is absolutely continuous with known spectral density
matrix,

Φ(eiθ) =

[
Φx(eiθ) Φxy(eiθ)
Φyx(eiθ) Φy(eiθ)

]
− π ≤ θ ≤ π (4.1.1)

2. The observation interval is unbounded below, i.e. the measurements have
been collected since time t0 = −∞.

Under these assumptions, we shall consider two typical classes of estimation
problems, namely

• Compute the acausal linear estimator, x̂(t) = E[x(t) |H(y)] based on obser-
vations of the whole time history of the process y;

• Compute the causal linear estimator, x̂−(t) := E[x(t) |H−
t (y)] based on the

past history of y up to time t. Note that, since H−
t (y) does not include the

present, x̂−(t) is really a “one-step predictor” of x(t).

Having defined the problems, we should declare from the outset that our goal
in this chapter will not be to review Wiener-Kolmogorov filtering theory in much
detail. We shall discuss these two problems mainly for motivating and introducing
some basic concepts in the theory of stationary processes, such as the equivalence
to white noise and spectral factorization.

It follows at once from Lemma 2.2.8 that, under the stated assumption, both
estimators are stationary with respect to the shift U of the Hilbert space H(x, y) :=
H(x) ∨H(y), generated by the joint process {x, y}. Note that having started the
observation process at t0 = −∞ plays a crucial role here, for this guarantees that

UsH(y) = H(y), UsH−
t (y) = H−

t+s(y)

and hence
x̂(t+ s) = Usx̂(t), x̂−(t+ s) = Usx̂−(t).

Naturally the infinite observation interval assumption is done for mathematical
convenience. Under suitable regularity conditions, the stationary acausal or causal
problems with infinite-interval measurements can be seen to be just the (steady-
state) limit solution of more realistic smoothing, interpolation or filtering problems
with a finite data set, when the lenght of the observation interval goes to infinity.

Lemma 4.1.1. Assume the observation process y is a normalized white noise
process (for convenience we then denote y as w). Then the best linear estimator of
x(t) given the whole history of w, has the convolution structure

x̂(t) = E[x(t) |H(w) ] :=
∞∑

−∞
F (t− s)w(s) (4.1.2)
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where the matrix function F is given by

F (t) = Λxw(t), t ∈ Z (4.1.3)

where Λxw is the cross covariance matrix of the processes x and w.

Proof. That the estimator has the convolution structure of formula (4.1.2) above
follows from stationarity and from Theorem 3.5.1. The orthogonality condition
gives

E{[x(t)−
∞∑

−∞
F (t− s)w(s) ]w(τ)′} = 0 τ ∈ Z

which can be written as

Λxw(t− τ) =

∞∑

−∞
F (t− s)Iδ(s− τ), τ ∈ Z

and, after a change of variables, immediately yields (4.1.3). Note that the k-th
row of Λxw is the sequence of the Fourier coefficients of xk(t) with respect to the
orthonormal sequence {w(s); −∞ < s < +∞}, i.e.

Λxkw(t− s) = E{xk(s+ t)w(s)′}, t ∈ Z

It follows that Λxkw is square-summable.

From this lemma one sees that acausal Wiener filtering is a rather trivial prob-
lem if the observation process is white. In essence, the problem is then converted
into the problem of transforming y into white noise. We shall see that this opera-
tion, although not always possible, is feasible for a wide class of stationary processes.
We shall call a stationary process y orthonormalizable, when it is possible to find a
normalized vector white noise process w, jointly stationary with y, such that

H(y) = H(w). (4.1.4)

where w (in general also vector valued) is of, say, dimension p. Note that, if this is
possible, then we have a representation formula for the elements of H(y) as random
linear functionals of w (see Theorem 3.5.1). In particular, if (4.1.4) holds, the
random variables yk(0), k = 1, . . . ,m have a representation,

yk(0) =
+∞∑

s=−∞
W̌k(−s)w(s) k = 1, . . . ,m (4.1.5)

where W̌k, k = 1, . . . ,m, are square summable row vector functions in `2p. Recall
that the shift U acting on the random variables of H(w) corresponds to the trans-
lation operator T acting on representative functions (Theorem 3.5.1), hence, by
letting η = yk(0) in formula (3.5.3), one obtains corresponding representations for
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the family yk(t) = U tyk(0), t ∈ Z. Using vector notations and denoting by W̌ the
m× p matrix function with rows W̌k, k = 1, . . . ,m, one readily obtains

y(t) =

+∞∑

s=−∞
W̌ (t− s)w(s) (4.1.6)

which can be seen as a representation of the process y as the output of a linear time-
invariant filter driven by white noise. This is also called a shaping filter representa-
tion of y, in the engineering literature. Note that this filter has a square-summable
impulse response matrix W̌ .

As we shall see, transforming an orthonormalizable process into white noise
requires the solution of a spectral factorization problem.

Anticipating a little what will be seen in the next section of this chapter, the
acausal Wiener filter which computes the estimate x̂(t) starting from an orthonor-
malizable observation process y, can be decomposed in the cascade of two operators
as schematically shown in the block diagram of Fig. 4.1.1 below,

1. A whitening filter which performs the orthonormalization of y; i.e., a lin-
ear time-invariant operator which transforms y into a normalized white noise
process w. Determining the transfer function of this filter requires the com-
putation of a (full-rank) spectral factor W of the spectral density matrix, Φy,
of y. The Fourier transform of the noise process w is obtained by a simple
normalization of the Fourier transform of y, using a left-inverse of W . See
(4.2.7) below.

2. A linear filter (estimator) which operates on the whitened process w. This
linear filter can be realized in the time-domain by a convolution operation, as
described in Lemma 4.1.1. Both operations are in general non-causal.

y(t) x̂(t)w(t)-W−L- F̂ -

Figure 4.1.1. Cascade structure of the Wiener filter.

Causal Wiener filtering

The causal Wiener filtering problem consists in computing the best estimate of
x(t) given a past trajectory at time t of the observations y and hence involves the
computation of the orthogonal projection x̂−(t) = E[x(t) |H−

t (y)] onto the past
space H−

t (y). To this end, we shall follow a procedure very close to that used to
solve the acausal problem. The key idea is still whitening, but now (4.1.4) must
be substituted by a causal equivalence condition. It is now necessary to find a
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normalized white noise process (jointly stationary with y) for which

H−
t (w) = H−

t (y), t ∈ Z. (4.1.7)

A process w, jointly stationary with y, for which (4.1.7) holds, is said to be causally
equivalent to y.

Definition 4.1.2. A process y admitting a causally equivalent white noise process
is called a forward purely nondeterministic processes.11

In the following we shall abbreviate “purely nondeterministic” to p.n.d.. Clearly,
being p.n.d. is a stronger condition than just being orthonormalizable.

In Sections 4.5 and 4.6 we shall study the characterization of p.n.d. processes
and shall see that, under certain regularity conditions on the spectral density matrix,
there is a normalized white noise process which is causally equivalent to y and that
this white noise process, denoted w−, is essentially unique. Following Wiener and
Masani [122], it will be called the forward innovation process of y.

The following specialization of Theorem 3.5.1, describes the structure of causal
functionals of white noise.

Lemma 4.1.3. Let w be a p-dimensional normalized white noise process. All linear
functionals of the past and present of w up to time t = 0 (included); i.e. all random
variables η ∈ H−

1 (w), admit a representation η = Iw(f) of the type (3.5.2), where
the function f is causal, i.e. belongs to `2+p . In fact, the linear map Iw maps `2+p

unitarily onto H−
1 (w).

Equivalently, all random functionals η(t) in H−
t+1(w) admit a causal convolu-

tion representation of the type

η(t) =

t∑

s=−∞
f(t− s)w(s) (4.1.8)

for a unique f ∈ `2+p .

Proof. The result is an immediate corollary of Theorem 3.5.1. For, η = Iw(f)
is in H−

1 (w) if and only if η ⊥ {w(t), t > 0}, and this in turn is true if and
only if the function f is causal, since f(−t) = 〈η, w(t)〉 = 0 for all t > 0. The last
statement follows since all random functionals η(t) ∈ H−

t+1(w) are shifts of elements

η ∈ H−
1 (w), i.e. η(t) := U tη =

∑+∞
s=−∞ f(t− s)w(s).

The causal analog of Lemma 4.1.1 is as follows.

Lemma 4.1.4. Assume the observation process is white normalized (and for con-
venience denote y by w). Then the matrix function F defining the best linear causal

11This should be called causally orthonormalizable at this point. The reason for using this
new terminology will become clear later on. In the Russian literature, purely nondeterministic
processes are called linearly regular.
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estimator of x(t+ 1) given the past history of w up to time t (included),

x̂−(t+ 1) = E[x(t + 1) |H−
t+1(w) ] =

∞∑

−∞
F (t− s)w(s) (4.1.9)

is given by

F (t) =

{
Λxw(t), t ≥ 0
0, t < 0

(4.1.10)

where Λxw is the cross covariance matrix of the processes x and w.

Proof. The estimator has the same convolution structure of formula (4.1.2) since
the components of x̂−(t+ 1) are in H(w). The orthogonality condition provides

E{[x(t)−
∞∑

s=−∞
F (t− s)w(s) ]w(τ)′} = 0 τ ≤ t

which can be written as

Λxw(t− τ) =

∞∑

s=−∞
F (t− s)Iδ(s− τ), τ ≤ t

and, after a change of variables, yields

Λxw(t) = F (t), t ≥ 0

which identifies the matrix weighting function of the filter, F , on the positive time
axis {t ≥ 0}. Note however that each row of F corresponds to a component of
x̂−(t + 1) which is actually a causal random functional in H−

t+1(w). Hence by
Lemma 4.1.3, Fk(t) = 0 for t < 0, k = 1, . . . , n, and (4.1.10) is proven.

The causal filtering problem for a general nonwhite observation process y can
be solved under the assumption that y is forward p.n.d.. In this case, assuming w−
satisfies (4.1.7), y admits a convolution representation of the type

y(t) =

t∑

s=−∞
W̌−(t− s)w−(s) (4.1.11)

where the m × p matrix function W̌− has rows in `2+p . Then, exactly as found for
the acausal problem, the causal“Wiener filter”, which computes the estimate x̂−(t)
from the past of the observation process y, can be decomposed in the cascade of
two operations:

1. A whitening filter which does the orthonormalization of y to produce the in-
novation process w−. This is a special normalized white noise process causally
equivalent to y. The whitening filter in certain cases can be realized as a con-
volution operator. It requires the computation of the special full-rank spectral
factor W− of the spectral density Φy, which is associated to w−. The special
properties of W− will be elucidated in Section 4.2.
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2. A causal linear estimator which operates on the “whitened” process w−. This
linear filter can be realized in the time-domain by a causal convolution op-
eration with a matrix function F whose rows belong to `2+p , as described in
Lemma 4.1.4 above.

y(t) x̂−(t)w−(t)-W−L
−

- F̂ -

Figure 4.1.2. Cascade structure of the causal Wiener filter.

4.2 Orthonormalizable processes and spectral
factorization

Following the program sketched in the previous section, we shall now study the
problem of finding a normalized vector white noise process w, jointly stationary
with y, such that (4.1.4) holds. The basic result about orthonormalizable processes
is in the following theorem.

Theorem 4.2.1 (Spectral Factorization). A stationary m-dimensional process
y is orthonormalizable; i.e. there is a p-dimensional normalized white noise process
w, jointly stationary with y, satisfying (4.1.4), if and only if,

• its spectral distribution function is absolutely continuous and the relative spec-
tral density matrix Φ has constant rank p almost everywhere on [−π, π],

• there are m×p matrix functions W satisfying the spectral factorization equa-
tion,

Φ(eiθ) = W (eiθ)W (eiθ)∗ (4.2.1)

almost everywhere on [−π, π].

Definition 4.2.2. A matrix function W satisfying (4.2.1) is called a Spectral
Factor of Φ. A spectral density matrix satisfying the two conditions of the theorem
is said to be factorizable.

Remark 4.2.3. It follows from Sylvester’s inequality (Section A.3 in the appendix)
that rank Φ(eiθ) = rank W (eiθ) almost everywhere. Hence the number of columns
(p) of the spectral factors mentioned in the theorem is equal to their rank a.e..
In other words, these W ’s have a.e. linearly independent columns12. They will
be called full rank spectral factors. Of course full rank spectral factors are rather

12A matrix with this property is commonly said to be of full column rank.
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special as not all spectral factors need to have full (or even constant) rank; for
take any measurable p × r (r ≥ p) matrix function Q(eiθ) on [−π, π], obeying the
condition,

Q(eiθ)Q(eiθ)∗ = Ip a.e., (4.2.2)

where Ip is the p× p identity matrix. It is immediate to verify that for any m× p
W satisfying (4.2.1), W (eiθ)Q(eiθ) is also a (m × r) spectral factor, generally not
of full rank.

The necessity proof of Theorem 4.2.1 will be given below in form of a lemma.
The proof of sufficiency will result from a series of constructive steps which we shall
discuss after the lemma.

Lemma 4.2.4. Assume there is a p-dimensional normalized white noise process
w, jointly stationary with y, satisfying (4.1.4). Then the spectral distribution of y
is absolutely continuous with a factorizable spectral density matrix Φ of rank p a.e.
and there is a full rank spectral factor W such that dŷ = Wdŵ. In other words, any
normalized white noise process w satisfying the equality (4.1.4) must come from a
full-rank spectral factor; in particular, all such w’s must have the same dimension
p.

Proof. The lemma is an immediate corollary of Theorem 3.7.3 and of Remark 3.7.4
once we take µ = Lebesgue measure.

The rank (a.e.) of Φ is commonly called the rank of the process y and a process
for which p = m is called a full rank process. One sees, as anticipated in Remark
3.7.4 of the previous chapter, that the rank of a stationary orthonormalizable process
coincides with its multiplicity.

Remark 4.2.5. If, instead of (4.1.4), we merely assume that H(y) ⊆ H(w) (a
doubly invariant subspace), where w is a r-dimensional normalized white noise
process, then it is easy to see that dFy is still absolutely continuous and the spectral
density admits factorizations of the form (4.2.1).

In fact, if H(y) ⊆ H(w), then y admits a representation of the type (4.1.6)
with respect to w. Denoting by Wk the Fourier transform of W̌k ∈ `2r, by the
isomorphism theorem 3.5.5, for random functionals of a white noise, we obtain

Λkj(τ) = E{yk(τ)yj(0)} = 〈Iw(W̌k(τ + ·)), Iw(W̌j)〉 =
= 〈Iŵ(eiθτWk), Iŵ(Wj)〉 = 〈eiθτWk,Wj〉L2

r([−π,π], dθ
2π

) =

=

∫ π

−π

eiθτWk(eiθ)Wj(e
iθ)∗

dθ

2π
(4.2.3)

From the uniqueness of the spectral measure in Herglotz’s Theorem, it is clear that
the spectral distribution function (spectral matrix measure) of y must be absolutely
continuous with a density of the form Φ(eiθ) = W (eiθ)W (eiθ)∗. In this case however
we can no longer in general say that the rank of W is constant a.e..
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Assume now that y has an absolutely continuous spectrum and that the density
is factorizable as in (4.2.1). We shall pick a full rank spectral factor W so that
W (eiθ) has (almost everywhere) a p×m left inverse13 W−L(eiθ), whereby

W−L(eiθ)W (eiθ) = Ip θ ∈ [−π, π] (4.2.4)

(a.e.).
The basic idea in the construction which follows is to “normalize” the stochas-

tic measure dŷ so as to make it into the spectral measure of a white noise. Formally,
for each Borel set ∆ ⊂ [−π, π], define a p-dimensional random vector

ŵ(∆) :=

∫

∆

W−L(eiθ) dŷ(eiθ). (4.2.5)

The integral is well-defined since the rows of W−L are square integrable functions
with respect to the matrix measure dF = Φ dθ

2π of the process y. In fact, from (4.2.4),
(4.2.1) we get,

E{ŵ(∆1)ŵ(∆2)
∗} =

∫

∆1∩∆2

W−L(eiθ)Φ(eiθ)(W−L(eiθ))∗
dθ

2π
=

∫

∆1∩∆2

Ip
dθ

2π
=
Ip
2π
|∆1 ∩∆2| (4.2.6)

where 1
2π |∆| is the normalized Lebesgue measure of the set ∆ ⊂ [−π, π]. We see

that ŵ defined in (4.2.5) is not only a bona-fide spectral measure but is, indeed,
the spectral measure of a p-dimensional white noise process w. Equation (4.2.5) is
rewritten symbolically as

dŵ(eiθ) := W−L(eiθ) dŷ(eiθ). (4.2.7)

If Φ has rank m, W is square and hence has a unique left-inverse equal to
W−1. In this case the formula above can be rewritten in the form

dŷ(eiθ) = W (eiθ)dŵ(eiθ)

and from this one immediately obtains the following spectral representation of y(t)

y(t) =

∫ π

−π

eiθtW (eiθ)dŵ(eiθ). (4.2.8)

This is the frequency domain version of (4.1.6). In fact, by Theorem 3.5.5, W is
now just the Fourier transform of the time-domain impulse response function of the
filter (denoted W in (4.1.6)).

If Φ has (a.e.) rank p < m the same result holds, but we need to worry about
some technicalities having to do with the non-uniqueness of the left-inverse.

13Note that the left-inverse is in general non-unique.
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Lemma 4.2.6. Let W be a full-rank spectral factor. No matter how the left-inverse
W−L is chosen, one has

dŷ(eiθ) = W (eiθ)W−L(eiθ)dŷ(eiθ) = W (eiθ)dŵ(eiθ)

with probability one, where dŵ is the corresponding stochastic measure. In fact, for
any other, not necessarily full-rank, spectral factor Ĝ it holds that

Ĝ(eiθ) = W (eiθ)W−L(eiθ)Ĝ(eiθ)

almost everywhere.

Proof. We shall show that the matrix functions Im and WW−L are equal F -almost
everywhere, where dF = Φdθ/2π is the spectral distribution of the process y. For,
from W−L(eiθ)W (eiθ) = Ip it follows that

(I −WW−L)Φ(I −WW−L)∗ = (I −WW−L)WW ∗(I −WW−L)∗ = 0

almost everywhere on [−π, π]. Clearly we may instead substitute ĜĜ∗ in place
of Φ in the identity above, without changing the conclusion. This implies that
(I −WW−L)Ĝ must be zero a.e. yielding the second relation of the lemma.

In conclusion, corresponding to any full rank spectral factor W there is a white
noise process w which yields a shaping filter representation of y of the type (4.1.6)
(or equivalently (4.2.8)). This white noise process w is generated by “whitening”
the process y as specified by (4.2.5) or more explicitely

w(t) =

∫ π

−π

eiθtW−L(eiθ)dŷ(eiθ) (4.2.9)

It is clear from this representation that w is jointly stationary with y and w(t) ∈
H(y) so that H(w) ⊂ H(y). On the other hand, from (4.2.8) it follows that y(t) ∈
H(w) and the converse inclusion also holds. Therefore y is orthonormalizable. This
concludes the proof of Therem 4.2.1. 2

One last observation is in order. As we have just seen, to each white noise
process w which generates the same Hilbert space as y we have been able to associate
a full rank spectral factor (Lemma 4.2.4) and, conversely, to each full rank spectral
factor W we have been able to attach a white noise process w which generates the
same Hibert space as y. In the following we shall examine more closely the question
of uniqueness in the correspondence w↔W .

Let us denote by O(p) the orthogonal group of p× p orthogonal matrices (i.e.
T ∈ O(p) if and only if TT ′ = T ′T = Ip). Let w1 and w2 be two p-dimensional
normalized white noise processes defined in the same probability space. We shall
say that w1 and w2 are equal modulo O(p), or simply mod O if there is an orthogonal
matrix T ∈ O(p) such that w1(t) = Tw2(t) for all t ∈ Z. Obviously two normalized
white noises equal mod O have the same covariance function and generate the same
family of subspaces, namely H±

t (w1) = H±
t (w2) (in particular H(w1) = H(w2))

and hence cannot be distinguished on the basis of second order statistics nor on the
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basis of linear functionals. For example, in the scalar case one cannot distinguish
between a stationary normalized white noise w and its opposite, −w. For this
reason, hereafter it will be convenient not to distinguish between normalized white
processes equal modulo O and we shall consider them as being the same process.

Definition 4.2.7. Let W1(e
iθ) and W2(e

iθ) be two m× p matrix functions defined
on [−π, π]. We shall say that W1 and W2 are equal modulo O, if there is an
orthogonal matrix T ∈ O such that W1(e

iθ) = W2(e
iθ)T for almost all θ ∈ [−π, π].

Note that if W1 is a full rank spectral factor of the spectral density Φ, then
all W ’s which are equal to W1 mod O are also full rank spectral factors. Obvi-
ously however W1(e

iθ) and W2(e
iθ) being both full rank spectral factors does not

necessarily imply their equality mod O.

Proposition 4.2.8. To any normalized white noise processes w jointly stationary
with y, satisfying (4.1.4), there corresponds a unique equivalence class mod O, of
full-rank spectral factors W for which the representation (4.2.8) holds. Hence there
is a one-to-one correspondence between normalized white noise processes generating
H(y) and equivalence classes of full rank spectral factors equal modulo O.

Proof. In the spectral domain, the equivalence class of full-rank W ’s corresponding
to a fixed p dimensional white noise dŵ is defined by the equality dŷ = Wdŵ. But
for any T ∈ O we have Wdŵ = WTT ′dŵ and T ′dŵ is the same as dŵ.

4.3 Hardy spaces

In Chapter 3, the spectral representatives of random variables in H(w) are charac-
terized as Fourier transforms, i.e. as (possibly vector or matrix-valued) functions in
L2([−π, π], dθ/2π). In certain cases these functions admit an extension as analytic
functions on the exterior (or on the interior) of the unit circle. The extension could
formally be accomplished by substituting a complex variable z for eiθ in the Fourier
series espansion

f̂(θ) =

+∞∑

t=−∞
f(t)e−iθt ⇒ F (z) =

+∞∑

t=−∞
f(t)z−t

so that the second member assumes the aspect of a Laurent expansion of an “an-
alytic function” F (z) (this is called the (double-sided) Z-transform of the signal f
in the engineering literature).

However, even if the coefficients {f(t)} form a square summable sequence,
the symbol F (z) may very well be meaningless, as the Laurent series in the second
member is in general guaranteed to converge (in the L2-sense !) only on the unit
circle and may not converge pointwise for any value of z. As we shall see below,
it is the property of causality which brings in the analytic structure. To make this
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statement precise, we shall need to recall some facts from the theory of analytic
functions.

Definition 4.3.1. The space of p-dimensional vector-valued functions F (z) which
are analytic in the region {|z| > 1} of the complex plane and whose coefficients f(k)
in the Laurent expansion about infinity are square-summable, i.e. of functions such
that,

F (z) =

+∞∑

k=0

f(k)z−k, |z| > 1,

+∞∑

k=0

|f(k)|2 <∞ (4.3.1)

is called the p-dimensional vectorial Hardy space of the unit disk, denoted H2
p (D)

or H2
p for short, when there is no danger of confusion. The functions in this space

will be called analytic.
The space of p-dimensional vector-valued functions F (z) which are analytic in

the region {|z| < 1} of the complex plane and whose coefficients f(k) in the Taylor
expansion about zero are square-summable, i.e. of functions such that,

F (z) =
+∞∑

k=0

f(k)zk, |z| < 1,
+∞∑

k=0

|f(k)|2 <∞ (4.3.2)

is called the p-dimensional vectorial conjugate Hardy space of the unit disk, denoted

H
2

p(D) or H
2

p for short, when there is no danger of confusion. The functions in this
space will be called conjugate-analytic or co-analytic for short.

Functions in the spaces H2
p and H2

p are called real if their Laurent coefficients
are Rp-valued sequences.

Note that H2
p and H2

p are linear vector spaces. One can introduce a norm in

H2
p in the following way. Let z = ρeiθ and consider, for ρ > 1, the L2-norm of the

functions Fρ : θ 7→ F (ρeiθ). We have,

‖Fρ‖2 :=

∫ π

−π

|F (ρeiθ)|2dθ/2π =

∫ π

−π

F (ρeiθ)F (ρeiθ)∗dθ/2π =

=

+∞∑

k=0

|f(k)|2ρ−2k (4.3.3)

and the first member is clearly a monotonically non-increasing function of ρ, bounded
above by the squared `2-norm of the coefficient sequence f = {f(k)}. It follows that

‖F‖2 := lim
ρ↓1
‖Fρ‖2

exists and it is easy to see that the limit is actually equal to ‖f‖2`2p . Using this

definition one can endow H2
p with an an inner product, which makes this space

isometric to the space of Laurent coefficients f = {f(k)} of the relative functions,
in fact to the space `2+p of causal square-summable sequences. In this way H2

p is
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given a Hilbert space structure and the map associating F to its Laurent coefficients,
F 7→ f , is an isometry of H2

p onto `2+p .

Note that a completely symmetric argument works for the conjugate space H2
p

and the anticausal sequence space `2−p .
Hardy functions have remarkable analytic properties and have been extensively

studied. Their importance in many applied fields, especially in systems and control
engineering, comes from a fundamental theorem due to Paley and Wiener which
relates them to Fourier transforms of causal functions. The following is a discrete-
time version of the Paley-Wiener Theorem 14.

Theorem 4.3.2. Let F ∈ H2
p have Laurent cofficients f = {f(k)} and let f̂ be the

Fourier transform of f . Then f̂ is the boundary value of F on the unit circle, in
the sense that,

lim
ρ↓1

Fρ = f̂ (4.3.4)

both in L2
p([−π, π], dθ/2π) and pointwise almost everywhere in θ. In fact, F (z) →

f̂(θ) almost everywhere, when z → eiθ along any nontangential curve in {|z| > 1}.
Conversely, the Fourier transform f̂ of a causal sequence in `2 can be extended by
the Cauchy integral formula to an analytic function in H2

p , preserving its norm,

i.e. ‖F‖ = ‖f̂‖. The correspondence F ↔ f̂ is thus unitary. In this sense the two
function spaces can be identified and one may write,

F(`2+p ) = H2
p (D). (4.3.5)

Symmetrically, every function G in H2
p admits as boundary value on the unit circle

(both in L2 and almost everywhere along non-tangential paths internal to the unit
disc) the Fourier transform ĝ of its Taylor coefficients g = {g(−k)} ∈ `2−p . The
function G is uniquely determined in {|z| < 1} by its boundary values ĝ and the
correspondence is norm-preserving, so that one can make the identification

F(`2−p ) = H2
p (D). (4.3.6)

The proof of this theorem can be found in [52, p. 131] or in [35, p. 172].
Since the Fourier transform of a causal `2 signal can be identified with its

analytic extensions of class H2 (and symmetrically for anticausal sequences), it
is common practice to treat the two concepts (i.e the Fourier transform and the
analytic extension) as if they were the same thing. In this spirit the space H2

p is
often identified with the subspace of L2

p([−π, π], dθ/2π) of functions whose Fourier
coefficients of negative index vanish, i.e.

H2
p = {f̂ ∈ L2

p([−π, π], dθ/2π) |
∫ π

−π

f̂(eiθ)eiθtdθ/2π = 0, t < 0}.

14To be sure, this is just a corollary of the original Paley-Wiener Theorem, a result of much
wider scope than what interests us here.
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Of course the conjugate space H2
p can be described in an analogous way.

Notation: In the following it will be more natural to think about the Fourier trans-
forms of `2 signals as functions defined on the unit circle of the complex plane
and denote them by f̂(eiθ). The analytic extension (whenever existing) is then the

function f̂(z), z ∈ C.
We denote by H∞

m×p(D) (shorthand: H∞
m×p) the space of matrix functions

which are uniformly bounded and analytic in {|z| > 1} and by H
∞
m×p(D) (short-

hand: H∞
m×p) the space of matrix functions which are uniformly bounded and an-

alytic in {|z| < 1}. Since the L2-norm of a vector function which is bounded on
[−π, π] is obviously finite, the rows of a function in H∞

m×p belongs in particular to
H2

p . Hence any F ∈ H∞
m×p (or, respectively in the conjugate space) admits limits

almost everywhere as z → eiθ along any nontangential curve in {|z| > 1}, (or in
{|z| < 1} respectively). The boundary value limits form two closed subspaces of
the (Banach) space of essentially bounded functions L∞

m×p([−π, π], dθ/2π), whose
Fourier coefficients of negative (respectively, positive) index vanish.

If f̂ ∈ H2
m and Â ∈ H∞

m×p, then it is obvious that f̂ Â ∈ H2
p . The space H∞

m×p

plays very naturally the role of space of linear causal operators A : H2
m → H2

p .

Note that the operator of multiplication by the function e : θ 7→ e−iθ (the Fourier
transform of the backward shift) maps the space H2

p into itself. The following
theorem, whose proof is not particulary difficult but is skipped for reasons of space,
establishes the converse.

Theorem 4.3.3 (Bochner-Chandrasekharan). A linear bounded map A :
H2

m → H2
p which commutes with the operator of multiplication by the function

e : θ 7→ e−iθ is the operator of multiplication by an m × p matrix function Â in
H∞

m×p.

Note that the property of commuting with e−iθ is just time-invariance. In
the time-domain this result is saying that the most general linear time-invariant
operation on causal sequences is convolution with a causal matrix kernel whose
Fourier transform is in H∞

m×p

4.4 Analytic spectral factorization

The main question that we shall address in this section is under what conditions
a m-dimensional stationary process admits a causally equivalent normalized white
noise. In formulas, under what conditions on the second order description of the
process does there exist a normalized white noise process w− such that (4.1.7) holds
true. Equivalently, when can a stationary process y be represented as in (4.1.11),
i.e. can be generated as the output of a causal time-invariant linear filter having as
input a normalized white noise processes w−. Such a process was called a (forward)
p.n.d. processes in the previous section.

Since (4.1.7) obviously implies that H(w−) = H(y), a p.n.d process must be
orthonormalizable. For this reason we shall henceforth assume that y has an ab-
solutely continuous spectrum with a factorizable spectral density matrix of constant
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rank p ≤ m. As we shall see below, the p.n.d. property implies the existence of
solutions W of the spectral factorization problem with strong analytical properties.

Hereafter it will be convenient to write the spectral density matrix of a sta-
tionary process as a function of the complex variable z, defined on the unit circle of
the complex plane. Since Φ(eiθ) is a real function, Φ(eiθ)∗ = Φ(e−iθ)′, so that using
the variable z = eiθ, the Hermitian symmetry property of the spectrum (compare
(3.4.3)) becomes

Φ(1/z)′ = Φ(z). (4.4.1)

which will naturally also be called parahermitian symmetry.
Let H2

r be the Hardy space of r-dimensional row-vector functions that are
analytic in the unit disc D. We refer the reader to Section 4.3 for the basics of
Hardy space theory needed in the sequel.

Theorem 4.4.1. A stationary m-dimensional process y can be represented as a
causal functional of a normalized r-dimensional (r ≥ p) white noise process w, or,
equivalently, there is a normalized r-dimensional white noise w such that

H−
t (y) ⊂H−

t (w), t ∈ Z, (4.4.2)

only if there are m× r analytic spectral factors of Φ, i.e. only if there are solutions
W , of the spectral factorization equation,

Φ(z) = W (z)W (1/z)′ . (4.4.3)

with rows in the Hardy space H2
r .

Conversely, if Φ admits analytic spectral factors, the process y is p.n.d.; i.e.
there exist in particular an analytic spectral factor W− and a normalized white
process w− such that dŷ = W−dŵ−, for which the inclusion (4.4.2) holds with the
equality sign. The analytic spectral factor W− is a.e. of full rank p.

The proof of “only if” part is relatively straightforward and will be given
presently.

Proof. That (4.4.2) implies the existence of an analytic m × r spectral factors
of Φ, follows from Lemma 4.1.3, a computation similar to that in (4.2.3) and the
Paley-Wiener theorem 4.3.2 in Section 4.3 which states that the transfer function
of any causal shaping filter must have rows in H2 (i.e. be analytic). The particular
form of the spectral factorization equation (4.4.3) results from the fact that we are
actually looking for real spectral factors here, for which W (eiθ)∗ = W (e−iθ)′.

The proof of sufficiency will be given later by showing that the existence of
analytic spectral factors entails that of a special full-rank analytic factor W−, called
the outer spectral factor, which in a sense (to be made precise later on) has an ana-
lytic left-inverse and hence may serve as the transfer function of a causal whitening
filter generating a normalized white noise w− for which the inclusion (4.4.2) is actu-
ally an equality. In order to characterize the special analytic spectral factor W− and
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the special whitening process w−, which satisfies the causal equivalence property
(4.1.7) we shall have to go through a rather long digression. The first step is to
introduce the Wold decomposition.

4.5 The Wold decomposition

A fundamental classification of second order processes is made on the basis of certain
properties of their one-step ahead predictor. We first define a class of processes
which are exactly predictable given their infinite past.

Definition 4.5.1. A second order process y is purely deterministic (abbreviated to
p.d. in the following), if the one-step prediction error,

e(t) := y(t)− ŷ−(t) = y(t)− E[y(t) |H−
t (y) ] (4.5.1)

is zero (a.s.).

Obviously y is p.d. if and only if the components of y(t) belong to the past
space at time t, i.e. H−

t+1(y) = H−
t (y). In fact, since y is stationary, this will

happen at every instant of time, so that the p.d. property is equivalent to

H−
t (y) = H(y), t ∈ Z (4.5.2)

Example 4.5.2. Consider the process

y(t) =
+N∑

−N

yke
iθkt, t ∈ Z

where θ−k = −θk, (θ0 = 0) are deterministic frequencies and the {yk} are zero
mean-uncorrelated random variables with finite variances, var y−k = var yk = σ2

k.
This is a real stationary process, which is the sum of a fixed random variable y0
plus N uncorrelated harmonic oscillations with random amplitude. It is the simplest
example of a purely deterministic stationary process.

To check this last statement we use a system theoretic argument, as follows.
Note that y(t) can be formally written as the output of a linear system whose state
variable x(t) satisfies a 2N + 1-dimensional vector difference equation,

x(t+ 1) = Ωx(t), Ω = diag{e−iθN , e−iθN−1, . . . , eiθN−1 , eiθN}

with initial conditions xk(0) = yk, k = −N, . . . , N. In fact y(t) =
∑N

k=−N xk(t) or,
in vector notation,

y(t) = cx(t), c = [1, . . . , 1] ∈ R2N+1.

Assuming that the θk are all distinct (if not, the system would be non-minimal and
could be reduced to a similar one of lower dimension), it is easy to check that this
linear system is completely observable (see e.g. [62]). Hence, given that the matrix
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Ω, describing the dynamics of the system is trivially invertible (as the eigenvalues
are exactly e±iθk), looking at the inverse system x(t − 1) = Ω−1x(t), y(t) = cx(t),
one can reconstruct the state, x(t0), as a linear function of the 2N + 1 preceding
output samples, say y(t0 − 1), . . . , y(t0 − 2N − 2). It follows that

y(t0) = cx(t0) ∈ span {y(t0 − 1), . . . , y(t0 − 2N − 2)} ⊂ H−
t0(y)

for all t0. Hence the prediction of y(t0) can be done exactly given the past, and y
is p.d..

The same reasoning can be applied, using a limiting argument, to the infinite
sum

y(t) =

+∞∑

−∞
yke

iθkt, yk ⊥ yj , k 6= j

under the additional assumptions that the series
∑+∞

−∞ σ2
k converges, which guar-

antees convergence of the infinite sum of harmonic oscillations.

Let us define the remote past and the remote future of the process y to be the
subspaces

H−∞(y) = ∩t≤k H−
t (y) H+∞(y) = ∩t≥k H+

t (y), (4.5.3)

respectively. Since H−
t (y) is increasing with t and H+

t (y) is decreasing with t the
two intersections are actually independent of which index k is chosen as a starting
time. Clearly y is p.d. if and only if

H−∞(y) = H−
t (y) = H(y) t ∈ Z. (4.5.4)

This notion relates to the degeneracy of the causal prediction problem for the process
y and is asymmetric in time. We shall introduce also the notion of a backward p.d.
process, for which the backward prediction error

ē(t) := y(t)− ŷ+(t) = y(t)− E[y(t) |H+
t+1(y) ] (4.5.5)

is zero (a.s.). For a backward p.d. process one has, dually,

H+∞(y) = H+
t (y) = H(y) t ∈ Z. (4.5.6)

Later in this section it will be shown that, for a large class of so-called reversible
processes, the remote past and the remote future are the same; i.e.,

H−∞(y) = H+∞(y), (4.5.7)

and hence in particular the p.d. property in the forward and in the backward
direction are actually the same thing.

From the definition (4.5.3) it is immediate to check that the property

U tH−∞(y) = H−∞(y) U tH+∞(y) = H+∞(y) t ∈ Z.
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holds for both positive and negative times t. This is equivalent to saying that the
subspaces H−∞(y), H+∞(y) are invariant under the action both of the shift U and
its adjoint U∗ and are hence doubly invariant in the sense defined on page 19.

The “simple” invariance property can be of two types. Recall that U is
called the forward- or right-shift operator, while the adjoint U∗ = U−1 is called
the backward- or left-shift operator on H(y).

Definition 4.5.3. A subspace Y ⊂ H is called backward-shift (or left-shift) in-
variant if

U∗Y ⊂ Y, (4.5.8)

and Y ⊂ H is forward-shift (or right-shift) invariant if

UY ⊂ Y. (4.5.9)

Examples of backward-shift invariant and forward-shift invariant subspaces
are, respectively, the past H−(y) and the future, H+(y). We have already noted
that the invariance conditions of the definition are an equivalent way to express the
fact that the stationary family of subspaces {Yt := U tY | t ∈ Z} generated by Y,
is increasing and, respectively, that {Yt := U tY | t ∈ Z} is decreasing in time.

Generalizing the definitions in (4.5.3), the remote past and the remote future
of an arbitrary increasing or decreasing stationary family of subspaces, respectively,
are defined as

Y−∞ = ∩t Yt Y+∞ = ∩t Yt. (4.5.10)

A backward-shift invariant subspace Y is called purely nondeterministic (abbrevi-
ated to p.n.d. in the following) if Y−∞ = {0} (the subspace containing only the
zero element). Dually, we shall call a forward-shift invariant subspace Y purely
nondeterministic, if Y+∞ = {0}. It is easy to see that for purely nondeterministic
subspaces the inclusions in (4.5.8) or in (4.5.9) are strict.

The multiplicity of a simply invariant subspace Y, can also be defined as
the smallest number of generators of Y, i.e. the smallest number, m, of random
variables, y1, . . . , ym in Y, such that

span {U tyk | k = 1, . . . ,m, t ≤ 0} = Y

Let H(Y) be the smallest doubly invariant subspace containing Y. Since

H(Y) := ∨t∈ZU
tY = span {U tyk | k = 1, . . . ,m, t ∈ Z}

the multiplicity of H(Y) is seen to be the same of that of Y and is in fact the same
concept defined previosly in Section 2.5. Naturally, whenever Y is a subspace of a
larger Hilbert space of finite multiplicity, it must also have finite multiplicity.

The theorems and the corollaries below are slight generalizations of facts dis-
covered by H. Wold and published in his seminal 1938 doctoral thesis.

Theorem 4.5.4 (Wold). A left-invariant subspace Y is p.n.d if and only if it
is the past space at time zero of some vector-valued stationary white noise process.
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There is in fact a unique (modulo multiplication by a constant orthogonal matrix)
normalized white noise w such that

Y = H−(w) (4.5.11)

and the dimension of w is equal to the multiplicity of Y.
Dually, a right-invariant subspace Y is p.n.d. if and only it is the future

space at time zero of some stationary vector white noise process. There is a unique
(modulo multiplication by a constant orthogonal matrix) normalized white noise w̄
such that

Y = H+(w̄) (4.5.12)

and the dimension of w̄ is equal to the multiplicity of Y. The white noises w and
w̄ are called the generating processes of the invariant subspaces Y and Y.

Proof. It will be enough to prove the first part of the statement only. To this
purpose, consider the orthogonal complement Wt−1 of Yt−1 in Yt, so that

Yt = Wt−1 ⊕Yt−1.

Note that Wt−1 is nontrivial, as the sequence of subspaces {Yt} must be strictly
increasing by the p.n.d. property and so, by iterating the orthogonal decomposition
for t− 1, t− 2, , . . . , s we obtain

Yt = Wt−1 ⊕Wt−2 . . .⊕Ws ⊕Ys, s < t. (4.5.13)

It is obvious that the subspaces {Wt} are pairwise orthogonal (by construction),
moreover, by Proposition A.2.5 in Appendix A.2, it is clear that {Wt} is a stationary
sequence of subspaces, i.e. Wt = U tW, t ∈ Z where

W := UY 	Y.

A subspace W with these two properties, is called a wandering subspace for the
shift U .

Now, for t fixed, the two projections of any element η(t) ∈ Yt onto ⊕t−1
s Wk

and onto Ys, say
η(t) = η̂(s) + η̃(s),

both must converge as s → −∞. That η̂(s) converges follows by the orthogonal
series Lemma A.1.1 in the appendix, since η̂(s) is a sum of orthogonal terms and
its norm is bounded above by ‖η(t)‖; therefore the other addend in the sum also
converges as the left hand member is independent of s. However, lims→−∞ η̃(s)
must belong to H−∞ and by the p.n.d. property this subspace may contain only
the zero random variable. Hence η̃(s) tends to zero as s → −∞ and so any η(t) ∈
Yt is equal to the infinite orthogonal sum of its projections onto the subspaces
{Ws, −∞ < s < t}.

This property may be written as

Yt = ⊕t−1
s=−∞Ws (4.5.14)
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It remains only to notice that, if Y has finite multiplicity, W is finite-dimensional.
For, it is the projection of a space with a finite number, say p, of generators onto
the orthogonal complement Y⊥. Then, any orthonormal basis {w1, . . . , wp} of W,
shifted in time, becomes a generating normalized white noise, {wk(t) := U twk, t ∈
Z}, yielding the representation (4.5.11).

The proof of the converse statement follows from the next lemma.

Lemma 4.5.5. The remote past (and the remote future) of a white noise process
is trivial.

Proof. Let u = {u(t)} be a (not necessarily stationary ) second order process with
orthogonal variables, i.e. u(t) ⊥ u(s) t, s ∈ Z. Every random variable h ∈ Ht(u) is
orthogonal to the future values u(s), s ≥ t. In particular, if h ∈ H−∞(u) it follows
that h must be orthogonal to all u(t) t ∈ Z. Therefore, by continuity of the scalar
product, h must be orthogonal to the whole of H(u). Hence it must be zero.

The definition of a (forward) p.n.d. process given in the previous section in
terms of causal equivalence to white noise has now a geometric counterpart in terms
of remote past of the process.

Corollary 4.5.6. A stationary process y is p.n.d. in the forward sense if and only
if H−(y) is a p.n.d. subspace i.e. ∩tH

−
t (y) = 0. The normalized innovation w−(t)

is an orthonormal basis for the wandering subspace at time t, H−
t+1(y)	H−

t (y) of
H−(y).

Proof. Necessity is an immediate application of the lemma that we have just proven
above. Conversely, if H−(y) is a p.n.d. subspace, then by Wold’s Theorem 4.5.4
there is a normalized white noise w− which is causally equivalent to y.

Note that for full-rank processes the one-step prediction error e(t) = y(t) −
ŷ−(t) is a basis for the wandering (or innovation) subspace Wt. Hence we have a
causal representation of y(t) in terms of past prediction errors,

y(t) =
t∑

−∞
V−(t− s)e(s) (4.5.15)

where

V−(t− s)e(s) := E[y(t) | e(s)] = E[y(t) e(s)′]{E[e(s) e(s)′]}−1e(s).

Since for s > t, e(s) is uncorrelated with (i.e. orthogonal to) y(t), it is readily seen
from the expression above that V− is a causal function with rows in `2m. Note also
that

V−(0) = I.

The prediction error process {e(t)} is sometimes called the forward unnormalized
innovation process of y and (4.5.15) the unnormalized innovations representation of
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y. It is a natural representation for full-rank processes. In general, for processes of
rank p < m we can write

e(t) = D−w−(t) (4.5.16)

where D− is some (non-unique) m × p matrix factor of the innovation variance
Λ := E{e(t)e(t)′}, i.e.

Λ = D−D
′
−.

We collect the above observations in the following statement.

Proposition 4.5.7. For a p.n.d. process the rank of the variance matrix of the
unnormalized innovation coincides with the rank (and multiplicity) of the process
itself; i.e.

p = rank y = rank E{e(t)e(t)′}. (4.5.17)

Naturally, everything that has been said so far, can be repeated mutatis mu-
tandis for the backward prediction error ē(t) leading to anticausal (or backward)
unnormalized innovations representations of the process y with symmetric proper-
ties.

The p.n.d. property is in a sense a special case. How things go in general, is
described by the following theorem.

Theorem 4.5.8 (Wold). Every backward-shift invariant subspace Y admits a
decomposition in the orthogonal direct sum of a doubly invariant and a purely non-
deterministic subspace. In fact,

Y = Y−∞ ⊕ Z (4.5.18)

where Z is backward-shift invariant and p.n.d.. Dually, every forward shift invariant
subspce Ȳ admits the orthogonal decomposition

Ȳ = Ȳ+∞ ⊕ Z̄ (4.5.19)

where Z̄ is forward-shift invariant and p.n.d.. The two decompositions with the
stated properties are unique.

Proof. Since Y−∞ ⊆ Y, we may define Z to be the orthogonal complement, Y⊥
−∞,

of Y−∞ in Y. Since Y−∞ is invariant also for the adjoint, U , of the backward shift
(U∗), it follows from Lemma A.1.6 that

U∗Y⊥
−∞ ⊂ Y⊥

−∞

from which it is seen that Y−∞ is a reducing subspace for U∗ (i.e. it is invariant
together with its orthogonal complement). At the same time, Y⊥

−∞ = Z is also
left-shift invariant, i.e. the stationary family Zt = UtZ is increasing with t. There
cannot be nonzero elements ξ belonging to the intersection ∩t Zt, since any such
element ξ should then be in Zt ⊂ Yt for all t and therefore should belong to the
intersection, Y−∞. This would however imply that ξ ∈ Y−∞ is orthogonal to itself
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and hence equal to zero. Uniqueness of a decomposition with the stated properties
is obvious since by Proposition A.2.5 of Appendix A.2, Y = Y(1) ⊕Y(2) with Y(1)

p.d. and Y(2) p.n.d. implies that ∩tUtY = ∩tUtY
(1) ⊕ ∩tUtY

(2) and the p.d.
subspace must necessarily coincide with Y−∞.

The dual statement is proven in exactly the same way.

Corollary 4.5.9. Every stationary vector process y admits a decomposition

y(t) = v(t) + z(t), t ∈ Z (4.5.20)

where the processes v = {v(t)} and z = {z(t)} are completely uncorrelated, i.e.
E{v(t) z(s)′} = 0, t, s ∈ Z, v = {v(t)} is forward p.d. and z = {z(t)} is forward
p.n.d..

There is just one decomposition (4.5.20), satisfying the conditions above, such
that H−

t (z) ⊂ H−
t (y), t ∈ Z. In this case v generates the same remote past as y,

i.e.
H(v) = H−∞(v) = H−∞(y), H−∞(z) = 0 (4.5.21)

The processes v and z are called the (forward) p.d. and p.n.d. components of y.
Dually, an analogous orthogonal decomposition exists

y(t) = v̄(t) + z̄(t), t ∈ Z (4.5.22)

where the properties of v̄(t) of being p.d and of z̄(t) of being p.n.d. hold in the
backward sense. There is just one (backward) p.n.d. process z̄ such that H+

t (z) ⊂
H+

t (y), t ∈ Z, satisfying the conditions above. It is called the (backward) p.n.d.
component of y.

Proof. Consider the decomposition of the invariant subspace H−
t (y) into its doubly

invariant and (forward) p.n.d. components

H−
t (y) = H−∞ ⊕ H̃t(y) t ∈ Z

A (forward) decomposition of y(t) with all the stated properties, can be obtained
by projecting y(t) onto the above orthogonal sum of subspaces. In fact, define, for
k = 1, . . . ,m,

vk(t) := E[yk(t) |H−∞], zk(t) := E[yk(t) | H̃t+1(y)]

Since H−∞ ⊂ Ht(y) and hence H−∞ ∩Ht(y)
⊥ = 0, it follows from Lemma 2.2.11

in Chapter 2, that

H−∞ = EH−∞ Ht(y) ⊕ (H−∞ ∩Ht(y)
⊥) = EH−∞ Ht(y) = span {v(s) | s ≤ t}

and similarly, since H̃t(y) ⊂ Ht(y),

H̃t(y) = span {u(s) | s ≤ t}
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86 Chapter 4. Innovations, Wold Decomposition, and Spectral Factorization

so that the processes v and z have the stated properties. Uniqueness now follows
by the same argument given in the proof of Theorem 4.5.8.

In the same way one can prove the statement relative to the backward decom-
position.

Note that the multiplicity of the p.n.d. component z will in general be smaller
than that of y.

Reversibility

Now it follows from Corollary 4.5.9 that the past and future spaces of y admit the
decompositions,

H−
t (y) = H−∞(y)⊕H−

t (u) (4.5.23)

H+
t (y) = H+∞(y)⊕H+

t (ū) (4.5.24)

and, letting t→ −∞ in (4.5.23) and t→ +∞ in (4.5.24) we get

H(y) = H−∞ ⊕H(u) (4.5.25)

H(y) = H+∞ ⊕H(ū). (4.5.26)

It is natural to ask when the two decompositions are the same. To this end, we
shall say that a stationary process is reversible if the remote past and the remote
future coincide; i.e.,

H−∞(y) = H+∞(y). (4.5.27)

Consequently, if y is reversible, the decompositions (4.5.25) and (4.5.26) are
the same. In particular,

H(u) = H(ū). (4.5.28)

Therefore, a purely nondeterministic process that is reversible is also purely nonde-
terministic in the backward direction.

To understand reversibility we introduce the “time-reversed” process ȳ(t) :=
y(−t) whose covariance function we denote by Λ̄(τ). Since

Λ̄(τ) = E ȳ(t+ τ)ȳ(t)′ = (E y(−t)y(−t− τ)′)′ = Λ(τ)′

the spectral distribution of ȳ is the transpose of that of y. Hence, the spectral
densities of the two processes can exist only simultaneously and are necessarily the
transpose of each other, i.e. Φ̄(eiθ) = Φ(eiθ)′. Now since

H−
t (ȳ) = span {ȳk(s); k = 1, . . . ,m, s < t} = span {yk(−s); k = 1, . . . ,m, s < t}

= span {ȳk(τ); k = 1, . . . ,m, τ ≥ −t} = H+
−t(y)

we have
H−∞(ȳ) = ∩t≤kH

+
−t(y) = ∩t′≥−kH

+
t′ (y) = H+∞(y)

and ȳ is forward p.n.d. if and only if y is backward p.n.d. We may summarize this
in the following proposition.
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Proposition 4.5.10. A forward p.n.d. process is reversible if and only if the
transpose of its spectral density matrix also admits analytic spectral factors.

This can be seen also from the following argument. Let Φ(z)′ have the factor-
ization

Φ(z)′ = G(z)G(z−1)′

where G(z) is an an analytic spectral factor, which, without loss of generality,
we can assume to be of full column rank. Then Φ admits also the factorization
Φ(z) = W̄ (z)W̄ (1/z)′, where W̄ (z) := G(1/z) is a coanalytic spectral factor; i.e., a
matrix function whose rows belong to the conjugate Hardy space H̄2

p . By dualizing
the last statement of Theorem 4.4.1, we see that y is also p.n.d. in the backward
direction, so we can represent y by an anticausal linear time-invariant convolution
operator

y(t) =

+∞∑

t

W̄ (t− s)w̄(s),

where w̄ is a normalized white noise; also see Definition 4.1.2. From this represen-
tation we have H+

t (y) ⊂ H+
t (w̄). Therefore, since ∩H+

t (w̄) = 0,

H−∞(y) = 0 = H∞(y),

and consequently y is reversible.

Proposition 4.5.11. Every full rank p.n.d. process is reversible.

Proof. The proof for vector processes depends on a function-theoretic criterion for
pure nondeterminism which can be found in [109, p. 85]. The criterion states that
a full rank stationary process is p.n.d. if and only if

∫ π

−π

log detΦ(eiθ) dθ > −∞

which, since detΦ(eiθ) = detΦ(eiθ)′, can only hold simultaneously both for Φ and
its transpose.

A very simple “geometric” proof for scalar processes can be given as follows.
Define the reflection operator R on the set Y := {y(t) | t ∈ Z} by setting Ry(t) :=
y(−t). Similar to what was done for extending the shift operator U in Section 2.5,
we may check that R is isometric and linear on Y and can be extended to the vector
space generated by Y so that R

∑
αky(tk) :=

∑
αky(−tk). Since R is isometric,

it can be extended as a unitary operator to the closure H(y). On this space R
is actually a unitary involution i.e. R2 = I. By continuity we have RH−∞(y) =
H+∞(y) and hence one of these two spaces is zero if and only if the other is.
Unfortunately, in the vector case the operator R is not isometric (the reader is
invited to check this).
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4.6 The outer spectral factor

We shall now return to the missing half of the proof of Theorem 4.4.2. Our first
objective will be to investigate what special properties should be enjoyed by a pair
(W, w), with W a spectral factor and w a normalized white noise process satisfying
dŷ = Wdŵ, in order to satisfy the causal equivalence condition (4.1.7). Because
of stationarity, the causal equivalence condition is equivalent to equality of the two
subspaces at time zero,

H−(w) = H−(y),

and this, in view of the representation Theorem 3.5.1, is equivalent to asking that
the spectral factor W should be such that15

span {eiθtek | k = 1, . . . , p, t ≤ 0} = span {eiθtWk | k = 1, . . . ,m, t ≤ 0}

where ek is the function identically equal to the k-th unit vector

ek(eiθ) = [0, . . . , 1, . . . , 0]

(1 in the k-th place). Clearly the first member is just the Hardy space H2
p , so we

may rewrite this equality as

span {eiθtWk | k = 1, . . . ,m, t ≤ 0} = H2
p (4.6.1)

This is a function-theoretic characterization of the spectral factors W for which the
causal equivalence condition holds. The equation above states in fact that any such
spectral factor must be an outer function in H2

p (also called minimum phase). The
formal definition is given below.

Definition 4.6.1. An m × p matrix-valued function F with rows in H2
p is called

outer if16 span {ztFk | k = 1, . . . ,m, t ≤ 0} = H2
p . Symmetrically, an m× p matrix-

valued function G with rows in H
2

p is called conjugate outer if span {ztGk | k =

1, . . . ,m, t ≥ 0} = H̄2
p .

A p×p matrix-valued function Q ∈ H∞
p×p with unitary boundary values on the

unit circle,
Q(eiθ)Q(eiθ)∗ = I (4.6.2)

is called inner. A conjugate inner function still satisfies (4.6.2) but is instead
bounded analytic in {|z| < 1}.

Note that the left-hand member in (4.6.1) is just the smallest invariant sub-
space for the backward (or right-) translation operator z−1 acting on H2

p , containing
the rows of the matrix W . Hence a matrix function is outer if and only if the small-
est invariant subspace containing its rows is the largest possible, i.e. the whole of
H2

p .

15In the formulas below the notations are a little inconsistent. To get things to look right one
should introduce the (unitary) operator Me, of multiplication by the function e(eiθ) = eiθ and
instead of eiθtWk write M t

eWk.
16Here again we should write M t

eFk instead of ztFk. Note that M t
eFk ∈ H2

p for t ≤ 0.
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Remark 4.6.2. For any function F ∈ H2
p the invariant subspace span {ztF | t ≤ 0}

is the closure in L2
p of products of F times scalar analytic trigonometric polynomials

p(z−1) :=

N∑

k=0

pkz
−k.

Now, by the Weierstrass approximation Theorem, these polynomials are dense (in
the sup norm) in the subspace of continuous functions on the unit circle {|z| = 1}
which have vanishing negative Fourier coefficients. It follows that analytic trigono-
metric polynomials are dense in the scalar H∞ space. Consider a sequence of
analytic polynomials {pn} such that pn → ϕ ∈ H∞ in the sup (denoted ∞)-norm.
Since

‖pnF − ϕF‖L2
p
≤ |pn − ϕ|∞‖F‖L2

p
→ 0

as n → ∞, the linear manifold span {ϕF |ϕ ∈ H∞} is a dense vector subspace of
the smallest invariant subspace containig F . In other words,

span {ztF | t ≤ 0} = span {ϕF |ϕ ∈ H∞}. (4.6.3)

This in particular implies that,

Proposition 4.6.3. An outer matrix function F must be almost everywhere of full
column rank.

Proof. For, by limits of linear combinations of its rows
∑m

1 ϕkFk, ϕk ∈ H∞, it
must be possible to generate the unit vector functions {ek, k = 1, . . . , p} of Hp

2.
Hence there exists a sequence of matrices Hk ∈ H∞

p×m such that

HkF → I

in L2 as k → ∞. But then there must be a subsequence {Hnk
} such that Hnk

F
converges to the identity matrix almost everywhere. This couldn’t possibly be true
if rank F < p on a set of positive measure.

Hence an outer spectral factor of a density Φ of rank p must be a full rank
spectral factor, of dimension m× p17. The white noise process for which the causal
equivalence condition (4.1.7) holds, is thereby uniquely determined by the outer
spectral factor as dŵ = W−Ldŷ.

Invariant subspaces and the factorization theorem

The subspace in the left member of formula (4.6.1) is just a particular example
of invariant subspace for the operator of right translation (i.e. multiplication by
z−1 ≡ e−iθ) on the space L2

p. In the 1960s there has been a great amount of work

17Soon we shall prove that this factor is essentially unique and denote it by the symbol W−.
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on the structure of general translation-invariant subspaces and the representation
of invariant subspaces. These results, some of which will be used many times in
this book, form now a cornerstone of operator theory.

In general, an invariant subspace Y of L2
p can be seen as the frequency domain

representative of a space of second order random variables in the Hilbert space
H(w), generated by some normalized p-dimensional white noise process w. This is
so, since for any such white noise process the representation operator Iŵ is unitary
and we have (see (A.2.5) in Appendix A.2),

Y := Iŵ(Y) ⊂ Iŵ(L2
p) = H(w)

so that the translation invariance of Y is the same as invariance of Y with respect
to the backward (or left) shift of the process w, i.e.

U∗Y ⊂ Y.

It follows then that studying the structure of invariant subspaces of L2
p is the same

as studying the shift-invariant subspaces of the Hilbert space H(w). In this way we
make contact with the problem area discussed in Section 4.5. In fact, the problem of
discovering the structure of translation-invariant subspaces is completely answered
by the two theorems of Wold which were presented in the previous section.

Following the terminology introduced in Section 4.5, an invariant subspace
Y ⊂ L2

p will be called doubly invariant (or purely deterministic) if z−1Y = Y. In
this case Yt := z−tY is actually constant in time. The subspace Y is called purely-
non-deterministic (p.n.d. for short) if ∩tYt = 0. An invariant subspace is called of
full range if

∨t∈Z z
tY = L2

p,

equivalently, a subspace Y is full range if its orthogonal complement is p.n.d..
The following result, called the Beurling-Lax Theorem, is a direct corollary of

Theorem 4.5.4.

Theorem 4.6.4. Every full-range p.n.d. invariant subspace Y ⊂ L2
p has the form,

Y = {fQ | f ∈ H2
p} := H2

pQ (4.6.4)

where Q is a p× p matrix function with unitary values on the unit circle, i.e.

Q(eiθ)Q(eiθ)∗ = I. (4.6.5)

If Y ⊂ H2
p then Q is actually inner. In any case Q is uniquely determined by Y,

modulo a constant unitary factor.

Proof. By Theorem 4.5.4, every p.n.d. left-invariant subspace Y of H(w) has the
form H−(u) where u is normalized white noise. If Y ≡ H−(u) is full-range then
the dimensions of w and u must be the same (equal to the multiplicity p) and, in
fact, we must have

H(u) = H(w).
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Since H−
t (u) ⊂ H(w), for all t, u(t) can be expressed as a linear (not necessarily

causal) functional of the white noise w. It is an immediate consequence of Theorem
3.5.1 and Lemma 4.2.4 that the Fourier transforms of u and w are related to each
other by an invertible (a.e.) p× p matrix function Q = Q(eiθ) with rows in L2

p, i.e.

dû = Qdŵ ,

and from the spectral factorization condition 4.2.1 (recall that the spectral density
matrix of w is equal to the Identity matrix), it follows immediately that Q must
be unitary on the unit circle. Therefore, by changing stochastic measure in the
integrals, it follows that H−(u) = Iû(H2

p ) = Iŵ(H2
pQ), that is Y = H2

pQ. This
proves the representation formula (4.6.4).

Next, we have Y ⊂ H2
p if and only if H−(u) ⊂ H−(w) and, by the proven part

of Theorem 4.4.1 above, this is true only if Q is an analytic spectral factor of the
identity, i.e. an inner function. The uniqueness of Q only modulo multiplication
by constant unitary (i.e. orthogonal) matrices is a natural consequence of the fact
that normalized white noise processes are only distinguishable modulo this kind
equivalence.

The inner-outer factorization theorem for full-rank functions in H2
p follows

easily from the invariant subspace theorem.

Theorem 4.6.5. Every matrix function F ∈ H2
m×p of full column rank a.e., has a

factorization F = F−Q where F− is outer and Q inner p× p. In this factorization
F− and Q are unique up to p× p constant orthogonal factors.

Proof. Let YF be the invariant subspace in H2
p generated by the rows of F . Since

F is of full rank YF has p linearly independent generators, and therefore it is full
range. Hence YF = H2

pQ where Q is a uniquely determined inner function. Since
the rows of F belong to YF we have F = F−Q where F− is an m×p matrix function
in H2. Since multiplication by an inner matrix function is a unitary operator, it is
easy too see, by this factorization, that the invariant subspace generated by F has
the form

YF = YF−
Q.

By uniqueness of the representation of the invariant subspace YF it must be that
YF−

= H2
p , i.e. F− must be outer. If F = GQ1 is another such factorization, then

YF = H2
pQ1 so Q and Q1 are equal up to a constant unitary matrix factor. It

follows that F− and G must also be equal up to a constant unitary right matrix
factor.

We shall need also a generalization of Theorem 4.6.5 to non full-rank matrix
functions.

Definition 4.6.6. A function R ∈ H∞
p×r where r ≥ p, such that

R(eiθ)R(eiθ)∗ = Ip (4.6.6)
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is called a unilateral inner function18.

Theorem 4.6.7. Every matrix function F ∈ H2
m×r of rank p ≤ r a.e., has a fac-

torization F = F−R where F− is outer m×p and R is a unilateral inner function of
dimension p×r. In this factorization F− is unique up to p×p right constant unitary
factors. The factor R is unique modulo multiplication by orthogonal matrices only
if p = m (in which case F− is square).

Proof. Pick an r-dimensional normalized white noise process w and consider the
stationary m-dimensional process y, defined in the same probability space of w, by
the relation dŷ = Fdŵ. Since F is analytic, by the Paley-Wiener Theorem (4.3.2),
y(t) is a causal functional of the process w and hence

H−(y) ⊂ H−(w)

i.e. the past of y is a shift-invariant subspace of H−(w) and therefore a p.n.d.
subspace of multiplicity p. This, in view of the Theorem 4.5.4, is equivalent to the
existence of a p-dimensional normalized white noise process u such that H−(y) =
H−(u). It follows that there is an analytic p× r spectral factor R of Φw = Ir (i.e.
a p × r unilateral inner function) such that dû = Rdŵ. Hence from the subspace
inclusion above we get,

H−(y) = Iŵ (span {eiθtFk | k = 1, . . . ,m, t ≤ 0}) = Iŵ(H2
pR)

and since the rows of F are contained in the subspace H2
pR there must be m row-

functions {Gk | k = 1, . . . ,m}, in H2
p such that F = GR. On the other hand we

must have span {eiθtGk | k = 1, . . . ,m, t ≤ 0} = H2
p and hence G is outer. The rest

is obvious.

At this point we have available the techniques to discuss the solutions of the
analytic spectral factorization problem (4.4.3). The main result is stated in the
following theorem.

Theorem 4.6.8. Assume Φ(z) is an m × m spectral density matrix of rank p
a.e. admitting analytic spectral factors. Then Φ(z) admits an outer spectral factor
W−, of dimension m × p. This is the unique outer factor of Φ(z), modulo right
multiplication by a constant p× p unitary matrix.

Every full-rank analytic spectral factor W can be written

W (z) = W−(z)Q(z), (4.6.7)

where Q(z) is an inner function uniquely determined by W mod O.
All other analytic spectral factors of dimension m× r, r ≥ p are of the form

W (z) = W−(z)R(z), (4.6.8)

18This denomination is non-standard. Such functions are called rigid in Fuhrmann’s [35].
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where R(z) is a p× r unilateral inner function.
A completely symmetric result holds for the coanalytic spectral factorization

problem Φ(z) = W (z)W (1/z)′ with W k ∈ H2
p , k = 1, . . . ,m.

Proof. We only need to prove the uniqueness of the outer factor, since the fac-
torizations (4.6.7) and (4.6.8) follow immediately from the outer-inner factorization
Theorems 4.6.5 and 4.6.7. To this purpose, let W1 and W2 be both outer. Then,
by the spectral factorization equation, W1W

∗
1 = W2W

∗
2 , and the function,

Q := W−L
1 W2 = W ∗

1 (W ∗
2 )−R = (W−L

2 W1)
∗,

is a p×p unitary matrix function on the unit circle, irrespective of the version chosen
for the left inverses. This follows by the second identity in Lemma 4.2.6 which
implies that QW−L

2 W1 = W−L
1 W1 = I and, likewise, W−L

2 W1Q = W−L
2 W2 = I,

showing that W−L
2 W1 is actually the inverse of Q.

Now, again by Lemma 4.2.6 we have W1Q := W1W
−L
1 W2 = W2 and since

both W1 and W2 are outer Q must be a constant unitary matrix. This concludes
the proof.

Remark 4.6.9. Theorem 4.6.8 provides the missing “if” part of the proof of
Theorem 4.4.2. For, assume there is an arbitrary analytic spectral factor; then
from (4.6.8) we see that W− is also necessarily a spectral factor and in fact the
(unique) outer factor. Then the left-inverse of this factor provides the whitening
filter which generates the innovation process w− causally equivalent to y.

How do we recognize outer functions? in other words what are their distinctive
analytic properties? There are very precise characterizations of outer functions in
the scalar case, see e.g. [52] but these formulas do not generalize in a simple way
to the vector case and we shall not report them here. As we shall see below some
important analytic properties of outer functions can be derived directly from the
geometric definition without dwelling too much into complex variable theory.

Inner functions

Scalar inner functions have been described and classified completely in the literature
[11, 52]. It can be shown that a real scalar function Q (Q(z) = Q(z−1)) is inner
if and only if it is of the form Q(z) = cB(z)S(z) where c is a constant of modulus
one; i.e. c = ±1, B(z) is a Blaschke product, namely 19

B(z) =
+∞∏

k=1

1− αkz

z − ᾱk
, |αk| < 1. (4.6.9)

19Recall that a real analytic function has poles and zeros which come in conjugate pairs; i.e.
αk is a pole (or a zero) if and only if the conjugate ᾱk is also a pole (or a zero). For this reason,
either at the numerator or at the denominator of the expression (4.6.9) αk may be replaced by
the conjugate ᾱk . Also, in this case there is no need to introduce the convergence factors ᾱk/|αk|
which are needed in the general case [52, p. 64].
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and S(z) is a singular inner function, which has the general expression

S(z) = exp{−
∫ π

−π

z + eiθ

z − eiθ
dµ(eiθ)} (4.6.10)

where µ is a finite positive measure on the unit circle whose support has Lebesgue
measure zero, in other words, a finite positive singular measure .

In the expression (4.6.9) the zeros, {1/αk}, are all in the region of analytic-
ity {|z| > 1}, including possibly the point at infinity and are assumed to appear
repeatedly according to their multiplicity. The poles are at the reciprocal (and
reciprocal-conjugate) locations in the interior of the unit circle. The conjugate
function, B(z−1), has symmetric properties which actually correspond to the stan-
dard way Blaschke functions are introduced in the literature, where the interior of
the unit circle plays (contrary to what is done in this book) the role of region of
analyticity.

It can be shown that a necessary and sufficient condition for the convergence
of the infinite product (4.6.9) in {|z| > 1}, is that the product

∏+∞
k=1 |αk| (or equiv-

alently
∏+∞

k=1 1/|αk|) converges. This in turn is equivalent to
∑∞

k=1(1 − |αk|) < ∞
(or
∑∞

k=1(1− |1/αk|) <∞), see e.g. [51, p. 223], which prescribes the possible rate
of accumulation of the zeros (equivalently, the poles) of the function B(z). In fact,
since convergence of the first series occurs only if 1 − |αk| → 0, the accumulation
points may only be on the unit circle.

The finite Blaschke products are just the scalar rational inner functions. It
should be noted that the analytic expressions given above for Blaschke functions
make generally (i.e. except for singularities located in the unit circle) sense also in
the region {|z| < 1} of the complex plane. It can be shown (but we shall not go
into this here) that all inner functions actually have an analytic continuation across
the unit circle, except at the points of the unit circle where the singular component
S(z) is supported or at accumulation points of zeros. In particular, when there is no
singular part, one may think of a scalar inner function as an analytic function which
is defined and analytic almost everywhere on the complex plane and is determined
(modulo a constant unitary factor) by its zeros, which are all located in the region
{|z| > 1}. For it is clear from the expressions above that assigning a countable set
of points in {|z| > 1} obeying the convergence constraint for Blasckhe products, to
be the zeros of the function, specifies the inner function uniquely up to the constant
factor of modulus one.

In the matrix case there are no simple general expressions of this type. How-
ever, it is easy to see using Binet Theorem, that the determinant of a matrix inner
function must be inner and then one can introduce a classification of matrix in-
ner functions based on the structure of their determinant. For details we refer the
reader to Helson’s book [46] p. 80-89.

We now proceed to state a criterion for outer functions in terms of zeros.

Definition 4.6.10. Let the matrix function F ∈ H2
m×p have full column rank a.e..

A complex number α in the region of analyticity {|z| > 1} a (right) zero of F , if
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there is a nonzero vector v ∈ Cp, called an associated zero direction to α, such that,

F (α)v = 0 . (4.6.11)

Dually, in case F ∈ H2
m×p has full row rank a.e., we shall call a complex

number α in the region of analyticity {|z| > 1} is a (left) zero of F , if there is a
nonzero vector w ∈ Cm, called an associated zero direction to α, such that,

w′F (α) = 0 . (4.6.12)

We shall elaborate further on the notion of zeros in Chapter ?? where we shall
restrict to rational matrix functions. Here we shall only mention that the rational
of the definition is to consider as zeros only points of the region {|z| > 1} where
the rank of F drops below its generic value (which is p or m in the two situations
considered). The left- or right- zeros defined above are just the invariant zeros
which will be introduced in Chapter ??. Note that the zeros of an H2 function
can in general be defined only in the region of analyticity {|z| > 1}, as F may not
have an analytic continuation to the interior of the unit circle, {|z| ≤ 1}. However
for special subclasses (e.g. rational functions) admitting analytic continuation, the
same definition applies to arbitrary complex numbers as well.

Outer functions have full column rank. They can be characterized as analytic
functions without (right) zeros.

Theorem 4.6.11. An outer function cannot have zeros in {|z| > 1}, including the
point at infinity. In particular, a rational function in H2 is outer if and only if it
has no poles in {|z| ≥ 1}, and no zeros in {|z| > 1}, including the point at infinity.

Proof. We shall show that if F admits a zero; i.e. there is α outside the unit
disk for which (4.6.11) holds, then the invariant subspace F := span {eiθtFk | k =
1, . . . ,m, t ≤ 0} cannot be the whole of H2

p , that is, F cannot be outer.
Since for any nonsingular m×m and p×p constant matrices T, S, the function

TFS spans the same invariant subspace F, there is no loss of generality to assume
that v is just the first vector e1 := [1, 0, . . . , 0]′, in the canonical basis of Cp. Hence
we may and shall assume that the elements F1,j , j = 1, . . . p all have a zero at α;
i.e. F1,j(α) = 0. Since the zeros of a function in H2 must be isolated and of finite
multiplicity [52], all F1,j can be written as

F1,j(z) = F̂1,j(z)

(
z − α
1− ᾱz

)kj

,

where F̂1,j(z) ∈ H2, kj ≥ 1 are the multiplicities of the zero, and F̂1,j(z)(α) 6= 0.
It follows that the first component f1, of any function in F must have a zero of (at
least) multiplicity k := M.C.D.{kj} at α. Letting Q(z) be the maximum common
divisor of all elementary Blaschke factors on the right, all such first components can
be written as

f1(z) = h(z)Q(z) , h ∈ H2 .
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Now, for any nontrivial inner function Q, there are functions g ∈ H2 such that
ḡ(z) := Q∗(z)g(z) is in H̄2. These functions fill in fact the orthogonal complement
(H2Q)⊥ in H2. For instance,

g(z) =
1

(1− ᾱz)k

is one such function. Consider now the subspace G of H2
p made of vector functions

of the form [g 0 . . . 0] ; g ∈ (H2Q)⊥. Since for any f = [f1 f2 . . . fp] ∈ F we have
〈f1 , g〉H2 = 〈h , Q∗g〉H2 = 0 , j = 1, . . . ,m we have G ⊥ F.

Hence, a scalar rational outer function has no poles in {|z| ≥ 1}, no zeros in
{|z| > 1} and equal degrees of the numerator and denominator polynomials. These
functions are called minimum phase in the engineering literature.

4.7 Bibliographical notes

The early references on prediction theory are [66] [124]. The idea of whitening
filter and the cascade structure of the filter appear in the paper [13]. Spectral
factorization as a tool for solving filtering and prediction problems was introduced
by Wiener [124, 122, 123].

Orthonormalizable processes are called processes of constant rank in [109].
Since every Hermitian positive semidefinite matrix H admits square roots, i.e. ma-
trices W that satisfy H = WW ∗, it is sometimes stated in the literature that y
is orthonormalizable (in our terminology) if and only if its spectral distribution
function is absolutely continuous and the relative spectral density matrix Φ has
constant rank a.e. on [−π, π]. This somewhat simpler statement requires how-
ever a proof that the square-root matrices of Φ, (which unfortunately cannot be
defined pointwise) can be suitably chosen for each θ and patched together so as to
form (at least) a measurable matrix function W . The seemingly more restrictive
factorizability condition in our Theorem 4.2.1 avoids these annoying technicalities.

Wold’s representation theorem in terms of wandering subspaces was of course
first introduced in the seminal work of H. Wold [126] on stationary processes and
prediction theory. Wold’s ideas have been generalized in many directions. Starting
with [44, 91], generalizations of “Wold Decomposition” theory have become part of
functional analysis and have led to a unifying view of certain fundamental problems
in operator theory and Hardy spaces [46]. The basic operator-theoretic (and Hardy
space) results which have stemmed from this idea can, as it is shown in Section
3.5, simply be seen as isomorphic function-analytic counterparts of the geometric
Hilbert space results exposed in Section 3.4. Several excellent books have been
written on Hardy spaces, some of wich are classical reference works. We shall just
mention here [52, 46, 27, 37]. The Paley-Wiener Theorem is in [102].

The Beurling-Lax Theorem on invariant subspaces first appeared in [11] (for
the scalar case) and was then generalized to vectorial functions in [70].

Much research has been devoted in the 1950s and 1960s to understand the
function-theoretic properties which characterize the spectral density matrix of vec-
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torial p.n.d. processes, and the related “causal” spectral-factorization problem.
Among the basic references we quote [69, 122, 47, 109].
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Chapter 5

Wold Decomposition, and
Spectral Factorization in
Continuous Time

In this chapter we shall describe the continuous-time analogs of the ideas and rep-
resentation results of the previous chapter. As discussed before, the interesting
generalization of the discrete-time setting is to continuous-time stationary incre-
ments processes. For this reason we shall be mostly concerned with this class.

5.1 Stationary increments processes and the
continuous-time Wold decomposition

Let {y(t); t ∈ R} be an m−dimensional mean square continuous process with sta-
tionary increments, H(dy) the Hilbert space generated by its increments and let
{Ut} be the associated strongly continuous unitary group in H(dy).

In general, given any subspace K of H(dy), we define the stationary family
of translates {Kt}, of K, by setting Kt := UtK, t ∈ R and introduce the past and
future (at the time zero) of the family {Kt} by

K− := ∨t≤0Kt, K+ := ∨t≥0Kt (5.1.1)

where the symbol ∨ denotes closed vector sum. Clearly, K−
t := UtK

− and K+
t :=

UtK
+ form an increasing, respectively, a decreasing family of subspaces of H(dy).
Subspaces K for which Kt = K−

t or Kt = K+
t can be characterized in the

following way. Introduce the forward and backward shift semigroups {Ut; t ≥ 0}
and {U∗

t ; t ≥ 0} acting on H(dy), where Ut is the shift induced by dy, defined in
(2.7.3). It is then easy to check that a subspace K generates an increasing stationary
family of translates {Kt} if and only if it is backward-shift invariant; i.e.,

U∗
t K ⊂ K for all t ≥ 0. (5.1.2)

Similarly, K generates a decreasing family of translates {Kt} if and only if,

UtK ⊂K for all t ≥ 0 (5.1.3)

99
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i.e. K is a forward shift invariant subspaces. A subspace satisfying both conditions
(5.1.2), (5.1.3) is called doubly invariant.

In analogy with the discrete-time setting, we shall say that an increasing
family {Kt} is purely nondeterministic (p.n.d) if the “remote past” K−∞ := ∩t∈RKt

contains only the zero random variable. The property of being p.n.d. depends on the
structure of the backward shift invariant subspace K alone. Dually, for a decreasing
family {Kt} in H(dy), define the “remote future” K̄∞ := ∩t∈RK̄t. If K̄∞ is trivial
we say that {K̄t} is p.n.d. or that K̄ is a p.n.d. (forward shift) invariant subspace.
A stationary-increment process dy will be called (forward) p.n.d. whenever H−(dy)
is p.n.d. and backward p.n.d. when H+(dy) is p.n.d..

The following representation theorem is the continuous-time version of the
Wold representation theorem (Theorem 4.5.4).

Theorem 5.1.1. A necessary and sufficient condition for a subspace S ⊂ H(dy)
to be backward shift-invariant and p.n.d. is that there is a vector Wiener process
dw such that

S = H−(dw) (5.1.4)

Similarly, a necessary and sufficient condition for a subspace S̄ ⊂ H(dy) to be
forward shift-invariant and p.n.d. is that there is a vector Wiener process dw̄ such
that

S̄ = H+(dw̄) (5.1.5)

Both dw and dw̄ are uniquely determined by S and S̄ modulo multiplication by a
constant orthogonal matrix. The dimension of dw is called the multiplicity of S or
H(dw) and the dimension of dw̄ the multiplicity of S̄ or of H(dw̄)

A proof can be obtained from the discrete-time result by the so-called Cayley
transform. For details see [71, 92].

Note that whenever ∨t∈RSt = H(dy), in which case S is said to be of full
range , we have a representation of the space H(dy) as

H(dy) = H(dw) (5.1.6)

An analogous representation of H(dy) is obtained in the case S̄ is full range.

5.2 Hardy spaces of the half-plane

A similar construction to the one described in Section 4.3, but starting from the
familiar Lebesgue space L2

p(R) of (equivalence classes of) square integrable functions
on the real line leads to the Hardy spaces of the half-plane.

Definition 5.2.1. The Hardy space of the half-plane, denoted H2
p (C+) (or H2

p

for short, when there is no danger of confusion), consists of p-dimensional vector
functions analytic on the right half of the complex plane, having the property that
the family of maps {iω → f(σ + iω);σ > 0} is uniformly bounded in the L2

p(I)

norm. Dually, the conjugate Hardy space of the half-plane, denoted H̄2
p (C+) (or
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H̄2
p for short) consists of p-dimensional vector functions analytic on the left half of

the complex plane, having the property that {iω → f(σ + iω);σ < 0}, is uniformly
bounded in the L2

p(I) norm.

It can be shown, see e.g. [52, p.128], that the functions in H2
p (C+) (H̄2

p (C+))
have nontangential boundary values on the imaginary axis of the complex plane,
convergence taking place both in the L2

p(I) norm and almost everywhere. Moreover
they can be uniquely recovered from their boundary values (belonging to L2

p(I)).
By introducing a proper definition of norm, the correspondence between analytic
functions and their boundary values can actually be made unitary so one does
not need to distinguish between the two classes. This convention we shall follow
also in this book, so functions on the imaginary axis which are boundary values of
functions in the Hardy space H2

p (C+) (resp. H̄2
p (C+)) will be called analytic (resp.

co-analytic).
The (continuous-time) Paley-Wiener theorem describes exactly which func-

tions on the imaginary axis are boundary values of functions in the Hardy space
H2

p (C+) (resp. H̄2
p (C+)). Recall that functions f ∈ L2

p(R) which vanish a.e. on the
negative (positive) axis are called causal (anticausal). The causal and anticausal
functions form complemetary Hilbert subspaces of L2

p(R) which are denoted L2+
p (R)

and L2−
p (R) respectively. As it has been recalled in Chapter ??, the Fourier operator

F maps L2
p(R) unitarily onto L2

p(I,
dω
2π ) (written as L2

p(I) for short).

Theorem 5.2.2 (Paley-Wiener). With the conventions established above, the
Hardy space H2

p (C+) is the image of the subspace L2+
p (R) of causal p-dimensional

functions under the Fourier map,

F(L2+
p ) = H2

p (C+). (5.2.1)

Dually, the conjugate Hardy space of the half-plane, H̄2
p (C+), is the image of the

subspace L2−
p (R) of anticausal p-dimensional functions under the Fourier map,

F(L2−
p ) = H̄2

p (C+). (5.2.2)

H2
p (C+) and H̄2

p (C+) are orthogonal complementary subspaces of L2
p(I).

Hardy spaces of the disk and of the half-plane are commonly regarded, in
a sense, as isomorphic objects. This however is not quite correct. There is a
wider class of analytic functions on the half plane which (in a very precise sense
to be defined later) is the continuous-time analog of the Hardy class of the disk.
These functions arise in connection with the spectral representation of stationary
increments processes and for this reason we shall have to study their properties in
some detail. They are constructed in the following way.

If we map the exterior of the unit disk D onto the right half plane C+ (and
hence the interior of the unit disk onto the left-half plane) by the conformal trans-
formation,

s = ρ :=
z + 1

z − 1
(5.2.3)
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and define the corresponding mapping Tρ acting on functions, by

Tρf(s) = f(z)|z=ρ−1(s) = f

(
s+ 1

s− 1

)
, (5.2.4)

thenH2
p (D) is mapped onto a space of analytic functions in right half plane C+ which

we shall name W2
p. Similarly, the transformation Tρ takes any function f ∈ H̄2

p (D)

into a “conjugate space” of functions, W̄2
p analytic in C− = {<s < 0}. The following

characterization of W2
p and W̄2

p can be obtained by an easy generalization of similar
results presented for the scalar case in [52, p.128-130].

Theorem 5.2.3. The spaces W2
p and W̄2

p, are described by

W2
p = {f : f = (1 + s)f̂ | f̂ ∈ H2

p (C+)} ≡ (1 + s)H2
p (C+) (5.2.5)

W̄2
p = {f : f = (1 − s)f̂ | f̂ ∈ H̄2

p (C+)} ≡ (1 − s)H̄2
p (C+) (5.2.6)

Every function in W2
p (W̄2

p) has nontangential boundary values (a.e.) on the imag-
inary axis belonging to the space

L2
p := L2

p

[
I,

dω

π(1 + ω2)

]
(5.2.7)

from which it can be uniquely recovered. The map Tρ defined in (5.2.4) is an isom-
etry of L2

p of the unit circle onto L2
p under which H2

p (D) is mapped onto W2
p and

H̄2
p (D) onto W̄2

p.

The Hardy spaces of the half plane H2
p (C+) and H̄2

p (C+) are properly contained

in W2
p and W̄2

p (respectively) and correspond, under T−1
ρ to the subspaces,

T−1
ρ H2

p (C+) = {f : f ∈ H2
p (D) | z

z − 1
f(z) ∈ H2

p (D)} (5.2.8)

T−1
ρ H̄2

p (C+) = {f : f ∈ H̄2
p (D) | 1

z − 1
f(z) ∈ H̄2

p (D)} . (5.2.9)

Let us introduce the forward and backward difference operators of width h > 0

in L2
p, as the multiplication operators by the functions χh(iω) := eiωh−1

iω and
χ̄h(iω) := χh(−iω) respectively. Note that, since χh (resp. χ̄h) is the Fourier
transform of the anticausal indicator function I[−h,0] (respectively, χ̄h of the causal
indicator function I[0,h]), it has a bounded analytic continuation to <s < 0 (to
<s > 0). In fact, χ̄h belongs to the scalar Hardy space H∞ of uniformly bounded
analytic functions in <s > 0 and χh belongs to the conjugate Hardy space H̄∞.

Lemma 5.2.4. The following alternative characterizations of W2
p and W̄2

p hold.

• An element f ∈ L2
p is in W2

p if and only if χ̄hf belongs to H2
p (C+) for all

h > 0.
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• Dually, f ∈ L2
p is in W̄2

p if and only if χhf belongs to the conjugate Hardy

space H̄2
p (C+) for all h > 0.

Proof.

We shall prove only the first statement as the dual follows by symmetry. Let
f ∈ W2

p be written as f(iω) = (1 + iω)g(iω) with g ∈ H2
p (C+) (see (5.2.5) above).

Since for all h > 0, χ̄h ∈ H∞, and all terms in the right hand side of

χ̄hf = χ̄hg − e−iωhg + g

are in H2
p (C+), we have χ̄hf ∈ H2

p (C+) for all h > 0.
Conversely, assume that χ̄hf ∈ H2

p (C+) for all h > 0. We shall show that this
implies f(s)/(1 + s) ∈ H2

p (equivalently f(s) = (1 + s)g(s) for some g ∈ H2
p ) and

this will lead to the desired conclusion by (5.2.5), Theorem 5.2.3. To this end we
shall use the Laplace transform formula:

1

1 + s
= −

∫ ∞

0

e−st − 1

s
e−tdt , <s > −1.

which, multiplying both sides by f and introducing the Borel measure dm(t) :=
e−tdt on R+, yields,

1

1 + iω
f(iω) = −

∫ ∞

0

χ̄t(iω)f(iω)dm(t) .

By assumption the map γt : t → χ̄tf takes values in H2
p . If we can make sense of

the integral in the right side as a vector-valued integral in H2
p (see [130, p. 132])

it will automatically follow that the first member is also in H2
p and the lemma will

be proven. A sufficient condition for this to be the case is that γt be (strongly)
continuous and that ∫ ∞

0

‖γt‖2dm(t) <∞

the norm being that of H2
p . Now, let dµ(ω) := dω/(1+ω2), and consider the identity

‖γt‖2 =

∫ +∞

−∞
|χ̄t(iω)|2|f(iω)|2dω =

∫ +∞

−∞

sin2(ωt/2)

(ω/2)2
(1 + ω2)|f(iω)|2dµ(ω)

where |f(iω)|2 is the Euclidean norm of the vector f(iω). In view of the inequality

sin2(ωt/2)

(ω/2)2
(1 + ω2) =

sin2(ωt/2)

(ωt/2)2
t2 + 4 sin2(ωt/2) ≤ t2 + 4 ,

and the fact that f ∈ L2
p, we see, by dominated convergence, that ‖γt‖2 → 0 as

t ↓ 0. Note however that for t1 ≥ t2 we have ‖γt1 −γt2‖2 = ‖χ̄t1−t2f‖2 = ‖γt1−t2‖2.
It is easy to check that the same is actually true also for 0 ≤ t1 < t2, so that
γt1 → γt2 strongly as t1 → t2. This proves continuity . To see that the integral of
the squared norm is finite, just notice that we have the bound

‖γt‖2 ≤ (t2 + 4)‖f‖L2
p
.
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This concludes the proof.

Using this lemma it is easy to derive a generalization of the Paley-Wiener
criterion to the spaces W2

p and W̄2
p.

Theorem 5.2.5. The space W2
p consists precisely of those functions in L2

p for
which, ∫ +∞

−∞

eiωt − eiωs

iω
f(iω)dω = 0 for all t, s < 0 . (5.2.10)

Dually, W̄2
p consists of those functions in L2

p for which,

∫ +∞

−∞

eiωt − eiωs

iω
f(iω)dω = 0 for all t, s > 0 . (5.2.11)

The intersection W2
p ∩ W̄2

p contains only the constant vector functions and is iso-
morphic to Rp.

Proof. As f ∈ W2
p if and only if χ̄hf belongs to H2

p (C+) for all h > 0 (Lemma
5.2.4) and this in turn happens (by Paley Wiener), if and only if

∫ +∞

−∞
eiωtχ̄h(iω)f(iω)dω = 0 for all t < 0 ,

i.e., if and only if

∫ +∞

−∞

eiω(t−h) − eiωt

iω
f(iω)dω = 0 for all t < 0 h > 0 ,

we see that (5.2.10) is indeed equivalent to f ∈ W2
p. That W2

p ∩ W̄2
p ≡ Rp follows

from the isomorphism with H2 spaces of the unit disk stated in Theorem 5.2.3.

5.3 Analytic spectral factorization in continuous time

The subspaces S and S̄, defined by (5.1.4) and (5.1.5), consist of random variables
with stochastic-integral representations of the type (3.5.4) in which, in the case of
S, f is a casual function in L2

p(R), i.e. f(t) = 0 a.e. for t < 0 or, in case of S̄,
an anticausal function, for which f(t) = 0 a.e. for t > 0. Causal and anticausal
functions form orthogonal complementary subspaces of L2

p. From this it follows that

the subspaces S and S̄ in (5.1.4), (5.1.5) naturally correspond to the Hardy spaces
H2

p and H̄2
p of the half plane, under the appropriate representation maps, namely,

S = H−(dw) = IŵH
2
p , S̄ = H+(dw̄) = Î̄wH

2
p̄ (5.3.1)

where p and p̄ are the respective multiplicities.
Assume now that the stationary-increment process dy is purely non-determi-

nistic in both the forward and the backward direction; see Section 5.1. Then, by



“Book”
2007/1/28
page 105

i

i

i

i

i

i

i

i

5.3. Analytic spectral factorization in continuous time 105

Theorem 5.1.1 applied to the subspaces S = H−(dy) and S̄ = H+(dy), there are two
Wiener processes, which throughout this book are denoted dw− and dw̄+, called the
forward and, respectively, backward innovation processes of dy, such that H−(dy) =
H−(dw−) and H+(dy) = H+(dw̄+). Note that this implies that H(dw−) = H(dy)
so that the two Wiener processes have the same dimensions p, which is called the
multiplicity, or rank, of the process dy. (A stationary increments process is full rank
if its multiplicity equals its dimensions).

Now, for any h > 0, y(−h)− y(0) ∈ H−(dw−), and y(h)− y(0) ∈ H+(dw̄+),
so that there are m× p analytic and coanalytic matrix functions, Wh, respectively,
W̄h ( with rows in H2

p and, respectively, H̄2
p ) such that,

y(−h)− y(0) =

∫ +∞

−∞
Wh(iω)dŵ−(iω) (5.3.2)

and

y(h)− y(0) =

∫ +∞

−∞
W̄h(iω)d ˆ̄w+(iω) (5.3.3)

where dŵ−, d ˆ̄w+ are the spectral measures of dw−, dw̄+ [compare (3.6.2)]. Using
the difference operators χh, χ̄h we can rewrite (5.3.2), (5.3.3) in terms of the new
functions

W− := χ̄−1
h Wh (5.3.4)

W̄+ := χ−1
h W̄h (5.3.5)

Once we rewrite the integral representations (5.3.2), (5.3.3) in terms of (5.3.4),
(5.3.4), it becomes evident, by comparison with the spectral representation (3.6.6),
that

dŷ = W−dŵ− = W̄+d ˆ̄w+ (5.3.6)

the relations holding by uniqueness of the spectral measure dŷ. From this it is easily
seen that W− and W̄+ do not depend on h and, by Lemma 5.2.4,

W− ∈W2
p , W̄+ ∈ W̄2

p (5.3.7)

We have therefore proven the following statement.

Proposition 5.3.1. The spectral distribution dF of a purely nondeterministic (both
in the forward and in the backward sense) stationary increments processes must be
absolutely continuous with a (matrix) spectral density Φ := dF/d(ω/2π) satisfying

Φ(iω) = W−(iω)W−(iω)∗ = W̄+(iω)W̄+(iω)∗ (5.3.8)

almost everywhere on the imaginary axis. The matrix functions, W− and W̄+,
belong to the spaces W2

p and W̄2
p, and are analytic and co-analytic full-rank spectral

factors of Φ .
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Outer spectral factors in W2

The m × p functions W− and W̄+ are rather special solutions of the spectral fac-
torization equation,

Φ(iω) = W (iω)W (iω)∗ . (5.3.9)

In fact, we shall see that W− and W̄+ are the unique (mod O) outer and conjugate
outer spectral factors of Φ. That W− ∈ W2

p and deserves to be called outer and,

similarly, W̄+ ∈ W̄2
p conjugate outer, follows readily from the identities H−(dy) =

H−(dw−) and H+(dy) = H+(dw̄+), the spectral representations (5.3.2), (5.3.3) and
the definitions (5.3.4), (5.3.5), which imply that,

span{χ̄hW− ; h > 0} = H2
p , (5.3.10a)

span{χhW̄+ ; h > 0} = H̄2
p . (5.3.10b)

We shall take (5.3.10a) and (5.3.10b) as the defining properties of outer and conju-
gate outer functions in W2

p and W̄2
p .

The following theorem generalizes the inner-outer factorization theorem ?? to
W2 spaces.

Theorem 5.3.2. Every matrix function F ∈ W2
m×p of full column rank a.e., has

a factorization F = F−Q where F− is an outer function in W2
m×p and Q is inner

p × p. In this factorization F− and Q are unique up to p × p constant orthogonal
factors.

Proof. It is immediate to check that span{χ̄hFk ; h > 0 , k = 1, 2, . . . ,m} is
a subspace of H2

p which is invariant for the operators of multiplication by iω 7→
eiωt ; t ≤ 0. Hence there is an (essentially unique ) inner function Q such that

span{χ̄hFk ; h > 0 k = 1, 2, . . . ,m} = H2
pQ .

Each function χ̄hFk , h > 0, has therefore a representation χ̄hFk = Gk,hQ with
Gk,h ∈ H2

p . Now χ̄−1
h Gk,h is in W2

p and is clearly independent of h (for it is equal
to FkQ

∗) so we can rename it just Gk. Now we claim that the matrix G with rows
Gk constructed above, must be outer; i.e. it must be true that,

span{χ̄hGk ; h > 0 , k = 1, 2, . . . ,m} = H2
p .

For otherwise this would instead be a proper invariant subspace of the form H2
pR

for some nontrivial inner function R. In this circumstance however we would get

span{χ̄hFk ; h > 0 , k = 1, 2, . . . ,m} = span{χ̄hGkQ ; h > 0 , k = 1, 2, . . . ,m} = H2
pRQ ,

which contradicts uniqueness of the representation of the invariant subspace span{χ̄hFk ; h >
0 , k = 1, 2, . . . ,m}.

There is a generalization to W2 spaces of the factorization theorem in case of
non full rank functions. We shall report it below without proof.
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Theorem 5.3.3. Every matrix function F ∈ W2
m×r of rank p ≤ r a.e., has

a factorization F = F−R where F− is outer m × p and R is a unilateral inner
function of dimension p × r. In this factorization F− is unique up to p × p right
constant unitary factors. The factor R is unique modulo multiplication by orthogonal
matrices only if p = m (in which case F− is square).

A totally analogous factorization holds for coanalytic matrix functions F̄ ∈
W̄2

m×r.

In perfect analogy to what we saw in section 4.6, these factorization theorems
lead to a complete classification of the solutions of the spectral factorization problem
for stationary increments processes.

Theorem 5.3.4. Assume Φ is the m ×m spectral density matrix of a stationary
increments process of rank p, admitting analytic spectral factors. Then Φ admits an
outer spectral factor W− in W2

m×p. This is the unique outer factor of Φ, modulo
right multiplication by a constant p× p unitary matrix.

Every full-rank analytic spectral factor W can be written

W = W−Q, (5.3.11)

where Q is an inner function uniquely determined by W mod O.
All other analytic spectral factors of dimension m× r, r ≥ p are of the form

W = W−R, (5.3.12)

where R is a p× r unilateral inner function.
A completely symmetric result holds for the coanalytic spectral factorization

problem Φ(z) = W (z)W (1/z)′ with W k ∈W
2

p, k = 1, . . . ,m.

The proof of this theorem is the exact analog of the proof of Theorem 4.6.8
and is therefore omitted. We are finally in the position of stating and proving the
continuous-time version of the fundamental representation theorem 4.4.1.

Theorem 5.3.5. Let dy be a mean-square continuous m-dimensional stationary in-
crements process. Then dy can be represented as a causal functional of a normalized
r-dimensional (r ≥ p) Wiener process dw, or, equivalently, there is a normalized
r-dimensional Wiener process dw such that

H−
t (dy) ⊂ H−

t (dw), t ∈ Z, (5.3.13)

only if the spectral distribution function of the process is absolutely continuous and
the spectral density Φ has m × r analytic spectral factors; i.e. only if there are
solutions W ∈W2

r, of the spectral factorization equation,

Φ(z) = W (z)W (1/z)′ . (5.3.14)

Conversely, if Φ admits analytic spectral factors, the process dy is p.n.d.; i.e. there
exist in particular an analytic spectral factor W− and a normalized Wiener process
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dw− (the forward innovation process) such that dŷ = W−dŵ−, for which the inclu-
sion (5.3.13) holds with the equality sign. The analytic spectral factor W− is the
(unique mod O) outer factor of Φ.

Totally symmetric statements hold regarding anticausal representations of dy.
In particular the inclusion,

H+
t (dy) ⊂H+

t (dw̄), t ∈ Z, (5.3.15)

can hold only if the spectral distribution function of the process is absolutely continu-
ous and the spectral density Φ has m×r coanalytic spectral factors; i.e. only if there
are solutions W̄ ∈ W̄2

r, of the spectral factorization equation (5.3.14). If Φ admits
coanalytic spectral factors, the process dy is p.n.d. in the backward direction; i.e.
there exist in particular a coanalytic spectral factor W̄+ and a normalized Wiener
process dw̄+ (the backward innovation process) such that dŷ = W̄+d ˆ̄w+, for which
the inclusion (5.3.15) holds with the equality sign. The coanalytic spectral factor
W̄+ is the (unique mod O) conjugate outer factor of Φ.

Proof. The “only if” part follows by a slight generalization of the argument leading
to Proposition 5.3.1. Just replace the past space H−(dy) with any p.n.d. S ⊃
H−(dy) and H+(dy)by any S̄ ⊃ H+(dy).

The “if” part follows directly from the spectral factorization theorem 5.3.4.

In case dy has a rational spectral density Φ, the factorizability condition is
automatically satisfied [131].

The theorem applies in particular to mean-square differentiable processes and
hence we obtain as a corollary the classical spectral factorization theorem for sta-
tionary processes,

Corollary 5.3.6. A continuous stationary process y = {y(t); t ∈ R} is purely
nondeterministic (in the forward direction) if and only if its spectral distribution
dF is absolutely continuous with a spectral density matrix Φ which admits analytic
(in H2

p) spectral factors. Likewise, it is purely nondeterministic in the backward
direction if and only if its spectral distribution dF is absolutely continuous with a
spectral density matrix Φ which admits coanalytic (in H̄2

p) spectral factors.

5.4 Wide sense semimartingales

In this section we shall study the structure of stationary increments processes.
As we have seen earlier, a particular instance of a stationary increments process
is the indefinite integral of a stationary process; on the opposite extreme there are
processes with stationary orthogonal increments which are very irregular and cannot
be the integral of anything. We shall show that under a mild regularity condition all
m.s. continuous stationary increments processes can be decomposed in the sum of an
integrated stationary process plus a process with stationary orthogonal increments.
Such decomposition is a particular instance of a semimartingale decomposition.
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Semimartingales have been studied in depth in the probabilistic literature, see e.g.
[55], here however we shall need only simple mean-square versions of the pathwise
concepts of the general theory. As these concepts are not related to stationarity,
initially we shall not invoke stationarity and deal with general processes which will
only assumed to have finite second-order moments.

An m-dimensional continuous-time process {a(t)} will be called of finite mean
variation (or simply of finite variation) if, for all bounded intervals I and finite
subdivisions π := {t0 ≤ t1 ≤ . . . ≤ tN ; tk ∈ I}, the supremum

µ(I) := sup
k
{
∑

k

‖a(tk+1)− a(tk)‖} (5.4.1)

is finite. Note that this condition relates to the increments a(t) − a(s) only and is
not affected by adding an arbitrary fixed random vector to {a(t)}. If {a(t)} is of
finite variation, then the supremum (5.4.1) on intervals of the form (a, b] is a finitely
additive set function which can be extended to a unique Borel measure µ on the
real line. Exactly as it happens to real functions, it can be shown that the measure
µ is non atomic; i.e. has no point masses, if and only if {a(t)} is mean square
continuous. The proof is essentially the same as that of [117, Theorem 8.14(c), p.
173] and will not be reported here.

An important fact which characterizes m.s. continuous processes of finite
variation is stated in the following lemma.

Lemma 5.4.1. Let {a(t)} be m.s. continuous and of finite variation, I be any
bounded interval of the real line and {πn} any sequence of finite subdivisions of I
such that the mesh ∆(πn) := maxk |tnk+1 − tnk | tends to zero as n→∞. Then

lim
∆(πn)→0

∑

k

‖a(tk+1)− a(tk)‖2 = 0 . (5.4.2)

Proof. Since ‖a(tk+1)− a(tk)‖ ≤ µ((tk, tk+1]) we have

∑

k

‖a(tk+1)− a(tk)‖2 ≤
∑

k

µ((tk, tk+1])
2 =

N∑

k=1

(µ⊗ µ)((tk, tk+1]× (tk, tk+1])

where µ⊗µ is the product measure on I× I. As ∆(πn)→ 0 the last sum converges
to the product measure of the diagonal D of the square I × I. But since µ has no
point masses (µ⊗ µ)(D) = 0.

Let {St} be an increasing family of real zero-mean random variables with the
usual inner product. Suppose the m-dimensional process {y(t)} can be written, for
all t, s in the form,

y(t)− y(s) = a(t)− a(s) +m(t)−m(s) (5.4.3)

where,
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1. a(t)− a(s) ∈ St for all t ≥ s and {a(t)} is a process of finite mean variation,

2. m(t) −m(s) ∈ St for all t ≥ s and m(t + h) −m(t) ⊥ St for all h ≥ 0; i.e.
{m(t)} is an St-martingale,

then we say that {y(t)} has a semimartingale representation relative to the family
of subspaces {St}.

Proposition 5.4.2. A representation of the type (5.4.3), relative to a given in-
creasing family of subspaces {St}, is unique.

Proof. Assume that {a1(t)} and {a2(t)} both satisfy (i) and {m1(t)} and {m2(t)}
are St-martingales for which

y(t)− y(s) = ai(t)− ai(s) +mi(t)−mi(s) , i = 1, 2

then, setting ã(t) := a1(t) − a2(t) and m̃(t) := m1(t) − m2(t), we would have
ã(t)−ã(s) = −[m̃(t)−m̃(s)], with ã(t) St-adapted, continuous and of finite variation
and m̃(t) an St-martingale. It follows from Lemma 5.4.1that for any interval [a, b]
and for any subdivision π = {a = t0 < t1 < . . . < tN = b}, the sum

∑

k

‖ã(tk+1)− ã(tk)‖2 =
∑

k

‖m̃(tk+1)− m̃(tk)‖2

tends to zero as ∆(π) → 0. But, since any martingale has orthogonal increments,
the sum on the right is actually equal to ‖m̃(b) − m̃(a)‖2 so that m̃(b) = m̃(a) for
all a, b ∈ R. This implies that the differences m1(t)−m1(s) and m2(t)−m2(s) are
the the same for all t, s. Hence a1(t) − a1(s) and a2(t) − a2(s) also coincide.

The mean quadratic variation of an m-dimensional process {y(t)}, on the interval
[s, t], is the m×m matrix Q(t, s) defined by

Qi,j(t, s) := lim
∆(πn)→0

∑

k

〈yi(tk+1)− yi(tk), yj(tk+1)− yj(tk)〉 (5.4.4)

where {πn} is a sequence of finite subdivisions of the interval [s, t]. Every martingale
has finite quadratic variation on a bounded interval. In fact, since each component
{mi(t)} has orthogonal increments,

∑
k〈mi(tk+1)−mi(tk), mj(tk+1)−mj(tk)〉

=
∑

k

∑
l〈mi(tk+1)−mi(tk), mj(tl+1)−mj(tl)〉

= 〈mi(t)−mi(s), mj(t)−mj(s)〉 .

Hence for a martingale we have

Q(t, s) = E{[m(t)−m(s)] [m(t)−m(s)]′} . (5.4.5)

Proposition 5.4.3. The mean quadratic variation of a St-semimartingale coin-
cides with the mean quadratic variationof its martingale part.
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Proof. For brevity we shall write differences such as zi(tk+1) − zi(tk) as ∆zi(k).
The mean quadratic variation of the semimartingale (5.4.3) is

∑
k〈∆yi(k), ∆yj(k)〉 =

∑
k〈∆ai(k), ∆aj(k)〉+

∑
k〈∆ai(k), ∆mj(k)〉

+
∑

k〈∆mi(k), ∆aj(k)〉+
∑

k〈∆mi(k), ∆mj(k)〉 .

Note first that,

∑
k〈∆ai(k), ∆aj(k)〉 ≤

∑
k ‖∆ai(k)‖ ‖∆aj(k)‖

≤ 1
2

∑
k(‖∆ai(k)‖2 + ‖∆aj(k)‖2)

and the last member tends to zero as ∆(πn) → 0, by Lemma 5.4.1. Further, since
all sums are finite,

∑
k〈∆ai(k), ∆mj(k)〉 ≤

∑
k〈∆ai(k), ∆mj(k)〉

≤
(∑

k(‖∆ai(k)‖2
)1/2 (∑

k(‖∆mj(k)‖2)
)1/2

=
(∑

k(‖∆ai(k)‖2
)1/2 ‖mj(t)−mj(s)‖ .

This term also tends to zero as ∆(πn)→ 0 and since the same thing happen if the
indices i and j are interchanged, the result follows.

This proposition can be interpreted in the following way: The quadratic vari-
ation of a St-semimartingale is independent of the increasing family of subspaces
St. This is so since, from the way it is defined, the man quadratic variation of
a martingale does not depend on St. In fact If {y(t)} also admits a semmartin-
gale representation with respect to some decreasing family of subspaces S̄t then the
mean quadratic variation of {y(t)} is the same as that of any (forward) martingale
component of {y(t)}.

Stationary increments semimartingales

We shall henceforth assume that y ≡ {y(t} is a process with continuous stationary
increments defined on the real line. In the following we shall be concerned with the
following question.
Question 1: Let {St} be a stationary p.n.d. increasing family of subspaces with
St ⊃ Ht(dy). Under what conditions does dy admit a semimartingale representation
of the form

y(t)− y(s) =

∫ t

s

z(σ) dσ +m(t)−m(s) , (5.4.6)

where {z(t)} is a process adapted to {St} (i.e. z(t) ∈ St, t ∈ R) and {m(t)} is a
St-martingale?

Dually, let {S̄t} be a stationary p.n.d. decreasing family of subspaces with
S̄t ⊃ H+

t (dy). Under what conditions does dy admit a backward semimartingale
representation of the form

y(t)− y(s) =

∫ t

s

z̄(σ) dσ + m̄(t)− m̄(s) , (5.4.7)
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where {z̄(t)} is now a process adapted to {S̄t} (i.e. z̄(t) ∈ S̄t, t ∈ R) and {m̄(t)} is a
backward S̄t-martingale, namely m̄(t)− m̄(s) ∈ S̄t for s ≥ t and m̄(t−h)− m̄(t) ⊥
S̄t, ∀h ≥ 0 ?

Question 1 is answered by the following theorem.

Theorem 5.4.4. Let dy and {St} be as stated above. Then a necessary and
sufficient condition for dy to admit a semmartingale repressentation with respect to
{St} of the type (5.4.6) is that there exists a constant k independent of h, such that

‖ES [y(h)− y(0)] ‖ ≤ kh ∀h ≥ 0 . (5.4.8)

In the representation (5.4.6), {z(t)} can be chosen stationary and mean-square con-
tinuous and {m(t)} with stationary (orthogonal) increments. The integral can be
interpreted as a mean square Riemann integral.

Dually, let {S̄t} be as specified in Question 1. Then a necessary and sufficient
condition for dy to admit a a representation of the form (5.4.7) is that

‖ES̄ [y(−h)− y(0)] ‖ ≤ k̄h ∀h ≥ 0 (5.4.9)

where the constant k̄ is independent of h. Here again {z̄(t)} can be chosen stationary
and mean-square continuous, {m̄(t)} with stationary (orthogonal) increments and
the integral can be interpreted as a mean square Riemann integral.

A process satisfying condition (5.4.8) (or (5.4.9)) will be called conditionally
Lipschitz with respect to {St} (or {S̄t}). Note that a m-dimensional martingale
with stationary (orthogonal) increments must be a constant (matrix) multiple of
a vector Wiener processes (see Chapter 3). It then follows that a stationary in-
crements process which satisfies the conditional Lipschitz condition with respect to
some increasing family {St} has a unique decomposition into a m.s. differentiable
stationary component adapted to {St}, plus a matrix multiple of a vector Wiener
process. It will be seen shortly that the Wiener process is in fact the generating
process of {St}. The stationary process {z(t)} is called the conditional derivative
of dy with respect to the increasing family {St}.

A completely dual picture holds for the backward setting.

5.5 Stationary increments semimartingales in the
spectral domain

In this section we shall prove Theorem 5.4.4, our main representation result, by
spectral domain techniques. We shall also establish a number of spectral domain
characterizations of stationary increments processes which are believed to be of
interest in themselves.

Lemma 5.5.1. Let f ∈ L2
p and let PH2

p denote the orthogonal projection from L2
p

onto H2
p . Then the condition

‖PH2
pχhf‖L2

p
≤ kh , h ≥ 0, (5.5.1)
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is necessary and sufficient for f to admit a decomposition

f = g + ḡ , (5.5.2)

where g ∈ H2
p and ḡ ∈ W̄2

p. Dually

‖P H̄2
p χ̄hf‖L2

p
≤ k̄h , h ≥ 0, (5.5.3)

is necessary and sufficient for f to admit a decomposition of the form (5.5.2) but
now with g ∈W2

p and ḡ ∈ H̄2
p . The decomposition (5.5.2) is unique.

Proof. (Necessity) Let (5.5.2) hold with g ∈ H2
p and ḡ ∈ W̄2

p. Then χhḡ is
orthogonal to H2

p , so

‖PH2
pχhf‖L2

p
= ‖PH2

pχhg‖L2
p
≤ ‖χhg‖L2

p
≤ sup

ω
|χh(ω)| ‖g‖L2

p

and since supω |χh(ω)| = h, we obtain (5.5.1).
(Sufficiency) Define the H2

p -valued map h 7→ zh, where

zh := PH2
pχhf , h ≥ 0 .

Clearly z0 = 0. We shalll show that if (5.5.1) holds, then the limit

lim
h↓0

1

h
(zh − z0) = lim

h↓0

1

h
PH2

pχhf = g

exists weakly in H2
p . To this end we shall introduce the restricted right-shift semi-

group Σt : f 7→ PH2
peiωtf ; t ≥ 0, in H2

p , see e.g. [46]. Note that Σt annihilates the

anticausal part (in H̄2
p ) of any f ∈ L2(I), so that Σtf = ΣtP

H2
pf for all t ≥ 0. It is

then clear that

zt+h − zt = PH2
peiωt e

iωh − 1

iω
f = Σt(P

H2
pχhf) = Σt(zh − z0)

for all t ≥ 0 and h ≥ 0 and hence, choosing an arbitrary ϕ ∈ H2
p , we have from

(5.5.1),
|〈ϕ, zt+h − zt〉| ≤ ‖Σ∗

tϕ‖ ‖zh − z0‖ ≤ ‖ϕ‖ kh ,
where Σ∗

t is the operator of multiplication by eiωt, the adjoint in H2
p of Σt. By

this inequality, we see that fϕ(t) := 〈ϕ, f〉 is a Lipschitzian function of t in R+ and
hence admits a derivative there, except perhaps on set Nϕ of Lebesgue measure
zero. In other words, the limit

lim
h↓0
〈ϕ, 1

h
(zt+h − zt)〉 = lim

h↓0
〈Σ∗

tϕ,
1

h
(zh − z0)〉

exists for all t ∈ R+−Nϕ. Now Σ∗
t is a strongly continuous semigroup and {Σ∗

tϕ ; t ∈
R+−Nϕ, ϕ ∈ H2

p} certainly contains a dense set inH2
p . On the other hand 1

h (zh−z0)
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is bounded in norm for all h ≥ 0 by virtue of condition (5.5.1). Hence, by a well know
characteerization of weak convergence (see e.g. [2, p. 47]), 1

h (zh − z0) converges
weakly to an element g of H2

p . But then the limit

lim
h↓0

1

h
(zt+h − zt) = lim

h↓0
Σt

1

h
(zh − z0)

exists also weakly for all t ≥ 0 and is eqaul to Σtg. The left (weak) derivative also
exists at any t > 0 since 1

h (zt − zt−h) = Σt−h
1
h (zh − z0) and for all h > 0 such that

t− h > 0 we have

〈ϕ, 1
h (zt − zt−h)〉 = 〈Σ∗

t−hϕ,
1
h (zh − z0)〉

= 〈(Σ∗
t−h − Σ∗

t )ϕ,
1
h(zh − z0)〉+ 〈Σ∗

tϕ,
1
h (zh − z0)〉 .

The first term in the last member tends to zero as h ↓ 0, since Σ∗
t is strongly contin-

uous and 1
h (zh − z0) is bounded in norm. Hence 〈ϕ, 1/h(zt − zt−h〉 → 〈Σ∗

tϕ, g〉 =
〈ϕ, Σtg〉 for all ϕ ∈ H2

p , so we have shown that fϕ(t) = 〈ϕ, zt〉 is differentiable with

a continuous derivative ḟϕ(t) = 〈ϕ, Σtg〉 at every point t ≥ 0. Thus

〈ϕ, zh − z0〉 =
∫ h

0

〈ϕ, Σtg〉 dt, h ≥ 0

for any ϕ ∈ H2
p . Now just note that the integral

∫ h

0 Σtg dt exists in the strong sense
in H2

p since t 7→ Σtg is continuous. Therefore we can write (see e.g. [129])

∫ h

0

〈ϕ, Σtg〉 dt = 〈ϕ,
∫ h

0

Σtg dt〉

which, by the previous equality implies that

zh − z0 =

∫ h

0

Σtg dt , h ≥ 0 .

Incidentally, we have just shown that zt is strongly differentiable. Recalling the
definitions of zh and of Σt we obtain

PH2
pχhf = PH2

p

∫ h

0

eiωtg dt = PH2
pχhg .

Define now ḡ := f − g. Then ḡ is an L2
p function which in virtue of the above

equality, satisfies

PH2
pχhḡ = 0 , ∀h ≥ 0

that is, χhḡ ∈ H̄2
p , ∀h ≥ 0. It follows by Lemma 5.2.4 that ḡ ∈ W̄2

p.
The dual statement follows by the same arguments.

An important special case of the lemma is obtained by considering functions
f belonging to the subspaces W2

p or W̄2
p of L2

p.
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Let f ∈W2
p. Let us agree to call such an f decomposable , if it can be written

in the form f = g+c where g ∈ H2
p and c is a constant vector. Decomposability can

be defined mutatis mutandis also for functions f̄ ∈ W̄2
p. Matrix valued functions

with rows in W2
p (or in W̄2

p) are decomposable if they can be split as a sum of a

matrix function with rows in H2
p (H̄2

p ) plus a constant matrix. Note that these
decompositions are unique20.

Corollary 5.5.2. Let S be a backward shift invariant p.n.d. subspace containig
H−(dy) and W ∈ W2

m×p the corresponding causal full-rank spectral factor. Then
dy is conditionally Lipschitz with respect to {St} if and only if W is decomposable;
i.e. there exists a constant m× p matrix D and a matrix function G ∈ H2

m×p such
that

W (iω) = G(iω) +D (5.5.4)

Dually, let S̄ be a forward shift invariant p.n.d. subspace containig H+(dy) and
W̄ ∈ W̄2

m×p the corresponding anticausal full-rank spectral factor. Then dy is con-

ditionally Lipschitz with respect to {S̄t} if and only if W̄ is decomposable; i.e. there
exists a constant m× p matrix D̄ and a matrix function Ḡ ∈ H̄2

m×p such that

W̄ (iω) = Ḡ(iω) + D̄ (5.5.5)

Proof. Let dw be the generating Wiener process of S and dŵ its Fourier trans-
form. From the spectral representation of dy it follows that the random vari-
ables ES[yk(h) − yk(0)] , k = 1, . . . ,m correspond, under the isomorphism Iŵ, to

PH2
pχhWk, k = 1, . . . ,m, Wk being the k-th row of W . Since Iŵ is a unitary map,

dy is conditionally Lipschitz if and only if ‖PH2
pχhWk‖ = O(h) for all k. Then the

decomposition (5.5.5) follows from (5.5.2) since in this case all ḡ’s must be constant.

We have now available the instruments to provide a proof of Theorem 5.4.4

Proof of Theorem 5.4.4

Sufficiency is almost immediate. For let dw be the generating Wiener process of S
and W be the corresponding causal spectral factor. Since the conditional Lipschitz
condition is equivalent to the decomposability (5.5.5), we have

y(h)− y(0) =
∫ +∞
−∞ χh(iω)W (iω) dŵ =

∫ +∞
−∞ χh(iω)G(iω) dŵ +

∫ +∞
−∞ χh(iω)Ddŵ

=
∫ h

0
z(t) dt+D[w(h) − w(0)]

where {z(t)} is the stationary process

z(t) =

∫ +∞

−∞
eiωtG(iω) dŵ (5.5.6)

20This also follows from the fact that H2
p functions of the half plane tend uniformly to zero as

s → ∞ within the region of analiticity, see [52].
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which is clearly adapted to {St} (as G ∈ H2
m×p) and mean square continuous.

To prove necessity we shall first show that the process {z(t)} in the represen-
tation (5.4.6) can always be chosen stationary and mean-square continuous.

For (5.4.6) to make sense we have at least to assume {z(t)} measurable and
with a locally square integrable norm. Note then that y(t+h)−y(t) = Ut[y(h)−y(0)]
can be written either as

y(t+ h)− y(t) =

∫ t+h

t

z(s) ds+m(t+ h)−m(t)

or as

y(t+ h)− y(t) =

∫ h

0

Utz(s) ds+ Ut[m(h)−m(0)] .

Keeping t fixed and letting h vary in R+, the second term in the last expression
defines a martingale with respect to the increasing family S̃h := St+h. The same is
of course true for m(t + h) −m(t). On the other hand both first terms in the two
expressions above are in S̃h and of bounded mean variation, as functions of h. By
the uniqueness proposition 5.4.2, they must be equal; i.e.

∫ h

0

[z(t+ s)− Utz(s)] ds = 0, ∀h ≥ 0

almost surely, and hence {z(t + s)} and {Utz(s)} are equivalent processes for all
t. We can therefore choose {z(t)} to be generated by the shift; i.e. z(t) = Utz(0)
and thereby stationary and mean square continuous (for Ut is a strongly continuous
semigroup). The integral in (5.4.6) can therefore be understood as a mean square
Riemann integral.

We shall now show that the conditional Lipschitz condition is necessary for
dy to admit a representation of the form (5.4.6). Since z(t) = Utz(0) we have
‖z(t)‖ = ‖z(0)‖ and it follows from (5.4.6) that

‖ES[y(h)− y(0)] ‖ ≤
∫ h

0

‖ES z(t)‖ dt ≤ ‖z(0)‖ h

and hence condition (5.4.8) is implied by (5.4.6). This concludes the proof. 2

Note that the decomposition (5.5.5) implies that the semimartingale represen-
tation of dy with respect to a stationary family St = H−

t (dw), can be written in
the frequency domain as

dŷ = Gdŵ +Ddŵ (5.5.7)

the first term on the right (namely dẑ := Gdŵ) being the stationary component of
dy. It should be pointed out that the matrixDD′ is invariant over all semimartingale
representations of dy. In fact DD′ h is the quadratic variation of the process on the
interval [0, h] and, as explained before, this quantity is independent of the particular
S (or S̄) with respect to which the process has a semimartingale representation. As
we shall see, in the rational case we have DD′ = lims→∞ Φ(s).

We shall call a stationary increments process nondegenerate if rank DD′ =
rank Φ(iω) a.e.; in other words, in case the rank of DD′ is equal to the multiplicity
p of the process, and degenerate otherwise.
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Proposition 5.5.3. Assume that dy has the semimartingale representation (5.5.7),
with respect to some increasing family St = H−

t (dw), and let rank DD′ = r < p
(i.e. the process is degenerate). There is a constant orthogonal transformation
of the generating process dw which permits to decompose dy in the sum of two
uncorrelated semimartingales dy1 and dy2, the first nondegenerate of multiplicity r
and the second without martingale part (i.e. completely degenerate).

Proof. The matrix DD′ can be factored as D̃D̃′ with D̃ of dimension m× r and of
full column rank (r). Hence D̃ has a left-inverse, e.g. D̃−L = (D̃′D̃)−1D̃′. Define
the r-dimensional Wiener process du by setting

du := D̃−LDdw := Ndw .

Note that N is an orthogonal r × p matrix; i.e. NN ′ = Ir , so that E dudu′ = Irdt.
Also, because of orthogonality, both NN ′ and Ip − NN ′ are projection matrices,
in fact, complementary projections in Rp. Since rank (Ip − NN ′) = p − r, we can
find a factorization: Ip − NN ′ = MM ′ with M a full rank matrix of dimension
(p − r) × p, which is necessarily orthogonal; i.e. MM ′ = Ip−r. Define now the
normalized Wiener process dv := Mdw. It is easy to check that the increments of
du and dv are orthogonal, since

E du dv′ = NM ′ = NN ′NM ′MM ′ = N [N ′N(I −N ′N)]M ′ = 0 .

Hence it follows from the orthogonal decomposition

dw = N ′Ndw + (Ip −N ′N)dw = [N ′ M ′]

[
du
dv

]
(5.5.8)

that St = H−
t (dw) splits in the orthogonal direct sum St = H−

t (du) ⊕ H−
t (dv).

In fact, by setting G [N ′ M ′] := [G1 G2] , substituting (the Fourier transform of)
(5.5.8) into (5.5.7) and recalling that DN ′ = D̃ and DM ′ = D̃NM ′ = 0, we obtain

dŷ =
(
G1dû+ D̃dû

)
+G2dv̂ := dŷ1 + dŷ2 .

Here dŷ1 and dŷ2 are clearly uncorrelated and D̃ has rank r so dy1 is nondegenerate.

5.6 Bibliographical notes

The extension of the spectral factorization theory to stationary increments process
described in this chapter is due to the authors, [86]. Semimartingales (called quasi-
martingales in the early literature) were introduced by Fisk, [30] and have since then
played a prominent role in the theory of continuous time stochastic processes. The
wide-sense version discussed in this chapter requires only a minimum of measure-
theoretic technicalities. It does not seem to have been treated before [86] in the
literature. Conditions of the type (5.4.8) have to do with the characterization of
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the domain of the conditional shift semigroup ES Ut ; t ≥ 0 and appear in a very
general context in the work of Rishel [108], see also [118] and others. Our condition
is of course quite weaker than what is needed in the strict-sense theory.
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Chapter 6

Linear Stochastic Systems

This chapter is an introduction to linear state-space modeling of second-order, sta-
tionary, purely nondeterministic, stochastic vector processes with a rational spectral
density. Such processes can be modeled as the output {y(t)} of a finite-dimensional
linear system {

x(t+ 1) = Ax(t) +Bw(t)

y(t) = Cx(t) +Dw(t)
(6.0.1)

driven by white noise input {w(t)}, where A,B,C and D are matrices of appropri-
ate dimensions, and where A has all its eigenvalues in the open unit disc. Stochastic
realization theory consists in characterizing and determining any such representa-
tion. This leads to spectral factorization. The geometric structure of stochastic
models is described in terms of coordinate-free representations based on elementary
Hilbert space concepts.

6.1 Basic principles of deterministic realization theory

Before introducing stochastic realization theory, we briefly review the basic prin-
ciples of state space construction in deterministic realization theory. To this end,
consider the constant, linear system Σ described by

(Σ)

{
x(t + 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(6.1.1)

where x takes values in the state space X, u in the input space U and y in the
output space Y. The spaces X, U and Y will be identified with Rn, R` and Rm,
respectively, and A ∈ Rn×n, B ∈ Rn×`, C ∈ Rm×n and D ∈ Rm×` are matrices.
The dimension is defined to be the dimension the state space X, i.e., dim Σ := n.

Assuming that the system Σ is at rest at time t = 0, i.e., x(0) = 0, an input
signal u(t) = u(0)δt0 , i.e., an impulse21 at time t = 0, yields an output signal

21δst is the Kronecker symbol that is one when s = t and zero otherwise.

119
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120 Chapter 6. Linear Stochastic Systems

y(t) = Rtu(0) for t ≥ 0. The sequence

R0, R1, R2, R3, . . . (6.1.2)

of m× ` matricies is called the impulse response of Σ. Clearly,

R0 = D, Rk = CAk−1B, k = 1, 2, 3, . . . , (6.1.3)

so the the transfer function of Σ,

R(z) =

∞∑

k=0

Rkz
−k, (6.1.4)

converges in the neighborhood of infinity (outside a disc of radius equal to the
maximum eigenvalue of A) to the rational m× ` matrix function

R(z) = C(zI −A)−1B +D. (6.1.5)

The realization problem is the inverse problem of determining a system Σ with
a given transfer function R. Such a Σ is called a realization of R. A realization Σ
is minimal if there is no other realization of R of smaller dimension. The McMillan
degree δ(R) of R is the dimension of a minimal realization of R.

In other words, given a linear time-invariant input/output system

u−→ R(z)
y−→

with an impulse response (6.1.2), the realization problem amounts to determin-
ing matrices (A,B,C,D) such that the corresponding system Σ has this impulse
response. The matrix D can immediately be identified as R0, so it really remains
to determine (A,B,C). By time-invariance, the input u(t) = u(s)δts will yield the
output y(t) = Rt−su(s), so, by superposition, one obtains the output

y(t) =
−1∑

s=−N

Rt−su(s), t ≥ 0 (6.1.6)

from an input string {u(−N), u(−N + 1), . . . , u(−1)}.
An important tool in realization theory is the Hankel map obtained by passing

such a finite string {u(−N), u(−N+1), . . . , u(−1)} of inputs through the system Σ
that is originally at rest (x(N) = 0) and then observing the output sequence {y(0),
y(1), y(2), . . . }. This yields precisely (6.1.6), or, equivalently, the block Hankel
system





y(0)
y(1)
y(2)

...




=





R1 R2 R3 · · ·
R2 R3 R4 · · ·
R3 R4 R5 · · ·
...

...
...

. . .









u(−1)
u(−2)

...
u(−N)

0
...





.
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The Hankel factorization

The basic idea in realization theory is that, if R has a finite-dimensional realization
(A,B,C,D), the Hankel matrix

H :=





R1 R2 R3 · · ·
R2 R3 R4 · · ·
R3 R4 R5 · · ·
...

...
...

. . .




(6.1.7)

has finite rank and admits the factorization

H = OR (6.1.8)

where R is the reachability matrix

R =
[
B AB A2B · · ·

]
(6.1.9)

and O is the observability matrix

O =





C
CA
CA2

...




. (6.1.10)

In fact, it follows from (6.1.3) that

H :=





CB CAB CA2B · · ·
CAB CA2B CA3B · · ·
CA2B CA3B CA4B · · ·

...
...

...
. . .




=





C
CA
CA2

...




[
B AB A2B · · ·

]
.

Abstractly this factorization may be illustrated by the commutative diagram

U
H−→ Y

R↘ ↗O

X

where Y is the class of output sequences such that y(t) = 0 for t < 0 and U is the
class of finite input sequences such that u(t) = 0 for t ≥ 0 and t < −N for some
finite N . In fact,

R





u(−1)
u(−2)
u(−3)

...




= Bu(−1) +ABu(−2) +A2Bu(−3) + · · · = x(0)
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and 



y(0)
y(1)
y(2)

...




=





C
CA
CA2

...




x(0) = Ox(0).

The system Σ is said to be completely reachable if

Im R = X, (6.1.11)

i.e., R is surjective (onto) and completely observable if

kerO = 0, (6.1.12)

i.e., O is injective (one-to-one). For simplicity, we shall say that the pair (A,B) is
reachable if and only if (6.1.11) holds and that (C,A) is observable if and only if
(6.1.12) holds.

Solving the realization problem

To determine (A,B,C) from such a factorization it is better to deal with finite
matrices. The assumption that R is rational and proper lets us do precisely this.
In fact, let

ρ(z) = zr + a1z
r−1 + · · ·+ ar (6.1.13)

be the least common denominator of the elements of R(z). Then ρ(z)R(z) is a
polynomial, so identifying coefficients of negative powers in

ρ(z)R(z) = (zr + a1z
r−1 + · · ·+ ar)(R0 +R1z

−1 +R2z
−2 +R3z

−3 + · · · ),

we see that the impulse response (6.1.2) must satisfy the finiteness condition

Rr+k = −a1Rr+k−1 − a2Rr+k−2 − · · · − arRk, k = 1, 2, 3, .... (6.1.14)

Consequently, for ν ≥ r, successively adding block rows and block columns in

Hν :=





R1 R2 · · · Rν

R2 R3 · · · Rν+1

...
...

...
. . .

Rν Rν+1 · · · R2ν−1




, ν = 0, 1, 2, . . . (6.1.15)

does not increase the rank. Hence we have the following lemma.

Lemma 6.1.1. Let ρ(z) the least common denominator (6.1.13) of the elements of
R(z). Then

rank Hν = rank H for all ν ≥ r,
where r := deg ρ.
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Therefore, instead of (6.1.8), we can consider the finite-dimensional factoriza-
tion problem

Hν = OνRν (6.1.16)

where

Oν =





C
CA
...

CAν−1




, Rν =

[
B AB · · · Aν−1B

]
. (6.1.17)

By (6.1.14), Oν and Rν have the same ranks as O and R, respectively, and hence
the following holds.

Lemma 6.1.2. Let Σ be a system (6.1.1) of dimension n, and let ν ≥ r :=
deg ρ. Then the system Σ is completely observable if and only if rank Oν = n and
completely reachable if and only if rank Rν = n.

From the factorization (6.1.16) it follows that

rank H ≤ n := dimΣ, (6.1.18)

and therefore rank H is a lower bound for the McMillan degree δ(R). We shall
demonstrate that in fact δ(R) = rank H by constructing a realization of dimension
precisely rank H. To this end, we perform a minimal factorization of Hν for some
ν > r := deg ρ. More precisely, given p := rank Hν , we determine two matrices Ων

and Γν of dimensions mν × p and p× kν, respectively, such that

Hν = ΩνΓν . (6.1.19)

This factorization can be illustrated by the commutative diagram

U
Hν−→ Y

Γν ↘ ↗Ων

X

where dim X = p := rank Hν . The idea is to determine a minimal realization
(A,B,C,D) from these factors. For this, we need some notation. Given an mν × p
matrix Ων with ν > r, let σ(Ωr) be the shifted mr×p matrix obtained by removing
the first m× p block row and the last ν + 1− r block rows. Moreover, let σ(Γr) be
the p× kr matrix obtained by an analogous operation on the block columns of Γν .
Finally, let Q† denote the Moore-Penrose pseudo-inverse of the matrix Q, and let

Ek :=
[
Ik 0 · · · 0

]′

be the rk × k matrix consisting of r blocks of dimensions k × k, the first being the
identity and all others zero.

Theorem 6.1.3. Given a proper rational m × ` matrix function R(z), let ρ(z)
the least common denominator (6.1.13) of the elements of R. Moreover, for some
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ν > r := deg ρ, let (6.1.19) be a minimal factorization of the Hankel matrix (6.1.15).
Then

A = (Ωr)
†σ(Ωr), B = ΓrE`, C = E′

mΩr, D = R0 (6.1.20)

is a minimal realization of R, and its dimension is rank H. Symmetrically, A is
also given by

A = σ(Γr)(Γr)
†. (6.1.21)

Moreover, the corresponding observability and reachability matrices (6.1.17) are
given by

Or = Ωr, Rr = Γr. (6.1.22)

Proof. First note that factorizations (6.1.19) can be performed consistently for
different choices of ν so that Ων and Γν are submatrices of Ωµ and Γµ, respectively,
whenever ν ≤ µ. Now, choosing ν sufficiently large, we can form the multiple shifts
σk(Ωr) and σk(Γr) by deleting k blocks at the beginning and ν − k − r blocks at
the end of Ωµ and Γµ, respectively. Then, by inspection, we see that

σj(Ωr)σ
k(Γr) = σj+k(Hr) (6.1.23)

where

σk(Hr) =





Rk+1 Rk+2 · · · Rk+r

Rk+2 Rk+3 · · · Rk+r+1

...
...

...
. . .

Rk+r Rk+r+1 · · · Rk+2r−1




.

Therefore, taking A := (Ωr)
†σ(Ωr),

Aσk(Γr) = (Ωr)
†σ(Ωr)σ

k(Γr) = (Ωr)
†Ωrσ

k+1(Γr) = σk+1(Γr),

since Ωr has full column rank and thus (Ωr)
†Ωr = I. This immediately yields

AkΓr = σk(Γr), k = 0, 1, 2, . . . . (6.1.24)

In particular, choosing k = 1, we obtain AΓr = σ(Γr), from which (6.1.21) follows.
In the same way, we also have

ΩrA
k = σk(Ωr), k = 0, 1, 2, . . . (6.1.25)

Given (6.1.20), we obtain

CAk−1B = E′
mΩrA

k−1ΓrE`,

which, in view of (6.1.24) and (6.1.23), yields

CAk−1B = E′
mΩrσ

k−1(Γr)E` = E′
mσ

k−1(Hr)E` = Rk

for k = 1, 2, . . . . Since trivially D = R0, this establishes (6.1.3). From (6.1.24) we
have AkB = σk(Γr)E`, which yields

[
B AB · · · Ar−1B

]
= Γr,
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i.e., Rr = Γr, as claimed. In same way, Or = Ωr is derived from (6.1.25).

In view of (6.1.18) and Lemma 6.1.1, we immediately have the following corol-
lary.

Corollary 6.1.4. The McMillan degree δ(R) of R equals the rank of the Hankel
matrix H.

As another corollary we have the following fundamental fact in deterministic
realization theory.

Theorem 6.1.5. A realization Σ of R is minimal if and only if it is both completely
reachable and completely observable.

Proof. Let n := dim Σ. Then, by Corrollary 6.1.4 and Lemma 6.1.1, Σ is a minimal
realization of R if and only if

rank Hr = n. (6.1.26)

In this holds, by (6.1.16),

n = rank Hr ≤ min
(
rank Or, rank Rr

)
≤ n,

and hence
rank Or = rank Rr = n, (6.1.27)

which, by Lemma 6.1.2, is equivalent to Σ being completely observable and com-
pletely reachable. Conversely, if (6.1.27) holds, the n× n matrices O′

rOr and RrR
′
r

both have rank n, and hence so does

O′
rOrRrR

′
r = O′

rHrR
′
r.

But then Hr too must have rank n.

An n× n matrix A is said to be a stability matrix if all it eigenvalues are less
than one in modulus.

Corollary 6.1.6. Let Σ be a minimal realization of R. Then A is a stability matrix
if and only if Rk → 0 as k →∞.

Proof. In view of (6.1.3), trivially Rk → 0 if A is a stability matrix. Conversely,
if Rk → 0 as k →∞, OrA

kRr → 0. But then O′
rOrA

kRrR
′
r → 0, and consequently

Ak → 0, establishing stability.

Corollary 6.1.7. Let (Â, B̂, Ĉ, D̂) be any minimal realization of R. Then there is
a nonsingular matrix T such that

(
Â, B̂, Ĉ, D̂

)
=
(
TAT−1, TB,CT−1, D

)
, (6.1.28)
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where (A,B,C,D) is as defined in Theorem 6.1.3. Conversely, for any nonsingular
T , (6.1.28) is a minimal realization of R.

Proof. If (A,B,C,D) and (Â, B̂, Ĉ, D̂) are minimal realizations of R, then the

corresponding observability an reachability matrices Or, Rr and Ôr, R̂r, respectively,
have full rank. Moreover,

OrRr = Hr = ÔrR̂r (6.1.29)

OrARr = σ
(
Hr

)
= ÔrAR̂r (6.1.30)

From (6.1.29) it follows that

R̂r = TRr, Ôr = OrT
−1

where

T =
(
Ôr

)†
Or = R̂r

(
Rr

)†
.

In particular, this implies that B̂ = TB and Ĉ = CT−1. Then Â = TAT−1 follows
from (6.1.30). Trivially, we have D̂ = R0 = D.

Balancing

Given the matrices (A,B,C) of a minimal system (6.1.1), let H be the corresponding
infinte-dimensional (block) Hankel matrix defined by (6.1.7). Since rank H = n <
∞, H is compact, and as established in Section 2.3, the self-adjoint nonnegative
definite matrix H∗H has real, nonnegative eigenvalues σ2

1 , σ
2
2 , σ

2
3 , . . . , numbered in

nonincreasing order, and a sequence of orthonormal eigenvectors (v1, v2, v3, . . . );
i.e.,

H∗Hvk = σkvk, k = 1, 2, 3, . . . . (6.1.31)

Then, σ1, σ2, σ3, . . . are the singular values of H, and, since rank H = n < ∞,
σk = 0 for k > n. Now, in view of (6.1.8),

H∗H = R∗O∗OR,

and therefore

RH∗H = RR∗O∗OR = PQR,

where, as is straight-forward to demonstrate, the reachability Gramian P := RR∗

and observability Gramian Q := O∗O are the unique solutions of the Lyapunov
equations

P = APA′ +BB′, (6.1.32a)

Q = A′QA+ C′C. (6.1.32b)

Therefore,

PQṽk = σ2
kṽk, k = 1, 2, . . . , n,
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where ṽk := Rvk; i.e., σ2
1 , σ

2
2 , . . . , σ

2
n are the eigenvalues of the n × n matrix PQ.

Since (6.1.1) is completely reachable and completely observable, P and Q are non-
sigular, and so is PQ. Hence all eigenvalues of PQ are positive.

Let P = RR′ be a Cholesky factorization of P . Then R′QR is symmetric and
has the same eigenvalues as PQ. Hence

R′QRuk = σ2
kuk, k = 1, 2, . . . , n,

where the eigenvalues u1, u2, . . . , un are taken to be orthonormal; i.e.,

U ′R′QRU = Σ2, (6.1.33)

where Σ := diag (σ1, σ2, . . . , σn) and U := (u1, u2, . . . , un) is an orthogonal matrix;
i.e, U ′U = UU ′ = I.

The system (6.1.1) is said to be balanced if

P = Σ = Q. (6.1.34)

Such systems have desirable numerical and approximation properties, especially
when it comes to model reduction; see Chapter 11. To balance an arbitrary system
(6.1.1), we need to find a transformation (6.1.28) so that the system corresponding
to (Â, B̂, Ĉ, D̂) is balanced. Then T is called a balancing transformation.

Proposition 6.1.8. Let P = RR′ be a Cholesky factorization of the reachability
Gramian, and let

R′QR = UΣ2U ′ (6.1.35)

be a singular value decomposition of R′QR, where Q is the observability Gramian.
Then

T := Σ1/2U ′R−1 (6.1.36)

is a balancing transformation, and

TPT ′ = Σ = (T ′)−1QT−1, TPQT−1 = Σ2. (6.1.37)

Proof. First note that (6.1.36) and (6.1.33) are equivalent. A straight-forward
calculation yields (6.1.37). Then applying the transformation T to (6.1.32), we
obtain

Σ = ÂΣÂ′ + B̂B̂′, (6.1.38a)

Σ = Â′ΣÂ+ Ĉ′Ĉ, (6.1.38b)

and hence the system (Â, B̂, Ĉ, D̂) is balanced, since both the reachability and the
observability Gramians equal Σ.
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6.2 Stochastic state-space models

Wide-sense stationary processes with a rational spectral density matrix provide a
natural and useful class of finitely-parametrized stochastic models leading to sim-
ple recursive estimation algorithms. It turns out that these processes are precisely
those admitting finite-dimensional state-space descriptions (or stochastic realiza-
tions) with constant parameters. The essential structural property that leads to
finite-dimensional recursive filtering (and identification) is in fact the representabil-
ity of the process as a linear function of a finite-dimensional Markov process. This
Markov process, called the state of the process represented, has a “sufficient statis-
tic” property, which generalizes the “dynamic memory” property of the state vari-
ables in deterministic system theory. Much of modern statistical signal processing
is based on this property.

More precisely, such a linear state-space model takes the form

(Σ)

{
x(t+ 1) = Ax(t) +Bw(t)

y(t) = Cx(t) +Dw(t)
(6.2.1)

where A is a stability matrix (i.e., all the eigenvalues of A lie in the open unit disc),
and where {w(t)} is a p-dimensional normalized white noise; i.e.,

E{w(t)w(s)′} = Iδts E{w(t)} = 0,

{x(t)}t∈Z is the n-dimensional state process, and {y(t)}t∈Z is the m-dimensional
(wide sense) stationary process to be represented. In this model both x and w are
part of the representation and can be chosen in different ways. The situation is
thus drastically different than in the deterministic setting described in the previous
section. This point will be clarified as we proceed.

We begin by analyzing the structure of causal linear state-space models, i.e.,
models (6.2.1) evolving forward in time, and describe them in a coordinate-free way.
This description is symmetric with respect to the past and the future, and therefore
we can derive symmetric state-space models, evolving backward in time. This leads
to forward and backward Kalman filtering, the steady-state versions of which are
state space models of particular importance.

Given a causal model (6.2.1), the process y can be thought as the output

obtained by passing a white noise signal w through a linear time-invariant filter

white noise
w−→ W (z)

y−→
with a stable transfer function

W (z) = C(zI −A)−1B +D (6.2.2)

for an infinitely long time so that the system is in statistical steady state. Then,
since A is a stability matrix,

x(t) =
t−1∑

j=−∞
At−1−jBw(j)
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and

y(t) =

t−1∑

j=−∞
CAt−1−jBw(j) +Dw(t).

In particular, x and y are jointly stationary.
The system (6.2.1) can be regarded as a linear map defining x and y as linear

functionals of the input noise w. In fact, since the matrix A is stable, this map is
a causal map. In order to describe this property in a precise way it is convenient
to think of the (components of) x(t) and y(t), for all t, as elements of the infinite
dimensional Hilbert space of second order random variables

H(w) = span{wi(t) | t ∈ Z; i = 1, 2, . . . , p} (6.2.3)

with inner product (ξ, η) = E{ξη}. In order to avoid too large a Hilbert space H(w)
we assume that the matrix [

B
D

]

is full column rank.
By causality, the past subspaces of x and y

H−
t (x) = span{xi(s) | s < t; i = 1, 2, . . . , n} (6.2.4)

H−
t (y) = span{yi(s) | s < t; i = 1, 2, . . . ,m} (6.2.5)

are both contained in H−
t (w) and hence the future space of w

H+
t (w) = span{wi(s) | s ≥ t; i = 1, 2, . . . , p} (6.2.6)

will be orthogonal to both H−
t+1(x) and H−

t (y).
Causality can thus be characterized by the orthogonality relation

H+
t (w) ⊥

(
H−

t+1(x) ∨H−
t (y)

)
for all t ∈ Z. (6.2.7)

This is equivalent to saying that Σ is a forward representation or that it evolves
forward in time. In particular, E{x(t)w(t)′} = 0 for all t ∈ Z.

The family {Xt} of finite-dimensional subspaces, defined by

Xt = span{x1(t), x2(t), . . . , xn(t)} ⊂ H(w) t ∈ Z, (6.2.8)

will play a fundamental role in this book. The subspace Xt is called the state space
of the system (6.2.1) at the instant t. Clearly dimXt is constant by stationarity,
and dimXt ≤ n with equality if and only if {x1(t), x2(t), . . . , xn(t)} is a basis in
Xt. This can be characterized in terms of the state covariance

P = E{x(0)x(0)′}. (6.2.9)

It follows from stationarity that P = E{x(t)x(t)′} for all t, and hence the first
equation in (6.2.1) yields

P = APA′ + BB′, (6.2.10)
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which is a Lyapunov equation. (See Appendix A.3.) Since the matrix A has all its
eigenvalues in the open unit disc, by Proposition A.3.2, we can form

P =

∞∑

j=0

Aj−1BB′(A′)j−1 = RR′,

where R is defined by (6.1.9); i.e., P is the reachability grammian of Σ, and hence
positive definite if and only if (A,B) is reachable.

Proposition 6.2.1. The n stochastic variables {x1(t), x2(t), . . . , xn(t)} form a
basis in Xt if and only if P > 0; i.e., if and only if (A,B) is reachable.

Proof. Since
‖a′x(t)‖2 = a′Pa,

for all a ∈ Rn, there fails to be a nonzero a such that a′x(t) = 0 precisely when
P > 0.

In this chapter, we shall assume that (A,B) is reachable unless otherwise
stated.

Assumption 6.2.2. The pair (A,B) in (Σ) is reachable.

The subspace characterizations given above suggest that the linear state-space
description can be done entirely in terms of Hilbert space geometry. In fact, the
property that the state-space representation (6.2.1) evolves forward in time is char-
acterized by (6.2.7), i.e., by

St ⊥H+
t (w) where St := H−

t+1(x) ∨H−
t (y). (6.2.11)

Therefore, since

x(s) = As−tx(t) +

s−1∑

j=t

As−1−jBw(j)

y(s) = CAs−tx(t) +

s−1∑

j=t

CAs−1−jBw(j) +Dw(s)

for all s ≥ t,
EStb′

[
x(s)
y(s)

]
= b′

[
As−t

CAs−t

]
x(t) = EXtb′

[
x(s)
y(s)

]

for all b ∈ Rn+m, from which we can deduce that

EStλ = EXtλ for all t ∈ Z and λ ∈ S̄t := H+
t (x) ∨H+

t (y), (6.2.12)

where Xt is the state space (6.2.8).
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Next, comparing conditions (i) and (iv) of Proposition 2.4.2 in Chapter 2 and
noting that Xt ⊂H−

t+1(x), we see that (6.2.12) is equivalent to

St ⊥ S̄t | Xt for all t ∈ Z, (6.2.13)

i.e., we have the following important observation.

Proposition 6.2.3. The spaces St := H−
t+1(x)∨H−

t (y) and S̄t := H+
t (x)∨H+

t (y)
are conditionally orthogonal given Xt for each t ∈ Z.

6.3 Anticausal state-space models

It is important to note that the conditional orthogonality condition (6.2.13) is com-
pletely symmetric with respect to reversal of time. Therefore, as can be seen from
Proposition 2.4.2 in Chapter 2, (6.2.13) is equivalent not only to (6.2.12) but also
to

ES̄tλ = EXtλ for all λ ∈ St and t ∈ Z. (6.3.1)

From this observation we shall now derive a linear stochastic system which,
unlike (6.2.1), evolves backwards in time. To this end, first note that

St = H−
t (z), where z(t) :=

[
x(t+ 1)
y(t)

]
, (6.3.2)

and that (6.2.1) is the same as

z(t) = ẑ(t) + v(t), (6.3.3)

where ẑ(t) is the one-step predictor with components

ẑi(t) := EH−

t−1(z)zi(t), i = 1, 2, . . . , n+m,

and v(t) := z(t)− ẑ(t) is the corresponding innovation process.
Next we shall use a symmetric argument to derive a backward system with

state process
x̄(t) := P−1x(t+ 1). (6.3.4)

In fact, it is immediately seen that

S̄t = H+
t (z̄), where z̄(t) :=

[
x̄(t− 1)
y(t)

]
. (6.3.5)

Moreover, analogously to (6.3.3), we have the orthogonal decomposition

z̄(t) = ˆ̄z(t) + v̄(t), (6.3.6)

where ˆ̄z(t) is the backward one-step predictor with components

ˆ̄zi(t) := EH
+
t+1(z̄)z̄i(t), i = 1, 2, . . . , n+m,
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and v̄(t) := z̄(t)− ˆ̄z(t) is the backward innovation process, which clearly must be a
white noise, i.e.,

E{v̄(t)v̄(s)′} = V̄ δts,

where the (n+m)× (n+m) matrix weight V̄ remains to be determined.
We begin by determining ˆ̄z. To this end, observe that b′z̄(t) ∈ St+1 for all

b ∈ Rn+m, and consequently (6.3.1) yields

b′ ˆ̄z(t) = ES̄t+1b′z̄(t) = EXt+1b′z̄(t)

= b′E{z̄(t)x(t + 1)′}E{x(t+ 1)x(t+ 1)′}−1x(t+ 1)

= b′
[

A′

CPA′ +DB′

]
P−1x(t + 1),

where we have used the projection formula of Proposition 2.2.3 and the fact that
E{x(t)x(t + 1)′} = PA′ and E{y(t)x(t+ 1)′} = CPA′ +DB′. Consequently,

ˆ̄z(t) =

[
A′

C̄

]
x̄(t), (6.3.7)

where

C̄ := CPA′ +DB′. (6.3.8)

Theorem 6.3.1. Consider the forward state-space model (6.2.1) with state covari-
ance matrix

P := E{x(t)x(t)′}, (6.3.9)

and set Λ0 := E{y(t)y(t)′}. Then (6.3.4) is the state process of the backward system

(Σ̄)

{
x̄(t− 1) = A′x̄(t) + B̄w̄(t)

y(t) = C̄x̄(t) + D̄w̄(t),
(6.3.10)

with state covariance

P̄ := P−1 = E{x̄(t)x̄(t)′}. (6.3.11)

Here C̄ is given by (6.3.8), B̄ and D̄ are matrices, defined, uniquely modulo an
orthogonal transformation, via a minimum-rank factorization

[
B̄
D̄

] [
B̄
D̄

]′
=

[
P̄ −A′P̄A C′ −A′P̄ C̄′

C − C̄P̄A Λ0 − C̄P̄ C̄′

]
, (6.3.12)

and w̄ is a centered, normalized white noise. The linear stochastic system (6.3.10)
is a backward state-space model in the sense that

H−
t (w̄) ⊥

(
H+

t (x) ∨H+
t (y)

)
for all t ∈ Z, (6.3.13)

which should be compared with the corresponding forward property (6.2.7).
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Proof. In view of (6.3.7), the orthogonal decomposition (6.3.6) can be written
[
x̄(t− 1)
y(t)

]
=

[
A′

C̄

]
x̄(t) + v̄(t), (6.3.14)

so to obtain (6.3.10) it remains to show that there are matrices B̄ and D̄ satisfying
(6.3.12) such that

v̄(t) =

[
B̄
D̄

]
w̄(t) (6.3.15)

for some normalized white noise w̄. This will be done next. In fact, from the
orthogonal decomposition (6.3.14) we have

E{
[
x̄(t− 1)
y(t)

] [
x̄(t− 1)′ y(t)

]′} =

[
A′

C̄

]
P̄
[
A C̄′]+ E{v̄(t)v̄(t)′},

and consequently, in view of (6.3.12),

E{v̄(t)v̄(s)′} =

[
B̄
D̄

] [
B̄
D̄

]′
δts. (6.3.16)

Since, by assumption, the matrix factor has full rank, we can solve (6.3.15) uniquely
for w̄. In fact,

B̄′B̄ + D̄′D̄ =

[
B̄
D̄

]′ [
B̄
D̄

]

is nonsingular, and hence

w̄(t) = (B̄′B̄ + D̄′D̄)−1

[
B̄
D̄

]′
v̄(t), (6.3.17)

which clearly satisfies E{w̄(t)w̄(s)′} = Iδts. Also H−
t (w̄) = H−

t (v̄), which in turn
is orthogonal to S̄t = H+

t (v̄). This establishes the backward property of (6.3.10).

Theorem 6.3.1 shows that the process y can be regarded as the output obtained
by passing a white noise signal ū backwards in time through a linear time-invariant
filter22

y←− W̄ (z)
w̄←− white noise

with antistable transfer function

W̄ (z) = C̄(z−1I −A′)−1B̄ + D̄ (6.3.18)

since t = +∞. To say that W̄ is antistable is to say that all poles of W̄ lie strictly
outside the unit circle.

We shall call the white noises w and w̄ the forward and backward generating
processes corresponding to the state spaces {Xt}t∈Z.

22The direction of the arrows reflects anticausality; i.e., the fact that the future of w̄ is mapped
into the past of y.
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6.4 The forward and backward generating processes
and the structural function

We have seen that to each forward model Σ, defined by (6.2.1), with a generating
process w, there corresponds a backward model Σ̄, defined by (6.3.10), with gener-
ating process w̄, via the state transformation (6.3.4). Conversely, by a symmetric
argument, we can see that to each backward model Σ̄ there is a forward model Σ
connected via the state transformation

x(t) = P̄−1x̄(t− 1), (6.4.1)

where P̄ = P−1. We shall now investigate the relation between the generating
processes w and w̄.

Theorem 6.4.1. Let (w, w̄) be the pair of generating processes of Σ and Σ̄, respec-
tively. Then, the correlation matrix

V := E{w̄(t)w(t)′}. (6.4.2)

satisfies the relations
V V ′ = I − B̄′PB̄, (6.4.3a)

V ′V = I − B′P̄B (6.4.3b)

Moreover,
w̄(t) = B̄′x(t) + V w(t), (6.4.4a)

w(t) = B′x̄(t) + V ′w̄(t). (6.4.4b)

Finally,
H(w̄) = H(w). (6.4.5)

In view of the last statement, we may define ambient space H of the pair of
models (Σ, Σ̄), via

H(w̄) = H = H(w). (6.4.6)

Proof. In view of (6.3.4) and (6.2.1), (6.3.14) can be written

[
P̄ x(t)
y(t)

]
=

[
A′

C̄

]
P̄
(
Ax(t) +Bw(t)

)
+ v̄(t),

from which we have

v̄(t) =

[
P̄ −A′P̄A
C − C̄P̄A

]
x(t) +

[
−A′P̄B
D − C̄P̄B

]
w(t).

This in turn equals

v̄(t) =

[
B̄
D̄

]
B̄′x(t) +

[
−A′P̄B
D − C̄P̄B

]
w(t) (6.4.7)
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by (6.3.12). Therefore, inserting (6.4.7) into (6.3.17) yields (6.4.4a) for some matrix
V . Forming E{w̄(t)w(t)′} from (6.4.4a) and noting that E{x(t)w(t)′} = 0, we obtain
precisely (6.4.2). In the same way, forming E{w̄(t)w̄(t)′}, we have

I = B̄′PB̄ + V V ′,

which is the same as (6.4.3a). By symmetry between the systems Σ and Σ̄, (6.4.3b)
and (6.4.4b) follow from (6.4.2). Therefore, H(w̄) = H(w), in view of (6.3.4), (6.2.1)
and (6.3.10).

Corollary 6.4.2. The system matrices of Σ are related to those of Σ̄ via

APB̄ +BV ′ = 0, (6.4.8a)

CPB̄ +DV ′ = D̄. (6.4.8b)

Proof. Inserting (6.4.4b) into (6.2.1) we obtain

0 = AP [x̄(t− 1)−A′x̄(t)] +BV ′w̄(t),

y(t) = CP [x̄(t− 1)−A′x̄(t)] + [CPA′ +DB′]x̄(t) +DV ′w̄(t),

where we have used (6.2.10) and (6.3.4) to make the substitutions BB′ = P−APA′,
x(t + 1) = P x̄(t), and x(t) = P x̄(t − 1). In view of (6.3.10) and (6.3.8), we may
exchange x̄(t− 1)−A′x̄(t) for B̄w̄(t) and CPA′ +DB for C̄ to obtain

0 = [APB̄ +BV ′]w̄(t),

y(t) = C̄x̄(t) + [CPB̄ +DV ′]w̄(t).

Postmultiplying the first equation by w̄(t)′ and taking expectation, we obtain (6.4.8a).
Comparing the second equation to (6.3.10) yields (6.4.8b).

From (6.4.4a) and (6.2.1), we see that w̄ is the output of a stable linear system

white noise
w−→ K(z)

w̄−→ white noise

driven by w and with transfer function

K(z) = B̄′(zI − A)−1B + V, (6.4.11)

which will be referred to as the structural function of (Σ, Σ̄). Such a system, trans-
forming white noise to white noise, is called an all pass filter. In particular, K is an
inner function. In fact, from (6.4.4b) we also have the transfer function

K(z)∗ = B′(z−1I −A′)−1B̄ + V ′, (6.4.12)

transforming w̄ to w, and hence K−1 = K∗.
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Theorem 6.4.3. Let K be the structural function of (Σ, Σ̄), and let W and W̄
be the corresponding transfer functions, given by (6.2.2) and (6.3.18), respectively.
Then

W = W̄K. (6.4.13)

Proof. In view of (6.2.2) and (6.4.12),

(zI −A)−1BK(z)∗ = (zI −A)−1BB′(z−1I −A′)−1B̄ + (zI −A)−1BV ′

= PB̄ + PA′(z−1I −A′)−1B̄ + (zI −A)−1(APB̄ +BV ′),

where we have made the substitutions BB′ = P −APA′, in harmony with (6.2.10),
and used the identity

P −APA′ = (zI −A)P (z−1I −A′) + (zI −A)PA′ +AP (z−1I −A′), (6.4.14)

valid for all symmetric P . Consequently, in view of (6.4.8a),

(zI −A)−1BK(z)∗ = PB̄ + PA′(z−1I −A′)−1B̄ (6.4.15)

= z−1P (z−1I −A′)−1B̄, (6.4.16)

where the second equation will be used later in Chapter 9. Therefore, in view of
(6.4.12),

W (z)K(z)∗ = CPB̄ + CPA′(z−1I −A′)−1B̄ +DB′(z−1I −A′)−1B̄ +DV ′

= (CPA′ +DB′)(z−1I −A′)−1B̄ + CPB̄ +DV ′,

which by (6.3.8) and (6.4.8b), is the same as C̄(z−1I −A′)−1B̄ + D̄. Then, in view
of (6.3.18) and K∗ = K−1, W = W̄K, as claimed.

Since the structural function K is rational and inner (all-pass), it has a matrix
fraction description

K(z) = M̄(z)M(z)−1, (6.4.17)

where M and M̄ are p × p matrix polynomials with detM having all its roots in
the open unit disc and det M̄ having all its roots in the complement of the closed
unit disc. Since K∗ = K−1,

M(z−1)′M(z) = M̄(z−1)′M̄(z). (6.4.18)

Corollary 6.4.4. Let K, W and W̄ be as defined in Theorem 6.4.3, and let K have
the matrix fraction description (6.4.17). Then there is an m× p matrix polynomial
N such that

W (z) = N(z)M(z)−1, (6.4.19a)

W̄ (z) = N(z)M̄(z)−1. (6.4.19b)

Proof. From (6.4.13) and (6.4.17) we obtain

WM = W̄M̄ ,
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which is a rational m×p matrix function that we call N . However, W̄M̄ is analytic
in the closed unit disc and WM is analytic in the complement of the open unit disc.
Hence N must be a matrix polynomial, and (6.4.19) holds.

6.5 The idea of state space and coordinate-free
representation

In view of (6.4.6) both the forward system (6.2.1) and the corresponding backward
system (6.3.10) can be represented in the same basic Hilbert space H, called the
ambient space. Moreover,

{a′x(t) | a ∈ Rn} = Xt = {a′x̄(t− 1) | a ∈ Rn}, (6.5.1)

so the two systems have the same families of state spaces.
Since all random processes involved are jointly stationary, we only need to

consider one instance of time, say t = 0. In fact, as explained in Chapter 2, the
Hilbert space H := H(w) is endowed with a shift U such that

Uwi(t) = wi(t+ 1), (6.5.2)

which is inherited by the other processes. Obviously, since H(x) = H(x̄) ⊂ H and
H(y) ⊂ H, the processes x, x̄ and y are shifted by U in the same manner. Thus,
for example,

Xt = U tX where X = X0. (6.5.3)

What is given in stochastic realization theory is the output process y. There-
fore we shall introduce a particularly simple notation for H(y) and its past and
future spaces, namely

H := H(y), H− := H−
0 (y), H+ := H+

0 (y), (6.5.4)

in terms of which

H−
t (y) = U tH− and H+

t (y) = U tH+. (6.5.5)

Clearly,
H = H− ∨H+ ⊂ H, (6.5.6)

and
U−1H− ⊂H− and UH+ ⊂ H+. (6.5.7)

Likewise, given the state space X = X0 at t = 0, we may form

X− :=

0∨

t=−∞
Xt =

0∨

t=−∞
U tX = UH−

0 (x), (6.5.8a)

X+ :=

∞∨

t=0

Xt =

∞∨

t=0

U tX = H+
0 (x). (6.5.8b)



“Book”
2007/1/28
page 138

i

i

i

i

i

i

i

i

138 Chapter 6. Linear Stochastic Systems

Therefore, the conditional orthogonality condition (6.2.13) can be written in
the following equivalent form:

(H− ∨X−) ⊥ (H+ ∨X+) | X. (6.5.9)

From Lemma 2.4.1 we see that this implies that the past and the future spaces of
the process y are conditionally orthogonal to the state space X at t = 0, i.e.,

H− ⊥H+ | X. (6.5.10)

Any subspace X satisfying (6.5.10) is called a splitting subspace for y, and one
satisfying (6.5.9) is called a Markovian splitting subspace. Hence, the state space X
of any linear stochastic system with output y is a Markovian splitting subspace for
y, a concept which will be studied in depth in the next chapter, where we will prove
that determining all models (6.2.1) with output y is equivalent to determining all
Markovian splitting subspaces X of y.

In view of Proposition 2.4.2 in Chapter 2, a state space X of a stochastic
model is a subspace of H with the property that

EH−∨Xλ = EXλ for all λ ∈ H+;

i.e., X serves as a “memory” or “sufficient statistics” which contains everything
from the past which is needed in predicting the future. Therefore, to obtain real
data reduction, we shall be interested in models whose state spaces X are minimal
in the sense that they have minimal dimension.

We have thus shown that many important properties of a linear stochastic
system (6.2.1) are captured in a coordinate-free manner by the family of state
spaces

U tX = {a′x(t) | a ∈ Rn}. (6.5.11)

The state space X is said to be internal if H = H, i.e., if X ⊂H, the Hilbert space
generated by the output process.

6.6 Observability, constructibility and minimality

Kalman introduced four basic systems-theoretic concepts in deterministic realiza-
tion theory related to minimality: reachability, observability, controllability and
(re)constructiblity. Reachability and observability have been defined in Section 6.1.
Controllability and constructiblity are the corresponding concepts under time rever-
sal, and here they refer to the backward dynamics (6.3.10).

The linear systems Σ and Σ̄, given by (6.2.1) and (6.3.10), can be regarded as
representations of the process y having the same state space X, one evolving forward
and the other backward in time. As pointed out in Section 6.2, Σ is reachable if
and only if P > 0; i.e., if and only if x(0) is a basis in X (Proposition 6.2.1).
Under our present assumptions, x(0) will always be a basis, and hence reachability
will always be satisfied. For the same reasons, Σ̄ will always be controllable, i.e.,
reachable in the backward sense. In Chapter 8 these assumptions will be relaxed to
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allow for a purely deterministic state component. For now, only observability and
constructibility will be needed.

We begin with a geometric characterization. Let X be the state space of a
linear stochastic system. An element ξ ∈ X is said to be unobservable if it cannot be
distinguished from zero by observing the future of y, or more precisely, if ξ ⊥ H+.
Analogously, ξ ∈ X is unconstructible if ξ ⊥ H−, i.e., it cannot be distinguished
from zero by observing the past of y. Hence X ∩ (H+)⊥ is the unobservable and
X ∩ (H−)⊥ the unconstructible subspace of X.

Definition 6.6.1. The state space X of a linear stochastic system is observable if
X ∩ (H+)⊥ = 0 and constructible if X ∩ (H−)⊥ = 0.

Theorem 6.6.2. Let (6.2.1) and (6.3.10) be a pair of state-space models, one
evolving forward and the other backward in time, and let X be the corresponding
state space. Then X is observable if and only if

∞⋂

t=0

kerCAt = 0, (6.6.1)

and constructible if and only if

∞⋂

t=0

ker C̄(A′)t = 0. (6.6.2)

Proof. First observe that to each ξ ∈ X there corresponds an a ∈ Rn such that
ξ = a′x(0). Under this correspondence, ξ ∈ X ∩ (H+)⊥ if and only if

a′x(0) ⊥ b′y(t) for all b ∈ Rm and t = 0, 1, 2, . . . ,

i.e.,
E{y(t)x(0)′}a = 0 for t = 0, 1, 2, . . . .

But, since E{y(t)x(0)′}a = CAtPa, this is equivalent to

Pa ∈
∞⋂

t=0

kerCAt,

and consequently, since P is nonsingular,

X ∩ (H+)⊥ = 0 ⇐⇒
∞⋂

t=0

kerCAt = 0.

The proof that X is contructible if and only if (6.6.2) holds is completely analogous.

Corollary 6.6.3. Let (6.2.1) and (6.3.10) be a pair of state-space models with
state space X, and let W and W̄ be the corresponding transfer functions with matrix
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fraction representations as in Corollary 6.4.4. Then X is observable if and only if
the representation

W (z) = N(z)M(z)−1

is coprime and constructible if and only if the representation

W̄ (z) = N(z)M̄(z)−1

is coprime.

The first statement in Corollary 6.6.3 is an immediate consequence of Theo-
rem 6.6.2 and [35, p. 41] or [56, p. 439]. The second statement follows by symmetry.

The linear stochastic system (6.2.1) is called a (forward) stochastic realization
of y. A stochastic realization is not an input-output map like a deterministic re-
alization (see Section 6.1), but a representation of a stochastic process. Similarly,
the backward linear stochastic system (6.3.10) is a backward stochastic realization.
This pair of stochastic realizations of y, corresponding to the state space X, is
unique modulo the choice of basis in X and tied together via (6.3.11),

We say that a stochastic realization is minimal if it has the smallest dimension
among all realizations of y. The forward stochastic realization (6.2.1) is minimal if
and only if the backward stochastic realization (6.3.10) is minimal.

To see how minimality relates to observability and constructibility, we form
the (block) Hankel matrix corresponding to the covariance sequence

Λt := E{y(t+ k)y(k)′} = E{y(t)y(0)′}.

In fact, given (6.2.1) and/or (6.3.10), it is a straight-forward calculation to show
that the covariance sequence of y is given by

Λt =






CAt−1C̄′ for t > 0;

CPC′ +DD′ for t = 0;

C̄(A′)|t|−1C′ for t < 0.

(6.6.3)

Consequently, the infinite block Hankel matrix

Γ :=





Λ1 Λ2 Λ3 · · ·
Λ2 Λ3 Λ4 · · ·
Λ3 Λ4 Λ5 · · ·
...

...
...

. . .





admits the factorization

Γ =





C
CA
CA2

...









C̄
C̄A′

C̄(A′)2

...





′

. (6.6.4)

Clearly, the dimension n of the system Σ, and of Σ̄, satisfies

n ≥ rank Γ (6.6.5)
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with equality if and only if both (6.6.1) and (6.6.2) hold, i.e., if and only if X is
both observable and constructible. Since both (A,B) and (A′, B̄) are reachable,
this happens if and only if (6.2.2) is a minimal realization of W and (6.3.18) is a
minimal realization of W̄ , both in the deterministic sense. Note that we need both
these conditions. Consequently, we have proved the following theorem.

Theorem 6.6.4. A stochastic realization (6.2.1) is minimal if and only if its state
space X is both observable and constructible.

In view of Theorem 6.6.2 and (6.3.8), we have the following useful corollary,
which shows that observability and reachability is not enough for a stochastic real-
ization to be minimal.

Corollary 6.6.5. A stochastic realization (6.2.1) is minimal if and only if

(i) (C,A) is observable,

(ii) (A,B) is reachable,

(iii) (CPA′+DB′, A) is observable, where P is the solution of the Lyapunov equa-
tion P = APA′ +BB′.

Obviously a stochastic realization is minimal if and only if its state space
has minimal dimension. In Chapter 7 we show that this concept of minimality is
equivalent to that of subspace inclusion. We say that the stochastic realization is
internal if its state space X ⊂ H is internal.

6.7 The forward and the backward predictor space

Next we provide two important examples of minimal stochastic realizations that
also happen to be internal. Let y be a purely nondeterministic stationary vector
process with second-order statisics (6.6.3), where (C,A) and (C̄, A′) are observable
and A is a stability matrix.

Theorem 6.7.1. Let y and (A,C, C̄) be given as above. The predictor space

X− = EH−

H+ (6.7.1)

and the backward predictor space

X+ = EH+

H− (6.7.2)

are both state spaces of minimal stochastic realizations of y. In fact, y has a stochas-
tic realization

(Σ−)

{
x−(t+ 1) = Ax−(t) +B−w−(t)

y(t) = Cx−(t) +D−w−(t)
(6.7.3)
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with state space X−, where the normalized white noise w− is the forward innovation
process of y; i.e.,

H−(w−) = H−. (6.7.4)

Likewise, y has a backward stochastic realization

(Σ̄+)

{
x̄+(t− 1) = A′x̄+(t) + B̄+w̄+(t)

y(t) = C̄x̄+(t) + D̄+w̄+(t)
(6.7.5)

with state space X+, where the normalized white noise w̄+ is the backward innova-
tion process of y; i.e.,

H+(w̄+) = H+. (6.7.6)

If p is the rank of the process y, D− and D̄+ are m× p matrix of full column rank.
In particular, if y is a full-rank process, they are square and nonsingular.

A proof could be constructed by choosing a basis x(t) in U tX− and showing
that this process is Markov. This will be done in Chapter 8. Here we shall provide
a different proof.

Proof. Let

ŷk(t) := EH
−

t yk(t), k = 1, 2, . . . ,m, (6.7.7)

and let w− be the normalized forward innovation process defined by (4.1.7), i.e., by
(6.7.4). Then, by (4.5.16),

D−w−(t) = y(t)− ŷ(t), (6.7.8)

where D− is a full-rank matrix factor of the innovation variance

D−D
′
− = E{[y(0)− ŷ(0)][y(0)− ŷ(0)]′}.

By Proposition 4.5.7, the number of columns, p of D− equals the rank of the process
y, and the components of w−(t) span H−

t+1 	H−
t .

Now, suppose that A, given by (6.6.3), is n × n. We begin by proving that
there is a stochastic vector ξ := (ξ1, ξ2, . . . , ξn)′ such that

E{ξ y(−t)′} = At−1C̄′, t = 1, 2, 3, . . . ,

or, equivalently, that, for k = 1, 2, . . . , n

〈ξk, η〉 = ck(η), for all η ∈ H−,

where ck(η) is a real number formed from the k:th rows of At−1C̄′, t = 1, 2, 3, . . . ,
in the manner that η is formed from y(−t), t = 1, 2, 3, . . . . Now, consider the
bounded linear functional Lk : H− → R that sends η to ck(η). Then, by Riesz’
representation theorem, there is a ξk ∈ H− such that Lk(η) = 〈ξk, η〉, and hence
there is a ξ with prescribed property. Defining x−(t) to be the vector process with
components U tξk, k = 1, 2, . . . , n, we then have

E{x−(0)y(−t)′} = At−1C̄′, t = 1, 2, 3, . . . . (6.7.9)
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In view of (6.6.3), (6.7.9) yields

E{[y(0)− Cx−(0)]y(−t)′} = 0, t = 1, 2, 3, . . . ,

i.e.,
ŷk(0) = Cx−(0), (6.7.10)

and consequently it follows from (6.7.8) that

y(t) = Cx−(t) +D−w−(t).

Analogously,

E{[x−(1)−Ax−(0)]y(−t)′} = 0, t = 1, 2, 3, . . . ,

and hence the components of x−(1)−Ax−(0) belong to UH− 	H−. Therefore,

x−(1)−Ax−(0) = B−w−(0)

for some n×m matrix B−, which yield the first equation in (6.7.3) after applying
the shift U t componentwise. More generally, it follows from (6.6.3) and (6.7.9) that

E{[y(τ)− CAτx−(0)]y(−t)′} = 0, t = 1, 2, 3, . . . ,

for τ = 0, 1, 2, . . . , and consequently

[CAτx−(0)]k = EH−

yk(τ) ∈ EH−

H+ = X−. (6.7.11)

Since (C,A) is observable, this implies that the components of x−(0) belong to X−.
Consequently,

X1 := {a′x−(0) | a ∈ R} ⊂ X−.

However, since X1 is the state space of the stochastic realization (6.7.3), it follows
from Section 6.5 and (6.5.10) that X− is a splitting subspace; i.e., H− ⊥H+ | X1.
But X1 ⊂ H−, and therefore, by Theorem 2.4.3, X1 ⊃ X−. Hence, X1 = X−, as
claimed.

In view of Theorem 6.6.2, X− is observable. Hence, by Theorem 6.6.4, it just
remains to show that X− is constructible, to establish that (6.7.3) is a minimal
realization of y. To this end, just note that

X− ∩ (H+)⊥ = X− ∩H− ∩ (H+)⊥ = 0,

since X− and H− ∩ (H+)⊥ are orthogonal by Lemma 2.2.6.
The second part of the theorem follows by symmetry.

To avoid (uninteresting) technical complications, from now on we shall make
the following blanket assumption.

Assumption 6.7.2. The output process y has full rank.
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Corollary 6.7.3. The transfer function of Σ−,

W−(z) = C(zI −A)−1B− +D−, (6.7.12)

is minimum-phase; i.e., W−(z) has all its poles in the open unit disc and all its
zeros in the closed unit disc. Symmetrically, the transfer function of Σ̄+,

W̄+(z) = C̄(z−1I −A)−1B̄+ + D̄+, (6.7.13)

is conjugate minimum-phase; i.e., W̄+(z) has all its poles in the complement of the
closed unit disc and all its zeros in the complement of the open unit disc.

Proof. The stochastic system Σ− is merely a state-space realization of the (normal-
ized) innovation representation (4.1.11). Hence W−(z) is the outer spectral factor
that has no zeros outside of the closed unit disc. The statement about W̄+(z) follows
by a completely symmetric argument.

The stochastic realization Σ− can also be written

x−(t+ 1) = Ax−(t) +B−D
−1
− [y(t)− Cx−(t)]. (6.7.14)

As we shall see in Section 6.9, Σ− can be interpreted as a steady-state Kalman
filter. We remark that this is a recursive form of Wiener filtering; see Section 4.1.
From (6.7.14) and the second of equations (6.7.3) we readily obtain the inverse of
Σ−, namely {

x−(t+ 1) = Γ−x−(t) +B−D
−1
− y(t)

w−(t) = −D−1
− Cx−(t) +D−1

− y(t),
(6.7.15)

where
Γ− = A−B−D

−1
− C. (6.7.16)

By Corollary 6.7.3, Γ− has all its eigenvalues in the closed unit disc.
Likewise, Σ̄+ can be written as a backward steady-state Kalman filter:

x̄+(t− 1) = A′x̄+(t) + B̄+D̄
−1
+ [y(t)− C̄x̄+(t)], (6.7.17)

and we obtain the inverse of Σ̄+ as
{
x̄+(t− 1) = Γ̄+x̄+(t) + B̄+D̄

−1
+ y(t)

w̄+(t) = −D̄−1
+ C̄x−(t) + D̄−1

+ y(t),
(6.7.18)

where
Γ̄+ = A′ − B̄+D̄

−1
+ C̄ (6.7.19)

has all its eigenvalues in the complement of the open unit disc.
The forward stochastic realization Σ− and the backward stochastic realization

Σ̄+ are both minimal stochastic realizations, but they have different state spaces.
The predictor space X− also has a backward realization

(Σ̄−)

{
x̄−(t− 1) = A′x̄−(t) + B̄−w̄−(t)

y(t) = C̄x̄−(t) + D̄−w̄−(t),
(6.7.20)
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whose transfer function

W̄−(z) = C̄(z−1I −A′)−1B̄− + D̄− (6.7.21)

has all its poles outside the closed unit disc but still its zeros inside. In fact, in view
of Corollary 6.4.4, W̄− has the same zeros as W−. In the same way, the backward
predictor space X+ has a forward realization

(Σ+)

{
x+(t+ 1) = Ax+(t) +B+w+(t)

y(t) = Cx+(t) +D−w+(t),
(6.7.22)

with a transfer function

W+(z) = C(zI −A)−1B+ +D+, (6.7.23)

Corollary 6.7.4. The transfer function (6.7.23) of Σ+ is maximum-phase; i.e.,
W+(z) has all its poles in the open unit disc and all its zeros in the complement
of the open unit disc. Symmetrically, the transfer function of Σ̄−, is conjugate
maximum-phase; i.e., W̄−(z) has all its poles in the complement of the closed unit
disc and all its zeros in the closed unit disc.

Proof. The statements concerning the poles are trivial, since the location of the
poles is determined by the eigenvalues of A. By Corollary 6.4.4, W+(z) has the
same zeros as W̄+(z), and W̄−(z) has the same zeros W−(z). Hence the statements
about the zeros follow from Corollary 6.7.3.

We have thus constructed the stochastic realizations corresponding to the for-
ward and backward predictor spaces. In Chapter 8 we shall construct the stochastic
realizations of arbitrary Markovian splitting subspaces in a more systematic fashion.

6.8 Rational spectral factorization

Obviously, (6.6.5) is fulfilled with equality if and only if

Φ+(z) = C(zI −A)−1C̄′ +
1

2
Λ0 (6.8.1)

is a minimal (deterministic) realization of the rational function Φ+ defined by the
Laurent expansion

Φ+(z) =
1

2
Λ0 + Λ1z

−1 + Λ2z
−2 + . . . (6.8.2)

in an open region containing the complement of the closed unit disc. This function
is the “negative tail” of the spectral density

Φ(z) = Φ+(z) + Φ+(z−1)′, (6.8.3)
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defined by the Laurent series

Φ(z) =
∞∑

t=−∞
Λtz

−t (6.8.4)

in an open annulus containing the unit circle. Since the spectral density must be
nonnegative definite on the unit circle, Φ+ must satisfy the positivity condition

Φ+(eiθ) + Φ+(e−iθ)′ ≥ 0 θ ∈ [−π, π], (6.8.5)

and, since A is stability matrix, Φ+ has all its poles in the open unit disc. A
function with these properties is called positive real. Therefore we shall call Φ+ the
positive-real part of Φ.

Proposition 6.8.1. The transfer functions (6.2.2) and (6.3.18) of Σ and Σ̄, re-
spectively, are spectral factors of Φ, i.e.

W (z)W (z−1)′ = Φ(z) (6.8.6)

and
W̄ (z)W̄ (z−1)′ = Φ(z). (6.8.7)

Since W has all its poles in the open unit disc and is finite at infinity, we
say that it is a stable or analytic spectral factor, while W̄ , which has its poles
strictly outside the unit circle, is said to be coanalytic. There is complete symmetry
between the forward and the backward settings, and therefore we only consider
W . We provide a purely algebraic derivation that does not require stability of A
and stationarity of the processes involved. (Of course, in this case the “spectrum”
Φ(z) does not need to have a probabilistic meaning). It only requires existence
of a solution to the Lyapunov equation P = APA′ + BB′, which in our case is
guaranteed, since A is stable.

To this end, we shall use an algebraic decomposition based on the useful
identity (6.4.14), i.e.,

P −APA′ = (zI −A)P (z−1I −A′) + (zI −A)PA′ +AP (z−1I −A′),

to the product W (z)W (z−1)′, a well-known trick from Kalman-Yakubovich theory.
In fact, a straightforward calculation shows that

W (z)W (z−1)′ = [C(zI −A)−1B +D][B′(z−1I −A′)−1C′ +D′]

= C(zI −A)−1BB′(z−1I −A′)−1C′

+ C(zI −A)−1BD′ +DB′(z−1I −A)−1C′ +DD′

so, in view of (6.2.10) and (6.4.14),

W (z)W (z−1)′ = CPC′ +DD′ +

+ C(zI −A)−1(APC′ +BD′) + (CPA′ +DB′)(z−1I −A′)−1C′

= Φ+(z) + Φ+(z−1)′, (6.8.8)
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where the last equality follows from (6.3.8) and the expression for Λ0 in (6.6.3),
thus establishing (6.8.6).

Proposition 6.8.2. Let W be an arbitrary rational analytic spectral factor of Φ.
Then

degW ≥ deg Φ+, (6.8.9)

where deg denotes McMillan degree.

Proof. Suppose (A,B,C,D) is a minimal realization (6.2.2) of W . Then, if A is
n× n, degW = n. Moreover, as shown in (6.8.8), the positive real part of Φ takes
the form

Φ+(z) = C(zI −A)−1C̄′ +
1

2
Λ0,

which clearly has degree less or equal to n.

Since, in this proof, (C,A) is supposed to be observable, there can be strict
inequality in (6.8.9) only if the pair (A, C̄′) is not reachable.

Definition 6.8.3. The spectral factor W of Φ is minimal if

degW = deg Φ+.

As we have seen, minimal spectral factors always do exist. Well-known ex-
amples of minimal spectral factor are the minimum phase and the maximum phase
spectral factors, denoted W− and W+ respectively. Both W− and W+ are analytic,
but, as we have already seen, the former has no zeros outside of the closed unit disk
while the second has instead no zeros inside the open unit disk. It follows from The-
orem 4.6.8 that all analytic (stable) rational spectral factors can be constructed by
postmultiplying the minimum phase factor W− by an inner rational matrix function
Q(z); i.e., an analytic rational matrix function such that

Q(z)Q(z−1)′ = I.

More generally, if W (z) is a spectral factor and Q(z) is inner, then

W1(z) = W (z)Q(z)

is also a spectral factor. If there are no cancellation of poles and zeros, degW1 >
degW ; i.e., W1 is nonminimal.

The converse problem

Let us now consider the converse problem. Given a rational spectral density Φ, i.e.
an m×m rational matrix function that is parahermitian; i.e., satisfies

Φ(z−1) = Φ(z)′,
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that is positive semidefinite on the unit circle, consider the problem of finding all
minimal analytic spectral factors W and the corresponding (minimal) realizations

W (z) = H(zI − F )−1B +D. (6.8.10)

To solve this problem, first make the decomposition

Φ(z) = Φ+(z) + Φ+(z−1)′, (6.8.11)

where Φ+ has all its poles in the open unit disk (so that it is the positive-real part
of Φ), and then compute a minimal realization

Φ+(z) = C(zI −A)−1C̄′ +
1

2
Λ0. (6.8.12)

Then A is a stability matrix, and, if A is n × n, deg Φ+ = n. We shall solve
the spectral factorization equation (6.8.6), providing a procedure for determining
(F,H,B,D) from the given matrices (A,C, C̄,Λ0).

To this end first note that, in view of (6.8.11) and (6.8.12), the spectral density
Φ may be written

Φ(z) =
[
C(zI −A)−1 I

] [0 C̄′

C̄ Λ0

] [
(z−1I −A′)−1C′

I

]
. (6.8.13)

However, in view of the identity (6.4.14), which holds for all symmetric P and all
z ∈ C,

[
C(zI −A)−1 I

] [P −APA′ −APC′

−CPA′ −CPC′

] [
(z−1I −A′)−1C′

I

]
≡ 0, (6.8.14)

which added to (6.8.13) yields

Φ(z) =
[
C(zI −A)−1 I

]
M(P )

[
(z−1I −A′)−1C′

I

]
, (6.8.15)

where

M(P ) =

[
P −APA′ C̄′ −APC′

C̄ − CPA′ Λ0 − CPC′

]
. (6.8.16)

Therefore, if there is a P satisfying the linear matrix inequality

M(P ) ≥ 0, (6.8.17)

M(P ) can be factored as

M(P ) =

[
B
D

]
[B′D′], (6.8.18)

which, inserted into (6.8.15), implies that the rational function

W (z) := C(zI −A)−1B +D (6.8.19)
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satisfies the spectral factorization equation

W (z)W (z−1)′ = Φ(z). (6.8.20)

Hence, in particular, we can choose F = A andH = C in (6.8.10). Since degW ≤ n,
being equal to n if and only if (A,B) is reachable, degW ≤ deg Φ+. But, in view of
(6.8.9), this implies that degW = deg Φ+. Consequently, W is a minimal spectral
factor.

Let P be the set of all symmetric matrices P such that (6.8.17) holds. The
existence of minimal spectral factors is connected to the question of whether P is
nonempty. The following fundamental result, which is a corollary of the important
Kalman-Yakubovich-Popov Lemma, clarifies this point.

Theorem 6.1 (The Positive Real Lemma). Let Φ+ be a stable m×m transfer
function with a minimal realization

Φ+(z) = C(zI −A)−1C̄′ +
1

2
Λ0. (6.8.21)

More precisely, let A be a stable n× n matrix, and suppose that (C,A) and (C̄, A′)
are both observable. Moreover, let M : Rn×n → R(n+m)×(n+m) be the linear map
defined by (6.8.16). Then, the set P of all symmetric matrices P such that the
linear matrix inequality

M(P ) ≥ 0 (6.8.22)

holds is nonempty if and only if Φ+ is positive real. Finally, any P ∈ P is positive
definite.

Therefore (6.8.18), i.e.,

P = APA′ +BB′ (6.8.23a)

C̄ = CPA′ +DB′ (6.8.23b)

Λ0 = CPC′ +DD′ (6.8.23c)

are often called the positive-real-lemma equations. Note that (6.8.23a) is the Lya-
punov equation (6.2.10) and (6.8.23b) is the definition (6.3.8) of C̄.

Proof. If P is nonempty, there is a P such that M(P ) ≥ 0, and then it follows
from (6.8.11) and (6.8.15) that

Φ+(eiθ) + Φ+(e−iθ) ≥ 0, for all θ,

and consequently that Φ+ is positive real. Conversely, suppose Φ+ is positive real.
Then, there is a stochastic realization (6.7.3) having the covariance structure (6.6.3).
The corresponding covariance matrix

P− := E{x−(0)x−(0)′}
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clearly satisfies (6.8.17), and therefore P is nonempty.
As we have established above, any P ∈ P must satisfy the Lyapunov equation

(6.8.23a) for some B such that (A,B) is reachable, and therefore, since A is a
stability matrix, any P ∈ P must be positive definite.

Since the state-space basis can be chosen so that H = C and F = A, the
problem of determining the minimal spectral factors can thus be reduced to finding
P ∈ P and then factoring M(P ) as in (6.8.18) to obtain B and D. To avoid

redundancy we shall require that

[
B
D

]
is full column rank. Then, for each P ∈ P,

the factorization problem (6.8.18) yields a pair (B,D), which is unique modulo an
orthogonal transformation.

Theorem 6.8.4. Let Φ be a full-rank spectral density, and let A,C, C̄,Λ0 be ma-
trices such that (6.8.12) is a minimal realization of Φ+, the positive real part of Φ.
Then there is a one-to-one correspondence between minimal analytic spectral factors
of Φ and symmetric n×n matrices P solving the Linear Matrix Inequality (6.8.17)
in the following sense: Corresponding to each solution P = P ′ of (6.8.17), neces-
sarily positive definite, there corresponds a minimal analytic spectral factor (6.8.19)

where A and C are as defined above and

[
B
D

]
is the unique (modulo orthogonal

transformations) full-rank factor (6.8.18) of M(P ). Conversely, to each analytic
minimal spectral factor (6.8.10) of Φ(z) there is a P ∈ P so that (B,D) is obtained
from (6.8.18) and F = A, H = C.

Proof. It remains to prove the converse statement that to each minimal analytic
spectral factor W there corresponds a P ∈ P with the stated properties. Let W
have a minimal realization (6.8.10), and let P be the unique symmetric solution to
the Lyapunov equation

P = FPF ′ +BB′.

Since W is minimal, A and F have the same dimensions. A calculation such as in
(6.8.8) then shows that

Φ+(z) = H(zI − F )−1G+
1

2
Λ0,

where G = FPH ′ +BD′ and Λ0 = HPH ′ +DD′. Hence, in view of (6.8.12), there
is a nonsingular n× n matrix T such that

(H,F,G) = (CT−1, TAT−1, T C̄′).

Here we may clearly choose basis in state space so that T = I, thereby obtaining
the required result.



“Book”
2007/1/28
page 151

i

i

i

i

i

i

i

i

6.8. Rational spectral factorization 151

Example 6.8.5. Consider a spectral density Φ(z) with the positive real part

Φ+(z) =
5
3

z − 1
2

+
7

6
.

Then A = 1
2 , C̄ = 5

3 , C = 1, and Λ0 = 7
3 , and therefore the linear matrix inequality

(6.8.17) becomes

M(P ) =

[
3
4P

5
3 − 1

2P
5
3 − 1

2P
7
3 − P

]
≥ 0,

which holds if and only if P > 0, 7
3 − P > 0 and

detM(P ) = −P 2 +
41

12
P − 25

9
= −(P − 4

3
)(P − 25

12
) ≥ 0.

These inequalities hold precisely for P ∈ [ 43 ,
25
12 ], and hence P is the interval [P−, P+],

where P− = 4
3 and P+ = 25

12 .
Since

M(P−) =

[
1 1
1 1

]
,

P = P− yields B = 1 and D = 1 and the minimal spectral factor

W−(z) =
1

z − 1
2

+ 1 =
z + 1

2

z − 1
2

,

which clearly is minimum phase. On the other hand,

M(P+) =

[
25/16 5/8
5/8 1/4

]

yielding B = 5
4 and D = 1

2 and the maximum phase spectral factor

W+(z) =
5
4

z − 1
2

+
1

2
=

1 + 1
2z

z − 1
2

.

Finally, let us take a P in the interior of P. With P = 2 ∈ [ 43 ,
25
12 ] we obtain

M(P ) =

[
3/2 2/3
2/3 1/3

]
.

Without restriction we may take

[
B
D

]
=

[
b1 b2
d 0

]

and then [
B
D

] [
B
D

]′
=

[
b21 + b22 b1d
b1d d2

]
=

[
3/2 2/3
2/3 1/3

]
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which may be solved to yield d = 1√
3
, b1 = 2√

3
and, choosing one root, b2 = 1√

6
,

thus defining a rectangular spectral factor

W (z) =

(
2√
3

z − 1
2

+
1√
3
,

1√
6

z − 1
2

)
.

In this example all minimal spectral factors, except W− and W+ which are scalar,
are 1× 2 matrix valued.

Obviously there is a completely symmetric factorization theory for coanalytic
spectral factors W̄ , corresponding to backward stochastic realizations. This sym-
metry can be highlighted by writing the linear matrix inequality (6.8.17) as

[
P C̄′

C̄ Λ0

]
−
[
A
C

]
P
[
A′ C′] ≥ 0, (6.8.24)

which, since P is positive definite, is equivalent to




P C̄′ A
C̄ Λ0 C
A′ C′ P−1



 ≥ 0. (6.8.25)

In fact, (6.8.24) is the Schur complement (Appendix A.3) of (6.8.25). Taking the
lower Schur complement instead and observing that P̄ := P−1, we see that (6.8.25)
is also equivalent to

M̄(P̄ ) :=

[
P̄ −A′P̄A C′ −A′P̄ C̄′

C − C̄P̄A Λ0 − C̄P̄ C̄′

]
≥ 0. (6.8.26)

From this linear matrix inequality, B̄ and D̄ are determined via factorization as in
(6.3.12), yielding the coanalytic spectral factor

W̄ (z) = C̄(z−1I −A′)−1B̄ + D̄. (6.8.27)

6.9 The Riccati inequality and Kalman filtering

We have shown that the family of minimal spectral factors can be parameterized
by the solutions of the linear matrix inequality (6.8.17). Next, we want to show
that there is a more compact characterization of the set P, namely by means of
the Riccati inequality, which is of dimension n instead of n+m as with the linear
matrix inequality.

Recall that in characterizing the analytic spectral factors, we keep the poles
fixed. Roughly speaking, therefore, the spectral factors will differ by the zeros, which
may be flipped to the reciprocal locations in the complex plane to create new spectral
factors. While zeros located either at zero or at z =∞ can be handled by the linear
matrix inequality, this will not be possible if we want to do parametrization by the
Riccati inequality. As we will see in Chapter ??, the Riccati inequality is a device
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capable of flipping only finite zeros to their finite reciprocals. Hence to proceed
in this direction we need to exclude the presence of zeros either at z = 0 or at
z = ∞ in the spectral factors. The condition that precludes this is a condition on
the spectral density matrix of the process, called regularity, (Corollary 9.3.11) and
is studied in detail in Sections 8.8 and 9.3. A process y having a spectral density Φ
with this property is called a regular process and is described by the condition

∆(P ) := Λ0 − CPC′ > 0 for all P ∈ P. (6.9.1)

Clearly, a regular process must be full rank.
Example 6.8.5 illustrates the fact that the number of columns of the spectral

factor W (z) varies with P ∈ P. In fact, if we agree to keep the rank of
[
B′ D′]

full, W (z) is m× p, where p := rank M(P ). Then, if T := −(C̄′ −APC′)∆(P )−1,
a straight-forward calculation yields

[
I T
0 I

]
M(P )

[
I 0
T ′ I

]
=

[
−R(P ) 0

0 ∆(P )

]
,

where

R(P ) = APA′ − P + (C̄′ −APC′)∆(P )−1(C̄′ −APC′)′. (6.9.2)

Hence, P ∈ P if and only if it satisfies the Riccati inequality

R(P ) ≤ 0. (6.9.3)

Moreover,

p = rank M(P ) = m+ rank R(P ) ≥ m.
If P satisfies the algebraic Riccati equation R(P ) = 0, i.e.,

P = APA′ + (C̄′ −APC′)∆(P )−1(C̄′ −APC′)′, (6.9.4)

rank M(P ) = m. Then the spectral factor W is m × m. The family of P corre-
sponding to square spectral factors form a subfamily P0 of P. If P /∈ P0, W is
rectangular. In Chapter 8 we show that P0 corresponds to internal state spaces. It
is obvious that P is closed and convex. Next we shall demonstrate that it is also
bounded with a minimum and maximum element.

We shall now demonstrate that the steady-state Kalman filter for an arbitrary
minimal (forward) stochastic realization (6.2.1) is in fact itself a minimal realization,
namely the forward system corresponding to the predictor space X−. To this end,
given a minimal stochastic realization Σ defined by (6.2.1), let us consider a Kalman
filter initiated at time τ (rather than time 0) and define

H[τ,t](y) = span{a′y(k) | a ∈ Rm, k = τ, τ + 1, . . . , t}

and the state estimate

x̂k(t) = EH[τ,t−1]xk(t), k = 1, 2, . . . , n.
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Then, by Lemma 2.2.4, we obtain the orthogonal decomposition

x̂(t+ 1) = Ax̂(t) + E{x(t+ 1)ỹ(t)′}(E{ỹ(t)ỹ(t)′})−1ỹ(t),

where ỹ is the innovation process

ỹ(t) = y(t)− Cx̂(t).

Consequently, recalling that the filter is initiated at t = τ , we have the Kalman
filter

x̂(t+ 1) = Ax̂(t) +K(t− τ)[y(t) − Cx̂(t)]; x̂(τ) = 0, (6.9.5)

where

K(t− τ) = E{x(t+ 1)ỹ(t)′}(E{ỹ(t)ỹ(t)′})−1. (6.9.6)

Proposition 6.9.1. The gain function K in the Kalman filter (6.9.5) is given by

K(t) = (C̄′ −AΠ(t)C′)∆(Π(t))−1, (6.9.7)

where P 7→ ∆(P ) is the matrix function (6.9.1), and Π(t) is the solution of the
matrix Riccati equation

Π(t+ 1) = Π(t) +R(Π(t)) Π(0) = 0, (6.9.8)

where the matrix function P 7→ R(P ) is given by (6.9.2).

Proof. The usual orthogonality arguments yield

E{ỹ(t)ỹ(t)′} = E{y(t)[y(t)− ŷ(t)]′} = Λ0 − CΠ(t − τ)C′,

where

Π(t) := E{x̂(t+ τ)x̂(t+ τ)′}. (6.9.9)

In the same way,

E{x(t+ 1)ỹ(t)′} = AE{x(t)[x(t) − x̂(t)]′}C′ +BD = C̄′ −AΠ(t− τ)C′,

where we have also used (6.3.8). Therefore (6.9.7) is a direct consequence of (6.9.6).
Moreover, from (6.9.5), we have

Π(t+ 1) = AΠ(t)A′ +K(t)∆(Π(t))K(t)′,

which, in view of (6.9.7), yields (6.9.8).

It is interesting and important to observe that the filter equations depend only
on quantities which pertain to the positive real part (6.8.2) of the spectral density
of y and not in any way to the particular choice of system (6.2.1). In fact, all Π(t)
are lower bounds of any P ∈ P.
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Lemma 6.9.2. Let {Π(t)}t∈Z+ be the solution of the matrix Riccati equation
(6.9.8). Then

P ≥ Π(t+ 1) ≥ Π(t) ≥ 0 for all P ∈ P and t = 0, 1, 2, . . . .

Proof. A straightforward calculation shows that

P −Π(t) = E{[x(t+ τ) − x̂(t+ τ)][x(t + τ) − x̂(t+ τ)]′} ≥ 0,

which proves that P ≥ Π(t) for all t ≥ 0. To see that Π(t+ 1) ≥ Π(t), first observe
that, by joint stationarity, the stochastic vector z(t) with components

zk(t) := EH[τ−1,t−1](y)xk(t+ τ), k = 1, 2, . . . , n

has the same covariance matrix as x̂(t+τ+1), i.e., E{z(t)z(t)′} = Π(t+1). However,
since H[τ,t−1] ⊂ H[τ−1,t−1],

x̂k(t+ τ) = EH[τ−1,t−1](y)zk(t), k = 1, 2, . . . , n

and consequently, Π(t) ≤ Π(t+ 1).

This lemma shows that {Π(t)}t∈Z+ is monotonely nondecreasing and bounded
from above, and consequently Π(t) tends to a limit P− as t→∞. In view of (6.9.8),
P− is a solution of the algebraic Riccati equation (6.9.4), i.e., R(P−) = 0. Hence
P− ∈ P0, and therefore it must correspond to a realization (6.2.1) of y.

Theorem 6.9.3. The solution Π(t) of the matrix Riccati equation (6.9.8) tends
monotonely to a limit P− ∈ P0 as t→∞, which is the state covariance

P− := E{x−(0)x−(0)′} (6.9.10)

of the stochastic realization (6.7.3) whose state space is the predictor space X−,
defined by (6.7.1). The matices B− and D− in (6.7.3) are given by

B− = (C̄′ −AP−C
′)∆(P−)−

1
2 and D− = ∆(P−)

1
2 . (6.9.11)

Moreover,

a′x−(t) = EH
−

t a′x(t) for all a ∈ Rn, (6.9.12)

and P− is the minimum element of the family P in the sense that

P ≥ P− for all P ∈ P. (6.9.13)

Proof. Let t be fixed and let τ tend to −∞ in the Kalman filter

x̂(t+ 1) = Ax̂(t) +K(t− τ)[y(t) − Cx̂(t)]
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We have already shown above that Π(t− τ)→ P− ∈ P0 as τ → −∞, and hence, in

view of (6.9.7), K(t − τ) → B−D
− 1

2
− with B−, D− given by (6.9.11). Therefore, if

we can show that, for all a ∈ Rn,

EH[τ,t−1](y)a′x(t)→ a′x−(t) := EH
−
t a′x(t) (6.9.14)

as τ →∞, then we obtain in the limit the steady state Kalman filter

x−(t+ 1) = Ax−(t) +B−D
−1
− [y(t)− Cx−(t)].

To prove (6.9.14), we shall need the following lemma.

Lemma 6.9.4. Let A1 ⊂ A2 ⊂ A3 ⊂ · · · be an infinite sequence of subspaces in a
Hilbert space H, and let ξ ∈ H. Then, setting A∞ := ∨n

j=0Aj , the sequence

ξj := EAj ξ → EA∞ξ

strongly as j →∞.

Proof. Since

‖ξ1‖ ≤ ‖ξ2‖ ≤ ‖ξ3‖ ≤ · · · ≤ ‖ξ‖

‖ξj‖ tends to a limit as j →∞. Now, for i < j, ξi = EAiξj , and hence

‖ξj − ξi‖2 = ‖ξj‖2 − ‖ξi‖2 → 0 as i, j →∞.

Consequently, ξj is a Cauchy sequence and hence tends strongly to a limit in H,

which then must be EA∞ξ.

Now, (6.9.14) follows immediately by taking Aj := H[−j,t−1](y) in this lemma,

in which case A∞ = H−
t . Moreover, ỹ(t)→ ν∞(t), where ν∞ := y−Cx− is a white

noise such that

E{ν∞(t)ν∞(s)′} = ∆(P−)δts = D−D
′
−δts,

so defining w−(t) := D
− 1

2
− ν∞(t), we obtain precisely (6.7.3), whose state space is

X− by Theorem 6.7.1.
Finally, by Lemma 6.9.2, P ≥ P−, which establishes (6.9.13).

We can also show that P has a maximum element P+ ∈ P0 connected to the
backward predictor space X+. To this end, construct a backward Kalman filter
based on the backward model (6.3.10). An analysis that is completely symmetric to
the one presented above, projecting over the future, yields a backward steady state
Kalman filter (6.7.17), which can be written as a backward stochastic realization
(6.7.5) with Markovian splitting subspace X+ and with state covariance P̄+ such
that

P̄ ≥ P̄+.
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In terms of the corresponding forward systems (6.2.1) and (6.7.22), this may be
written

P−1 ≥ P−1
+

(see Theorem 6.3.1). In other words, there is a P+ ∈ P0 such that

P ≤ P+ for all P ∈ P. (6.9.15)

In fact,
P+ := E{x+(0)x+(0)′}, (6.9.16)

where x+ is the state process of (6.7.22), the forward stochastic relization of X+.
Consequently we have established the existence of two elements in P0, namely

P− and P+, such that
P− ≤ P ≤ P+ for all P ∈ P. (6.9.17)

This also establishes the boundedness of the set P.
By Lemma 6.9.2, Π(t) approaches P− from outside P starting at Π(0) = 0. It

can be shown that all the elements in P0 are extreme points of P. The converse is
often, but not always, true. In Example 6.8.5, we now have P− = 4

3 , P+ = 25
12 and

P0 = { 4
3 ,

25
12}.

6.10 Bibliographic notes

The material in Section 6.1 is standard. The books [62, 14] are excellent early
references. The concept of balancing of linear systems was introduced by Moore
[97].

Constructing (strong sense) anticausal models in the manner of Section 6.3
was first done in [80] in continuous time and subsequently in [103] in discrete time.

The notion of minimal splitting subspace, a generalization of a concept intro-
duced in [93], was first applied to the stochastic realization problem in [105], where
the predictor space X− was considered, and then in general in [77, 79, 78]. Indepen-
dently, G. Ruckebusch developed a geometric theory of Markovian [112, 110, 111].
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The definitions of observability and constructibility in Section 6.6 were intro-
duced in the context of Markovian representations by Ruckebusch [111].
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the context of canonical correlation analysis. The idea of using Riesz’ representation
theorem in the proof of Theorem 6.7.1 was suggested by Gy. Michaletzky. This
establishes the existence of a minimal spectral factor. The existence of a unique
minimum phase spectral factor of a rational spectral density was one of the main
results in Youla’s classical 1961 paper [131].

There is a extensive literature on rational spectral factorization; In the present
context of stochastic processes, see, in particular, the excellent book [29]. The
Positive Real Lemma is a version of the Kalman-Yakubovich-Popov Lemma [57,
128, 107]. Theorem 10.4.4 is due to B.D.O.Anderson [4].

The set P is studied extensively in [29], where the solvability of M(P ) ≥ 0
is characterized using algebraic methods (Theorem 3.1), and where an algorithm
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for determining P+ is provided. Establishing the partial ordering of P via Kalman
filtering was done in [80] in continuous time and subsequently in [103] in discrete
time.
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Chapter 7

The Geometry of
Splitting Subspaces

The purpose of this chapter is to introduce coordinate-free representations of a
stationary process y by constructing state spaces from basic principles. This will in
particular accommodate both finite- and infinite-dimensional stochastic systems.

More precisely, we introduce the geometry underlying linear stochastic models
in a more abstract Hilbert space setting which can also be applied to a wider class of
problems. The basic setting in this chapter is a fixed real Hilbert space H with inner
product 〈�, �〉, a unitary shift U : H → H acting on it and two subspaces H− and
H+, representing the past and the future respectively, which enjoy the invariance
properties

U∗H− ⊂H− and UH+ ⊂H+

and the property that the subspace

H := H− ∨H+

is doubly invariant , i.e., invariant under both U and the adjoint shift U∗. The
orthogonal projection of η ∈ H onto the subspace X will be denoted EX η, and
EX Y will denote the closure of {EX η | η ∈ Y}.

7.1 Deterministic realization theory revisited: The
abstract idea of state space construction

This deterministic state space construction of Section 6.1 follows an abstract pat-
tern, which, to a certain extent to be explained below, also applies to the stochastic
setting. Given the Hankel map H : U→ Y, defined in Section 6.1, one constructs a
factorization

U
H−→ Y

onto↘ ↗1-1

X

159
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which is canonical in the sense that the map U → X is onto, the map X → Y is
one-to-one, and the dimension of X is equal to rank H. This amounts to factoring
out the kernel of H.

In fact, two inputs u1, u2 ∈ U are said to be (Nerode) equivalent if Hu1 = Hu2,
i.e., u1 − u2 ∈ kerH. Next, define the canonical projection

πHu = {v ∈ U | v ∼ u}

which assigns to each u ∈ U the equivalence class to which it belongs, and let

U/ kerH := {πHu | u ∈ U}

be the quotient space of all equivalence classes. Setting X = U/ kerH yields the
factorization

U
H−→ Y

πH ↘ ↗ϕ
X

where ϕ assigns the common H-value to the equivalence class, i.e., ϕ(πHu) = Hu.
Clearly πH is onto and ϕ is one-to-one so that the factorization is canonical.

Next, we observe that the space Y, defined on page 121, is invariant under the
shift σty(τ) = y(τ + t), t ≥ 0;

σtY ⊂ Y, t = 0, 1, 2, . . . .

We seek a restricted shift on X; i.e., an operator σt(X) : X → X that makes the
following diagram commute:

X
O−−−−→ Y

σt(X)

y
yσt

X −−−−→
O

Y

Here O is the observability operator, defined in Section 6.1. Comparing with The-
orem 6.1.3 and its proof, we see that A is a matrix representation of the one-step
restricted shift σ(X) := σ1(X) and that the semigroup property

σs(X)σt(X) = σs+t(X)

holds. In fact, σt(X) := σ(X)t for t = 0, 1, 2, . . . .
When modeling a stochastic process y there are no external inputs, and the

construction of the state space will have to be based on somewhat different prin-
ciples. The main ideas here are the concepts of Markovian splitting subspace and
scattering pair representation, which will bring into play certain (white noise) gen-
erating processes that serve as inputs for a pair of causal and anticausal represen-
tations of y, as described in Chapter 6. In analyzing these input/output maps, the
abstract deterministic realization theory will be used.
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7.2 Perpendicular intersection

Let A, B and X be subspaces of the real Hilbert space H. We recall from Chapter 2
that A and B are conditionally orthogonal given X if

〈α− EX α, β − EX β〉 = 0 for α ∈ A, β ∈ B (7.2.1)

and that this is denoted A ⊥ B | X. When X = 0, this reduces to the usual or-
thogonality A ⊥ B. (See Section 2.4 for alternative characterizations of conditional
orthogonality.)

It is trivial that the conditional orthogonality condition A ⊥ B | X remains
true if A and B are replaced by arbitrary subspaces of A and B respectively.
The converse question of how much A and B can be enlarged is less trivial and
fundamental for what follows.

Lemma 7.2.1. Suppose A ⊥ B | X. Then

(i) A ∩B ⊂ X

(ii) (A ∨X) ⊥ (B ∨X) | X

(iii) X = (A ∨X) ∩ (B ∨X)

Proof. To prove (i), let λ ∈ A ∩B. Then, since A ⊥ B | X,

〈λ− EX λ, λ − EX λ〉 = 0,

i.e., ‖λ− EX λ‖ = 0, and hence EX λ = λ, i.e. λ ∈ X. Statement (ii) follows from
Proposition 2.4.2 (i)–(iii) in Chapter 2. Finally, to prove (iii), note that property
(i) applied to (ii) yields (A ∨X) ∩ (B ∨X) ⊂ X. But X ⊂ (A ∨X) ∩ (B ∨X) is
trivial.

Setting S := A ∨X and S̄ := B ∨X, Lemma 7.2.1 implies that A ⊥ B | X is
equivalent to

S ⊥ S̄ | S ∩ S̄.

We shall provide some alternative characterizations of this property.

Proposition 7.2.2. The following conditions are equivalent

(i) S ⊥ S̄ | S ∩ S̄

(ii) ES S̄ = S ∩ S̄

(iii) ES̄ S = S ∩ S̄

(iv) ES̄ S = ES S̄
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Proof. By Proposition 2.4.3,

S ⊥ S̄ | ES S̄, (7.2.2)

and therefore Lemma 7.2.1 (i) implies that

S ∩ S̄ ⊂ ES S̄. (7.2.3)

Also, by Proposition 2.4.3, ES S̄ ⊂ X for any X ⊂ S such that S ⊥ S̄ | X. Hence (i)
implies (ii). A symmetric argument shows that (i) implies (iii) as well, and therefore
(i) also implies (iv). Consequently, if (iv) holds, then ES S̄ ⊂ S∩ S̄, which together
with (7.2.3) and (7.2.2) yields (i).

Definition 7.2.3. A pair (S, S̄) of subspaces satisfying the conditions of Proposi-
tion 7.2.2 are called perpendicularly intersecting.

The property of perpendicular intersection is depicted in Figure 5.1.

Theorem 7.2.4. Let S and S̄ be subspaces such that S∨S̄ = H. Then the following
conditions are equivalent.

(i) S and S̄ intersect perpendicularly

(ii) S̄⊥ ⊂ S or, equivalently, S⊥ ⊂ S̄

(iii) H = S̄⊥ ⊕ (S ∩ S̄)⊕ S⊥

(iv) ES and ES̄ commute

Proof. Set X = S∩ S̄. If (i) holds, X = ES S̄, and hence S	X ⊥ S̄ (Lemma 2.2.6).
But, since X ⊂ S̄ and S∨S̄ = H, we have (S	X)⊕S̄ = H, and therefore S	X = S̄⊥;
i.e., S = X ⊕ S̄⊥. Hence both (ii) and (iii) follow. Each of conditions (ii) and (iii)
implies the existence of a subspace X with the property H = S̄⊥⊕X⊕S⊥ so that,
if λ ∈ H,

ES ES̄ λ = EX ES̄ λ+ ES̄⊥

ES̄ λ = EX λ

and

ES̄ ES λ = EX = EX ES λ+ ES⊥

ES λ = EX λ,

and therefore (iv) follows. It just remains to prove that (iv) implies (i). But,

ES ES̄ H = ES̄ ES H yields ES S̄ = ES̄ S, i.e., S and S̄ intersect perpendicularly
(Proposition 7.2.2).

Corollary 7.2.5. Let S and S̄ be any subspaces of H. If S̄⊥ ⊂ S or, equivalently,
S⊥ ⊂ S̄, then S and S̄ intersect perpendicularly, and conditions (iii) and (iv) in
Theorem 7.2.4 hold.
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S

S
-

S S
-

X = ∩

⊥
S
-

S
⊥

Figure 5.1: The splitting geometry.

Proof. By Lemma 2.2.6 and S̄⊥ ⊂ S, we have

S = ES S̄⊕ S̄⊥

which implies that ES S̄ ⊂ S̄. Hence

S ∩ S̄ = ES S̄,

and therefore S and S̄ intersect perpendicularly (Proposition 7.2.2) and (iii) holds.
Consequently, (iv) also holds.

We are now in a position to answer the question of how much the subspaces
A and B may be enlarged while retaining the conditional orthogonality A ⊥ B | X
in the special, but important, special case that A ∨B = H.

Theorem 7.2.6. Let A and B be subspaces such that A ∨ B = H, and suppose
that A ⊥ B | X. Let S ⊃ A and S̄ ⊃ B. Then S ⊥ S̄ | X if and only if

S ⊂ A ∨X and S̄ ⊂ B ∨X. (7.2.4)

If the upper bounds in (7.2.4) are attained, i.e., S = A ∨X and S̄ ⊂ B ∨X, then
X = S ∩ S̄ and S and S̄ intersect perpendicularly.

Proof. It is clear from Lemmas 7.2.1 and 2.4.1 that S ⊥ S̄ if (7.2.4) holds.
Conversely, suppose that S ⊥ S̄. Then, by Proposition 2.4.2 (iii) in Chapter 2,
(S ∨X) ⊥ S̄ | X, which, in view of Lemma 2.4.1, implies that

Z ⊥ B | X, (7.2.5)
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where Z := (S ∨X)	 (A ∨X). But (7.2.5) is equivalent to

Z ⊥ (B ∨X)	X (7.2.6)

by Proposition 2.4.2 (v) in Chapter 2. Since, by definition, Z ⊥ (A ∨ X), we
have Z ⊥ A ∨ B = H, and hence Z = 0, proving the first of inclusions (7.2.4).
A symmetric argument shows that the second inclusion must also hold. The last
statement follows from Lemma 7.2.1 (iii) and Proposition 7.2.2.

7.3 Splitting subspaces

A splitting subspace is a subspace X ⊂ H with the property

H− ⊥H+ | X, (7.3.1)

i.e., the past and the future spaces are conditionally orthogonal given X. From
Proposition 2.4.2 in Chapter 2 it follows that X is a splitting subspace if and only
if

EH−∨X λ = EX λ for all λ ∈ H+ (7.3.2)

or, equivalently,

EH+∨X λ = EX λ for all λ ∈ H−. (7.3.3)

Consequently, X serves as a “memory” or “sufficient statistics” which contains
everything from the past which is needed in predicting the future and everything
from the future which is needed in predicting the past. Clearly H, H, H− and
H+ are splitting subspaces. Therefore, to obtain real data reduction, we shall be
interested in splitting subspaces X which are minimal in the sense that if X1 is also
a splitting subspace and X1 ⊂ X, then X1 = X.

The following result, which is a corollary of Theorem 2.4.3, provides us with
two examples of minimal splitting subspaces.

Proposition 7.3.1. The predictor spaces

X− := EH−

H+ and X+ := EH+

H−

are minimal splitting subspaces. In fact, X− is the only minimal splitting subspace
contained in H− and X+ is the only minimal splitting subspace contained in H+.

To shed some light on the splitting property, observe that, in view of Propo-
sition 2.4.2 (vi) in Chapter 2,

EH+

λ = EH+

EX λ for λ ∈ H− (7.3.4)

is an equivalent characterization of a splitting subspace X. To understand better
this characterization, we introduce the observability operator

O := EH+ |X (7.3.5)
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and the constructiblity operator

C := EH− |X. (7.3.6)

Then, since
O∗ := EX |H+ and C∗ := EX |H− (7.3.7)

are the adjoints of O and C respectively (Lemma 2.2.7 in Chapter 2), (7.3.4) may
be written

H = OC∗, (7.3.8)

where H is the Hankel operator

H := EH+ |H− . (7.3.9)

Equivalently, we have
H∗ = CO∗, (7.3.10)

where
H∗ = EH− |H+ . (7.3.11)

Consequently, the splitting property can be characterized as a factorization
of a Hankel operator over the splitting subspace X so that the following diagram
commutes:

H− H−→ H+

C∗ ↘ ↗ O

X

H = OC∗

Such a factorization is said to be canonical if C∗ maps onto a dense subset of X
and O is injective, i.e., kerO = 0. Equivalently, the same splitting property can be
illustrated by factoring the adjoint Hankel operator (7.3.11) over X so that the dual
diagram

H+ H
∗

−→ H−

O∗ ↘ ↗ C

X

H∗ = CO∗,

corresponding to the factorization (7.3.10), commutes. Again the factorization is
canonical if the range Im O∗ is dense in X and C is injective, i.e., kerC = 0.

The equivalence between these formulations of canonicity is a simple conse-
quence of the fact that Im O∗ = X if and only if kerO = 0 and Im C∗ = X if and
only if kerC = 0. This property, which holds for all bounded linear operators (The-
orem A.1.3 in the appendix), can in the present setting be illustrated by applying
Lemma 2.2.6 to obtain the orthogonal decompositions

X = EX H+ ⊕X ∩ (H+)⊥ (7.3.12a)

X = EX H− ⊕X ∩ (H−)⊥ (7.3.12b)

Noting that
kerO = X ∩ (H+)⊥ and kerC = X ∩ (H−)⊥. (7.3.13)
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and
Im O∗ = EX H+ and Im C∗ = EX H−, (7.3.14)

it is seen that (7.3.12) is the well-known decomposition of Theorem A.1.3 in the
appendix.

We shall call EX H+ the observable and X∩(H+)⊥ the unobservable subspace
of X. This is in harmony with Kalman’s nomenclature since any ξ ∈ X ∩ (H+)⊥

is unobservable in the sense that it cannot be distinguished from zero by observ-
ing elements in the space H+ of future outputs. Similarly EX H− is called the
constructible and X ∩ (H−)⊥ the unconstructible subspace of X.

We restate Definition 6.6.1 in terms of splitting subspaces.

Definition 7.3.2. The splitting subspace is said to be observable if X∩ (H+)⊥ = 0
and constructible if X ∩ (H−)⊥ = 0.

Consequently, the factorizations (7.3.8) and (7.3.10) are canonical if and only
if X is both observable and constructible. Next we show that this canonicity is
equivalent to minimality of X. To this end, we need the following lemma.

Lemma 7.3.3. Let X be a splitting subspace and suppose it has the orthogonal
decomposition

X = X1 ⊕X2, (7.3.15)

where X1 and X2 are subspaces of X. Then X1 is a splitting subspace if and only
if

EX2 H− ⊥ EX2 H+. (7.3.16)

Proof. Using the alternative definition (2.4.2) of conditional orthogonality, the
splitting property H− ⊥H+ | X may be written

〈EX λ,EX µ〉 = 〈λ, µ〉 for all λ ∈ H− and µ ∈ H+.

Therefore, since

〈EX λ,EX µ〉 = 〈EX1 λ,EX1 µ〉+ 〈EX2 λ,EX2 µ〉,
the proof of the lemma is immediate.

Lemma 7.3.4. If X is a splitting subspace, then so are EX H+ and EX H−.

Proof. This follows readily from Lemma 7.3.3 and the orthogonal decompositions
(7.3.12). With X2 := X ∩ (H+)⊥, we have EX2 H+ = 0, and consequently X1 :=
EX H+ is a splitting subspace. Similarly, setting X2 := X ∩ (H−)⊥, it is seen that
X1 := EX H− is a splitting subspace.

Theorem 7.3.5. A splitting subspace is minimal if and only if it is both observable
and constructible.
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Proof. Suppose that X is a minimal splitting subspace. Then, since EX H+ and
EX H+ are also splitting subspaces (Lemma 7.3.4), it follows from decompositions
(7.3.12) that X ∩ (H+)⊥ = 0 and X ∩ (H−)⊥ = 0, i.e., x is both observable and
constructible.

Conversely, suppose that X∩(H−)⊥ = 0 and X∩(H−)⊥ = 0 and that X1 ⊂ X
is a splitting subspace. We want to show that X2 := X 	X1 is the zero space so
that X1 = X. It follows from (7.3.12a) that X = EX H+ . Applying EX2 to this
and observing that EX2 EX = EX2 , we obtain that

EX2 H+ = X2. (7.3.17)

A symmetric argument using (7.3.12b) yields

EX2 H− = X2. (7.3.18)

Since X1 is a splitting subspace, Lemma 7.3.3 implies that (7.3.17) and (7.3.18) are
orthogonal, which can only happen if X2 = 0 as claimed.

The splitting property can also be characterized in terms of perpendicularly
intersecting subspaces.

Theorem 7.3.6. A subspace X ⊂ H is a splitting subspace if and only if

X = S ∩ S̄ (7.3.19)

for some pair (S, S̄) of perpendicularly intersecting subspaces such that S ⊃ H− and
S̄ ⊃ H+. Then

X = ES S̄ = ES̄ S. (7.3.20)

In particular,

ES λ = EX λ, for all λ ∈ S̄ (7.3.21)

and

ES̄ λ = EX λ, for all λ ∈ S. (7.3.22)

Proof. (if): Suppose S and S̄ intersect perpendicularly. Then, by Proposition 7.2.2,
S ⊥ S̄ | X with X = S ∩ S̄. But, since S ⊃ H− and S̄ ⊃ H+, this implies that
H− ⊥ H+ | X, i.e. X is a splitting subspace. Then (7.3.20) follows directly from
Proposition 7.2.2, and, by Proposition 2.4.2, (7.3.21) and (7.3.22) are equivalent to
S ⊥ S̄ | X.
(only if): Suppose that H− ⊥ H+ | X and set S := H− ∨X and S̄ := H+ ∨X.
Then, by Theorem 7.2.6, S ⊥ S̄ | X where X = S ∩ S̄. Hence S and S̄ intersect
perpendicularly (Proposition 7.2.2) and S ⊃H− and S̄ ⊃ H+.

We shall call a pair (S, S̄) satisfying the conditions of Theorem 7.3.6 a scat-
tering pair of X, due to certain similarities to incoming and outgoing subspaces in
Lax-Philips scattering theory [71]. The correspondence to the scattering framework
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of Lax and Philips will become complete once we introduce invariance with respect
to the unitary operator U , as we shall do in the next section.

In general, an X may have more than one scattering pair. In the next section
further conditions will be imposed which will allow us to assign a unique scattering
pair to each X. However, if we take H = H := H−∨H+, each splitting subspace has
a unique scattering pair (S, S̄). This choice of space H amounts to only considering
internal splitting subspaces, i.e., splitting subspaces such that X ⊂ H.

Proposition 7.3.7. Suppose that H = H. Then each splitting subspace X has a
unique scattering pair (S, S̄), namely

S = H− ∨X, S̄ = H+ ∨X. (7.3.23)

Proof. It follows from Theorem 7.3.6 that S ⊃ H− ∨X and S̄ ⊃ H+ ∨X. But,
since H− ∨H+ = H, Theorem 7.2.6 implies that S ⊂ H− ∨X and S̄ ⊂ H+ ∨X,
and consequently (7.3.23) holds.

Proposition 7.3.7 makes the study of internal splitting subspaces much simpler
than in the general case. The corresponding pair (S, S̄) will be called an internal
scattering pair.

7.4 Markovian splitting subspaces

The splitting property insures that X contains the information needed to act as a
state space but says nothing about how this dynamical memory evolves in time.
Therefore, we shall need to assume that X has the additional property that it splits
the combined past and the combined future of {y(t)} and X, i.e. that

(H− ∨X−) ⊥ (H+ ∨X+) | X, (7.4.1)

where X− := span{U tX | t ≤ 0} and X+ := span{U tX | t ≥ 0}. Clearly the
splitting property H− ⊥ H+|X is also implied by (7.4.1) as is the Markov property

X− ⊥ X+ | X. (7.4.2)

Moreover, define the ambient space HX of X as the smallest subspace of H

which contains both H and X and which is invariant under both forward shift U
and backward shift U∗. More precisely,

HX = H ∨ span{U tX | t ∈ Z} (7.4.3)

We say that X is a Markovian splitting subspace if it satisfies (7.4.1), and the triplet
(HX, U,X) is called a Markovian representation. If HX = H, i.e. X ⊂ H, we say
that the Markovian representation is internal .

The subspaces S and S̄ of Theorem 7.3.6 may be regarded as extension of the
past space H− and the future space H+. Since H− and H+ satisfy the invariance
properties

U∗H− ⊂H− and UH+ ⊂H+,
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the following theorem shows that S and S̄ indeed play the roles of extended past
and future spaces.

Theorem 7.4.1. A splitting subspace X is a Markovian splitting subspace if and
only if it has a scattering pair (S, S̄) such that

U∗S ⊂ S and U S̄ ⊂ S̄ (7.4.4)

For each X there is a unique such scattering pair contained in the ambient space
HX, and it is given by

S = H− ∨X− and S̄ = H+ ∨X+. (7.4.5)

Moreover, S ∨ S̄ = HX.

Proof. To prove the (only if) part, suppose that (7.4.1) holds, i.e. that S ⊥ S̄ | X
where S := H−∨X− and S̄ := H+∨X+. Then, by Lemma 7.2.1, X = S∩ S̄ so that
S ⊥ S̄ | S ∩ S̄, and hence S and S̄ intersect perpendicularly. Hence, since S ⊃ H−

and S̄ ⊃H+, (S, S̄) is a scattering pair of X.
To prove the (if) part, suppose X is a splitting subspace with a scattering pair

(S, S̄) satisfying the invariance property (7.4.4). Since X ⊂ S, (7.4.4) implies that
U−1X ⊂ S, and hence

U tX ⊂ S for t ≤ 0.

Therefore X− ⊂ S. But H− ⊂ S, and consequently

H− ∨X− ⊂ S. (7.4.6)

A symmetric argument yields

H+ ∨X+ ⊂ S̄. (7.4.7)

Hence (7.4.1) follows from S ⊥ S̄ | X.
Finally, we prove uniqueness. If (S, S̄) is a scattering pair for X, we have

S ⊥ S̄ | X where X = S ∩ S̄. Therefore, it follows from (7.4.1) and Theorem 7.2.6
that

S ⊂H− ∨X− and S̄ ⊂ H+ ∨X+. (7.4.8)

In fact, set A := H− ∨X− and B := H+ ∨X+ and observe that A ∨B = HX and
that A ∨X = H− ∨X− and B ∨X = H+ ∨X+. Then (7.4.6) (7.4.7) and (7.4.8)
yield the required uniqueness, and (S, S̄) is given by (7.4.5).

For any Markovian splitting subspace we write X ∼ (S, S̄) to refer to the
one-one correspondence between X = S ∩ S̄ and the unique scattering pair (S, S̄)
contained in HX. In view of Proposition 7.3.7, we have H− ∨X− = H− ∨X and
H+ ∨X+ = H+ ∨X for internal splitting subspaces, but in general these equations
do not hold.
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In view of Theorem 7.2.4, we may characterize the splitting property of X ∼
(S, S̄) by means of the orthogonal decomposition

HX = S⊥ ⊕X⊕ S̄⊥, (7.4.9)

where S⊥ and S̄⊥ are the orthogonal components of S and S̄ in HX. (This will be
the notational convention for the rest of this section.) The decomposition (7.4.9) is
illustrated in Figure 5.1, which also illustrates that S and S̄ intersect perpendicularly
if and only if S̄⊥ ⊂ S or, equivalently, S⊥ ⊂ S̄ (Theorem 7.2.4). Since, in addition,
S ⊃H− and S̄ ⊃ H+ (Theorem 7.3.6), the splitting geometry requires that

S̄ ⊃ H+ ∨ S⊥ and S ⊃H− ∨ S̄⊥. (7.4.10)

A Markovian splitting subspace is said to be minimal if it contains no proper
subspace which is also a Markovian splitting subspace. We turn now to the question
of how minimality can be characterized in terms of the scattering pair (S, S̄). Since
X = S∩ S̄, minimality of X should be expected to be connected to some minimality
conditions on S and S̄.

Lemma 7.4.2. Let X1 ∼ (S1, S̄1) and X2 ∼ (S2, S̄2) be Markovian splitting
subspaces. Then X1 ⊂ X2 if and only if S1 ⊂ S2 and S̄1 ⊂ S̄2.

Proof. The (if) part follows from the fact that X = S ∩ S̄ for all X ∼ (S, S̄). The
(only if) part follows from (7.4.5)

Given an arbitrary Markovian splitting subspace X ∼ (S, S̄), how do we find
a minimal one contained in it? If this is at all possible, Lemma 7.4.2 suggests
that we would need to reduce S and S̄ as far as possible while preserving the split-
ting geometry; i.e., satisfying the constraints (7.4.10) and the invariance conditions
(7.4.4).

Theorem 7.4.3. Let X ∼ (S, S̄) be a Markovian splitting subspace with ambient
space HX, and set S̄1 := H+ ∨ S⊥ and S1 = H− ∨ S̄⊥

1 , where ⊥ denotes orthogonal
complement in HX. Then X1 ∼ (S1, S̄1) is a minimal Markovian splitting subspace
such that X1 ⊂ X.

Proof. The subspaces S1 and S̄1 intersect perpendicularly by virtue of the fact that
S̄⊥

1 ⊂ S1 (Corollary 7.2.5). Therefore, since S1 ⊃H− and S̄1 ⊃H+, X1 = S1∩S̄1 is
a splitting subspace (Theorem 7.3.6). We need to show that it is Markovian. Since
U∗S ⊂ S, we have US⊥ ⊂ S⊥ (Lemma A.1.6), which together with the invariance
property UH+ ⊂H+ yields

U S̄1 ⊂ S̄1.

Consequently, X1 ∼ (S1, S̄1) is a Markovian splitting subspace (Theorem 7.4.1).
Next we show that X1 ⊂ X. To this end, first note that S⊥ ⊂ S̄1, or,

equivalently, S̄⊥
1 ⊂ S, which together with H− ⊂ S yields

S1 ⊂ S.
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Also, since S̄1 = H+ ∨ S⊥, the first of equations (7.4.10) yields

S̄1 ⊂ S̄1.

Consequently, by Lemma 7.4.2, X1 ⊂ X.
Finally, to prove that X1 is minimal, we assume that there is a Markovian

splitting subspace X2 ∼ (S2, S̄2) such that X2 ⊂ X1. Then, by Lemma 7.4.2 and
the fact that S1 ⊂ S, we have S2 ⊂ S and S̄2 ⊂ S̄ so that S⊥ ⊂ S⊥

2 and S̄⊥ ⊂ S̄⊥
2 .

Therefore, in view of the splitting conditions (7.4.10) for X2,

S̄2 ⊃H+ ∨ S⊥
2 ⊃H+ ∨ S⊥ = S̄1

and
S2 ⊃ H− ∨ S̄⊥

2 ⊃ H− ∨ S̄⊥
1 = S1,

and consequently, by Lemma 7.4.2, X2 ⊃ X1. Therefore, we must have X2 = X1,
proving minimality of X1 ∼ (S1, S̄1).

Later we shall need the following corollary, the proof of which follows along
similar lines as for Theorem 7.4.3.

Corollary 7.4.4. Let X ∼ (S, S̄) be a Markovian splitting subspace, and let S1

and S̄1 be defined as in Theorem 7.4.3. Then X′
1 ∼ (S, S̄1) and X′′

1 ∼ (S1, S̄) are
Markovian splitting subspace contained in X.

Let us illustrate Theorem 7.4.3 by giving some examples. It is immediately
seen from Theorems 7.3.6 and 7.4.1 that H− ∼ (H−,H) is a Markovian splitting
subspace with ambient space H. Applying Theorem 7.4.3 we obtain S̄1 = H+ ∨
(H−)⊥ and consequently S̄⊥

1 = N−, where

N− = H− ∩ (H+)⊥, (7.4.11)

so that S1 = H−. Therefore, in view of (7.3.20), the minimal Markovian splitting
subspace X1 ∼ (S1, S̄1) contained in H−is given by

X1 = EH−

[H+ ∨ (H−)⊥] = EH−

H+.

Proposition 7.4.5. The predictor space

X− := EH−

H+ (7.4.12)

is a minimal Markovian splitting subspace and X− ∼ (H−, (N−)⊥), where N− is
given by (7.4.11).

Likewise, applying Theorem 7.4.3 to H+ ∼ (H,H+) we obtain S̄1 = H+ and
S1 = H− ∨ (H+)⊥ = (N+)⊥, where

N+ = H+ ∩ (H−)⊥, (7.4.13)
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and consequently, in view of (7.3.20), the minimal Markovian splitting subspace
X1 ∼ (S1, S̄1) now is given by

X1 = EH+

[H− ∨ (H+)⊥] = EH+

H−.

Proposition 7.4.6. The backward predictor space

X+ := EH+

H− (7.4.14)

is a minimal Markovian splitting subspace and X+ ∼ ((N+)⊥,H+), where N+ is
given by (7.4.13).

The subspace N− contains everything in the past which is orthogonal to the
future, and N+ contains everything in the future that is orthogonal to the past.
Loosely speaking, N− gives no information about the future and N+ no information
about the past, and therefore we shall call them the junk spaces. Nevertheless, they
will play an important role in what follows.

Theorem 7.4.3 has some important corollaries. The first, which is nontriv-
ial only if X is infinite-dimensional, concerns the existence of minimal Markovian
splitting subspaces.

Corollary 7.4.7. Every Markovian splitting subspace contains a minimal Marko-
vian splitting subspace.

Corollary 7.4.8. A Markovian splitting subspace X ∼ (S, S̄) is a minimal Marko-
vian splitting subspace if and only if

S̄ = H+ ∨ S⊥ and S = H− ∨ S̄⊥. (7.4.15)

This corollary shows that X ∼ (S, S̄) is minimal if and only if there is equality
in both the inclusions (7.4.8). Next, we show that these minimality conditions on
S̄ and S correspond to observability and constructibility respectively.

Theorem 7.4.9. A Markovian splitting subspace X ∼ (S, S̄) is observable if and
only if

S̄ = H+ ∨ S⊥ (7.4.16)

and constructible if and only if

S = H− ∨ S̄⊥. (7.4.17)

Proof. First note that if A and B are any subspaces, then (A ∨B)⊥ = A⊥ ∩B⊥.
Now, condition (7.4.16) is equivalent to

[H+ ∨ S⊥]⊕ S̄⊥ = HX, (7.4.18)
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which can also be written

H+ ∨ S⊥ ∨ S̄⊥ = HX (7.4.19)

Clearly (7.4.18) implies (7.4.19). To see that the converse is also true, note that the
first of equations (7.4.15) implies (H+ ∨ S⊥) ⊥ S̄⊥. But (7.4.19) is equivalent to

(H+)⊥ ∩ S ∩ S̄ = 0

which in view of the fact that X = S ∩ S̄ is precisely the observability condition
X ∩ (H+)⊥ = 0. The statement about constructibility follows by a symmetric
argument.

From Corollary 7.4.8 and Theorem 7.4.9 we have the following two corollaries,
the second of which shows that the minimality property and the Markov property
can be studied separately.

Corollary 7.4.10. The Markovian splitting subspace X ∼ (S, S̄) is minimal if and
only if it is both observable and constructible.

Corollary 7.4.11. A minimal Markovian splitting subspace is a minimal splitting
subspace.

Corollary 7.4.12. A subspace X is an observable Markovian splitting subspace if
and only if there is a subspace S ⊃H−, satisfying U∗S ⊂ S, such that

X = ES H+. (7.4.20)

It s a constructible Markovian splitting subspace if and only if there is a subspace
S̄ ⊃ H+, satisfying U S̄ ⊂ S̄, such that

X = ES̄ H−. (7.4.21)

The subspaces S and S̄ are those of Theorem 7.4.9; i.e., X ∼ (S, S̄).

Proof. Suppose that X ∼ (S, S̄) is an observable Markovian splitting subspace.
Then X = ES S̄ (Theorem 7.3.6), which together with the observability condition
(7.4.16) yields (7.4.20). Conversely, suppose that there is an invariant S ⊃H− such
that (7.4.20) holds. Define S̄ := H+∨S⊥, which is clearly invariant under U . Then
X = ES S̄, and S and S̄ intersect perpendicularly (Theorem 7.2.4), hence satisfying
the equivalent conditions of Proposition 7.2.2. Therefore, X is a splitting subspace
(Theorem 7.3.6), which satisfies (7.4.4) and therefore is Markovian. Consequently,
X ∼ (S, S̄). By construction, X satisfies (7.4.16) and is thus observable. The rest
follows by a symmetric argument.

It follows from either Lemma 2.2.6 or from Propositions 7.4.5 and 7.4.6 that

H− = X− ⊕N− and H+ = X+ ⊕N+ (7.4.22)
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and, therefore, since H = H− ∨H+ and since X− ⊂ H− ⊥ N+ and X+ ⊂ H+ ⊥
N−, we have the orthogonal decomposition

H = N− ⊕H2 ⊕N+, (7.4.23)

where H2 is the frame space

H2 = X− ∨X+. (7.4.24)

The following result, which holds for splitting subspaces in general and not
only for Markovian splitting subspaces, describes the role played by the predictor
spaces X− and X+ in Kalman filtering (see Section 6.9).

Proposition 7.4.13. Let X be a splitting subspace, and let N− and N+ be defined
by (7.4.11) and (7.4.13) respectively. Then

EH−

X = X− (7.4.25)

if and only if X ⊥N−, and

EH+

X = X+ (7.4.26)

if and only if X ⊥N+.

Proof. Applying the projection EH−

to X = ES S̄ (Theorem 7.3.6) and noting

that H− ⊂ S, we obtain EH−

X = EH−

S̄. But S̄ ⊃ H+, and hence EH−

X ⊃ X−.

Conversely, suppose that ξ ∈ X. Then, since H− = X− ⊕N−, EH−

ξ = EX− ξ +

EN−

ξ, showing that EH−

X ⊂ X− if and only if X ⊥ N−. This establishes the
first part. The second follows by symmetry.

In particular, the conditions X ⊥ N− and X ⊥ N+ can be replaced by the
stronger conditions that X be observable and constructible respectively.

Corollary 7.4.14. Let X be a splitting subspace. Then X ⊥ N− if X is observable
and X ⊥ N+ if X is constructible. If X is minimal, it is orthogonal to both N−

and N+.

Proof. If X is observable, then, by (7.3.12a), X = EX H+. But X is a splitting

subspace satisfying (7.3.2) so that X = EH−∨X H+, and hence

EH−

X = EH−

EH−∨X H+ = EH−

H+,

which yields (7.4.25). Therefore it follows from Proposition 7.4.13 that X ⊥ N−.
In the same way we show that X ⊥N+ is a consequence of X being constructible.
Then, the last statement follows from Theorem 7.3.5.

We are now in a position to show that the frame space H2 is actually the
closed linear hull of the interior parts X ∩H of all minimal splitting subspaces.
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Proposition 7.4.15. The frame space H2 is a Markovian splitting subspace, and
H2 ∼ ((N+)⊥, (N−)⊥). Moreover,

X ∩H ⊂H2 (7.4.27)

for all minimal splitting subspaces X.

Proof. Since S := (N+)⊥ = H−∨(H+)⊥ ⊃H− and S̄ := (N−)⊥ = H+∨(H−)⊥ ⊃
H+, the first statement follows by comparing the decomposition (7.4.23) to (7.4.9)
and noting that the invariance conditions (7.4.4) hold. The inclusion (7.4.27) follows
from (7.4.23) and Corollary 7.4.14.

Decomposition (7.4.23) partitions the output space H into three parts. The
subspace N− is the part of the past H− which is orthogonal to the future H+,
and N+ is the part of the future which is orthogonal to the past. Consequently,
the inclusion (7.4.27) reflects the fact that the spaces N− and N+ play no role
in the interaction between past and future and hence in minimal state space con-
struction. As we shall see in Chapter 16, decomposition (7.4.23) also provides an
important conceptual paradigm for smoothing. In fact, it follows immediately from
Corollary 7.4.14 that

EH X ⊂ H2 (7.4.28)

for any minimal X, relating the smoothing estimate to the forward and backward
predictor estimates.

7.5 The Markov semigroup

Defining a semigroup on a splitting subspace X in the style of Section 7.1 requires
that X has a scattering pair (S, S̄) satisfying the invariance properties U∗S ⊂ S and
U S̄ ⊂ S̄; i.e, X ∼ (S, S̄) must be a Markovian splitting subspace. Then, defining
the restricted shift on X,

U(X) = EX U |X, (7.5.1)

or more generally
Ut(X) = EX U t|X, t = 0, 1, 2, . . . , (7.5.2)

we have the following theorem.

Theorem 7.5.1. Let X ∼ (S, S̄) be a Markovian splitting subspace. Then, for
t = 0, 1, 2, . . . , the diagrams

H+ O
∗

−−−−→ X

Ut

y
yUt(X)

H+ O
∗

−−−−→ X

H− C
∗

−−−−→ X

(U∗)t

y
yUt(X)∗

H− C
∗

−−−−→ X

commute, where O is the observability operator EH+ |X and C is the constructibility

operator EH− |X. Moreover, the restricted shift satisfies the semigroup property

Us(X)Ut(X) = Us+t(X); (7.5.3)
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176 Chapter 7. The Geometry of Splitting Subspaces

i.e., in particular,
Ut(X) = U(X)t. (7.5.4)

For each ξ ∈ X and t = 0, 1, 2, . . . ,

ES U tξ = Ut(X)ξ (7.5.5a)

ES̄ U−tξ = Ut(X)∗ξ. (7.5.5b)

Proof. Let λ ∈ S̄ and take t = 0, 1, 2, . . . . Then, since S̄ = X⊕S⊥ (Theorem 7.2.4),

EX U tλ = EX U t EX λ+ EX U t ES⊥

λ

However, the last term is zero, since U tS⊥ ⊂ S⊥ ⊥ X. Therefore,

EX U tλ = EX U t EX λ. (7.5.6)

Consequently, for any λ ∈ H+ ⊂ S̄,

Ut(X)O∗λ = EX U t EX λ = EX U tλ = O∗U tλ,

and thus the first diagram commutes. A completely symmetric argument show
that also the second diagram commutes. From (7.5.6) we also immediately see that
(7.5.3) holds. Moreover, since S ⊥ S̄ | X and Uλ ∈ S̄, the left member of (7.5.6) can
be exchanged for ES U tλ. Therefore, since X ⊂ S̄, (7.5.5a) follows. Then (7.5.5b)
follows by symmetry.

7.6 Minimality and dimension

In the geometric theory of splitting subspaces minimality is defined in terms of
subspace inclusion. This is natural since this concept of minimality is meaningful
also for infinite-dimensional splitting subspaces. The question of whether mini-
mal splitting subspaces all have the same (finite or infinite) dimension is therefore
natural.

Theorem 7.6.1. All minimal (Markovian or non-Markovian) splitting subspaces
have the same dimension.

As a preliminary for proving this theorem let us again consider the splitting
factorization

H− H−→ H+

C∗ ↘ ↗ O

X

H = OC∗

described in Section 7.3. Recall that X is observable if and only if Im O∗ is dense in
X and constructible if and only if Im C∗ is dense in X. We shall say that X is exactly
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observable if O∗ is surjective, Im O∗ = X and exactly constructible if C∗ is surjective,
i.e., Im C∗ = X. If X is both exactly observable and exactly constructible, we say
that the factorization, and hence also X, is exactly canonical .

Lemma 7.6.2. If the Hankel operator H := EH+ |H− has a closed range, then all
minimal splitting subspaces are exactly canonical. If one splitting subspace is exactly
canonical, then H has a closed range.

Proof. Recall that if a map has a closed range, then so does its adjoint [130, p.205];
this will be used several times in the proof. Let X be a minimal splitting subspace.
Then H = OC∗ and C∗H− is dense in X. Clearly HH− = OC∗H− ⊂ OX. We want
to show that, if HH− is closed, then HH− = OX so that O, and hence O∗, has a
closed range, i.e., X is exactly observable. To this end, let ξ ∈ X be arbitrary. Then
there is a sequence {ξk} in C∗H− such that ξk → ξ as k → ∞. But Oξk ∈ HH−,
and, since O is continuous, Oξk → Oξ ∈ HH−, and consequently OX ⊂ HH−.
Hence, since OX ⊃ HH− trivially, OX = HH− as required. In the same way,
we use the adjoint factorization H∗ = CO∗, which is also canonical, to prove that
X is exactly constructible. Conversely, assume that X is exactly canonical. Then
C∗H− = X, and therefore, since OX is closed, HH− = OC∗H− is closed.

Certain results in the geometric theory of splitting subspaces are much easier
to prove in the finite-dimensional case. The reason for this is that the ranges of
the operators O∗ and C∗ are always closed in this case. Hence it is the fact that
observability and constructibility is always exact in the finite-dimensional case which
implies that certain technical difficulties do not occur.

Proof of Theorem 7.6.1. Let us first assume that the Hankel operator H has
closed range. Then, for any minimal X, C∗ is surjective and O injective. Now,
suppose X1 and X2 are two minimal splitting subspaces. Then, if, for i=1,2, Oi is
the observability operator and Ci the constructibility operator of Xi, the diagram

X1

C∗
1 ↗ | ↘ O1

|
H− T | H+

|
C∗

2 ↘ ↓ ↗ O2

X2

commutes. We we want to show that there is a bijective linear operator T : X1 →
X2 so that the diagram amended with the dashed arrow still commutes.

Since C∗
1 is surjective, for each ξ1 ∈ X1 there is a λ ∈ H− such that C∗

1λ = ξ1.
For any such λ ∈ H− commutativity yields

O1C
∗
1λ = µ = O2C

∗
2λ.

Moreover, since O2 is injective, there is a unique ξ2 ∈ X such that µ = O2ξ2. Define
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T : X1 → X2 to be the linear map sending ξ1 to ξ2. Then,

O2TC∗
1λ = O2Tξ1 = O2ξ2 = µ = O2C

∗
2λ.

Since O2 is injective, this implies that TC∗
1 = C∗

2, so the left triangle in the diagram
commutes. To see that the right triangle in the diagram also commutes, note that
µ = O1ξ1 and µ = O2ξ2 = O2Tξ1, which implies that O1 = O2T .

Next, since C∗
2 is surjective and O1 is injective, a completely symmetric argu-

ment shows that there is a map T̃ : X2 → X1 such that that the diagram amended
with this map also commutes. But, then T̃ T must be identity in X1 and T T̃ the
identity in X2, and hence T̃ = T−1. Consequently, X1 and X2 are isomorphic
as vector spaces and hence they have the same dimension. It remains to consider
the case in which H does not have a closed range. But then, by Lemma 7.6.2, no
minimal splitting subspace is exactly canonical, and consequently all are infinite-
dimensional. Therefore, since H is a separable Hilbert space, all X have dimension
ℵ0. 2

Corollary 7.6.3. A finite-dimensional splitting subspace is minimal if and only if
its dimension is minimal.

Proof. Let X be a finite-dimensional splitting subspace. First assume that there
is a splitting subspace X1 of smaller dimension than X. By Corollary 7.4.7, X1

contains a minimal splitting subspace X2. Since dimX2 ≤ dimX1 < dimX, The-
orem 7.6.1 implies that X is nonminimal. Conversely, suppose X is not minimal.
Then it contains a minimal splitting subspace as a proper subspace (Corollary 7.4.7),
and thus X cannot have minimal dimension.

Recall that the conditions X ⊥ N− and X ⊥ N+ are weaker than observabil-
ity and constructibility respectively (Corollary 7.4.14). Nevertheless, we have the
following alternative characterization of minimality in the case that H has a closed
range, and, in particular, when X is finite dimensional.

Theorem 7.6.4. Suppose that the Hankel operator H := EH+ |H− has a closed
range. Then, for any splitting subspace X, the following conditions are equivalent.

(i) X is minimal

(ii) X is observable and X ⊥ N+

(iii) X is constructible and X ⊥ N−

Proof. It follows from Corollaries 7.4.10 and 7.4.14 that (i) implies (ii) and (iii). To
prove the converse, first assume that (ii) holds. Then, in view of Proposition 7.4.13,

we have EH+

X = X+, and therefore Im O = X+. Hence we can restrict the range
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of O to X+ to obtain

H− G−→ X+

C∗ ↘ ↗ Ô

X

where Ô := EX+ |X and G := EX+ |H− . The restricted observability operator Ô is

both injective (observability) and surjective, i.e. Ô is bijective so that the inverse

Ô−1 : X+ → X is well-defined and onto. Consequently, C∗ = Ô−1G is onto, i.e., X
is constructible. Hence X is minimal (Corollary 7.4.10), as claimed. A symmetric
argument shows that (iii) implies (i).

Another version of Theorem 7.6.4 for Markovian splitting subspaces, which
does not require the condition that H has closed range, will be given in Chapter 8
(Theorem 9.2.19).

In the next section, we shall need the following corollary. Since any minimal
splitting subspace is orthogonal to both N− and to N+ (Corollary 7.4.14), the
splitting condition H− ⊥ H+ | X is equivalent to

X− ⊥ X+ | X, (7.6.1)

where N− and N+ have been removed from the past and the future. We shall
restrict the observability and constructibility operators accordingly.

Corollary 7.6.5. Let X be a minimal splitting subspace. Then, the restricted
observability and constructibility operators, Ô : X→ X− and Ĉ : X→ X+ respec-
tively, of X, defined by

Ô := EX+ |X and Ĉ := EX− |X,

as well as their adjoints

Ô∗ := EX |X+ and Ĉ∗ := EX |X−
,

are quasi-invertible; i.e., one-one and densely onto. Moreover,

ÔĈ∗ = Ô−, (7.6.2)

where Ô− is the restricted observability operator of X−.

Proof. It follows from Proposition 2.4.2(vi) that (7.6.2) is equivalent to the re-
stricted splitting condition (7.6.1). This establishes the last statement.

In view of Corollary 7.4.14 and Proposition 7.4.13, (7.4.25) holds, and hence,
since X+ ⊂H+,

EX+ X = EX+ EH+

X = X+,

from which it follows that Im Ô is dense in X+. Moreover, in view of Proposi-
tion 7.4.6,

ker Ô = X ∩ (X+)⊥ = X ∩ (N+ ⊕ (H+)⊥) = X ∩ (H+)⊥ = 0,
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by the observability of X. This establishes that Ô is one-one and densely onto. A
symmetric argument shows that Ĉ has the same property. The statements about
Ô∗ and Ĉ∗ then follow by Theorem A.1.3.

As readily seen from the proof, this corollary can be strengthened in a form
that will be useful in Chapter 8.

Corollary 7.6.6. The operator Ô (Ô∗), defined in Corollary 7.6.5, is quasi-
invertible if and only if X is observable and X ⊥ N+. Moreover, for all t ≥ 0,

Ut(X)Ô∗ = Ô∗Ut(X+). (7.6.3)

Likewise, Ĉ (Ĉ∗) is quasi-invertible if and only if X is constructible and X ⊥ N+.
Moreover,

Ut(X)Ĉ∗ = Ĉ∗Ut(X−) (7.6.4)

for all t ≥ 0.

Proof. The statements concerning the quasi-invertibility of Ô, Ô∗, Ĉ and Ĉ∗ follow
from the proof of Corollary 7.6.5. To prove (7.6.3), consider the commutative di-
agrams of Theorem 7.5.1. First take ξ ∈ X+ ⊂ H+. Then, the first commutative
diagram yields

Ut(X)Ô∗ξ = EX U tξ = EX E(H+)⊥ U tξ + EX EX+ U tξ + EX EN+

U tξ,

since X+ ∼ ((N+)⊥,H+) and therefore H = (H+)⊥ ⊕X+ ⊕N+. However, since
U tξ ∈ H+, the first term in zero. Moreover, since X ⊥ N+, the last term is also
zero. This proves (7.6.3). The equation (7.6.4) follows by a symmetric argument.

7.7 Partial ordering of minimal splitting subspaces

To investigate the structure of the family of minimal splitting subspaces, we intro-
duce a partial ordering on this set.

Definition 7.7.1. Given two minimal splitting subspaces, X1 and X2, let X1 ≺ X2

denote the ordering

‖EX1 λ‖ ≤ ‖EX2 λ‖ for all λ ∈ H+, (7.7.1)

where ‖ � ‖ is the norm in the Hilbert space H.

This partial ordering has the following interpretation. If X1 ≺ X2, then X2 is
closer to the future H+ than X1 (or, loosely speaking, contains more information
about the future than X1) in the sense that for every subspace A of H+ we have

α(X1,A) ≥ α(X2,A) (7.7.2)
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where α(X,A) is the angle between the subspaces X and A, defined in Chapter 2,
Section 2.3.

The partial ordering (7.7.1) has actually a symmetric interpretation with re-
spect to the past.

Lemma 7.7.2. The relation X1 ≺ X2 holds if and only if

‖EX2 λ‖ ≤ ‖EX1 λ‖ for all λ ∈ H−. (7.7.3)

Proof. Since X1 and X2 are minimal, they are orthogonal to N− and to N+ (Corol-
lary 7.4.14), and therefore, in view of (7.4.22), the condition (7.7.1) is equivalent
to

‖EX1 λ‖ ≤ ‖EX2 λ‖ for all λ ∈ X+ (7.7.4)

and the condition (7.7.3) to

‖EX2 λ‖ ≤ ‖EX1 λ‖ for all λ ∈ X−. (7.7.5)

Now, for i = 1, 2, let Ôi and Ĉi be the restricted observability and constructibil-
ity operator respectively of Xi, as defined in Corollary 7.6.5, and let Ô∗

i and Ĉ∗
i be

their adjoints. By Corollary 7.6.5, these operators are injective with dense range.
In this notation, it thus remains to prove that

‖Ô∗
1λ‖ ≤ ‖Ô∗

2λ‖ for all λ ∈ X+ (7.7.6)

implies
‖Ĉ∗

2λ‖ ≤ ‖Ĉ∗
1λ‖ for all λ ∈ X−. (7.7.7)

Then, the converse will follow by symmetry.
From (7.7.6) it follows that

‖Ô∗
1(Ô

∗
2)

−1ξ‖ ≤ ‖ξ‖

for all ξ in a dense subset of X2. The operator T := Ô∗
1(Ô

∗
2)

−1 can be continuously
extended to the rest of X2 as a bounded operator with norm ‖T ‖ ≤ 1. In fact, for
any ξ ∈ X2, there is a Cauchy sequence {ξk} such that

‖Tξk − Tξj‖ ≤ ‖ξk − ξj‖,

implying that {Tξk} converges. Then define Tξ := limk→∞ Tξk. Since

〈η, Ô∗
1(Ô

∗
2)

−1ξ〉 = (〈Ô2)
−1Ô1η, ξ〉

for all ξ in the range of Ô∗
2 and all η, the operator T ∗ := (Ô2)

−1Ô1 is the adjoint

of T . Now, in view of (7.6.2), we have Ô2Ĉ
∗
2 = Ô1Ĉ

∗
1, and consequently, since

‖T ∗‖ = ‖T ‖ ≤ 1,

‖Ĉ∗
2λ‖ = ‖T ∗Ĉ∗

1λ‖ ≤ ‖Ĉ∗
1λ‖
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for all λ ∈ X+, which yields (7.7.7), as required.

Theorem 7.7.3. The family of minimal splitting subspaces has a unique minimal
element X− and a unique maximal element X+, i.e.

X− ≺ X ≺ X+ (7.7.8)

for all minimal X, and these are precisely the predictor spaces

X− := EH−

H+ (7.7.9a)

X+ := EH+

H− (7.7.9b)

defined in Proposition 7.3.1.

Proof. Since EX is a projector,

‖EX λ‖ ≤ ‖λ‖ for all λ ∈ X+ (7.7.10)

However, ‖EX+ λ‖ = ‖λ‖ for all λ ∈ X+, and consequently, in view of (7.7.4), X ≺
X+. Moreover, for each X 6= X+, there is a λ in X+ for which strict inequality holds
in (7.7.10), which proves uniqueness. A symmetric argument using Lemma 7.7.2
gives the rest.

Whenever both X1 ≺ X2 and X2 ≺ X1 hold, we say that X1 and X2 are
equivalent, writing X1 ∼ X2. We shall see below (Corollary 7.7.10) that, if at least
one of X1 and X2 is internal, X1 ∼ X2 implies X1 = X2. Let us define X to be
the family of all equivalence classes of minimal splitting subspaces, and let X0 be
the subset of those X which are internal (X ⊂ H). Then the order relation (7.7.1)
makes X into a partially ordered set with a maximal and minimal element, namely
X+ and X−, respectively. Note that each equivalence class in X0 is a singleton, and
consequently X0 is just a family of minimal X.

Uniform choices of bases

Next, for the finite-dimensional case, we shall illustrate the meaning of the partial
ordering defined above in terms of covariance matrices. More precisely, we shall
parametrize X by a certain family of positive definite matrices. To this end, we
introduce a uniform choice of bases on X. By Theorem 7.6.1, all X ∈ X have the
same dimension, which we denote by n. Let (ξ+,1, ξ+,2, · · · , ξ+,n) be an arbitrary
basis in X+ and define

ξk = EX ξ+,k, k = 1, 2, · · · , n (7.7.11)

for every minimal splitting subspace X.

Lemma 7.7.4. The random variables (ξ1, ξ2, · · · , ξn) form a basis in X.
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Proof. Since Ô∗ := EX |X+ is a bijection (Corollary 7.6.5), it sends a basis into a
basis.

For simplicity of notation, we introduce the vector notation

x =





ξ1
ξ2
...
ξn




, (7.7.12)

and define x+ accordingly in terms of (ξ+,1, ξ+,2, · · · , ξ+,n).
Now, to each basis (ξ1, ξ2, · · · , ξn) we associate the covariance matrix

P = E{xx′}, (7.7.13)

which is symmetric and positive definite. For a fixed choice of (ξ+,1, ξ+,2, · · · , ξ+,n),
let P be the family of all covariance matrices (7.7.13) obtained as X varies over all
minimal splitting subspaces, and let P0 be the subfamily generated by the internal
X. Note that P is equipped with the natural ordering: P1 ≤ P2 if and only if
P2 − P1 is nonnegative definite.

Proposition 7.7.5. There is a one-one correspondence between X and P which is
order-preserving in the sense that P1 ≤ P2 if and only if X1 ≺ X2.

Proof. To each λ ∈ X+, there corresponds a unique a ∈ Rn such that λ = a′x+.
By (7.7.11), EX λ = a′x, and hence

‖EX λ‖2 = a′Pa (7.7.14)

Therefore, in view of the ordering condition (7.7.4), X1 ≺ X2 if and only if P1 ≤ P2.
Moreover, from (7.7.14) we see that two X have the same P if and only if they are
equivalent, establishing the one-one correspondence between X and P.

Remark 7.7.6. All the results on splitting subspaces in this section may be formu-
lated instead for Markovian splitting subspaces, as we shall do in detail Section 8.6
for the discrete-time setting and in Section 10.4 for the continuous-time setting. If
we take X to be the family of minimal Markovian splitting subspaces, then P will
be precisely the set of covariance matrices introduced in Chapter 6; i.e., the set of
all symmetric matrices P such that (6.8.17) holds. Here P− corresponds to X− and
P+ to X+.

The uniform choice of bases allows us to state some useful alternative charac-
terizations of ordering in terms of splitting.

Proposition 7.7.7. Let X1 and X2 be finite-dimensional minimal splitting sub-
spaces, at least one of which is internal. Then, X1 ≺ X2 if and only if

a′x1 = EX1a′x2, for all a ∈ Rn, (7.7.15)
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for any uniform choice of basis x1 and x2 in X1 and X2, respectively.

Proof. From (7.7.11) we see that (7.7.19) is equivalent to

EX1 λ = EX1 EX2 λ for all λ ∈ X+, (7.7.16)

which, due to the fact that X1 and X2 are orthogonal to N+ := H+ 	X+ (Corol-
lary 7.4.14), can be extended to all λ ∈ H+. This in turn is equivalent to

EX1 λ = EX1 ES2 λ for all λ ∈ H+, (7.7.17)

because of the splitting property of X2, i.e., to X1 ⊥ H+ | S2, or equivalently, to
S1 ⊥ S̄2 | S2, which holds if and only if

S1 ⊥H2 	 S2 (7.7.18)

(Proposition 2.4.2), where H2 is the ambient space of X2. Now, first assume that X1

is internal. Then, (7.7.18) is equivalent to S1 ⊂ S2, i.e., X1 ≺ X2 (Theorem 7.7.11).
Next, assume that X2 is internal. The (7.7.18) is equivalent to S1 ⊂ S2 ⊕H⊥, or,
equivalently, EH S1 ⊂ S2, i.e. X1 ≺ X2 (Theorem 7.7.11).

Proposition 7.7.8. Let X, X1 and X2 be finite-dimensional minimal Markovian
splitting subspaces with X1 and X2 internal. Then, if X1 ≺ X ≺ X2,

X1 ⊥ X2 | X.

Proof. Let x, x1 and x2 be a uniform choice of bases in X, X1 and X2, respectively.
Then, applying Proposition 7.7.7 first to X1 ≺ X2 and then to X1 ≺ X and X ≺ X2

we obtain two representations for x1 yielding the equation

EX1 a′x2 = EX1 EX a′x2, for all a ∈ Rn,

which is equivalent to X1 ⊥ X2 | X.

Ordering and scattering pairs

It is useful to express the ordering between minimal X ∈ X in terms of geometric
conditions of subspace inclusions. To this end, we need the following lemma.

Lemma 7.7.9. Let X1 and X2 be two minimal splitting subspaces, and suppose
(S1, S̄1) is a scattering pair of X1 and (S2, S̄2) a scattering pairs of X2. Then
X1 ≺ X2 if and only if

‖ES1 λ‖ ≤ ‖ES2 λ‖, for all λ ∈ H, (7.7.19)

or, equivalently,

‖ES̄2 λ‖ ≤ ‖ES̄1 λ‖, for all λ ∈ H. (7.7.20)
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Proof. In view of the splitting property (7.3.21) and the fact that H+ ⊂ Si,
i = 1, 2, (7.7.1) is equivalent to

‖ES1 λ‖ ≤ ‖ES2 λ‖, for all λ ∈ H+. (7.7.21)

Therefore, to show that condition (7.7.19) is equivalent to X1 ≺ X2, by Defini-
tion 7.7.1 we need to prove that (7.7.21) implies (7.7.19); the converse is obvi-
ous. Now, for i = 1, 2, let Zi be the orthogonal complement of H− in Si, i.e.
Si = H− ⊕ Zi. Then

‖ESi λ‖2 = ‖EH−

λ‖2 + ‖EZi λ‖2,

so it only remains to prove that, if

‖EZ1 λ‖ ≤ ‖EZ2 λ‖ (7.7.22)

holds for all λ ∈ H+, then it also holds for all λ ∈ H := H− ∨H+. To this end,
suppose (7.7.22) holds for all λ ∈ H+. Since Zi ⊂ (H−)⊥ for i = 1, 2, it follows
that

‖EZ1 E(H−)⊥ λ‖ ≤ ‖EZ2 E(H−)⊥ λ‖, for all λ ∈ H+. (7.7.23)

But, by Lemma 2.2.6, we have

E(H−)⊥ H+ = (H−)⊥ 	H⊥

and consequently (7.7.22) holds for all λ ∈ Y := (H−)⊥	H⊥. The extension from
Y to all of H is then trivial. In fact, H = H−⊕Y, so for any λ ∈ H,there is a unique
representation λ = µ + η, where µ ∈ Y and η ∈ H−. Moreover, EZi λ = EZi µ for
i = 1, 2, so if (7.7.22) holds for all µ ∈ Y, it also holds for all λ ∈ H. This concludes
the proof that (7.7.19) is equivalent to (7.7.1). A symmetric argument shows that
(7.7.20) is equivalent to (7.7.3). Then the rest follows from Lemma 7.7.2.

Corollary 7.7.10. Let X1 and X2 be equivalent minimal splitting subspaces. Then,
if one is internal, X1 = X2.

Proof. If both X1 ≺ X2 and X2 ≺ X1 hold, then

‖ES1 λ‖ = ‖ES2 λ‖, for all λ ∈ H (7.7.24)

‖ES̄2 λ‖ = ‖ES̄1 λ‖, for all λ ∈ H (7.7.25)

by Lemma 7.7.9. Now, suppose for example, that X1 is internal, i.e., X1 ⊂ H.
Then, for any λ ∈ S1, (7.7.24) yields ‖λ‖ = ‖ES2 λ‖, which implies that λ ∈ S2.
Hence S1 ⊂ S2. In the same way, we show that S̄1 ⊂ S̄2, using (7.7.25). Then, by
Theorem 7.3.6,

X1 = S1 ∩ S̄1 ⊂ S2 ∩ S̄2 = X2.

But, X2 is minimal, and hence X1 = X2, as claimed.
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So far all results in this section have been formulated for general splitting sub-
spaces, since ordering does not require the Markovian property. In fact, Lemma 7.7.9
does not require that each splitting subspace has a unique scattering pair. To avoid
this ambiguity, the next theorem will be stated for Markovian splitting subspaces,
although, strictly speaking the results would hold in general.

Theorem 7.7.11. Let X1 ∼ (S1, S̄1) and X2 ∼ (S2, S̄2) be minimal Markovian
splitting subspaces. Then:

(i) If X1,X2 ∈ X0, then X1 ≺ X2 ⇔ S1 ⊂ S2 ⇔ S̄2 ⊂ S̄1.

(ii) If X1 ∈ X0, then X1 ≺ X2 ⇔ S1 ⊂ S2 ⇔ EH S̄2 ⊂ S̄1.

(iii) If X2 ∈ X0, then X1 ≺ X2 ⇔ EH S1 ⊂ S2 ⇔ S̄2 ⊂ S̄1.

Proof. First, prove that

if X1 ∈ X0, then X1 ≺ X2 ⇔ S1 ⊂ S2 (7.7.26)

using (7.7.19). It is trivial that S1 ⊂ S2 implies X1 ≺ X2, and to prove the converse,
we take λ ∈ S1 ⊂ H in (7.7.19), thereby obtaining ‖λ‖ ≤ ‖ES2 λ‖ which implies
that λ ∈ S2, and therefore S1 ⊂ S2. Obviously, by symmetry and (7.7.20), (7.7.26)
has a backward version, namely

if X2 ∈ X0, then X1 ≺ X2 ⇔ S̄2 ⊂ S̄1. (7.7.27)

Next, we prove that

if X2 ∈ X0, then X1 ≺ X2 ⇔ EH S1 ⊂ S2. (7.7.28)

To see this, use (7.7.27), noting that S̄2 ⊂ S̄1 if and only if S̄⊥
1 ⊂ S̄⊥

2 ⊕ (H1 	H),
where H1 is the ambient space of X1. By the constructibility condition (7.4.17),
this is equivalent to

S1 ⊂ S2 ⊕ (H1 	H) (7.7.29)

from which follows that
EH S1 ⊂ S2. (7.7.30)

Conversely, if (7.7.30) holds,

S1 ⊂ EH S1 ⊕ EH1	H S1 ⊂ S2 ⊕ (H1 	H)

which is (7.7.29). The backward version of (7.7.28) reads

if X1 ∈ X0, then X1 ≺ X2 ⇔ EH S̄2 ⊂ S̄1.

Now, the last statement together with (7.7.26),(7.7.27) and (7.7.28) cover all the
cases of the theorem.
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7.8 Bibliographic notes

The concept of perpendicular intersection was introduced in [82]. The treatment in
Section 7.2 follows that in [82] and [87]. Theorems 7.2.4 and 7.2.6 are Theorems 2.2
and 2.1, respectively, in [87].

Geometric construction of the forward and backward predictor spaces was in-
troduced simultaneously by Akaike [1] and Picci [105]. The early results toward
a more complete geometric theory of stochastic realization were obtained indepen-
dently by Ruckebusch [112, 110, 111] and Lindquist and Picci [77, 79, 78] and led
to a joint paper [89].

Section 7.3 is essentially based on the matrial in [81, 82, 87]. Observability and
contructiblity was introduced in the context of Markovian representations in [111],
where also Theorem 7.3.5 was proved. Lemma 7.3.3 appears in [89] as Lemma 1.
Theorem 7.3.6 and Proposition 7.3.7 can be found in [77, 79]. Theorem 7.4.1 is
Theorem 4.1 in [88]. Theorem 7.4.3 is a generalization [88, Theorem 4.2] of a
result in [82], there formulated for internal splitting subspaces. Corollary 7.4.8 and
Theorem 7.4.9 can be found in [81]. Together, these results imply Corollary 7.4.10,
which is due to Ruckebusch [111].

The concept of frame space was introduced in [77], and the decomposition
(7.4.23) appeared in [82]. Theorem 7.6.1 appeared in [87]; the present proof is
based on a techique used in [62]. Lemma 7.6.2 can be found in [114]. Theorem 7.6.1
appeared in [87]. Lemma 7.6.2 can be found in [114] and Theorem 7.6.4 in [81].

Section 7.6 essentially follows [87]. The proof of Theorem 7.6.1 is based on
the ideas of [62, Section 10.6].

The material in Section 7.7 appeared in [88]. This partial ordering, which
turns out to be the natural one, is much ”finer” than that proposed in [114]. The
idea of uniform choice of bases was first proposed in [17].
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Chapter 8

Markovian
Representations

As we have seen, any m-dimensional stationary vector process {y(t)}t∈Z generates
a Hilbert space H := H(y) with subspaces H− := H−(y) and H+ := H+(y), the
past space and future space of y respectively, such that

H− ∨H+ = H.

A Markovian representation of y is a triplet (H, U,X) consisting of a Markovian
splitting subspace X in a Hilbert space H of random variables with a unitary shift
U : H→ H and having the properties:

(i) H ⊂ H is a doubly invariant subspace, and the restricted shift U |H is the
natural shift on H, i.e.,

Uyk(t) = yk(t+ 1) for k = 1, 2, . . . ,m and t ∈ Z (8.0.1)

(ii) H is the ambient space of X in the sense that

H = H ∨ span{U tX | t ∈ Z}

and has finite multiplicity under the shift U .

A Markovian representation is said to be internal if H = H and observable, con-
structible or minimal if the splitting subspace X is.

As explained in Chapter 6, this concept of Markovian representation is moti-
vated by the study of linear stochastic systems

{
x(t+ 1) = Ax(t) +Bw(t)

y(t) = Cx(t) +Dw(t)
(8.0.2)

driven by white noise {w(t)}t∈Z and having the process {y(t)}t∈Z as its output. In
this context, H is the Hilbert space spanned by the white noise and possible purely

189
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190 Chapter 8. Markovian Representations

deterministic components in the state process {x(t)}t∈Z, U is the natural shift on
the processes in the model, and X is the subspace

X = {a′x(0) | a ∈ Rn}

in H generated by the the components x1(0), x2(0), . . . , xn(0)} of the state x(0) at
time t = 0.

In most applications we want to study finite-dimensional Markovian represen-
tations, i.e., Markovian representations (H, U,X) for which dimX < ∞. Never-
theless, the geometric theory accommodates infinite-dimensional Markovian repre-
sentations as well, but in this case models such as (8.0.2) must be interpreted in
some weak sense. Therefore, we shall allow for infinite-dimensional X only as long
as no further technical difficulties are introduced, as the study of finite-dimensional
systems is the main topic of this book.

8.1 The fundamental representation theorems

We collect the main results of Chapter 7 concerning Markovian splitting subspaces
in a theorem formulated in the context of Markovian representations.

Theorem 8.1.1. Given an m-dimensional stationary vector process {y(t)}t∈Z, let
H ⊃ H := H(y) be a Hilbert space of random variables with a shift U satisfying
(8.0.1), and let X be a subspace of H such that

H = H ∨ span {U tX | t ∈ Z} (8.1.1)

Then (H, U,X) is a Markovian representation of y if and only if

X = S ∩ S̄ (8.1.2)

for some pair (S, S̄) of subspaces of H such that

(i) H− ⊂ S and H+ ⊂ S̄,

(ii) U∗S ⊂ S and U S̄ ⊂ S̄, and

(iii) H = S̄⊥ ⊕ (S ∩ S̄)⊕ S⊥,

where ⊥ denotes the orthogonal complement in H. Moreover, the correspondence
X↔ (S, S̄) is one-one. In fact,

S = H− ∨X− and S̄ = H+ ∨X+. (8.1.3)

Finally, (H, U,X) is observable if and only if

S̄ = H− ∨ S⊥, (8.1.4)

and constructible if and only if

S = H+ ∨ S̄⊥, (8.1.5)
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and minimal if and only if both (8.1.4) and (8.1.5) hold.

Proof. The theorem follows immediately from Theorems 7.3.6 and 7.4.1, recall-
ing that perpendicular intersection can be characterized by property (iii) (Theo-
rem 7.2.4), and from Corollary 7.4.8 and Theorem 7.4.9.

To each Markovian representation (H, U,X) we want to associate two dynam-
ical representations, one evolving forward in time and one backwards. The abstract
idea behind this construction can be illustrated by two commutative diagrams. Re-
call that, since S ⊥ S̄ | X for any Markovian splitting subspace X ∼ (S, S̄), by
Lemma 2.4.1, we also have

S ⊥H+ | X and S̄ ⊥H− | X (8.1.6)

As can be seen from Proposition 2.4.2 (vi), the first of these is equivalent to
the factorization

S
EH

+ |S−→ H+

EX |S ↘ ↗ O

X

(8.1.7)

where O := EH+ |X is the observability operator of X and EX |S is an insertion
operator which is always surjective since X ⊂ S. Note that

U∗S ⊂ S (8.1.8)

so that S can act as a past space in our construction and so that EH+ |S is a Hankel
operator. The invariance property (8.1.8) allows us also to form the space

W = US	 S, (8.1.9)

representing the new information carried by the “next input”. In that context, a
model of type (8.0.2) would entail representations of UX and

Y := {b′y(0) | b ∈ Rm} (8.1.10)

in terms of X and W.
Before tending to this matter, let us also consider the backward setting. The

second of statements (8.1.6) is equivalent to the factorization

S̄
EH

− |S̄−→ H−

EX |S̄ ↘ ↗ C
X

(8.1.11)

where C := EH− |X is the constructibility operator of X, and EX |S̄ is an insertion
map. Since, by Theorem 7.4.1,

U S̄ ⊂ S̄, (8.1.12)
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S̄ can serve as a future space, and we can form the space

W̄ := S̄	 U S̄. (8.1.13)

Moreover, EH− |S̄ is a Hankel operator which maps the future space S̄ backwards
into the past H−. The construction of a backward model would therefore involve a
representation of U∗X and U∗Y in terms of X and U∗W̄.

Theorem 8.1.2. Let X ∼ (S, S̄) be a Markovian splitting subspace, and let W,W̄
and Y be defined by (8.1.9), (8.1.13) and (8.1.10) respectively. Then

{
UX ⊂ X⊕W

Y ⊂ X⊕W
(8.1.14)

and {
U∗X ⊂ X⊕ (U∗W̄)

U∗Y ⊂ X⊕ (U∗W̄)
(8.1.15)

Proof. To prove (8.1.14) first note that, since X = S ∩ S̄ and U S̄ ⊂ S̄,

UX ⊂ (US) ∩ S̄. (8.1.16)

Moreover,
Y ⊂ (UH−) ∩H+ ⊂ (US) ∩ S̄. (8.1.17)

Therefore, (8.1.14) would follow if we could show that

(US) ∩ S̄ = X⊕W. (8.1.18)

To this end, note that, since US = S⊕W, we have S⊕W⊕ (US)⊥ = H, and hence

S⊥ = (US)⊥ ⊕W, (8.1.19)

which inserted into H = S̄⊥ ⊕X⊕ S⊥ yields

X⊕W = [(US)⊥ ⊕ S̄⊥]⊥ = (US) ∩ S̄

as claimed.
To prove (8.1.15), we note that, since U∗S ⊂ S,

U∗X ⊂ S ∩ (U∗S̄). (8.1.20)

Moreover,
U∗Y ⊂H− ∩ (U∗H+) ⊂ S ∩ (U∗S̄). (8.1.21)

Hence it only remains to prove that

S ∩ (U∗S̄) = X⊕ U∗W̄. (8.1.22)
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However, this follows in the same way as above by first showing that

S̄⊥ = (U∗S̄)⊥ ⊕ U∗W̄, (8.1.23)

and then inserting this into H = S̄⊥ ⊕X⊕ S⊥.

The subspaces W and W̄, defined by (8.1.9) and (8.1.13), satisfy the orthog-
onality relations

U jW ⊥ UkW and U jW̄ ⊥ UkW̄ for j 6= k. (8.1.24)

Such subspaces are called wandering subspaces. In fact, the obvious decompositions

S = U−1W⊕ U−2W ⊕ U−3W⊕ · · · ⊕ U−NW⊕ U−NS (8.1.25)

and
S̄ = W̄⊕ UW̄⊕ U2W̄ ⊕ · · · ⊕ UN−1W̄⊕ UN S̄ (8.1.26)

are the Wold decompositions described in Chapter 2, applied successively to shifted
subspaces, and U−NS and UN S̄ tend to doubly invariant subspaces S−∞ and S̄∞
respectively as N →∞ (Theorem 4.5.8).

From Theorem 4.5.4 we know that W and W̄ are finite-dimensional with di-
mensions which are bounded by the multiplicity of (H, U,X). Therefore, by choos-
ing orthonormal bases {η1, η2, . . . , ηp} and {η̄1, η̄2, . . . , η̄p̄} respectively, we see from
(8.1.24) that

w(t) =





U tη1
U tη2

...
U tηp




and w̄(t) =





U tη̄1
U tη̄2

...
U tη̄p̄




(8.1.27)

are normalized white noise processes, one corresponding to S and one corresponding
to S̄.

Theorem 8.1.3. Let (H, U,X) be a Markovian representation of multiplicity µ.
Then the wandering subspaces W and W̄ have finite dimensions such that p :=
dimW ≤ µ and p̄ := dimW̄ ≤ µ. Moreover, if X ∼ (S, S̄),

S = H−(w) ⊕ S−∞, (8.1.28)

where {w(t)}t∈Z is a p-dimensional normalized white noise process, i.e.,

E{w(t)} = 0, E{w(s)w(t)′} = Ipδst, (8.1.29)

such that
W := {a′w(0) | a ∈ Rp}, (8.1.30)

and S−∞ is a doubly invariant subspace, i.e., invariant under both U and U∗.
Similarly,

S̄ = H+(w̄)⊕ S̄∞, (8.1.31)
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where {w̄(t)}t∈Z is a p̄-dimensional normalized white noise process such that

W̄ := {a′w̄(0) | a ∈ Rp̄}, (8.1.32)

and S̄∞ is a doubly invariant.
Finally,

H = H(w)⊕ S−∞ = H(w̄)⊕ S̄∞, (8.1.33)

i.e., in particular,
S⊥ = H+(w) and S̄⊥ = H−(w̄). (8.1.34)

Proof. In view of Theorem 4.5.8 and Theorem 4.5.4, it only remains to prove
(8.1.34). However, this follows from (8.1.33) and the fact that H−(w) ⊥ H+(w),
the latter of which is a consequence of w being a white noise.

The processes w and w̄ are called the forward respectively the backward gen-
erating processes of (H, U,X), and clearly they are unique modulo linear coordinate
transformations in W and W̄ respectively. The subspaces S−∞ and S̄∞ are called
the remote past and the remote future spaces, respectively.

Definition 8.1.4. The Markovian representation (H, U,X) is normal if S−∞ =
S̄∞ and proper if S−∞ = S̄∞ = 0.

In view of (8.1.33), p̄ = p if (H, U,X) is normal. As we shall see in the next
section, all finite-dimensional Markovian representations are normal. However, in
the infinite-dimensional case one may even have minimal Markovian representations
that are not normal, as the following example shows.

Example 8.1.5. Let {y(t)}t∈Z be a p.n.d. process with spectral density

Φ(eiθ) =
√

1 + cos θ. (8.1.35)

Then X− = H− ∼ (H−,H), and consequently S−∞ = 0 and S̄∞ = H. Therefore
the minimal Markovian representation (H, U,X−) is not normal. (This is a discrete-
time version of an example given in [28, p.99]; also see [25, p.43].)

From this example we see that we may indeed have p̄ 6= p.

Proposition 8.1.6. The Markovian representation (H, U,X) with X ∼ (S, S̄) is
proper if and only if S⊥ and S̄⊥ are full range.

Proof. Since S−∞ = ∩0
t=−∞U

tS and S̄∞ = ∩∞0 U tS̄, X ∼ (S, S̄) is proper if and
only if

0∨

t=−∞
U tS⊥ = H =

∞∨

0

U tS̄⊥,

as claimed.
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8.2 Normality, properness and the Markov semigroup

Given a Markovian representation (H, U,X), as in Section 7.5 we define the re-
stricted shift

U(X) = EX U |X (8.2.1)

on the Markovian splitting subspace X ∼ (S, S̄) and the Markov semigroup

Ut(X) := EX U t|X = U(X)t, t = 0, 1, 2, . . . ; (8.2.2)

see Theorem 7.5.1.

Theorem 8.2.1. The semigroup Ut(X) tends strongly to zero as t → ∞ if and
only if

S−∞ :=
0⋂

t=−∞
U tS = 0, (8.2.3)

and Ut(X)∗ tend strongly to zero as t→∞ if and only if

S̄∞ :=

∞⋂

t=0

U tS̄ = 0. (8.2.4)

Proof. Let ξ ∈ X. By Lemma 2.2.8, we have ES U t = U t EU−tS. Therefore, setting

ξt := Ut(X)ξ, t = 0, 1, 2, . . . , (8.2.5)

(7.5.4) and (7.5.5a) imply that

U−tξt = U−t ES U tξ = EU−tS ξ = EU−tX ξ. (8.2.6)

Then, if S−∞ = 0,

‖ξt‖ = ‖EU−tS ξ‖ → 0 as t→∞.
In fact, since U−tS ⊂ U−sS for t > s, the sequence (‖ξt‖) is monotonely nonin-
creasing and bounded from below by zero, and therefore (‖ξt‖) tends to a limit.
Consequently,

‖ξt − ξs‖ ≤ ‖ξt‖ − ‖ξs‖ → 0 as s, t→∞,
so ξt tend to a limit ξ∞. Clearly, ξ∞ ∈ U−tS for t = 0, 1, 2, . . . and hence ξ∞ ∈ S−∞.
Therefore, ξk → 0 as t→∞ if S−∞ = 0.

Conversely, suppose that ξt → 0 as t →∞. We want to show that S−∞ = 0.
In view of (7.5.4),

ξ − U−tξt = ξ − U−tU(X)tξ

=

t−1∑

k=0

[
U−kU(X)k − U−(k+1)U(X)(k+1)

]
ξ

=

t−1∑

k=0

U−(k+1) [U − U(X)] ξk.
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However, ξk ∈ X ⊂ S, and therefore in view of (8.2.6)

[U − U(X)] ξk = Uξ − ES Uξk ∈ US	 S = W, (8.2.7)

where we have also used (8.1.9). Consequently, ξ−U−tξt ∈ H−(w) for t = 0, 1, 2, . . .
and all ξ ∈ X; i.e., X ⊂ H−(w). Therefore,

S̄ = X⊕ S⊥ = X⊕H+(w) ⊂H(w).

Hence,

H = ∨∞t=0U
−tS̄ ⊂ H(w),

and consequently, by (8.1.33), S−∞ = 0, as claimed.
A symmetric argument yields the other half of the theorem.

Consequently, Ut(X) and Ut(X)∗ both tend strongly to zero as t→∞ if and
only if (H, U,X) is proper.

An inspection of the proof of Theorem 8.2.1 reveals that X need not be a
splitting subspace of a particular fixed process y. We reformulate the theorem for
later reference.

Corollary 8.2.2. The statement of Theorem 8.2.1 remains true with X = S ∩ S̄,
where S and S̄ intersect perpendicularly and U∗S ⊂ S and U S̄ ⊂ S̄.

Indeed, if S and S̄ intersect perpendicularly, then

S ∨ S̄ =: H = S̄⊥ ⊕X⊕ S⊥ (8.2.8)

(Theorem 7.2.4), which together with the invariance properties of S and S̄ is all
that we need in the proof of Theorem 8.2.1.

Theorem 8.2.3. The Markovian splitting subspace X admits a unique orthogonal
decomposition

X = X0 ⊕X∞ (8.2.9)

such that U(X)|X∞
is unitary and U(X)|X0

is completely nonunitary; i.e., it is not
unitary on any nontrivial subspace. Moreover,

X∞ = S−∞ ∩ S̄∞, (8.2.10)

where S−∞ and S̄∞ are defined as in Theorem 8.1.3, or, equivalently, as in Theo-
rem 8.2.1.

Proof. Since U(X) : X → X is a contraction, the existence of a decomposition
(8.2.9) with U(X)|X∞

unitary and U(X)|X0
completely nonunitary is ensured by

Theorem 3.2 in [119], where it is established that

X∞ = {ξ ∈ X | ‖Ut(X)ξ‖ = ‖ξ‖ = ‖Ut(X)∗ξ‖, t = 0, 1, 2, . . .}.
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Now, if ξ ∈ X∞, then, in view of (8.2.6), U−tUt(X)ξ = EU−tX ξ, and hence, since

‖Ut(X)ξ‖ = ‖ξ‖, we have ‖EU−tX ξ‖ = ‖ξ‖. Therefore, ξ = EU−tX ξ ∈ U−tX for
all ξ ∈ X∞ and t = 0, 1, 2, . . . . A symmetric argument also shows that ξ ∈ U tX for
all ξ ∈ X∞ and t = 0, 1, 2, . . . . Consequently,

X∞ =
∞⋂

t=−∞
U tX ⊂ S−∞ ∩ S̄∞. (8.2.11)

To show that S−∞ ∩ S̄∞ ⊂ X∞, and hence that (8.2.10) holds, we first note that
H(w) = S⊥

−∞ and H(w̄) = S̄⊥
∞ in view of (8.1.33), and therefore

[H(w) ∨H(w̄)]⊥ = S−∞ ∩ S̄∞ ⊂ S ∩ S̄ ⊂ X. (8.2.12)

Now, suppose ξ ∈ S−∞ ∩ S̄∞. Then (8.2.5) and (8.2.7) imply that

U−kU(X)kξ − U−(k+1)U(X)k+1ξ ∈ U−kW, k = 0, 1, 2, . . . .

and consequently, since ξ ⊥H(w),

〈Ukξ, U(X)kξ〉 = 〈Uk+1ξ, U(X)k+1ξ〉, k = 0, 1, 2, . . . ,

from which we have

‖Uk(X)ξ‖ = ‖Uk+1(X)ξ‖, k = 0, 1, 2, . . . .

Likewise, we can see that ξ ⊥H(w̄) implies that

‖Uk(X)∗ξ‖ = ‖Uk+1(X)∗ξ‖, k = 0, 1, 2, . . . .

Consequently, S−∞ ∩ S̄∞ ⊂ X∞, as required.

The following corollary is an immediate consequence of Theorem 8.2.3.

Corollary 8.2.4. If (H, U,X) is normal, then

X∞ = S−∞ = S̄∞. (8.2.13)

Corollary 8.2.5. The statement of Theorem 8.2.3 remains true with X = S ∩ S̄,
where S and S̄ intersect perpendicularly and U∗S ⊂ S and U S̄ ⊂ S̄. Moreover, if
S0 := S 	X∞ and S̄0 := S̄ 	X∞, then X0 = S0 ∩ S̄0, where S0 and S̄0 intersect
perpendicularly and U∗S0 ⊂ S0 and U S̄0 ⊂ S̄0.

Proof. The first statement follows by the same argument as for Corollary 8.2.2.
To prove the second statement, first note that

X = S ∩ S̄ = (S0 ⊕X∞) ∩ (S̄0 ⊕X∞) = (S0 ∩ S̄0)⊕X∞,



“Book”
2007/1/28
page 198

i

i

i

i

i

i

i

i

198 Chapter 8. Markovian Representations

which implies that X0 = S0 ∩ S̄0. Moreover, if S and S̄ intersect perpendicularly,
then S ⊥ S̄ | X; i.e.,

〈λ− EX0⊕X∞ λ, µ− EX0⊕X∞ µ〉 = 0

for λ ∈ S, µ ∈ S̄, and hence in particular for λ ∈ S0, µ ∈ S̄0. However, X∞ ⊥ S0

and X∞ ⊥ S̄0, and therefore

〈λ− EX0 λ, µ− EX0 µ〉 = 0

for λ ∈ S0, µ ∈ S̄0; i.e., S0 ⊥ S̄0 | X0. Hence S0 and S̄0 intersect perpendicularly.
Since X∞ is doubly invariant in view of (8.2.11), U∗S ⊂ S and U S̄ ⊂ S̄ is the same
as (U∗S0)⊕X∞ ⊂ S0⊕X∞ and (U S̄0)⊕X∞ ⊂ S̄0 ⊕X∞, respectively, and hence
it follows that U∗S0 ⊂ S0 and U S̄0 ⊂ S̄0.

Corollary 8.2.6. A finite-dimensional Markovian representation (H, U,X) is nor-
mal.

Proof. Let X ∼ (S, S̄), and let X = X0 ⊕ X∞ be the decomposition of Theo-
rem 8.2.3. Then, by Corollary 8.2.5, X0 = S0 ∩ S̄0, where S0 and S̄0 intersect
perpendicularly and U∗S0 ⊂ S0, U S̄0 ⊂ S̄0, and

U(X)|X0
= U(X0)

is a completely nonunitary contraction. Hence, since X0 is finite-dimensional,
U(X0) (as well as its adjoint U(X0)

∗) has all its eigenvalues in the open unit disc,
and therefore Ut(X0) := U(X0)

t and Ut(X0)
∗ tend strongly to zero, as t → ∞.

Consequently, by Corollary 8.2.2, the remote past of S0 and the remote future of
S̄0 are trivial, so S−∞ = S̄∞ = X∞.

This proof does not work in the case that X is infinite-dimensional. However,
appealing to [119] (Proposition 6.7 in Chapter II and Proposition 4.2 in Chapter
III), we have the following criteria in the general case.

Theorem 8.2.7. Let X = X0⊕X∞ be the decomposition of Theorem 8.2.3. Then
each of the following conditions is sufficient for (H, U,X) to be normal:

1. The intersection of the spectrum of U(X)|X0
with the unit circle has Lebesgue

measure zero.

2. There is a nontrivial ϕ ∈ H∞ such that ϕ
(
U(X)|X0

)
= 0.

The second condition in Theorem 8.2.7 can be seen as a generalization of the
Cayley-Hamilton condition in the finite-dimensional case.
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8.3 The forward and backward systems (the
finite-dimensional case)

In this section we consider a Markovian representation (H, U,X) which is finite-
dimensional so that n := dimX < ∞. The general case will be considered in
Section 8.7.

We want to construct a stochastic system (8.0.2) for which

X = {a′x(0) | a ∈ Rn} (8.3.1)

is the Markovian splitting subspace X ∼ (S, S̄) of the given Markovian representa-
tion (H, U,X). For this we shall use Theorem 8.1.2.

Therefore, let {ξ1, ξ2, . . . , ξn} be a basis in X, and define the vector process
{x(t)}t∈Z to be

x(t) =





U tξ1
U tξ2

...
U tξn




. (8.3.2)

This is a stationary vector process and

E{x(t)x(t)′} = P := E{





ξ1
ξ2
...
ξn




[
ξ1 ξ2 · · · ξn

]
} (8.3.3)

for each t ∈ Z. Since {ξ1, ξ2, . . . , ξn} is a basis and ‖a′ξ‖2 = a′Pa for all a ∈ Rn,
we must have P > 0.

Then, by (8.1.14) in Theorem 8.1.2, we have

{
Uξi =

∑n
j=1 aijξj +

∑p
j=1 bijwj(0), i = 1, 2, . . . , n

yi(0) =
∑n

j=1 cijξj +
∑p

j=1 dijwj(0), i = 1, 2, . . . ,m

for some choice of coefficients {aij , bij , cij , dij}. After applying the shift U t, in view
of (8.3.2), this can be written

Σ

{
x(t+ 1) = Ax(t) +Bw(t)

y(t) = Cx(t) +Dw(t)
(8.3.4)

with obvious definitions of the matrices A,B,C and D. This is a forward stochastic
system in the sense that

H− ∨X− ⊥ H+(w) (8.3.5)

so that future generating noise is orthogonal to past output and past and present
state. In fact, by Theorem 7.4.1, H−∨X− = S, which is orthogonal to S⊥ = H+(w)
(Theorem 8.1.3).
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Next, introduce a new basis {ξ̄1, ξ̄2, . . . , ξ̄n} in X with the property that

〈ξ̄i, ξj〉 = δij , (8.3.6)

i.e., the dual basis of {ξ1, ξ2, . . . , ξn}. Defining the stationary vector process

x̄(t) =





U t+1ξ̄1
U t+1ξ̄2

...
U t+1ξ̄n




, (8.3.7)

this property may be written

E{x̄(t− 1)x(t)′} = I. (8.3.8)

In particular, since x̄(t − 1) = Tx(t) for some nonsingular n× n matrix T , (8.3.8)
yields T = P−1 so that

x̄(t− 1) = P−1x(t). (8.3.9)

Therefore,
P̄ := E{x̄(t)x̄(t)′} = P−1. (8.3.10)

Note that the apparent lack of symmetry between (8.3.2) and (8.3.7) is due to the
corresponding lack of symmetry between the past and future spaces.

To construct a stochastic realization of y evolving backward in time we observe
that, in view of (8.1.15) in Theorem 8.1.2, we have a representation

{
U∗ξ̄i =

∑n
j=1 āij ξ̄j +

∑p̄
j=1 b̄ijw̄j(−1), i = 1, 2, . . . , n

yi(−1) =
∑n

j=1 c̄ij ξ̄j +
∑p̄

j=1 d̄ijw̄j(−1), i = 1, 2, . . . ,m

to which we apply the shift U t+1 to obtain the stochastic system

Σ̄

{
x̄(t− 1) = Āx̄(t) + B̄w̄(t)

y(t) = C̄x̄(t) + D̄w̄(t)
, (8.3.11)

This is a backward stochastic system in the sense that

H+ ∨X+ ⊥ H−(w̄), (8.3.12)

which amounts to the past generating noise being orthogonal to future and present
output and state. Condition (8.3.12) follows from S̄ = H+ ∨X+ (Theorem 7.4.1)
and S̄⊥ = H−(w̄) (Theorem 8.1.3).

A pair of stochastic systems (8.3.4) and (8.3.11) formed as above from the
dual bases in X will be referred to as a dual pair of stochastic realizations.

Theorem 8.3.1. Let (H, U,X) be a finite-dimensional Markovian representation,
and let n := dimX. Then to each choice of dual bases in X there is a pair of dual
stochastic realizations, consisting of a forward system (8.3.4) and a backward system
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(8.3.11), which is unique modulo the choice of bases in the wandering subspaces W

and W̄, i.e., modulo multiplications of

[
B
D

]
and

[
B̄
D̄

]
from the right by orthogonal

transformations, and which has the property

{a′x(0) | a ∈ Rn} = X = {a′x̄(−1) | a ∈ Rn}. (8.3.13)

The forward and backward systems are connected via the relations

Ā = A′, C̄ = CPA′ +DB′ (8.3.14)

and
x̄(t− 1) = P̄−1x(t), P̄ = P−1, (8.3.15)

where

P = E{x(t)x(t)} and P̄ = E{x̄(t)x̄(t)} for all t ∈ Z. (8.3.16)

Moreover the splitting subspace X is observable if and only if

∞⋂

t=0

kerCAt = 0, (8.3.17)

i.e., (C,A) is (completely) observable, and constructible if and only if

∞⋂

t=0

ker C̄(A′)t = 0, (8.3.18)

i.e., (C̄, A′) is (completely) observable. Finally, the Markovian representation is
minimal if and only if both (C,A) and (C̄, A′) are observable.

Proof. The first statement has already been proven above. The orthogonal trans-
formations are precisely the changes of coordinates in the wandering subspaces
(8.1.9) and (8.1.13) under which w and w̄ and remain normalized white noises.
Relations (8.3.15) have also been proven. To prove (8.3.14), note that

A = E{x(1)x(0)′}P−1 (8.3.19)

which follows immediately from (8.3.4) by observing that E{w(0)x(0)′} = 0. In the
same way, we see from the backward system (8.3.11) that

Ā = E{x̄(−1)x̄(0)′}P̄−1 and C̄ = E{y(0)x̄(0)′}P̄−1

which, in view of (8.3.15) may be written

Ā = P−1 E{x(0)x(1)′} and C̄ = E{y(0)x(1)′}. (8.3.20)

From (8.3.19) and (8.3.20) we readily see that Ā = A′, and by inserting y(0) =
Cx(0) +Dw(0) and x(1) = Ax(0) +Bw(0) in the second of equations (8.3.20) and
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observing that E{x(0)w(0)′} = 0, we see that C̄ = CPA′ +DB′. The statements
about observability and constructibility follow from Theorem 6.6.2.

Consequently, it is not enough that (C,A) is completely observable for the
stochastic realization (8.3.4) to be minimal, even if (A,B) is completely reachable.
In fact, reachability has nothing to do with minimality. As we shall see in the next
section, reachability holds if and only if X is purely nondeterministic. We may
have purely nondeterministic components in the input spaces S and S̄ of (8.3.4)
and (8.3.11), respectively, which turn up in the initial condition.

However, before leaving the topic of this section, let us state an important
corollary of Theorem 8.3.1 .

Proposition 8.3.2. A purely nondeterministic, stationary, vector process {y(t)}t∈Z

has a rational spectral density if and only if it has a finite-dimensional Markovian
representation (H, U,X).

Proof. If y has a finite-dimensional Markovian representation (H, U,X), by The-
orem 8.3.1, it is generated by a forward model (8.3.4) with the rational transfer
function (6.2.2). Hence the spectral density Φ(z) := W (z)W (z−1) is rational. Con-
versely, if Φ is rational, it has a rational, analytic spectral factor, say the outer
spectral factor W−, and we can construct, along the lines of Chapter 6, a Marko-
vian representation (H

¯
, U,X−) that is finite-dimensional.

8.4 Reachability, controllability and the deterministic
subspace

The dynamics of the forward stochastic system (8.3.4) corresponds to the commu-
tative diagram

H−(w)
H−−→ H+

R↘ ↗ O

X

H− = OR (8.4.1)

for the Hankel map H− := EH+ |H−(w), where O := EH+ |X is the observability
operator and R := EX |H−(w) is the reachability operator. In fact, by Propo-
sition 2.4.2 (iv), the factorization (8.4.1) is equivalent to the splitting property
H−(w) ⊥ H+ | X, which in turn follows from S ⊥ S̄ | X, since H−(w) ⊂ S and
H+ ⊂ S̄ (Lemma 2.4.1). Consequently, (8.4.1) holds for all Markovian representa-
tions, regardless of whether the dimension is finite or infinite (Theorem 7.4.1 and
Theorem 8.1.3).

Likewise, since H+(w̄) ⊂ S̄ and H− ⊂ S, S ⊥ S̄ | X implies that H+(w̄) ⊥
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H− | X, and consequently the diagram

H+(w̄)
H+−→ H−

K↘ ↗ C

X

H+ = CK, (8.4.2)

commutes, where H+ := EH− |H+(w̄) is a Hankel operator, C is the constructibility
operator and K := EX |H+(w̄) the controllability operator. This factorization illus-
trates the dynamics of the backward stochastic system (8.3.11), but it holds also
for infinite-dimensional Markovian representations.

In complete analogy with (7.3.12) we can decompose the splitting subspace X
in two ways, namely

X = Im R⊕ kerR∗ (8.4.3a)

X = Im K⊕ kerK∗, (8.4.3b)

where Im R and Im K are the reachable and controllable subspaces respectively.
We say that X is reachable if kerR∗ = 0 and controllable if kerK∗ = 0.

Proposition 8.4.1. Let (H, U,X) be a Markovian representation with X ∼ (S, S̄),
and let S−∞ and S̄∞ be the remote past of S and the remote future of S̄ respectively.
Then X is reachable if and only if

X ∩ S−∞ = 0 (8.4.4)

and controllable if and only if
X ∩ S̄∞ = 0. (8.4.5)

If (H, U,X) is proper, X is both reachable and controllable.

A Markovian representation (H, U,X) will be called purely nondeterministic
if both (8.4.4) and (8.4.5) hold.

Proof. From Theorem 8.1.3 it follows that

[
H−(w)

]⊥
= H+(w) ⊕ S−∞,

and consequently, since X ⊥ S⊥ = H+(w),

kerR∗ = X ∩
[
H−(w)

]⊥
= X ∩ S−∞,

as claimed; see Lemma A.2.4 in the appendix. The proof that

kerK∗ = X ∩ S̄∞

is analogous. Then, the last statement is immediate.

If dimX <∞, we can strengthen these statements considerably. To this end,
let us first relate reachability and controllability of X to the forward and backward
systems (8.3.4) and (8.3.11) respectively.
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Proposition 8.4.2. Let (H, U,X) be a finite-dimensional Markovian represen-
tation, and let (8.3.4) and (8.3.11) be a corresponding dual pair of forward and
backward realizations. Then X is reachable if and only if (A,B) is reachable and
controllable if and only if (A′, B̄) is reachable.

Proof. Since kerR∗ = X ∩ [H−(w)]
⊥

, X is reachable if and only if there is no
nonzero a ∈ Rn such that a′x(0) ⊥ H−(w), i.e.,

a′ E{x(0)w(−t)′}b = 0 for all b ∈ Rp and t = 1, 2, 3, . . . . (8.4.6)

But, in view of (8.3.4),

x(0) = ANx(−N) +AN−1Bw(−N) + · · ·+Bw(−1)

for all N = 1, 2, 3, . . . , and hence

E{x(0)w(−t)′} = At−1B.

Consequently, (8.4.6) is equivalent to

a′At−1B = 0 for t = 1, 2, 3, . . . , (8.4.7)

and hence kerR∗ = 0 if and only if (A,B) is reachable, i.e.,

[B,AB,A2B, . . . ]

is full rank so that only a = 0 satisfies (8.4.7). A symmetric argument shows that
X is controllable if and only if (A′, B̄) is reachable.

Proposition 8.4.3. Let (H, U,X) be a finite-dimensional Markovian representation
of y. Then the following conditions are equivalent.

(i) X is proper

(ii) X is reachable

(iii) X is controllable

(iv) A is a stability matrix, i.e., |λ(A)| < 1.

This can happen only if y is purely nondeterministic in both directions; i.e.,

∩tU
tH− = ∩tU

tH+ = 0. (8.4.8)

Proof. It follows from (8.3.4) that P := E{x(t)x(t)′} satisfies the Lyapunov equa-
tion

P = APA′ +BB′ (8.4.9)
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Likewise, from (8.3.11), we see that P̄ = E{x̄(t)x̄(t)′} satisfies

P̄ = A′P̄A+ B̄B̄′ (8.4.10)

By Proposition 8.4.1, (i) implies (ii) and (iii). If (ii) holds, then (A,B) is reachable
(Proposition 8.4.2), and hence, since P > 0, it follows from (8.4.9) that (iv) holds
(Proposition A.3.2). Similarly, by (8.4.10) and the fact that A and A′ have the
same eigenvalues, we see that (iii) implies (iv).

It therefore remains to show that (iv) implies (i). To this end, note that (8.3.4)
implies

x(t) = AN+tx(−N) +
t−1∑

k=−N

At−k−1Bw(k)

for N ≥ 1−t. If A is stable, AN+t tends exponentially to zero as N →∞. Therefore

x(t) =
t−1∑

k=−∞
At−k−1Bw(k) (8.4.11)

is well-defined and is the unique solution of (8.3.4). Therefore, X ⊂ H−(w). Like-
wise, the second of equations (8.3.4) shows that

y(t) =

t−1∑

k=−∞
CAt−k−1Bw(k) +Dw(t) (8.4.12)

so that
H− ⊂ H−(w). (8.4.13)

Consequently, S = H− ∨ X− ⊂ H−(w) (Theorem 7.4.1). More precisely, S =
H−(w), so, in view of Theorem 8.1.3, S−∞ = 0. A symmetric argument involving
the backward system (8.3.11) shows that (iv) also implies that S̄∞ = 0. Hence (i)
follows as claimed. Moreover,

H+ ⊂ H+(w̄). (8.4.14)

Then the last statement of the theorem follows from (8.4.13) and (8.4.14).

The last statement of Proposition 8.4.3 raises the question of whether a pro-
cess y that admits a finite-dimensional Markovian representation is reversible; i.e.,
whether it is backward p.n.d. if and only if it is forward p.n.d..

Proposition 8.4.4. A stationary stochastic process y is reversible if it admits a
finite-dimensional Markovian representation. Then ∩tU

tH− = ∩tU
tH+.

Proof. If y admits a finite-dimensional Markovian representation, then the pre-
dictor spaces X− ∼ (S−, S̄−) and X+ ∼ (S+, S̄+) are finite dimensional (Theo-
rem 7.6.1), and hence so is the frame space H� ∼ (S+, S̄−). In view of Corol-
lary 8.2.6, these representations are all normal. Therefore, the remote past of S−
equals the remote future of S̄−, which in turn equals the remote past of S+ (via
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H�), which equals the remote future of S̄+. However ∩tU
tH− is the remote past

of S− and ∩tU
tH+ is the remote future of S̄+.

Consequently, if y has a finite-dimensional Markovian representation, by Corol-
lary 4.5.9, it has a unique decomposition

y(t) = y0(t) + y∞(t), t ∈ Z, (8.4.15)

where y0 is purely nondeterministic both in the forward and the backward direction,
and y∞ is purely deterministic in both directions and generates ∩tU

tH− = ∩tU
tH+.

The next theorem show that, if X ∼ (S, S̄) is finite-dimensional, then S and
S̄ have the same multiplicity, and hence the forward and backward generating pro-
cesses have the same dimension.

Theorem 8.4.5. Let (H, U,X) be a finite-dimensional Markovian representation
of y with X ∼ (S, S̄) and with generating processes w and w̄. Then the remote past
S−∞ of S equals the remote future S̄∞ of S̄, and X and H have the orthogonal
decompositions

X = X0 ⊕X∞ (8.4.16)

and

H = H0 ⊕X∞ (8.4.17)

respectively, where X0 ⊂ H0, and where X∞ and H0 are the doubly invariant sub-
spaces

X∞ = S−∞ = S̄∞ (8.4.18)

and

H0 = H(w) = H(w̄) (8.4.19)

respectively. In particular, p̄ = p, i.e., w and w̄ have the same dimension. Moreover,
if U0 := U |H0 , (H0, U0,X0) is a proper Markovian representation for the purely
nondeterministic part y0 of y, and it has the same generating processes as (H, U,X).

Proof. In view of Theorem 8.2.3, X has an orthogonal decompositon (8.4.16),
where X∞ is doubly invariant. Since X is finite-dimensional, it follows from Corol-
laries 8.2.6 and 8.2.4 that (8.4.18) holds. By Corollary 8.2.5, S0 := S 	 X∞ and
S̄0 := S̄ 	 X∞ intersect perpendicularly, X0 = S0 ∩ S̄0, and U∗S0 ⊂ S0 and
U S̄0 ⊂ S̄0. Therefore, in view of (8.1.28) and (8.1.31),

S0 = H−(w) and S̄0 = H+(w̄). (8.4.20)

Moreover, H = H0⊕X∞, where H0 is given by (8.4.19). Hence, if µ is the multiplic-
ity of H0, p̄ = p = µ. Since H−

0 := H−(y0) ⊂ H− ⊂ S = S0 ⊕X∞ and y0 is purely
nondeterministic, we must have H−

0 ⊂ S0. Likewise, H+
0 := H+(y0) ⊂ S̄0. Conse-

quently, (H0, U0,X0) is a proper Markovian representation for y0 with generating
processes w and w̄, as claimed.
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In the orthogonal decomposition

X = X0 ⊕X∞

we shall call X0 the proper subspace of X and X∞ the deterministic subspace of X.
In view of Proposition 8.4.4,

Y∞ := ∩tU
tH− = ∩tU

tH+, (8.4.21)

i.e., the remote past and the remote future of y are the same. The following corollary
describes the relation between Y∞ and the deterministic subspace of X.

Corollary 8.4.6. If the process y has a finite-dimensional Markovian representa-
tion (H, U,X), Y∞ ⊂ X∞, where X∞ is the deterministic subspace of X. If X is
observable or constructible, then Y∞ = X∞.

Proof. Let X ∼ (S, S̄) be an arbitrary finite-dimensional Markovian splitting
subspace. Then, since H− ⊂ S,

Y∞ := ∩tU
tH− ⊂ ∩tU

tS = S−∞ = X∞,

which proves the first statement. To prove the second, consider the observability

operator O : X → H− defined by O := EH− |X. By Theorem 8.4.5 and, in par-
ticular, (??) and (8.4.20), H+

0 := H+(y0) ⊂ S̄0 ⊥ X∞, where y0 is the purely
nondeterministic part of y. Consequently, since H+ = H+

0 ⊕Y∞,

Oλ = EH
+
0 λ+ EY∞ λ = EY∞ λ for λ ∈ X∞. (8.4.22)

Hence, since Y∞ ⊂ X∞, the operator O can be injective only if Y∞ = X∞. Thus
observability of X implies Y∞ = X∞. In the same way we show that constructibility
also implies that Y∞ = X∞.

We are now in a position to interpret the decomposition (8.4.3) in terms of
the decomposition (8.4.16) of Theorem 8.4.5, in the finite-dimensional case.

Corollary 8.4.7. Let (H, U,X) be a finite-dimensional Markovian representation.
Then the range spaces of the reachability operator R and the controllability operator
K coincide and are equal to the proper subspace X0 of X, i.e.,

Im R = X0 = Im K. (8.4.23)

Moreover, the purely deterministic part X∞ of X is given by

kerR∗ = X∞ = kerK∗. (8.4.24)

Proof. As a corollary of Proposition 8.4.1 we have

kerR∗ = X ∩ S−∞ and kerK∗ = X ∩ S̄∞. (8.4.25)
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But, in the finite-dimensional case, (H, U,X) is normal (Corollary 8.2.6), and hence
X∞ = S−∞ = S̄∞ (Corollary 8.2.4). Therefore, since X∞ ⊂ X, (8.4.24) follows.
Consequently, since X0 = X 	X∞, (8.4.23) follows from (8.4.3) and the fact that
the range spaces of R and K are closed in the finite-dimensional case.

The orthogonal decomposition (8.4.16) of the Markovian splitting subspace
X into a proper and a purely nondeterministic part induces a special structure
of the corresponding forward and backward stochastic systems, (8.3.4) and (8.3.11)
respectively, provided the bases are chosen appropriately. In fact, if n := dimX and
n0 := dimX0, we take the basis {ξ1, ξ2, . . . , ξn} to be adapted to the decomposition

X = X0 ⊕X∞ (8.4.26)

in the sense that {ξ1, ξ2, . . . , ξn0} is a basis in X0 and {ξn0+1, . . . , ξn} is a basis
in X∞. Then the dual basis {ξ̄1, ξ̄2, . . . , ξ̄n0} is also adapted to (8.4.26), and the
covariance matrices P and P̄ take the forms

P =

[
P0 0
0 P∞

]
and P̄ =

[
P−1

0 0
0 P−1

∞

]
(8.4.27)

respectively, where P0 is n0 × n0.

Theorem 8.4.8. Let (H, U,X) be a finite-dimensional Markovian representation
of y, and let (8.3.4) and (8.3.11) be a dual pair of stochastic realizations with bases
adapted to the decomposition (8.4.26) in the sense described above. Then the forward
system attains the form






[
x0(t+ 1)

x∞(t+ 1)

]
=

[
A0 0

0 A∞

] [
x0(t)

x∞(t)

]
+

[
B0

0

]
w(t)

y(t) =
[
C0 C∞

] [ x0(t)

x∞(t)

]
+Dw(t)

(8.4.28)

where

|λ(A0)| < 1 and |λ(A∞)| = 1, (8.4.29)

(A0, B0) is reachable, and

Im R = {a′x0(0) | a ∈ Rn0} kerR∗ = {a′x∞(0) | a ∈ Rn−n0} (8.4.30)

Moreover,

y0(t) = C0x0(t) +Dw(t) (8.4.31)

is the purely nondeterministic part of y and

y∞ = C∞x∞(t) (8.4.32)

is the purely deterministic part.
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Dually, the backward system (8.3.11) takes the form





[
x̄0(t+ 1)

x̄∞(t+ 1)

]
=

[
A′

0 0

0 A′
∞

][
x̄0(t)

x̄∞(t)

]
+

[
B̄0

0

]
w̄(t)

y(t) =
[
C̄0 C̄∞

] [ x̄0(t)

x̄∞(t)

]
+ D̄w̄(t)

(8.4.33)

where (A′
0, B̄0) is reachable and

Im K = {a′x̄0(−1) | a ∈ Rn0} kerK∗ = {a′x̄∞(−1) | a ∈ Rn−n0} (8.4.34)

Finally,
C̄0 = C0P0A

′
0 +DB′

0, C̄∞ = C∞P∞A
′
∞, (8.4.35)

and X∞ = Y∞ if and only if (C∞, A∞) is observable, or, equivalently, if and only
if (C̄∞, A′

∞) is observable.

Proof. Let
y(t) = y0(t) + y∞(t) (8.4.36)

be the decomposition (4.5.20) of y, where y0 is the purely nondeterministic and y∞
the purely deterministic component of y. Let

x(0) =

[
x0(0)
x∞(0)

]
and x̄(−1) =

[
x̄0(−1)
x̄∞(−1)

]
= P−1x(0)

be the dual pair of bases in X formed as in Section 8.3 and adapted to the de-
composition (8.4.26) so that x0(0) and x̄0(−1) := P−1

0 x0(0) are bases in X0 and
x∞(0) and x̄∞(−1) := P−1

∞ x∞(0) are bases in X∞. Then (8.4.30) and (8.4.34)
follow from Corollary 8.4.7. By Theorem 8.4.5, (H0, U0,X0) is a proper Markovian
representation for y0 with generating processes w and w̄. Consequently, it has a
forward system {

x0(t+ 1) = A0x0(t) +B0w(t)

y0(t) = C0x0(t) +Dw(t)
(8.4.37)

with |λ(A0)| < 1 and with (A0, B0) reachable (Propositions 8.4.2 and 8.4.3); and a
backward system {

x̄0(t+ 1) = A′
0x̄0(t) + B̄0w̄(t)

y0(t) = C̄0x̄0(t) + D̄w̄(t)
(8.4.38)

where (A′
0, B̄0) is reachable.

Next we derive a representation for the purely deterministic part y∞. Since
the components of y∞(0) belong to Y∞ ⊂ X∞, there is an m× (n−n0) matrix C∞
such that

y∞(0) = C∞x∞(0). (8.4.39)

Moreover, since X∞ is invariant under U , there is an (n − n0) × (n − n0) matrix
A∞ such that

x∞(1) = A∞x∞(0). (8.4.40)
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Applying the shift U t to each of the components of (8.4.39) and (8.4.40), we obtain

{
x∞(t+ 1) = A∞x∞(t)

y∞(t) = C∞x∞(t)
(8.4.41)

which together with (8.4.36) and (8.4.37) yields (8.4.28). Clearly (8.4.28) is a for-
ward stochastic system in the sense of (8.3.5).

A similar analysis in the backward direction yields

{
x̄∞(t− 1) = Ā∞x̄∞(t)

y∞(t) = C̄∞x̄∞(t)
(8.4.42)

which together with (8.4.38) and (8.4.36) constitutes the backward counterpart
of (8.4.28). Now, in view of the correspondence Ā = A′ between a forward system
(8.3.4) and a backward system (8.3.11) constructed from dual bases (Theorem 8.1.3),
we must have

Ā∞ = A′
∞ (8.4.43)

so that (8.4.33) follows. Moreover, (8.4.35) follows from (8.3.14).
To show that |λ(A∞)| = 1, observe from (8.4.41) that P∞ := E{x∞(t)x∞(t)′}

satisfies the degenerate Lyapunov equation

P∞ = A∞P∞A
′
∞, (8.4.44)

and hence A∞ has all its eigenvalues on the unit circle. In fact, A∞ is similar

to Q∗ := P
−1/2
∞ A∞P

1/2
∞ and has therefore the same eigenvalues as Q. But from

(8.4.44) it follows that Q∗Q = I so that, if Qv = λv, we have |λ|2v∗v = v∗v, showing
that |λ| = 1 as claimed.

Finally, from (8.4.22) we have

ker(O|X∞
) = X∞ 	Y∞

and hence Y∞ = X∞ if and only if O|X∞
is injective. In view of (8.4.41) and

Theorem 8.1.2, this is equivalent to (C∞, A∞) being observable. Since A∞, having
no zero eigenvalues, is nonsingular, this in turn is equivalent to (C̄∞, A′

∞) being
observable.

Remark 8.4.9. Suppose that the process y generates a finite-dimensional space H
of dimension n < ∞. Then y must be purely deterministic and H− = H+ = H =
Y∞. Clearly H can be generated by n successive variables of the process, which we
collect in a mn-dimensional vector

y :=




y(t)

...
y(t− n+ 1)



 .
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However, the shifted vector 


y(t+ 1)

...
y(t− n)





also generates H, and hence there must be a real matrix F such that

Ub′y = b′Fy (8.4.45)

for all b ∈ Rmn.
We want to construct a minimal stochastic realization of y. By Corollary 8.4.6,

y has only one minimal Markovian representation, namely (H, U,X), where X = H.
Let x(0) = (ξ1, . . . , ξn)′ be a basis in X. Then there is a matrix Ω with linearly
independent columns such that y = Ωx(0), which can be solved for x(0) to yield
x(0) = (Ω′Ω)−1Ω′y. Together with (8.4.45) this yields

Ua′x(0) = Ua′(Ω′Ω)−1Ω′y = a′(Ω′Ω)−1Ω′FΩx(0),

so setting
A := (Ω′Ω)−1Ω′FΩ, (8.4.46)

we have Ua′x(0) = a′Ax(0) for all a ∈ Rn. Moreover, defining C to be the first
block of m rows of Ω, y(0) = Cx(0). Consequently we have the stochastic system

{
x(t+ 1) = Ax(t)

y(t) = Cx(t)
.

In fact, Ω is just the observability matrix of this system. As explained on page 210,
the matrix A has all it eigenvalues on the unit circle. A symmetric argument yields
the corresponding backward system.

8.5 Minimality and nonminimality of
finite-dimensional models

Let us sum up what we have learned so far about minimality of an arbitrary finite-
dimensional (forward) linear stochastic system

(Σ)

{
x(t + 1) = Ax(t) +Bw(t)

y(t) = Cx(t) +Dw(t)
(8.5.1)

Proposition 8.5.1. Let Σ be the linear stochastic system (8.5.1), let W be its
transfer function

W (z) = C(zI −A)−1B +D,

let Φ(z) := W (z)W (z−1), and

X = {a′x(0) | a ∈ Rm} = X0 ⊕X∞,
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where X∞ is the deterministic subspace of X. Then Φ(eiθ) is the spectral density
of the purely nondeterminstic part of y and

1

2
deg Φ ≤ degW ≤ dimX0 ≤ dimX ≤ dimΣ (8.5.2)

Moreover,

(i) 1
2 deg Φ = degW if and only if W is a minimal,

(ii) degW = dimX0 if and only if (C,A) is observable,

(iii) dimX0 = dimX if and only if |λ(A)| < 1, in which case X0 = X,

(iv) dimX = dimΣ if and only if x(0) is a basis in X,

(v) dimX0 = dim Σ if and only if (A,B) is reachable.

In particular, if y is purely nondeterminsitic, Σ is a minimal stochastic realization
of y if and only if (i), (ii) and (v) hold. Otherwise, Σ is minimal if and only if (i),
(ii) and (iv) hold.

Proposition 8.5.1 is merely a summary of results in Chapter 6 and Section 8.4.
In particular, (i) is just a definition (Definition 6.8.3), (ii) follows from Corol-
lary 6.6.3, and (iii) follows from Theorem 6.8.3, where also a number of equivalent
conditions are given. We refer the reader to Section 8.4 for the other statements.
Note that (ii) implies that (ii) implies that X∞ = Y∞, where Y∞ is defined by
(8.4.21) (Corollary 8.4.6).

Next, suppose that (A,B) is observable and A is a stability matrix; i.e.,
|λ(A)| < 1. Then it is not enough that (A,B) is reachable to insure that Σ is
a minimal realization of y; for this we also need that the transfer function W is a
minimal spectral factor. However, it is enough that the steady-state Kalman filter
is reachable, as we shall demonstrate next.

To this end, consider the Kalman filter applied to the model Σ,

x̂(t+ 1) = Ax̂(t) +K(t)[y(t)− Cx̂(t)], x̂(τ) = 0,

which estimates

x̂i(t) = EH[τ,t−1] xi(0), i = 1, 2, . . . , n,

where H[τ,t−1] = span{a′y(k) | a ∈ Rm, k = τ, τ + 1, . . . , t − 1}. It follows from
Lemma 6.9.4 that, for each a ∈ Rn,

a′x̂(t)→ a′x̂∞(t) := EH−

a′x(t)

strongly as τ → −∞, and hence

{a′x̂∞(0) | a ∈ R} = EH−

X, (8.5.3)
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where X is the splitting subspace of Σ. Moreover, y(t) − Cx̂(t) tends to Gν(t),
where ν is a normalized white noise and G is an invertible matrix (cf, Section 6.9).
Consequently, we have the steady-state Kalman filter

(Σ̂)

{
x̂∞(t+ 1) = Ax̂∞(t) +K∞ν(t)

y(t) = Cx̂∞(t) +Gν(t)
, (8.5.4)

which is itself a stochastic realization of y. Note that, in general, we x̂∞ 6= x−,
the state process of the predictor space X−. Indeed, since Σ is not assumed to
be minimal, x̂∞ and x− may not have the same dimension. However, we have the
following minimality criterion.

Proposition 8.5.2. An observable system Σ with A a stability matrix is a minimal
realization of y if and only if its steady state Kalman filter (8.5.4) is completely
reachable in the sense that (A,K∞) is reachable.

Proof. Since X is observable, and hence X ⊥N− (Corollary 7.4.14), we have

EH−

X = X−

(Proposition 7.4.13), and therefore, by (8.5.3),

X̂ := {a′x̂∞(0) | a ∈ R} = X−.

Hence, dim X̂ = n := dimX−. Since X− is a minimal splitting subspace, a
splitting subspaces is minimal if and only if it has dimension n (Theorem 7.6.1),
and consequently Σ is a minimal stochastic realization if and only if dimΣ = n.
However, by Proposition 8.5.1, (iii) and (v), (A,K∞) is reachable if and only if

dim Σ̂ = dim X̂ = n, or, equivalently, dimΣ = n, because dimΣ = dim Σ̂. Hence Σ
is minimal if and only if (A,K∞) is reachable, as claimed.

8.6 Parameterization of finite-dimensional minimal
Markovian representations

Suppose that y has a finite-dimensional Markovian representation. Then all min-
imal Markovian representations (H, U,X) have the same dimension, say n (The-
orem 7.6.1). In this section we show that the matrices (A,C, C̄) in (8.3.4) and
(8.3.11) can be selected to be the same for all minimal Markovian representations.

To this end, we introduce a partial ordering between minimal Markovian rep-
resentations along the lines of Section 7.7.

Definition 8.6.1. Given two minimal Markovian representations, M1 := (H1, U1,X1)
and M2 := (H2, U2,X2) of y, let M1 ≺M2 denote the ordering

‖EX1 λ‖ ≤ ‖EX2 λ‖ for all λ ∈ H+, (8.6.1)
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where the norms are those of the respective ambient spaces H1 and H2. If M1 ≺M2

and M2 ≺M1 both hold, the M1 and M2 are said to be equivalent (M1 ∼M2).

If M1 ∼ M2 and either M1 or M2 are internal, then both are internal, and
M1 = M2 (Corollary 7.7.10). Let M be the family of all equivalence classes of
minimal Markovian representations of y, and let M0 be the subclass of all internal
minimal Markovian representations. Both M and M0 are partially ordered sets with
a minimum and a maximum element, M− := (H, U,X−) and M+ := (H, U,X+),
respectively (Theorem 7.7.3).

Let (H, U,X) be a minimal Markovian representation. Given any basis x+(0)
in X+, the random vector x(0) defined by

a′x(0) = EXa′x+(0), for all a ∈ Rn. (8.6.2)

forms a basis in X (Lemma 7.7.4). This selection of bases are referred to as a
uniform choice of bases in M. In particular,

a′x−(0) = EXa′x+(0), for all a ∈ Rn (8.6.3)

defines a basis a in X−. Now, as in (8.3.9), define the dual basis

x̄−(−1) = P−1
− x−(0) (8.6.4)

in X, where P− := E{x−(0)x−(0)′}. Then, by symmetry

a′x̄(−1) = EXa′x̄−(−1), for all a ∈ Rn (8.6.5)

defines a basis in X. This is precisely, the pair of bases introduced in Section 8.3,
as seen from the following proposition.

Proposition 8.6.2. Let x+(0) be an arbitrary basis in X+. Then the pair of
random vectors x(0) and x̄(−1), defined via the construction (8.6.2)–(8.6.5), is a
dual pair of bases in X; i.e.,

E{x(0)x̄(−1)} = I, (8.6.6)

or, equivalently,

x̄(−1) = P−1x(0), where P := E{x(0)x(0)′}. (8.6.7)

Proof. To prove (8.6.6) we form

a′ E{x(0)x̄(−1)}b = 〈a′x(0),EX b′P−1
− x−(0)〉 = 〈a′x(0), b′P−1

− x−(0)〉.

However, by Proposition 7.7.7,

a′x−(0) = EX−a′x(0), for all a ∈ Rn,
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and hence
a′
(
x(0)− x−(0)

)
⊥ X−.

Consequently,

a′ E{x(0)x̄(−1)}b = 〈a′x−(0), b′P−1
− x−(0)〉 = a′ E{x−(0)x−(0)}P−1

− b = a′b

for all a, b ∈ Rn, which establishes (8.6.6).

In Section 8.3 we saw that, given any dual pair of bases
(
x(0), x̄(−1)

)
in X,

there is a corresponding forward system (8.3.4) and backward system (8.3.11). Let
us consider the corresponding triplet (A,C, C̄) of systems matrices.

Theorem 8.6.3. For any uniform choice of bases, the triplet (A,C, C̄) is invariant
over M.

Proof. Let U(X) be the operator (7.5.1) defined in Section 7.5. From (8.3.4) it
readily follows that

U(X)a′x(0) = a′Ax(0). (8.6.8)

Moreover, if O is the observability operator EH+ |X, we see from the first commu-
tative diagram of Theorem 7.5.1 that

U(X)O∗a′x+(0) = O∗Ua′x+(0)

for all a ∈ Rn, or, which is the same,

U(X) EX a′x+(0) = EX a′x+(1).

In view of (8.6.2) and (8.6.8), this can also be written

a′Ax(0) = EX a′x+(1). (8.6.9)

Now,
a′x+(1) = a′A+x+(0) + a′B+w+(0).

We want to show that the last term is orthogonal to X, or, more generally, that

b′w+(0) ⊥ X for all b ∈ Rm. (8.6.10)

To this end, recall that b′w+(0) ⊥ S+ = H−(w+), and thus b′w+(0) ∈ N+ (Propo-
sition 7.4.6). However, since X is a minimal splitting subspace, X ⊥ N+ (Theo-
rem 7.6.4), and therefore (8.6.10) holds.

Consequently, (8.6.9) yields

a′Ax(0) = EX a′A+x+(0) = a′A+x(0) for all a ∈ Rn,

and hence a′AP = a′A+P for all a ∈ Rn. Therefore, since P > 0, A = A+.
Moreover, from (8.3.4) we have

EX b′y(0) = b′Cx(0).
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However, in view of (8.6.10), we also have

EX b′y(0) = EX b′C+x+(0) = b′C+x(0)

for all b ∈ Rm, and therefore C = C+. Finally, a symmetric argument using (8.3.11),
yields C̄ = C̄−. However, taking X to be X+ in this derivation, we obtain C̄+ = C̄−,
and hence C̄ = C̄+, as claimed.

In view of Corollary 8.4.6, any minimal Markovian splitting subspace has the
orthogonal decomposition

X = X0 ⊕X∞, (8.6.11)

where the deterministic subspace X∞ equals Y∞, defined by (8.4.21), for all X,
and the proper subspace X0 varies. If y has a nontrivial deterministic part y∞,
n0 := dimY∞ 6= 0. Therefore, to cover this case, we may select the bases uniformly
so that they are adapted to the decomposition (8.6.11) as on page 208.

Given such a uniform choice of bases in M, the triplet (A,C, C̄) is fixed (The-
orem 8.6.3), and has the form

A =

[
A0 0
0 A∞

]
,
[
C0 C∞

]
,
[
C̄0 C̄∞

]
, (8.6.12)

where the n0 × n0 matrix A0 has all its eigenvalues in open unit disc and A∞ all
eigenvalues on the unit circle (Theorem 8.4.8). Also given

Λ0 := E{x(0)x(0)′},

define, as in Section 6, the map M : Rn×n → R(n+m)×(n+m) by

M(P ) =

[
P −APA′ C̄′ −APC′

C̄ − CPA′ Λ0 − CPC′

]
. (8.6.13)

We are now in a position to state a more general version of some fundamental
results from Chapter 6, now derived from basic geometric principles.

Theorem 8.6.4. Let M be a family of (equivalence classes) of n-dimensional
minimal Markovian representations corresponding to a full-rank stationary random
process y. Given a uniform choice of bases for M, adapted to (8.6.11), let (A,C, C̄)
be the corresponding matrices prescribed by Theorem 8.6.3, and let M be defined by
(8.6.13). Then there is a one-one correspondence between M and the set

P = {P ∈ Rn×n | P ′ = P, M(P ) ≥ 0} (8.6.14)

that is order-preserving in the sense that P1 ≤ P2 if and only if M1 ≺ M2. Under
this correspondence

P := E{x(0)x(0)′}, (8.6.15)

where x(0) is the uniformly chosen basis in the corresponding minimal Markovian
splitting subspace.
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Proof. By Proposition 7.7.5 there is an order-preserving one-one correspondence
between M and the set P̂ of all covariances (8.6.14) corresponding to minimal

Markovian splitting subspaces X. Clearly, P̂ ⊂ P. In fact, for any such X, by
Theorem 8.3.1, P := E{x(0)x(0)′} satisfies

M(P ) =

[
B
D

] [
B
D

]′
≥ 0 (8.6.16)

for some B,D. It remains to show that P ⊂ P̂; i.e., to each P ∈ P there is a
minimal Markovian representation (H, U,X) such that P := E{x(0)x(0)′} in the
given uniform choice of bases.

To this end, first suppose that y is purely nondeterministic; i.e., n0 = 0. Then,
for an arbitrary P ∈ P, determine a pair (B,D) through a minimal factorization
(8.6.16), and form

W (z) = C(zI −A)−1B +D.

Then, if y is m-dimensional, W is m × p, where p := rank M(P ) ≥ m. Moreover,
since A has all its eigenvalues in the open unit disc D, W is analytic in the comple-
ment of D. Following the notation of Section 4.2 (and a construction to be discussed
in more detail in the next section), we define a p-dimensional generating process w
via

dŵ = W ∗Φ−1dŷ + dẑ,

where the stationary process z(t) := U t
zz(0) is chosen to be orthogonal to H := H(y)

and such that E{dŵdŵ∗} = dθ. Then we must have E{dẑdẑ∗} = (1−W ∗Φ−1W )dθ.
Now, noting that WW ∗ = Φ, we form Wdŵ = dŷ +Wdẑ to obtain

dŷ = Wdŵ.

In fact,

E{Wdẑdẑ∗W ∗} = W (1−W ∗Φ−1W )W ∗dθ = (Φ− Φ)dθ = 0.

Then,

y(t) =

∫ π

−π

W (eiθ)dŵ

has a realization (8.3.4) such that P := E{x(0)x(0)′} with Markovian splitting
subspace X := {a′x(0) | a ∈ Rn}. Setting H = H ⊕ H(z) and Uw := U × Uz,
(H, Uw,X) is the requested Markovian representation of y.

Next, suppose n0 6= 0. Then, for an arbitrary P ∈ P, determine B0, B∞, D so
that

M(P ) =




B0

B∞
D








B0

B∞
D




′

(8.6.17)

is a minimal factorization. Since |λ(A∞)| = 1, we have

B∞ = 0, P =

[
P0 0
0 P∞

]
, (8.6.18)
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where P∞ is n0 × n0. In fact, assuming that

P =

[
P0 Z ′

Z P∞

]
,

(8.6.17) yields (among other things)

P∞ = A∞P∞A
′
∞ +B∞B

′
∞, (8.6.19a)

Z = A0ZA
′
∞ +B0B

′
∞. (8.6.19b)

Since A∞ has all its eigenvalues on the unit circle, then so does G := P
1/2
∞ A′

∞P
−1/2
∞ .

Therefore, for any eigenvector v of G, (8.6.19a) yields

|B′
∞P

−1/2
∞ v|2 = |v|2 − |Gv|2 = 0,

and hence B∞ = 0, as claimed. Then, (8.6.17) yields

(1− λA0)Zv = 0

for all eigenvectors v and corresponding eigenvalues λ of A∞. Since |λ| = 1 and
|λ(A0)| < 1, the matrix Z must be zero. This establishes (8.6.18).

Since (C∞, A∞) is observable (Theorem 8.4.8), x∞(0) can be uniquely deter-
mined from

C∞A
k
∞x∞(0) = y∞(k), k = 0, 1, . . . , n0 − 1.

Clearly P := E{x∞(0)x∞(0)′} satisfies (8.6.19a) with B∞ = 0, and

{
x∞(t+ 1) = A∞x∞(t)

y∞(t) = C∞x∞(t)

holds. From (8.6.17) we also have

M0(P0) =

[
B0

D

] [
B0

D

]′
≥ 0,

where M0 is defined as M , just exchanging A, C, C̄ and Λ0 by A0, C0, C̄0 and
E{y0y′0}, respectively. Then we proceed precisely as in the purely nondeterministic
case to define a generating process w and a stochastic system

{
x0(t+ 1) = A0x0(t) +B0w(t)

y0(t) = C0x0(t) +Dw(t)

with P0 = E{x0(0)x0(0)} and X0 = {a′x0(0) | a ∈ Rn−n0}. Hence we have con-
structed a stochastic system (8.4.28) and thus a Markovian representation with the
Markovian splitting subspace X = X0 ⊕X∞.
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8.7 The forward and backward systems (the general
case)

Let (H, U,X) be an arbitrary proper Markovian representation with splitting sub-
space X ∼ (S, S̄) and generating processes (w, w̄). By Theorems 8.1.2 and 8.1.3,

{
UX ⊂ X⊕W

Y ⊂ X⊕W,
(8.7.1)

where W := US 	 S = {a′w(0) | a ∈ Rp} and Y := {a′y(0) | a ∈ Rm}. We also
have {

X ⊂ UX⊕ W̄

Y ⊂ UX⊕ W̄,
(8.7.2)

where W̄ := S̄	 U∗S̄ := {a′w̄(0)) | a ∈ Rp̄}.
Let ξ ∈ X ⊂ S = H−(w). Then

ξ =

−1∑

k=−∞

p∑

j=1

akjwj(k)

for some sequences (a−1,j, a−2,j , a−3,j, . . . ) ∈ `2, j = 1, 2, . . . , p, and hence, taking
t ≥ 0,

U tξ =

−1∑

k=−∞

p∑

j=1

akjwj(k + t) =

t−1∑

k=−∞

p∑

j=1

ak−t,jwj(k). (8.7.3)

Therefore, by Theorem 7.5.1,

U(X)tξ = EH−(w) U tξ =

−1∑

k=−∞

p∑

j=1

ak−t,jwj(k),

and consequently

a−t,j = 〈U(X)t−1ξ, wj(−1)〉 = 〈U(X)t−1ξ,EXwj(−1)〉X,

or, equivalently,
a−t,j = 〈ξ, [U(X)∗]t−1

EXwj(−1)〉X, (8.7.4)

where 〈·, ·〉X is the inner product in the Hilbert space X. Then (8.7.3) and (8.7.4)
imply that, for any ξ ∈ X,

U tξ =

t−1∑

k=−∞

p∑

j=1

〈ξ, [U(X)∗]t−k−1
EX wj(−1)〉Xwj(k). (8.7.5)

Now, in view of (8.7.1),

yi(0) = EX yi(0) + EW yi(0)
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for i = 1, 2, . . . ,m, and hence (8.7.5) yields

yi(t) =

t−1∑

k=−∞

p∑

j=1

〈EX yi(0), [U(X)∗]t−k−1
EX wj(−1)〉Xwj(k) +

p∑

j=1

dijwj(t),

(8.7.6)
where

dij := 〈yi(0), wj(0)〉. (8.7.7)

From (8.7.6) we see that the splitting subspace X may also serve as a state
space for a (possibly infinite-dimensional) linear stochastic system. To avoid any
confusion created by this, we introduce an isomorphic copy of X, X, via an isomor-
phism T : X→ X such that 〈Tξ, T η〉X = 〈ξ, η〉X. In the next chapter we introduce
a suitable candidate for X in the Hardy space H2, namely a coinvariant subspace
H(K) to be defined there. If X has a finite dimension n, we may of course choose
X := Rn. Then, in view of (8.7.6),

y(t) =
t−1∑

k=−∞
CAt−k−1Bw(k) +Dw(t) (8.7.8)

:=

t−1∑

k=−∞

p∑

j=1

CAt−k−1Bejwj(k) +Dw(t), (8.7.9)

where A : X → X, B : Rp → X and C : X → Rm are bounded linear operators
defined via

A = TU(X)∗T−1, (8.7.10a)

Ba =

p∑

j=1

ajT EX wj(−1) = T EX a′w(−1), (8.7.10b)

(Cx)i = 〈T EX yi(0), x〉X, (8.7.10c)

D is the matrix defined by (8.7.7), and ej is the j:th axis vector in Rp. Note that
in (8.7.10) we have given two equivalent expressions of the operator B. The first
is meant to emphasize the fact that B acts on the vector structure of w in (8.7.12)
and not on w as a random vector. By Theorem 7.5.1, At tends strongly to zero as
t→∞ if ∩∞t=0U

tS̄ = 0; in particular, if X is proper.
Now, from (8.7.6) we also have, for any ξ ∈ X,

U tξ = 〈Tξ, x(t)〉X :=

p∑

j=1

〈Tξ,
t−1∑

k=−∞
At−k−1Bej)〉X wj(k), (8.7.11)

where

x(t) =
t−1∑

k=−∞
At−k−1Bw(k) (8.7.12)

is defined in the weak topology of X. Thus we regard the object (8.7.12) as an
X-valued random vector defined in the weak sense of [54] or [40]. It lies outside of
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the scope of this book to go deeply into the theory of infinite-dimensional random
processes, so we refer the reader to [54, 40] for a full study of Hilbert-space valued
random processes. Here it suffices to say that x(0) is an exact generator of X in
the sense that 〈Tξ, x(0)〉X = ξ and

span{〈f, x(0)〉X | f ∈ X} = X. (8.7.13)

The object {x(t) | t ∈ Z} can be given the meaning of a weak X-valued random
process [54, 40], in terms of which (8.7.8) may be written

{
x(t+ 1) = Ax(t) +Bw(t)

y(t) = Cx(t) +Dw(t).
(8.7.14)

In view of (8.7.11), {x(t) | t ∈ Z} is stationary in the (weak) sense that

〈Tξ, x(t)〉X = U t〈Tξ, x(0)〉X. (8.7.15)

Defining the covariance operator P : X→ X of x(0) via the bilinear form

〈f, Pg〉X = E {〈f, x(0)〉X〈g, x(0)〉X} , (8.7.16)

we obtain the following representation.

Proposition 8.7.1. Then the operator P : X→ X is given by

P =

∞∑

k=0

AkBB∗(A∗)k, (8.7.17)

where A : X → X and B : Rp → X are defined by (8.7.10) and the sum is defined
in the weak operator topology23; i.e., P satisfies the Lyapunov equation

P = APA∗ + BB∗. (8.7.18)

Moreover, (A,B) is exactly reachable.

Proof. Since x(0) =
∑∞

k=0A
kBw(1 − k), we have

E {〈f, x(0)〉X〈g, x(0)〉X} =

∞∑

k=0

p∑

j=1

〈B∗(A∗)kf, ej〉X〈B∗(A∗)kg, ej〉X

=

∞∑

k=0

〈B∗(A∗)kf,B∗(A∗)kg〉Rp

=
∞∑

k=0

〈f,AkBB∗(A∗)kg〉X,

23Pk → P in the weak operator topology if 〈f, Pkg〉X → 〈f, Pg〉X for all f, g ∈ X.
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which establishes (8.7.17), from which (8.7.18) follow readily. To see that (A,B) is
exactly reachable, note that, in view of (7.5.5b) and (7.4.9),

T−1AtBa = ES̄ U−t EX a′w(−1)

= ES̄ a′w(−t− 1)− ES̄ U−t ES⊥

a′w(−1)− ES̄ U−t ES̄⊥

a′w(−1),

where the last two terms are zero since a′w(−1) ∈ S and U−tS̄⊥ ⊂ S̄⊥. Therefore,
since ∨∞t=0{a′w(−1) | a ∈ Rp} = H−(w) = S, we have

∞∨

t=0

spana∈R T
−1AtBa = ES̄ S = X

by the splitting property, and hence

∞∨

t=0

ImAtB = X,

as claimed.

In the same way, we can construct a backward system using (8.7.2). Let
ξ ∈ UX ⊂ S̄ = UH+(w̄). Then, in view of (8.7.2), we have a completely symmetric
situation to the one in the forward setting, except for the shift of the state. In fact,
in analogy with (8.7.5), for any ξ ∈ UX, we have

U tξ =

∞∑

k=t+1

p∑

j=1

〈ξ, [U(UX)]
−t−1+k

EUX w̄j(1)〉UX w̄j(k) (8.7.19)

=

∞∑

k=t+1

p∑

j=1

〈U∗ξ, [U(X)]
k−t−1

EX w̄j(0)〉X w̄j(k). (8.7.20)

Moreover,

yi(0) = EUX yi(0) + EW̄ yi(0)

= U EX yi(−1) + D̄w̄(t),

where D̄ is the matrix defined by d̄ij := 〈yi(0), w̄j(0)〉, and hence

y(t) =

∞∑

k=t+1

C̄Āk−t−1B̄w̄(k) + D̄w̄(t), (8.7.21)

where Ā : X → X, B̄ : Rp → X and C̄ : X → Rm are bounded linear operators
defined via

Ā = TU(X)T−1, (8.7.22a)

B̄a =

p̄∑

j=1

ajT EX w̄j(0) = T EX a′w̄(0), (8.7.22b)
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(C̄x)i = 〈T EX yi(−1), x〉X. (8.7.22c)

Clearly,

Ā = A∗. (8.7.23)

Moreover, by Theorem 7.5.1, Āt tends strongly to zero as t → ∞ if and only if
∩0

t=−∞U
tS = 0; in particular, if X is proper. Precisely as in Proposition 8.7.1 we

can show that (A∗, B̄) is exactly reachable.
Analogously with the forward setting, (8.7.21) can be written

{
x̄(t− 1) = Āx̄(t) + B̄w̄(t)

y(t) = C̄x̄(t) + D̄w̄(t)
, (8.7.24)

where

x̄(t) =
∞∑

k=t+1

(A∗)k−t−1B̄w̄(k) (8.7.25)

is a X-valued (weak) random process with the properties

〈Tξ, x̄(−1)〉X = ξ (8.7.26)

and

span{〈f, x̄(−1)〉X | f ∈ X} = X. (8.7.27)

Moreover, the covariance operator P̄ : X→ X given by

〈f, P̄ g〉X = E {〈f, x̄(−1)〉X〈g, x̄(−1)〉X} , (8.7.28)

takes the form

P̄ =

∞∑

k=0

(A∗)kB̄B̄∗Ak;

i.e., P̄ satisfies the Lyapunov equation

P̄ = A∗P̄A+ B̄B̄∗. (8.7.29)

Proposition 8.7.2. The covariance operators defined by (8.7.16) and (8.7.28) both
equal the identity, i.e., P = P̄ = I. Moreover, x̄(−1) = x(0).

Proof. By (8.7.11), we have 〈f, x(0)〉X = T−1f , and consequently

E {〈f, x(0)〉X〈g, x(0)〉X} = E{T−1f, T−1g} = 〈f, g〉X,

establishing that P = I. In the same way, we see that P̄ = I. From (8.7.11) and
(8.7.26), we have

〈f, x(0)〉X = T−1f = 〈f, x̄(−1)〉X
for all f ∈ X, and hence we must have x̄(−1) = x(0), as claimed.
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Remark 8.7.3. The coordinate-free results of Proposition 8.7.2 are entirely con-
sistent with the coordinate-dependent results of Sections 8.3 and 6.3. Indeed, when
dimX = n < ∞, we may take X = Rn and represent the operators by matri-
ces with respect to the two bases, (ξ1, ξ2, . . . , ξn) and (ξ̄1, ξ̄2, . . . , ξ̄n) introduced in
Section 8.3. More precisely, take

x(0) =





ξ1
ξ2
...
ξn




and x̄(−1) =





ξ̄1
ξ̄2
...
ξ̄in




.

Then, since now 〈a, x(0)〉X = a′x(0), we have

E{〈a, x(0)〉X〈b, x(0)〉X} = a′ E{x(0)x(0)}b = a′Pb

where, with a slight misuse of notation, the matrix P is defined by (8.3.3) and is
the matrix representation of the operator P in the appropriate basis. Likewise, we
can see that the matrix P̄ , defined by the first of the two equations (8.3.10), is the
matrix representation of the operator P̄ in the appropriate basis. Finally, (8.7.11)
and (8.7.26) yield

a′x(0) = ξ = b′x̄(−1),

for all ξ ∈ X, where a ∈ X and b ∈ X correspond to ξ under the two different bases
in X of x(0) and x̄(−1), respectively. Then, since the two bases are dual in the
sense of (8.3.6), b = Pa, and hence (8.3.9) and P̄ = P−1 follow.

We are now in a position to formulate an operator version of Theorem 8.3.1.

Theorem 8.7.4. To each proper Markovian representation (H, U,X) there is a
pair of dual stochastic realizations, consisting of a forward system (8.7.14) and a
backward system (8.7.24) with X-valued state processes having the property

span{〈f, x(0)〉X | f ∈ X} = X = span{〈f, x̄(−1)〉X | f ∈ X} (8.7.30)

The forward and backward systems are connected via the relations

Ā = A∗, C̄ = CA∗ +DB∗ (8.7.31)

and
x̄(t− 1) = x(t). (8.7.32)

Moreover, the splitting subspace X is observable if and only if

∞⋂

t=0

kerCAt = 0, (8.7.33)

i.e., (C,A) is (completely) observable; constructible if and only if

∞⋂

t=0

ker C̄(A∗)t = 0, (8.7.34)
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i.e., (C̄, A∗) is (completely) observable; and minimal if and only if both (C,A) and
(C̄, A∗) are observable. Finally,

Λt := E{y(t+ k)y(t)′} =






CAt−1C̄∗ for t > 0;

CC∗ +DD∗ for t = 0;

C̄(A′)|t|−1C∗ for t < 0.

(8.7.35)

Proof. It only remains to prove the second of relations (8.7.31), the statements
about observability and constructibility, and (8.7.35). To prove that C = CA∗ +
DB∗, recall from (8.7.1) that Y ⊂ X⊕W, which, in particular implies that

yi(0) = EX yi(0) + [Dw(0)]i. (8.7.36)

Therefore, for any ξ ∈ X,

〈yi(0), Uξ〉 = 〈EX yi(0), Uξ〉+ 〈[Dw(0)]i, Uξ〉,

or, equivalently,

〈EX yi(−1), ξ〉X = 〈EX yi(0), U(X)ξ〉X + 〈[Dw(−1)]i, ξ〉;

i.e., setting f := Tξ,

〈T EX yi(−1), f〉X = 〈T EX yi(0), A∗f〉X + 〈[Dw(−1)]i, ξ〉,

which is the same as
C̄f = CA∗f +DB∗f,

valid for all f ∈ X. To see this, observe that

〈f,Ba〉X = 〈ξ,EX a′w(−1)〉X = a′ E{ξw(−1)},

which implies that B∗f = E{ξw(−1)}. This establishes that C = CA∗ +DB∗.
The proof of the observability statement goes much along the lines of the

finite-dimensional result. In fact, since yi(0) ∈ H+ ⊂ S̄,

[
CAtf

]
i
= 〈EX yi(0), [U(X)∗]tξ〉X = 〈yi(0),ES̄ U−tξ〉X = 〈yi(t), ξ〉X,

which is zero for i = 1, 2, . . . ,m and all t ≥ 0 if and only if X ∩ (H+)⊥ = 0; i.e.,
X is observable. This proves the statement on observability. The statement on
constructibility follows by symmetry.

To prove (8.7.35), first suppose t > 0. Then, since a′y(0) ⊥ H+(w), (8.7.36)
yields

Λta = 〈EX yi(t),E
X a′y(0)〉X = 〈U(X)t EX yi(0), U(X) EX a′y(−1)〉X.

Here we have used the fact that, in view of Theorem 7.2.4,

yi(t) = U t ES̄⊥

yi(0) + U t EX yi(0) + U t ES̄⊥

yi(0),
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where the first term is zero since yi(0) ∈ H+ ⊥ (H+)⊥ ⊃ S̄⊥, and the last term
belongs to S⊥ ⊥ X; and an analogous argument for the second element in the inner
product. Hence

Λta = 〈U(X)t−1 EX yi(0),EX a′y(−1)〉X = CAt−1C̄∗a,

as claimed. In fact,

〈C̄∗a, f〉X = a′C̄f = 〈T EX a′y(−1), f〉X.

The proof of the case t < 0 is analogous. Finally, by (8.7.36),

E{yi(0)y(0)′}a = 〈EX yi(0),EX a′y(0)〉X + E{[Dw(0)]iy(0)′a}
= [CC∗a+DD∗a]i ,

completing the proof of (8.7.35).

In view of Propositions 8.7.1 and 8.7.2, we have the following equations

I = AA∗ +BB∗, (8.7.37a)

C̄ = CA∗ +DB∗, (8.7.37b)

Λ0 = CC∗ +DD∗, (8.7.37c)

which, in the case that (H, U,X) is minimal, look like an infinite-dimensional version
of the positive-real-lemma equations (6.8.23), except that the operators A, C and
C̄ clearly depend on the particular choice of X, but P = I does not. This raises the
question of what is the relation between the triplets (A,C, C̄) of different minimal
Markovian representations.

State-space isomorphisms and the infinite-dimensional
positive-real-lemma equations

The covariance of {y(t)}t∈Z is given by (8.7.35), where the triplet (A,C, C̄) corre-
sponds to any Markovian representation (H, U,X) of y. In particular, for t > 0,

Λt = CAtC̄∗ = C+A
t
+C̄

∗
+,

where (A+, C+, C̄+) corresponds to (X+, U,H). More generally, if (H, U,X) is min-
imal, these operators are related in the the following way.

Theorem 8.7.5. Let (H, U,X) be a minimal Markovian representation with (A,C, C̄)
be defined as in (8.7.10) and (8.7.22) and X as defined on page 220. Let (A+, C+, C̄+),
X+ and (A−, C−, C̄−), X− be corresponding quantities related to (X+, U,H) and
(X−, U,H), respectively.. Then there are quasi-invertible linear operators Ω : X→
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X+ and Ω̄ : X→ X− such that the diagrams

Rm

C̄∗↙ ↘C̄∗
+

X
Ω−→ X+

At ↓ ↓ At
+

X
Ω−→ X+

C ↘ ↙C+

Rm

Rm

C∗↙ ↘C∗
−

X
Ω̄−→ X−

(A∗)t ↓ ↓ (A∗
−)t

X
Ω̄−→ X−

C̄ ↘ ↙C̄−

Rm

commute.

In Section 9.2 we actually prove that the operators A of all minimal Markovian
representations are actually quasi-equivalent (Corollary 9.2.16).

Proof. It follows from Corollary 7.6.6 that

ΩAt = At
+Ω,

where Ω := T+ÔT ∗ is quasi-invertible. Here T is as defined on page 220 and T+ is
the corresponding isomorphism from X+ and X+. This establishes the square part
of the first commutative diagram. To establish the bottom part form, for any f ∈ X

and the corresponding ξ := T−1f ∈ X,

(C+Ωf)i = 〈T+ EX+ yi(0), T+ EX+ ξ〉X = 〈EX+ yi(0),EX+ ξ〉X+ = 〈yi(0),EX+ ξ〉.

Then, since H = (H+)⊥ ⊕X+ ⊕N+ and X ⊥ N+ (Corollary 7.4.14) and yi(0) ∈
H+ ⊥ (H+)⊥, we have

(C+Ωf)i = 〈yi(0), ξ〉 = 〈EX yi(0), ξ〉 = (Cf)i.

In the same way, with ξ ∈ X+ and f = T+ξ,

(C̄Ω∗f)i = 〈EX yi(−1),EX ξ〉X = 〈EX yi(−1), ξ〉.

Hence

(C̄Ω∗f)i = 〈EX+ EX yi(−1), ξ〉X+ = 〈EX+ yi(−1), ξ〉X+ = (C̄+f)i,

since H− ⊥ X+ | X (Proposition 2.4.2(vi)); i.e., C̄+ = C̄Ω∗, or, equivalently,
C̄∗

+ = ΩC̄∗. This establishes the top part of the diagram.
A symmetric argument proves that there is a quasi-invertible Ω̄ such that the

right diagram commutes.

In analogy with the finite-dimension setup in Section 8.3 and Chapter 6, we
can now reformulate the forward system (8.7.14) of any minimal Markovian repre-
sentation in terms of (A+, C+, C̄+).
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Corollary 8.7.6. Let (H, U,X) be a minimal Markovian representation. Then
there is an X+-valued (weak) stationary random process {x(t)}t∈Z satisfying

span{〈f, x(0)〉X+ | f ∈ X+} = X.

The process x is generated by the forward system

{
x(t+ 1) = A+x(t) + B̂w(t)

y(t) = C+x(t) +Dw(t)

with B̂ := ΩB, where Ω is the quasi-invertible map defined in Theorem 8.7.5. The
covariance operator P : X+ → X+, defined via the bilinear form

〈f, Pg〉X+ = E
{
〈f, x(0)〉X+〈g, x(0)〉X+

}
,

is given by
P = ΩΩ∗ ≤ P+ = I, (8.7.38)

and satisfies the operator positive-real-lemma equations

P = A+PA
∗
+ + B̂B̂∗, (8.7.39a)

C̄+ = C+PA
∗
+ +DB̂∗, (8.7.39b)

Λ0 = C+PC
∗
+ +DD∗. (8.7.39c)

Naturally, there is also a backward version of this corollary, obtained by the
obvious substitutions.

Proof. The proof is immediate by merely applying the transformations ΩA = A+Ω,
C = C+Ω and C̄Ω∗ = C̄+ (Theorem 8.7.5) to the corresponding equations obtained
earlier in this section. In particular, (8.7.39) is obtain in this way from (8.7.37).
Taking ξ ∈ X+ and f = T−1

+ ξ, we have

〈f, Pf〉X+ = ‖Ω∗f‖2X+
= ‖EX ξ‖2X+

= ‖ξ‖2X+
= ‖f‖2X+

,

establishing that P ≤ I, as claimed.

Since Ω is in general only quasi-invertible, this as far as we can go in gener-
alizing the finite-dimensional results of Section 9.2. If Ω is invertible, we can also
establish that P̄ := P−1 is the covariance operator of the corresponding backward
system. We leave this as an exercise for the reader.

8.8 Regularity of Markovian representations

In Chapter 6 we introduced the regularity condition (6.9.1), needed in formulating
certain results in terms of the Algebraic Riccati Equation, a topic to which we
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return in Chapter ??. We are now in a position to formulate general geometric
conditions for regularity.

To this end, given a Markovian representation (H, U,X) with X ∼ (S, S̄), we
introduce the corresponding forward and backward error space as

Z := S	H− = S ∩ (H−)⊥, and Z̄ := S̄	H+ = S̄ ∩ (H+)⊥, (8.8.1)

respectively, where the orthogonal complements (H−)⊥ and (H+)⊥ are with respect
to the ambient space H. The subspaces Z and Z̄ are not splitting subspaces, but they
are the intersections of perpendicularly intersecting pairs of invariant subspaces,
namely (S, (H−)⊥) and (S̄, (H+)⊥), respectively (Theorem 7.2.4). In fact, Z− ⊥
Z+ | Z and Z̄− ⊥ Z̄+ | Z̄, so both Z and Z̄ are Markovian. Therefore, we can
proceed as in Section 8.7 to define a Z-valued weak stationary random process
{z(t)}Z} such that

span{〈f, z(0)〉Z | f ∈ Z} = Z,

where Z is an isomorphic copy of Z. Likewise, we can define a Z-valued process
{z̄(t)}Z} such that

span{〈f, z̄(−1)〉Z̄ | f ∈ Z̄} = Z̄.

Again along the lines of Section 8.7, we can also form a forward recursion

z(t+ 1) = Fz(t) +Gw(t), (8.8.2)

where F is unitarily equivalent to U(Z)∗ and w is the forward generating process
of (H, U,X); and a backward recursion

z̄(t− 1) = F̄ z̄(t) + Ḡw̄(t), (8.8.3)

where F̄ is unitarily equivalent to U(Z̄) and w̄ is the backward generating processes
of (H, U,X). Note that (8.8.2) and (8.8.3) are not a forward/backward pair in the
sense of (8.7.14) and (8.7.24), but they represent different spaces X and Z̄.

Proposition 8.8.1. Let (H, U,X) be a Markovian representation with error spaces
Z and Z̄. Then X is observable if and only if X ∩ Z̄ = 0 and constructible if and
only if X ∩ Z = 0.

Proof. In view of (8.8.1) and the fact that X ⊂ S,

X ∩ Z = X ∩ S ∩ (H−)⊥ = X ∩ (H−)⊥,

which, by definition, equals zero if and only if X is constructible. The proof of the
observability part is analogous.

To formalize the regularity condition (6.9.1) in the present more general set-
ting, consider the forward system (8.7.14) for a minimal Markovian representation
(H, U,X). Note that, by (8.7.39c) and (8.7.38),

DD∗ = Λ0 − CPC∗ ≥ Λ0 − C+P+C
∗
+ = D+D

∗
+. (8.8.4)
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In particular, the regularity condition (6.9.1) holds if and only if D+ has full rank.
We shall say that the forward system (8.7.14) is regular if D has full rank, and
singular otherwise. Likewise, the backward system (8.7.24) is regular if D̄ is full
rank.

The rank of D is determined by the dimension of the null space of U(Z), which
is finite-dimensional even in the general case when Z is infinte-dimensional.

Proposition 8.8.2. Let (H, U,X) be a Markovian representation with error spaces
Z and Z̄ and generating processes (w, w̄). Then the m×p matrix D := E{y(0)w(0)′}
and the m× p̄ matrix D̄ := E{y(0)w̄(0)′} have ranks

rank D = p− dim kerU(Z) (8.8.5a)

rank D̄ = p̄− dimkerU(Z̄)∗ (8.8.5b)

where U(Z) := EZ U|Z and U(Z̄)∗ := EZ̄ U∗
|Z̄.

The proof is based on the following lemma, which, for later reference, we state
in more generality than needed here.

Lemma 8.8.3. Let (S, S̄) be a pair of subspaces (in some Hilbert space H) with the
property that U∗S ⊂ S, U S̄ ⊂ S̄ and S̄⊥ ⊂ S, and let X := S	 S̄⊥. Then

kerU(X) = X ∩ (U∗W) = S̄ ∩ (U∗W) (8.8.6a)

kerU(X)∗ = X ∩ W̄ = S ∩ W̄, (8.8.6b)

where W := US	 S and W̄ := S̄	 U S̄.

Note that, in this lemma, S and S̄ are perpendicularly intersecting (Corol-
lary 7.2.5) and X := S ∩ S̄, but X need not be a splitting subspace since the
conditions S ⊃H− and S̄ ⊃ H+ are not required.

Proof. Since U(X)ξ = 0 if and only if ξ ⊥ U∗X, kerU(X) = X ∩ (U∗X)⊥. Now,
by Corollary 7.2.5, H = S̄⊥ ⊕X ⊕ S⊥. Hence, (U∗X)⊥ = (U∗S)⊥ ⊕ (U∗S̄)⊥ and
(U∗S)⊥ = S⊥ ⊕ (U∗W); i.e.,

(U∗X)⊥ = S⊥ ⊕ (U∗W)⊕ (U∗S̄)⊥.

However, S⊥ ⊥ X and (U∗S̄)⊥ ⊂ S̄⊥ ⊥ X, and hence the first of equations (8.8.6a)
follows. Then inserting X = S∩ S̄ into this equation and observing that U∗W ⊂ S,
we obtain the second of equations (8.8.6a). Similarly, kerU(X)∗ = X∩ (UX)⊥, and

(UX)⊥ = (US)⊥ ⊕ S̄⊥ ⊕ W̄,

where (US)⊥ ⊂ S⊥ ⊥ X and S̄⊥ ⊥ X, and consequently (8.8.6b) follows.

The following corollary is needed for the proof of Proposition 8.8.2.
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Corollary 8.8.4. The nullspaces of U(Z) and U(Z̄) of Proposition 8.8.2 are

kerU(Z) = Z ∩ (U∗W) (8.8.7a)

kerU(Z̄)∗ = Z̄ ∩ W̄, (8.8.7b)

where W and W̄ are the wandering subspaces (8.1.9) and (8.1.13), respectively.

Proof. Equation (8.8.7a) follows directly from (8.8.6a) in Lemma 8.8.3 by taking X
and (S, S̄) to be Z and (S, (H−)⊥), respectively, and (8.8.7b) follows from (8.8.6b)
by setting X and (S, S̄) equal to Z̄ and ((H+)⊥, S̄), respectively.

Proof of Proposition 8.8.2. We want to show that kerU(Z) and kerD have
the same dimension. To this end, note that, since Z = S ∩ (H−)⊥ and (U∗W) ⊂
S, (8.8.7a) yields kerU(Z) = (H−)⊥ ∩ (U∗W). Hence, dimkerU(Z) equals the
number ν of linear independent a1, a2, . . . , aν ∈ Rp such that a′kw(−1) ⊥ H− for
k = 1, 2, . . . , ν, or, equivalently,

E{y(t)w(−1)′}ak = 0, t < 0, k = 1, 2, . . . , ν. (8.8.8)

However, U∗H− ⊂ U∗S ⊥ U∗W, and hence E{y(t)w(−1)′}ak is always zero for
t < −1. Therefore, (8.8.8) holds if and only if Dak = E{y(−1)w(−1)′}ak = 0 for
k = 1, 2, . . . , ν, establishing that kerU(Z) and kerD have the same dimension. This
proves (8.8.5a). The proof of (8.8.5b) is analogous, using instead (8.8.7b). 2

In general, we shall be interested in the situation where {y(t)}t∈Z is a purely
nondeterministic, full-rank process, and (H, U,X) is proper. Then, p̄ = p ≥ m, so
the forward system (8.7.14) is regular if and only if rank D = m, and the backward
system (8.7.24) is regular if and only if rank D̄ = m. In particular, by (8.8.4),
all forward systems of minimal Markovian representations are regular if D+ is full
rank. Also note that, since the forward error space Z− of the predictor space X−
and the backward error space of X+ are trivial, D− and D̄+ are always full rank.
In other words, the (forward and backward) steady-state Kalman filters are always
regular.

Regularity and singularity play an important role in the theory of invariant
directions for the matrix Riccati equation, a topic to which we return in Chapter ??,
and it is the topic of the next section. We provide Hardy space characterizations of
regularity in Section 9.3.

As a preliminary for the next section, we consider a standard procedure for
constructing (in general, nonminimal) Markovian representations for which D = 0
and D̄ = 0. This amounts to amending the state process by including the obser-
vation noise in the state, which is a standard construction in the finite-dimensional
case.

Proposition 8.8.5. Let (H, U,X) be a Markovian representation with X ∼ (S, S̄),
and set X̃ := (US) ∩ S̄. Then (X̃, U,H) is a Markovian representation with X̃ ∼
(US, S̄), and yk(0) ∈ X̃ for k = 1, 2, . . . ,m. Moreover,

X̃ = X⊕W = (UX)⊕ W̄, (8.8.9)
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where W and W̄ are the subspaces (8.1.9) and (8.1.13), respectively.

Proof. By assumption, (S, S̄) satisfies conditions (i), (ii) and (iii) in Theorem 8.1.1.
Then so does (US, S̄). In fact, H− ⊂ S ⊂ US and U∗(US) = S ⊂ US establishes
(i) and (ii). From (8.1.9) we have US = S⊕W. Therefore, since W ⊂ S⊥ ⊂ S̄,

(US) ∩ S̄ = (S ∩ S̄)⊕W. (8.8.10)

From (8.1.9) we also have (US)⊥ = S⊥ 	W, and hence

((US) ∩ S̄)⊕ (US)⊥ = (S ∩ S̄)⊕ S⊥,

establishing that (US, S̄) satisfies (iii). Consequently (X̃, U,H) is a Markovian
representation by Theorem 8.1.1. Also, (8.8.10) is precisely the first of equations
(8.8.9). To establish the second of equations (8.8.9), observe that (8.1.13) implies
that S̄ = (U S̄) ∩ W̄, and therefore, since W̄ ⊂ (U S̄)⊥ ⊂ US,

X̃ = (US) ∩ S̄ = ((US) ∩ (U S̄))⊕ W̄ = (UX)⊕ W̄.

Finally,

yk(0) ∈ (UH−) ∩H+ ⊂ (US) ∩ S̄ = X̃

for k = 1, 2, . . . ,m.

8.9 Models without observation noise

By changing the definition of the past space H− to including y(0); i.e., taking

H− = span{a′y(t) | t ≤ 0; a ∈ Rm} (8.9.1)

while retaining the old definition of H+, we obtain complete symmetry between the
past and the future. In this case,

a′y(0) ∈ H− ∩H+ ⊂ S ∩ S̄ = X, a ∈ Rm

for any Markovian splitting subspace X ∼ (S, S̄), leading to models without obser-
vation noise.

Given a Markovian representation (H, U,X) in this framework, the construc-
tion of the forward and a backward stochastic system follows along similar lines
as described earlier in this chapter, but with certain modifications that uphold the
symmetry between the forward and the backward model. In particular, the defini-
tion (8.1.9) of W needs be to changed to W := S 	 U∗S, leading to the following
modification of (8.1.14) and (8.1.15):

{
UX ⊂ X⊕ (UW)

Y ⊂ X

{
U∗X ⊂ X⊕ (U∗W̄)

Y ⊂ X
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This is the starting point for constructing a forward system

{
x(t+ 1) = Ax(t) +Bw(t + 1)

y(t) = Cx(t),
(8.9.2)

where the operators A : X → X and C : X → Rm are as defined in (8.7.10), while
B : Rp → X now sends a ∈ Rp to T EX a′w(0); and a backward system

{
x̄(t− 1) = A∗x̄(t) + B̄w̄(t− 1)

y(t) = C̄x̄(t),
(8.9.3)

where B̄ : Rp → X is as defined in (8.7.22), while y(−1) should be exchanged for
y(0) in the definition of C̄ : X → Rm. We now have complete symmetry between
the forward and backward system, which is also reflected in the fact that now

span{〈f, x(0)〉X | f ∈ X} = X = span{〈f, x̄(0)〉X | f ∈ X}. (8.9.4)

The observability and constructibility conditions of Theorem 8.7.4 remain the same.
The class of Markovian representations in the new framework with H− given

by (8.9.1) is smaller than than that in the standard framework. In fact, any Marko-
vian representation in the new framework is clearly a Markovian representation in
standard one, but the converse is not true. However, Proposition 8.8.5 suggests a
procedure for producing a new Markovian representations from old ones.

For clarity of notation, we return to our standard definition of H−, referring to
(8.9.1) as UH−, and we refer to the two types of splitting subspaces as (H−,H+)-
splitting and (UH−,H+)-splitting, respectively.

Corollary 8.9.1. Let (H, U,X) be a Markovian representation in the (H−,H+)
framework, and let X̃ be defined as in Proposition 8.8.5. Then, (X̃, U,H) is a
Markovian representation in the (UH−,H+) framework.

Proof. The corollary follows immediately from Proposition 8.8.5, merely noting
that UH− ⊂ US.

The Markovian representation (X̃, U,H) of Corollary 8.9.1 is certainly non-
minimal in the (H−,H+) framework if W is nontrivial, but it could very well be
minimal in the (UH−,H+) framework. The following result shows when this is the
case.

Theorem 8.9.2. Let (H, U,X) be observable (constructible) in the (H−,H+)
framework, and let X̃ be defined as in Proposition 8.8.5. Then (X̃, U,H) is ob-
servable (constructible) in the (UH−,H+) framework if and only if kerU(Z̄) = 0
(kerU(Z) = 0), where Z and Z̄ are the error spaces (8.8.1) of X ∼ (S, S̄).

Proof. Let us first prove the statement about observability, which is the simplest
part. By Proposition 8.8.1 and Lemma 8.8.4, we need to show that X̃∩Z̄ = 0 if and
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only if Z̄∩W̄ = 0. However, since W̄ ⊂ X̃ by (8.8.9), X̃∩Z̄ ⊃ Z̄∩W̄, so the only-if
part is trivial. To prove the if part, suppose there is a nonzero λ ∈ X̃∩ Z̄. Then, in
view of (8.8.9), λ = Uξ+η, where ξ ∈ X and η ∈ W̄. However, λ ∈ Z̄ ⊥H+ ⊃ UH+

and η ∈ W̄ ⊥ U S̄ ⊃ UH+, and consequently Uξ ⊥ UH+, or, equivalently, ξ ⊥ H+;
i.e., ξ ∈ X ∩ (H+)⊥, which is zero by observability of X. Since therefore λ ∈ W̄,
we have λ ∈ Z̄ ∩ W̄. Hence Z̄ ∩ W̄ = 0, proving the if part.

To establish the statement about constructibility, we need to prove that X̃ ∩
Z̃ = 0 if and only if Z ∩ (U∗W) = 0, where X̃ = X ⊕W and Z̃ = UZ. To this
end, first suppose that Z ∩ (U∗W) 6= 0. Then, applying the unitary shift U , we
have Z̃ ∩W 6= 0, which, in view of the fact that W ⊂ X̃, implies that X̃ ∩ Z̃ 6= 0.
Conversely, suppose that there is a nonzero λ ∈ X̃ ∩ Z̃. Then, λ = ξ + η, where
ξ ∈ X and η ∈W. However, λ ∈ UZ ⊥ UH− ⊃ H− and η ∈W ⊥ S ⊃ H−, and
therefore ξ ⊥ H−; i.e., ξ ∈ X ∩ (H−)⊥, which is zero by the constructibility of X.
Hence λ ∈W; i.e., λ ∈ Z̃ ∩W, and consequently (UZ) ∩W 6= 0, or, equivalently,
Z ∩ (U∗W) 6= 0. This proves the constructibility part.

We can now relate the the question of the preservation of minimality to the
regularity of the forward and backward systems – (8.7.14) and (8.7.24), respectively
– of (H, U,X) and the size of the ambient space H.

Corollary 8.9.3. Let (H, U,X) be a minimal proper Markovian representation, in
the (H−,H+) framework, with generating processes (w, w̄), and let X̃ be defined as
in Proposition 8.8.5. Then (X̃, U,H) is minimal in the (UH−,H+) framework if
and only if all the conditions

(i) X is internal, i.e., X ⊂H,

(ii) D := E{y(0)w(0)′} has full rank,

(iii) D̄ := E{y(0)w̄(0)′} has full rank

hold.

Proof. By Theorem 8.9.2 and Corollary 7.4.10, (X̃, U,H) is minimal if and only
if kerU(Z) = 0 and kerU(Z̄) = 0. Since (H, U,X) is proper, p = p̄ ≥ m. Conse-
quently, by Proposition 8.8.2, kerU(Z) = 0 and kerU(Z̄) = 0 if and only if D and
D̄ have full rank (i.e., rank m) and p = m (i.e., X is internal).

In Chapter 9, after having introduced some additional tools, we illustrate this
result by a simple example.
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Frazho [33, 32], Foiaş and Frazho [31], and Michaletzky [96, 95].

Sections 8.1 and 8.3 are essentially developed along the lines of [88]. The re-
sults in Section 8.2 are basically contained in [119]: Theorem 8.2.1 is Theorem 1.2
in Chapter II of [119] modified to our setting and Theorem 8.2.3 is Proposition 1.4.
Theorem 8.2.7 follows from Proposition 6.7 in Chapter II and Proposition 4.2 in
Chapter III in [119].is The material in Section 8.4 appears here for the first time.
Section 8.5 follows [88], where Proposition 8.5.2 is proved in the continuous-time
setting. The material in Section 8.6 generalizes results [88], allowing a purely de-
terministic component, and connects the geometric theory to to classical stochastic
realization theory [4, 29, 80]. The development of general dynamical realizations
in Section 8.7 is related to the restricted-shift realization of Fuhrmann [34], Helton
[48], and Baras and Brockett [6]. It was first developed in this form in [82, 83] in
continuous time and in [75, 76] in discrete time. State-space isomorphism results
were developed in [87] and is closely related to results in [35]. Sections 8.8 and 8.9,
finally, are based on [75] where the theory was developed for internal Markovian
representations only.

Finally, we should mention the books by Caines [15] (Chapter 4) and Michalet-
zky, Bokor and Várlaki [94].
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Chapter 9

Proper Markovian
Representations in Hardy
Space

In this chapter we reformulate the splitting geometry in terms of functional models
in Hardy space. This allows us to use the power of Hardy space theory to prove
several additional results and useful characterizations. We shall only deal with
proper Markovian representation, and therefore we formulate several functional
criteria for properness.

Throughout this chapter, we assume that the process {y(t)}t∈Z is purely non-
deterministic and reversible and hence purely nondeterministic also in the backward
direction. Therefore

H− = H−(w−) and H+ = H+(w̄+), (9.0.1)

where the white noise processes w− and w̄+ are the forward and backward innova-
tion processes, respectively.

9.1 Functional representations of Markovian
representations

In contrast to the finite-dimensional case (Theorems 8.4.3 and 8.6.3), the process y
being purely nondeterministic does not insure that all minimal Markovian represen-
tations are proper, as seen from Example 8.1.5. However, properness is insured by
the following simple criterion, which will be stated and proved in more generality
in Section 9.2 (Proposition 9.2.10 and Theorem 9.2.12).

Proposition 9.1.1. There exist proper Markovian representations of y if and only
if the frame space H2, defined by (7.4.24), is proper. In this case, all minimal
Markovian representations are proper.

Clearly, X− ∼ (H−, S̄−) is proper only if the remote past of H− is trivial,
and X+ ∼ (S+,H

+) is proper only if the remote future of H+ is trivial. Therefore,
for all minimal Markovian representations of y to be proper it is necessary that y is

237
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238 Chapter 9. Proper Markovian Representations in Hardy Space

reversible so that it is purely nondeterministic in both the forward and the backward
direction, in harmony with our assumption (9.0.1). However, reversibility is not
sufficient. Indeed, the process in Example 8.1.5 is full rank, and hence reversible
(Proposition 4.5.11), but X− is not proper. A sufficient condition (noncyclicity)
will be introduce on page 247.

In Section 8.1 it was shown that, to each proper Markovian representation
(H, U,X) of multiplicity p ≥ m with X ∼ (S, S̄), there corresponds a pair (w, w̄) of
p-dimensional white noise processes such that H(w) = H(w̄) = H and

S = H−(w) and S̄ = H+(w̄). (9.1.1)

These processes are called the generating processes of the Markovian representa-
tion, and they are uniquely determined modulo multiplication by a constant p× p
orthogonal matrix.

By Proposition 9.1.1, there will not exist any proper Markovian representa-
tions unless the frame space H2 ∼ (S+, S̄−) is proper, i.e., unless there are unique
generating processes w+ and w̄− such that

S+ = H−(w+) and S̄− = H+(w̄−), (9.1.2)

where

S+ := (N+)⊥ = H+ ∨ (H−)⊥ and S̄− := (N−)⊥ = H− ∨ (H+)⊥ (9.1.3)

(Proposition 7.4.15). In this case, the predictor spaces X− and X+ are also proper.
In fact, by Propositions 7.4.5 and 7.4.6 in Section 7,

X− ∼ (S−, S̄−) and X+ ∼ (S+, S̄+), (9.1.4)

where S− = H− and S̄+ = H+. Consequently, the predictor spaces X− and
X+ have generating processes (w−, w+) and (w̄−, w̄+), respectively, which should
explain the notation.

As demonstrated in Section 3.5, the spectral representations

w(t) =

∫ π

−π

eiθtdŵ and w̄(t) =

∫ π

−π

eiθtd ˆ̄w (9.1.5)

define two unitary isomorphisms, Iŵ, I ˆ̄w : L2
p → H, via

Iŵf =

∫ π

−π

f(eiθ)dŵ and I ˆ̄wf =

∫ π

−π

f(eiθ)d ˆ̄w, (9.1.6)

under which S and S̄ are isomorphic to the Hardy spaces H2
p and H̄2

p , respectively,
i.e.,

S := H−(w) = Iŵz
−1H2

p and S̄ := H+(w̄) = I ˆ̄wH̄
2
p , (9.1.7)

and the shift U becomes multiplication by z = eiθ, i.e.,

UIŵ = IŵMz. (9.1.8)
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9.1. Functional representations of Markovian representations 239

Spectral factors and the structural function

We are now in a position to reformulate some basic results of Section 6.4 in a more
general setting. Since (Iŵ)−1I ˆ̄w is a unitary operator which commutes with the shift
on L2

p, it can be represented by a multiplication operator

(Iŵ)−1I ˆ̄w = MK (9.1.9)

where MKf = fK and K is a unitary p × p matrix function (Theorem 4.3.3).
Generalizing Definition 4.6.1 slightly we shall say that an isometry which sends
analytic functions to analytic functions is inner. As before, a p×q matrix function V
on D such thatH2

pV is dense inH2
q is called outer . Functions with the corresponding

properties with respect to the conjugate Hardy space H̄2
p will be called conjugate

inner and conjugate outer respectively.

Lemma 9.1.2. Let (H, U,X) be a proper Markovian representation with generating
processes w and w̄. Then there is a unique pair (W, W̄ ) of spectral factors, the first
being analytic and the second coanalytic, such that

y(t) =

∫ π

−π

eiθtW (eiθ)dŵ =

∫ π

−π

eiθtW̄ (eiθ)d ˆ̄w. (9.1.10)

Moreover, the matrix function K defined by (9.1.9) is inner, and satisfies

W = W̄K, (9.1.11)

i.e., in particular,

w̄(t) =

∫ π

−π

eiθtK(eiθ)dŵ. (9.1.12)

Proof. In view of (9.1.8), conditions (9.1.10) hold if and only if

W =





I−1
ŵ y1(0)

I−1
ŵ y2(0)

...
I
−1
ŵ ym(0)




and W̄ =





I−1
ˆ̄w
y1(0)

I−1
ˆ̄w
y2(0)
...

I
−1
ˆ̄w
ym(0)




. (9.1.13)

Clearly W and W̄ are spectral factors. Moreover, for all a ∈ Rm, a′y(0) ∈ UH− ⊂
UH−(w), and hence a′W ∈ H2

p , implying that W is analytic. In the same way,

since a′y(0) ∈ H+ ⊂ H+(w̄), a′W̄ ∈ H̄2
p for all a ∈ Rm, and hence W̄ is coanalytic.

In view of (9.1.9),

∫ π

−π

fd ˆ̄w =

∫ π

−π

fKdŵ for all f ∈ H2
p ,

and hence (9.1.12) follows. Moreover, since

a′y(0) = Iŵa
′W = I ˆ̄wa

′W̄ for all a ∈ Rm,



“Book”
2007/1/28
page 240

i

i

i

i

i

i

i

i

240 Chapter 9. Proper Markovian Representations in Hardy Space

(9.1.11) also follows from (9.1.9). Finally, the fact that K is inner is a consequence
of the perpendicular intersection propery S̄⊥ ⊂ S (Theorem 7.2.4), which may be
written H−(w̄) ⊂H−(w), which is equivalent to H2

pK ⊂ H2
p under the isomorphism

Iŵz
−1. The subspace H−(w̄) is invariant under the backward shift U−1, and hence

H2
pK is invariant under z−1. Therefore K is inner (Theorem 4.6.4).

It follows from this analysis that the spectral factors W and W̄ are uniquely
determined by the subspaces S and S̄, once a specific choice of generating process
w, w̄ has been made. This amounts to saying that W and W̄ are determined by
S and S̄, respectively, modulo right multiplication by a constant p × p orthogonal
matrix. The equivalence class of m× p spectral factors

[W ] := {WT | T orthogonal p× p matrix} (9.1.14)

will sometimes be denoted by W mod O(p), where O(p) is the p-dimensional or-
thogonal group, or merely W mod O if the dimension of W is clear from context.

Hence, given a proper Markovian representation (H, U,X) with X ∼ (S, S̄),
we determine a unique (mod O) pair (W, W̄ ) of m × p spectral factors, one being
analytic and corresponding to S, and the other coanalytic and corresponding to
S̄. In terms of the splitting geometry the analyticity of W reflects the condition
S ⊃ H−, the coanalyticity of W̄ the condition S̄ ⊃ H+, and K being inner the
perpendicular intersection between S and S̄. We shall call a triplet (W, W̄ ,K)
where W and W̄ are m× p spectral factors for some p ≥ m and K is a p× p matrix
function satisfying the equation W = W̄K a Markovian triplet if W is analytic, W̄
coanalytic and K inner.

In view of (9.1.9), K is uniquely determined by the Markovian representation
(H, U,X), modulo right and left multiplication by orthogonal constant matrices,
and we shall call it the structural function of (H, U,X). It follows that the Marko-
vian triplets corresponding to a Markovian representation are all related by the
equivalence

(W, W̄ ,K) ∼ (WT1, W̄T2, T
−1
2 KT1) T1, T2 ∈ O(p) (9.1.15)

The corresponding equivalence class of Markovian triplets will be denoted [W, W̄ ,K]
or (W, W̄ ,K) mod O.

If the Markovian representation (H, U,X) is internal, its multiplicity p equals
m. Then W and W̄ are square and hence, since Φ is full rank, invertible. In this
case, (9.1.11) can be solved for K to yield the structural function

K = W̄−1W. (9.1.16)

Hence, the predictor spaces X− and X+ have the Markovian triplets (W−, W̄−,K−)
and (W+, W̄+,K+), respectively, where W− is outer, W̄+ conjugate outer, K− =
W̄−1

− W− and K+ = W̄−1
+ W+.

A Markovian triplet is called tight if K is uniquely determined by W and W̄ .
As we have just seen, this is always the case for internal Markovian representations,
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9.1. Functional representations of Markovian representations 241

in which case (9.1.16) holds. Nontightness occurs when the subspace X ∩ (H)⊥ is
nontrivial, in which case some modes of the state process will evolve independently
of y. In fact, tightness is implied by either observability or constructibility, which
conditions, as we shall see below, are equivalent to the coprimeness of the factor-
izations W = W̄K and W̄ = WK∗ respectively (Corollary 9.2.4). Such coprime
factorizations are known to be unique mod O. Consequently, W̄ and K are uniquely
determined by W in the observable case, and W and K are uniquely determined
by W̄ in the constructible case.

The inner triplet of a Markovian representation

In a Markovian triplet (W, W̄ ,K) the spectral factors W and W̄ have unique outer-
inner factorizations

W = W−Q and W̄ = W̄+Q̄, (9.1.17)

where W− is the outer and W̄+ the conjugate outer spectral factor (Theorem 4.6.5).
The m × p matrix functions Q and Q̄ are inner and conjugate inner, respectively,
and

QQ∗ = Im and Q̄Q̄∗ = Im. (9.1.18)

Thus, to each Markovian representation of y, there is a unique triplet (K,Q, Q̄) of
inner functions, which we shall refer to as its inner triplet .

Lemma 9.1.3. Let (H, U,X) be a proper Markovian representation with inner
triplet (K,Q, Q̄) and generating processes w and w̄. Then

w(t) =

∫ π

−π

eiθtQ∗(eiθ)dŵ− + z(t), (9.1.19)

where w− is the innovation process, and where z is a p.n.d. process with the property
that H(z) = H⊥ and the spectral density Π := I − Q∗Q. The orthogonal projec-
tion EH onto the internal subspace H corresponds, under the isomorphism Iŵ, to
multiplication with Q∗Q, i.e.,

EH
Iŵ = IŵMQ∗Q. (9.1.20)

Similarly,

w̄(t) =

∫ π

−π

eiθtQ̄∗(eiθ)d ˆ̄w+ + z̄(t), (9.1.21)

where w̄+ is the backward innovation process and

z̄(t) =

∫ π

−π

eiθtK(eiθ)dẑ. (9.1.22)

Moreover, H(z̄) = H⊥ and
EH

I ˆ̄w = I ˆ̄wMQ̄∗Q̄. (9.1.23)

Finally,
KΠ = Π̄K, (9.1.24)
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242 Chapter 9. Proper Markovian Representations in Hardy Space

where Π̄ := I − Q̄∗Q̄ is the spectral density of z̄.

Proof. In view of

dŷ = Wdŵ = W−dŵ−,

(9.1.17) yields

dŵ− = Qdŵ. (9.1.25)

Since therefore Q∗dŵ− = Q∗Qdŵ,

dŵ = Q∗dŵ− + dẑ, (9.1.26)

where dẑ := Πdŵ with Π := I − Q∗Q. From this we obtain (9.1.19), or, more
generally,

∫
fdŵ =

∫
fQ∗dŵ− +

∫
fdẑ (9.1.27)

for all f ∈ L2
p. The last term in (9.1.27) can also be written

∫
fΠdŵ and is therefore

always orthogonal to the internal subspace H, or, equivalently, to

∫
hdŵ− =

∫
hQdŵ

for all h ∈ L2
m. In fact, since QQ∗ = I, we have QΠ = 0. From this it also follows

that Π2 = Π, and therefore Π is the spectral density of z. Moreover, the left member
of (9.1.27) generates H := H(w) as f varies over L2

p, and, as can be seen by taking
f = gQ with g ∈ L2

m, the closed span of the first term of the right member is H.
Hence H(z) = H⊥ := H	H, as claimed. Consequently, in view of (9.1.25), for any
λ ∈ H = H(w), there is an f ∈ L2

p such that

EH λ =

∫
fQ∗dŵ− =

∫
fQ∗Qdŵ,

which is precisely (9.1.20). The corresponding statements for w̄ are proven in the
same way. It remains to prove (9.1.22) and (9.1.24). To this end, note that we have

EH = IŵMQ∗QI
−1
ŵ = I ˆ̄wMQ̄∗Q̄I

−1
ˆ̄w

from (9.1.20) and (9.1.23), which in view of (9.1.9) yields KQ∗Q = Q̄∗Q̄K. Hence
(9.1.24) follows. Finally, by (9.1.12) and (9.1.24),

dˆ̄z = Π̄d ˆ̄w = Π̄Kdŵ = KΠdŵ = Kdẑ,

proving (9.1.22).
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State space construction

As we shall see, the Markovian triplets (W, W̄ ,K) contain all the systems-theoretic
information needed for the construction of state space representations of y. In
particular, the structural function K determines the state space, while W and W̄
serve as the transfer functions of two stochastic realizations having the same state
space.

The following theorem describes the relation between Markovian representa-
tions and Markovian triplets (W, W̄ ,K).

Theorem 9.1.4. There is a one-one correspondence between proper Markovian
representations (H, U,X) of a purely nondeterministic process {y(t)}t∈Z with a full-
rank spectral factor and pairs ([W, W̄ ,K], z) where [W, W̄ ,K] is an equivalence class
of Markovian triplets and z is a vector process (defined mod O) such that H(z) ⊥
H and with spectral density Π := I − W ]W , where W ] = W ∗Φ−1. Under this
correspondence

H = H⊕H(z) (9.1.28)

and
X = H−(w) ∩H+(w̄) (9.1.29)

where (w, w̄) are the generating processes given by

w(t) =

∫ π

−π

eiθtW ]dŷ + z(t) (9.1.30)

w̄(t) =

∫ π

−π

eiθtW̄ ]dŷ +

∫ π

−π

eiθtKdẑ (9.1.31)

where W̄ ] := W̄ ∗Φ−1.

Proof. Given a Markovian representation (H, U,X) with generating processes
(w, w̄), we have shown above that there is a unique equivalence class [W, W̄ ,K]
of Markovian triplets. Suppose Π := I −W ]W . Since Φ = W ∗

−W−, a straight-
forward calculation shows that Π is as defined in Lemma 9.1.3 and that (9.1.30)
is equivalent to (9.1.19) and (9.1.22)–(9.1.23). Since dẑ = Πdŵ, the process z is
uniquely defined mod O with the spectral density Π, and, by Lemma 9.1.3, (9.1.28)
holds. Since (H, U,X) is proper, (9.1.29) is a consequence of the fact that X = S∩S̄
(Theorem 8.1.1). Conversely, given a triplet (W, W̄ ,K) and a process z with the
stated properties, we define (w, w̄) by (9.1.30) and (9.1.31), and we set S := H−(w)
and S̄ := H+(w̄). Then, since (W, W̄ ,K) is a Markovian triplet, W is analytic im-
plying that S ⊃H−, W̄ is coanalytic implying that S ⊃H+, and K is inner which
is equivalent to perpendicular intersection. Hence, by Theorem 8.1.1, X = S∩S̄ is a
Markovian splitting subspace with ambient space H = H⊕H(z), for the invariance
condition (ii) is trivially satisfied. The shift is U := Uy × Uz, where Uy and Uz are
the shifts defined by y and z, respectively.

At this point we have designed a spectral-domain framework, isomorphic to
the geometric framework of Markovian representations, in which all random vari-
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ables have concrete representations as functions in certain subspaces of H2
p or H̄2

p .
We shall next introduce a general functional model for Markovian splitting sub-
spaces which is of the type studied in [71] and [35] in connection with deterministic
scattering theory and linear systems in Hilbert space. Using this representation the
characterization of various structural conditions of Markovian splitting subspaces
(observability, constructibility and minimality) can be formulated in Hardy space
terms. These questions will be studied in the next section.

Theorem 9.1.5. Let (H, U,X) be a proper Markovian representation with struc-
tural function K and generating processes (w, w̄). Then,

X =

∫ π

−π

z−1H(K)dŵ =

∫ π

−π

H̄(K∗)d ˆ̄w, (9.1.32)

where
H(K) := H2

p 	H2
pK = H2

p ∩ (zH̄2
pK) (9.1.33)

and
H̄(K∗) := H̄2

p 	 H̄2
pK

∗ = H̄2
p ∩ (z−1H2

pK
∗). (9.1.34)

Moreover, X is finite dimensional if and only if K is rational, in which case dimX
equals the McMillan degree of K.

Proof. By Theorem 8.1.1 and the fact that (H, U,X) is proper,

X = S	 S̄⊥ = H−(w) 	H−(w̄)

Therefore the first of equations (9.4.7) follows from (9.1.7) and (9.1.9). A sym-
metric argument yields the second equation (9.4.7). Relations (9.1.33) and (9.1.34)
are standard in Hardy space theory, and in our setting of splitting geometry they
correspond to X = S ∩ S̄ = H−(w) ∩H+(w̄). In the same way, X = ES S̄ yields
H(K) = Im HK , where HK : H2

p → H̄2
p is the Hankel operator f 7→ PH(K)fK.

Now, the range of a Hankel operator is finite-dimensional if and only if its symbol
is rational [35, Theorem 3-8, p. 256]. Hence, H(K) is finite-dimensional if and
only if K is rational. It remains to prove that dimX = degK. To this end, sup-
pose that dimX = n < ∞. Then the Markovian representation (H, U,X) has an
n-dimensional forward system (8.3.4) and and an n-dimensional backward system
(8.3.11) (Theorem 8.3.1), since (H, U,X) is proper, (A,B) and (A′, B̄) are both
reachable (Theorem 8.4.8). Then, it is shown in Section 6.4 that the structural
function K is given by (6.4.11); i.e.,

K(z) = B̄′(zI −A)−1B + V. (9.1.35)

Since (B̄, A) is observable and (A,B) is reachable, (9.1.35) is a minimal realization,
and hence degK = n, as claimed.

We shall refer to H(K) as the coinvariant subspace of H2
p corresponding to

the inner function K.
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Corollary 9.1.6. If the inner function K is given by (9.1.35), then the rows of
z(zI −A)−1B form a basis in H(K), and the rows of (z−1I −A′)−1B̄ form a basis
in H̄(K∗).

Proof. This follows immediately from the fact that Iŵ

(
(zI −A)−1B

)
= x(0),

which is a basis in X by construction. The rest follows by symmetry.
Alternatively, a direct Hardy-space proof can be obtained by using (6.4.15),

by which

a′(I −Az−1)−1B = a′P (z−1I −A′)−1B̄K(z)

for all a ∈ Rn. Here the left member belongs to H2
p and the right member belong

to zH̄2
pK. Thus they belong to H(K) by (9.1.33). Since (A,B) is reachable, the

n rows of z(zI − A)−1B are linearly independent and hence form a basis in the
n-dimensional space H(K) = zI−1

ŵ X.

9.2 Minimality of Markovian representations

The interplay between the past and the future of a purely nondeterministic process
{y(t)}t∈Z with a full-rank spectral density can be described by the “all-pass filter”

innovation process
w−−→ z−1Θ

w̄+−→ backward innovation process

transforming the forward innovation process w− to the backward one w̄+. The
transfer function

Θ := zW̄−1
+ W− (9.2.1)

is called the phase function.

Remark 9.2.1. Note that the factor z in the definition of the phase function
Θ is due to the lack of symmetry in the definition of the past and future spaces,
H− and H+, respectively. With a symmetric definition, as for models without
observation noise (Section 9.4), and in the continuous-time case (Section 10.2), the
phase function will be Θ := W̄−1

+ W−; see, (9.4.6) and (10.2.35), respectively.

Lemma 9.2.2. Let Θ be given by (9.2.1). Then

w̄+(t) =

∫ π

−π

eiθ(t−1)Θ(eiθ)dŵ−.

Proof. This is an immediate consequence of the fact that

dŷ = W−dŵ− = W̄+d ˆ̄w+,

from which it follows that d ˆ̄w+ = z−1Θdŵ−.
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246 Chapter 9. Proper Markovian Representations in Hardy Space

If (H, U,X) is a proper Markovian representation with inner triplet (K,Q.Q̄)
and generating functions (w, w̄), then, in view of (9.1.16) and (9.1.17),

z−1Θ = Q̄KQ∗, (9.2.2)

or, in block-diagram form

w−−→ Q∗ w−→ K
w̄−→ Q̄

w̄+−→

The Markovian representation is minimal if and only if there are no cancellations
in this factorization, as can be seen from Theorem 7.4.10 and the following result.

Theorem 9.2.3. Let (H, U,X) is a proper Markovian representation with inner
triplet (K,Q.Q̄). Then X is constructible if and only if K and Q are right coprime,
i.e. they have no nontrivial common right inner factor, and X is observable if and
only if K∗ and Q̄ are right coprime, i.e. they have no nontrivial common right
conjugate inner factor.

Proof. By Theorem 7.4.9, X is constructible if and only if S = H− ∨ S̄⊥, i.e.
H−(w) = H−(w−) ∨H−(w̄), which under the isomorphism zIw takes the form

H2
p = (H2

mQ) ∨ (H2
pK) (9.2.3)

For (9.2.3) to hold, Q and K must clearly be right coprime. Conversely, suppose
that Q and K are right coprime, and consider the right member of (9.2.3). Clearly
it is a full-range invariant subspace of H2

p , because H2
pK is, and therefore, by the

Beurling-Lax Theorem (Theorem 4.6.4), it has the form H2
pJ where J is inner.

But then J must be a common right inner factor of Q and K, and hence J = I,
concluding the proof of the constructibility criterion. A symmetric argument proves
the observability part.

In particular, the predictor space X− has the inner triplet (K−, I, Q̄−), where
K− and Q̄∗

− are left coprime and can be determined from

Q̄−K− = z−1Θ (9.2.4)

by coprime factorization. Likewise, X+ has the inner triplet (K+, Q+, I), where
K+ and Q+ are right coprime and can be determined from

K+Q
∗
+ = z−1Θ. (9.2.5)

Theorem 9.2.3 allows us to interpret minimality in terms of the factorization
(9.2.2) of z−1Θ. In fact, by Theorem 7.4.10, X is minimal if and only if this
factorization is reduced as far as possible in the sense that no further cancellations
are possible. The reduction procedure of Theorem 7.4.3 could be interpreted in
terms of such cancellations.
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Corollary 9.2.4. Let (H, U,X) be an observable proper Markovian representation
with analytic spectral factor W . Then its Markovian triplet (W, W̄ ,K) is tight and
W̄ and K are the unique (modO) coprime factors of

W = W̄K (9.2.6)

such that W̄ is m×p coanalytic and K is p×p inner. Similarly, if X is constructible
with coanalytic spectral factor W̄ , its Markovian triplet (W, W̄ ,K) is tight, and W
and K∗ are the unique (modO) coprime factors of

W̄ = WK∗. (9.2.7)

Conversely, (H, U,X) is observable if the factorization (9.2.6) is coprime and con-
structible if (9.2.7) is coprime.

The relations (9.2.6) and (9.2.7) are known as the Douglas-Shapiro-Shields
factorization [25].

Strictly noncyclic processes and properness

To be able to apply these results we need criteria for determining when Markovian
representations are proper. To this end, first recall from Chapters 6 and 7 that the
interface between the past and the future of a stationary vector process {y(t)}t∈Z

can be characterized by the Hankel operators

H = EH+ |H− and H∗ = EH− |H+ . (9.2.8)

Definition 9.2.5. The process {y(t)}t∈Z is strictly noncyclic if

0∨

t=−∞
U t kerH = H and

∞∨

t=0

U t kerH∗ = H; (9.2.9)

i.e., both kerH and kerH∗ have full range.

Since kerH = N+ and kerH∗ = N−, where

N− := H− ∩ (H+)⊥ and N+ := H+ ∩ (H−)⊥, (9.2.10)

and since H2 ∼ ((N+)⊥, (N−)⊥), we have the following alternative characterization
of noncyclicity.

Proposition 9.2.6. A process {y(t)}t∈Z is strictly noncyclic if and only if both
N+ and N−, defined by (9.2.10), have full range; i.e., if and only if the frame space
H2 is proper.

Lemma 9.2.7. Suppose that {y(t)}t∈Z is purely nondeterministic and full-rank.
Then kerH is full range if and only if kerH∗ is full range.
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Proof. By Proposition 4.5.11, y is reversible and hence purely nondeterministic in
both directions. A simple calculation based on Lemma 9.2.2 shows that, under the
isomorphism Iw−

z−1, H∗ corresponds to

HΘ := PH2
pMΘ|H̄2

p
,

where PH2
p is the orthogonal projection onto H2

p . The operator HΘ is called the
Hankel operator with symbol Θ. In the same way, it is seen that H corresponds,
under the isomorphism Iw̄+ , to

P H̄2
pMΘ∗ |H2

p
,

which in turn is isomorphic to HΘ′ under conjugation. However, by Corollary 3-6(c)
in [35, p. 256], HΘ′ has a full range kernel if and only if HΘ does, and hence the
lemma follows.

Remark 9.2.8. For later reference, we observe from the proof of Lemma 9.2.7, that
the phase function Θ and its adjoint Θ∗ are the symbols of the Hankel operators
HΘ and HΘ∗ , which, in turn, are isomorphic to H∗ and H, respectively. This fact
holds also for the symmetric cases in Sections 9.4 and 10.2 with the definitions of
Θ given there; see Remark 9.2.1.

We say that Θ is a strictly noncyclic function if the conditions of Lemma 9.2.7
are satisfied [35].

Then the following proposition is immediate.

Proposition 9.2.9. A process {y(t)}t∈Z with a full-rank spectral density is strictly
noncyclic if and only if it is purely nondeterministic and either N− or N+ is full
range in H.

Corollary 9.2.10. A process {y(t)}t∈Z with a full-rank spectral density is strictly
noncyclic if and only if it is purely nondeterministic and any of the Markovian
splitting subspaces X− and X+ is proper.

Proof. Since X− ∼ (H−, (N−)⊥) and X+ ∼ ((N+)⊥,H+), the lemma follows
from Proposition 9.2.9.

Proposition 9.2.11. Let {y(t)}t∈Z be purely nondeterminisitic with a full rank
spectral density and phase function Θ := zW̄−1

+ W−. Then y is strictly noncyclic if
and only if one of the following equivalent conditions hold:

(i) There are square inner functions J1 and J2 such that

z−1Θ = J1J
∗
2 . (9.2.11)
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(ii) There are square inner functions J3 and J4 such that

z−1Θ = J∗
3J4. (9.2.12)

Proof. If y is strictly noncyclic, X− is proper (Corollary 9.2.10). Hence X− has
an inner triplet (K−, I, Q̄−), Therefore (9.2.2) yields z−1Θ = Q̄−K−, which has the
form (9.2.11), as claimed. Conversely, suppose that condition (i) holds. Then W :=
W−J2 is an analytic spectral factor. Define the corresponding white noise process
via dŵ = W−1dŷ. Then dŵ− = J2dŵ, and hence H(w) = H. Moreover, using
the notation (9.1.6), I

−1
ŵ Iw−

= MJ2 . Since J2 is inner, z−1H2
mJ2 ⊂ z−1H2

m; i.e.,

I
−1
ŵ Iw−

z−1H2
m ⊂ z−1H2

m, which is equivalent to H− := Iw−
z−1H2

m ⊂ Iŵz
−1H2

m =:
H−(w). Therefore, H+(w) ⊂ (H−)⊥. Likewise, in view of (9.2.11), dŵ = J∗

1d ˆ̄w+;
i.e, I

−1
w̄+

Iŵ = MJ∗
1
. Since J∗

1 is conjugate inner, H̄2
mJ

∗
1 ⊂ H̄2

m; i.e., I
−1
w̄+

IŵH̄
2
m ⊂ H̄2

m,

from which we have H+(w) = IŵH̄
2
m ⊂ Iw̄+H̄

2
m = H+. Consequently, H+(w) ⊂

H+ ∩ (H−)⊥ =: N+. However, H+(w) is full range, and therefore so is N+. By a
symmetric argument involving X+ and the coanalytic spectral factor W̄ := W̄+J

∗
3 ,

we show that y being strictly noncyclic is equivalent to (ii).

We are now in a position to formulate the following main result.

Theorem 9.2.12. The process {y(t)}t∈Z is strictly noncyclic if and only if all
minimal Markovian representations are proper.

In view of Corollary 7.4.14, Theorem 9.2.12 is a corollary of the following more
general result.

Theorem 9.2.13. Let {y(t)}t∈Z be strictly noncyclic, and let (H, U,X) be a Marko-
vian representation with X ∼ (S, S̄) having remote past S−∞ and remote future S̄∞.
Then S−∞ = 0 if X ⊥ N+ and S̄∞ = 0 if X ⊥ N−.

Proof. Since y is strictly noncyclic, both N− and N+ are full range (Proposi-
tion 9.2.6). Set S+ := (N+)⊥, where orthogonal complement is with respect to the
ambient space H. If X ⊥ N+, we have X ⊂ S+ ⊕ H⊥, the right side of which
contains H− and is invariant under the backward shift U−1. Consequently, we have
S ⊂ S+ ⊕H⊥ so that

S−∞ ⊂ U tS ⊂ U tS+ ⊕H⊥ → H⊥ as t→ −∞.

In fact, since N+ is full range, U tS+ → 0 as t→ −∞. Hence, since S−∞ ⊂ S,

S−∞ ⊂ S ∩H⊥ ⊂ S ∩ (H+)⊥, (9.2.13)

where we have also used the fact that H⊥ ⊂ (H+)⊥. In the same way we deduce
from X ⊥ N−, S̄∞ ⊂ S̄ and H⊥ ⊂ (H−)⊥ that

S̄∞ ⊂ S̄ ∩H⊥ ⊂ S̄ ∩ (H−)⊥. (9.2.14)
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Now, suppose that, in addition to being orthogonal to N+, X is also observable
so that S̄⊥ = S ∩ (H+)⊥ (Theorem 8.1.1). Then (9.2.13) implies that S−∞ ⊂ S̄⊥,
and hence

S−∞ = U tS−∞ ⊂ U tS̄⊥ → 0 as t→ −∞.
In fact, by Theorem 8.1.3, S̄⊥ = H−(w̄). Consequently, S−∞ = 0. By a symmetric
argument, we see that X ⊥N− and constructibility imply that S̄∞ = 0.

However, observability and constuctibility are not needed, as can be seen by
applying Theorem 7.4.3. In fact, if X ⊥ N−, but X is not constructible, define
S1 := H− ∨ S̄⊥. Then, by Corollary 7.4.4, X1 ∼ (S1, S̄) is a Markovian splitting
subspace. Moreover, by (9.2.14), we have

S̄∞ = U tS̄∞ ⊂ U t[S̄ ∩ (H−)⊥] = U tS⊥
1 → 0 as t→∞,

since S⊥
1 = H+(w1), where w1 is the forward generating process of X1 (Theo-

rem 8.1.3). Therefore S̄∞ = 0 if X ⊥ N−. A symmetric argument shows that
observability is not needed, and X ⊥ N+ implies that S−∞ = 0.

The structural functions of minimal Markovian representations

The structural functions of two minimal proper Markovian splitting subspaces may
be quite different (in the multivariate case). In fact, they may not even take values
in the same space, being matrices of different sizes. If they are finite dimensional,
they have the same degree (Theorems 9.1.5 and 7.6.1). In the general case, there
are still some important invariants, namely the nontrivial invariant factors. Recall
that the invariant factors of a p × p inner function K are p scalar inner functions
k1, k2, . . . kp defined in the following way. Set γ0 = 1, and, for i = 1, 2, . . . , p define
γi to be the greatest common inner divisor of all i × i minors of K. Then set
ki := γi/γi−1 for i = 1, 2, . . . , p. Clearly, these functions are inner, for γi−1 divides
γi.

Theorem 9.2.14. Suppose that {y(t)}t∈Z is strictly noncyclic. Then all internal
minimal Markovian splitting subspaces have the same invariant factors; let us denote
them

k1, k2, k3, . . . , km. (9.2.15)

Moreover, a Markovian splitting subspace of multiplicity p is minimal if and only if
m invariant factors are given by (10.2.24) and the remaining p−m are identically
one.

Proof. Let X be an arbitrary minimal Markovian splitting subspace with struc-
tural function K and multiplicity p. Since X is proper (Theorem 9.2.12), it has
generating processes (w, w̄). Let K+ denote the structural function of X+, which
of course has multiplicity m, being internal. By Corollaries 7.4.14 and 7.6.6, we
have U(X)Ô∗ = Ô∗U(X+), where Ô∗ is a quasi-invertible transformation. Now,
Ut(X)Iw = IwSt(K), where St(K) is the shift eiθ in H2

p compressed to H(K), and
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therefore Ut(X) is similar to St(K). Similarly, Ut(X+) is similar to St(K+), but it
is a simple calculation to see that it is also similar to

K̂+ =

[
K+ 0
0 Ip−m

]
(9.2.16)

where Ik is the k×k identity. Then the inner functions K̂+ andK have the same size,
p×p, and there is a quasi-invertible transformation T such that St(K̂+)T = TSt(K).
Therefore, we can apply Theorem 4 in [98] to see that K̂+ and K are quasi-
equivalent, which is equivalent to having the same invariant factors [35]. Conversely,
we want to show that any X ∼ (S, S̄) whose structural function is quasi-equivalent
to K̂+ is minimal. To this end, apply the two-step reduction algorithm of The-
orem 7.4.3 to X. First consider the Markovian splitting subspace X0 ∼ (S, S̄1)
obtained after the first step. Then X0 ⊂ X, and hence, since they have the same S-
space, H(K0) ⊂ H(K), where K0 is the structural function of X0 (Theorem 9.1.5).
Therefore H2

pK ⊂ H2
pK0 so there must be an inner function J such that K = JK0.

Next, consider X1 ∼ (S1, S̄1) with structural function K1, obtained in the second
step. Then X1 is minimal and X1 ⊂ X0, and therefore H̄(K∗

1 ) ⊂ H̄(K∗
0 ), for X0

and X1 have the same S̄-space. Consequently, H̄2
pK

∗
0 ⊂ H̄2

pK
∗
1 , and hence there is

a conjugate inner function J̄ such that K∗
0 = J̄K∗

1 , i.e. K0 = K1J̄
∗. Combining

the two factorizations we obtain

K = JK1J̄
∗ (9.2.17)

where both J and J̄∗ are inner. In particular,

detK = detJ · detK1 · det J̄∗

i.e. a product of scalar inner functions. However, X1 is minimal and hence, by the
first part of the proof, K1 has the same invariant factors as K̂+, and, by assumption,
as K. Therefore, detK = detK1, and consequently, detJ = det J̄∗ = 1, which
implies that J = J̄∗ = I. This implies that X1 = X0 = X, proving that X is
minimal.

Corollary 9.2.15. If {y(t)}t∈Z is a scalar, strictly noncyclic process, all internal
minimal Markovian splitting subspaces have the same structural function.

We are also in a position to state a result that strengthens the state-space
isomorphism result of Section 8.7.

Corollary 9.2.16. Let X1 and X2 be two minimal Markovian splitting subspaces.
Then Ut(X1) and Ut(X2) are quasi-similar; i.e., there are quasi-invertible (injective
with dense range) linear operators P : X1 → X2 and R : X2 → X1 such that

{
PU(X1) = U(X2)P

U(X1)R = RU(X2).
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In the finite-dimensional case, they are similar.

Example 9.2.17. Consider a purely nondeterministic process y with the spectral
density of Example 6.8.5. Clearly the two internal minimal Markovian splitting
subspaces X− and X+ have the same structural function

K−(z) = K+(z) =
1− 1

2z

z − 1
2

.

The noninternal minimal Markovian representation corresponding to the analytic
spectral factor

W (z) =

(
2√
3

z − 1
2

+
1√
3
,

1√
6

z − 1
2

)

has the structural function

K(z) =
1
6

z − 1
2

[√
3(3− 2z)

√
6z

−
√

6
√

3(3z − 2)

]
.

This follows from (6.4.11) after determining

V =

[
−1/
√

3 1/
√

6

0
√

3/2

]
and B̄ =

[
1/2 −

√
2/4
]

from (6.4.3), where the signs in the factorizations are chosen to conform with
(6.4.8a). The structural function K has invariant factors

k1 = 1, k2 = detK =
1− 1

2z

z − 1
2

in harmony with Theorem 9.2.14.

Example 9.2.18. Suppose y is a purely nondeterministic vector process with
spectral density

Φ(z) =

[
1 +

(z− 1
2 )(z− 1

3 )(z−1− 1
2 )(z−1− 1

3 )

(z− 2
3 )(z−1− 2

3 )
1

1− 1
4 z

1
1− 1

4 z−1
1

(1− 1
4 z)(1− 1

4 z−1)

]
.

Then, uniquely defined modulo a right orthogonal transformations,

W−(z) =

[
(z− 1

2 )(z− 1
3 )

z(z− 2
3 )

1

0 z
z− 1

4

]

is the outer spectral factor, and

W̄+(z) =

[− 1
6 z3+ 13

6 z2− 33
6 z+ 17

4

17(1− 2
3 z)(1− 1

4 z)

− 1
24 z2− 55

24 z+ 43
12

17(1− 2
3 z)(1− 1

4 z)
−z

17(1− 1
4 z)

4
17(1− 1

4 z)

]
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is the conjugate outer spectral factor, and consequently the phase function (9.2.1)
is given by

Θ =
z

17




4(z− 1

2 )(z− 1
3 )(1− 2

3 z)

z(1− 1
2 z)(1− 1

3 z)(z− 2
3 )

− 1− 1
4 z

z− 1
4

(z− 1
2 )(z− 1

3 )(1− 2
3 z)

(1− 1
2 z)(1− 1

3 z)(z− 2
3 )

4z(1− 1
4 z)

z− 1
4



 .

Now, the coprime factorization Q̄−K− = z−1Θ, prescribed by (9.2.4), yields

Q̄−(z) =
1

17




4(z− 1

2 )(z− 1
3 )

(1− 1
2 z)(1− 1

3 z)
−1

z(z− 1
2 )(z− 1

3 )

(1− 1
2 z)(1− 1

3 z)
4z





and

K−(z) =




1− 2

3 z

z(z− 2
3 )

0

0
1− 1

4 z

z− 1
4



 ,

and therefore the coanalytic spectral factor of the predictor space X− is given by

W̄−(z) := W̄+Q̄−(z) =

[
(z− 1

2 )(z− 1
3 )

1− 2
3 z

z− 1
4

z− 1
4

0 z
1− 1

4 z

]
.

Likewise, the coprime factorization (9.2.5); i.e., K+Q
∗
+ = z−1Θ, yields

K+(z) := W̄+(z)−1W+(z) =
1

17




4(1− 2

3 z)

z(z− 2
3 )

−(1− 1
4 z)

z(z− 1
4 )

1− 2
3 z

z− 2
3

4(1− 1
4 z)

z− 1
4





and

Q+(z) := W−(z)−1W+(z) =

[
(1− 1

2 z)(1− 1
3 z)

(z− 1
2 )(z− 1

3 )
0

0 1
z

]
,

and hence we obtain the analytic spectral factor

W+(z) := W−(z)Q+(z) =

[
(1− 1

2 z)(1− 1
3 z)

z(z− 2
3 )

1
z

0 1
z− 1

4

]

of the backward predictor space X+. As prescribed by Theorem 9.2.14, the struc-
tural functions K− and K+ have the same invariant factors, namely k1 = 1 and

k2(z) =
(1− 2

3z)(1− 1
4z)

z(z − 2
3 )(z − 1

4 )
,

which is the determinant detK. We shall return to this example in Section 9.3.
In Chapter 10, we consider an example with nontrivial invariant factor k1 (Exam-
ple 10.2.11) in the continuous-time setting.
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A geometric conditions for minimality

We have the following modification of Theorem 7.6.4 in Chapter 7, where, instead
of having a closed range, H now has a full-range kernel.

Theorem 9.2.19. Let y be strictly noncyclic. Then, for any Markovian represen-
tation (H, U,X), the following conditions are equivalent.

(i) X is minimal

(ii) X is observable and X ⊥ N+

(iii) X is constructible and X ⊥ N−

Proof. It follows from Corollary 7.4.14 that each of conditions (ii) and (iii) implies
(i). Therefore it remains to show that (ii) or (iii) implies (i). Suppose that (ii) holds.

Then, by Corollary 7.6.6, U(X)Ô∗ = Ô∗U(X+), where Ô∗ is quasi-invertible. Now,
since X is observable X ⊥ N− (Corollary 7.4.14), which together with X ⊥ N+

implies that X is proper (Theorem 9.2.13). Hence, as in the proof of Theorem 9.2.14,
there is a quasi-invertible transformation T , such that

St(K̂+)T = TSt(K).

Proceeding as in the proof of Theorem 9.2.14, we see that K and K̂+ have the same
invariant factors and hence that X is minimal. A symmetric argument shows that
(iii) implies (i) also.

Theorem 9.2.3 provides a Hardy space characterization of observability and
constructibibility. In view of Theorem 9.2.19, it would be desirable to also charac-
terize the conditions X ⊥ N+ and X ⊥ N− in terms of inner functions.

Proposition 9.2.20. Let (H, U,X) be a proper Markovian representation with
inner triplet (K,Q, Q̄). Then X ⊥N+ if and only if Q∗Q+ is analytic, and X ⊥ N−

if and only if Q̄∗Q− is coanalytic.

Proof. If X ∼ (S, S̄), then X ⊥ N+ if and only if S ⊥ N+; i.e., N+ ⊂ S⊥, or,
equivalently

H+(w+) ⊂ H+(w). (9.2.18)

However, dŷ = W−Qdŵ = W−Q+dŵ+, we have dŵ+ = Q∗
+Qdŵ. Consequently,

(9.2.18) is equivalent to H̄2
mQ

∗
+Q ⊂ H̄2

p under the isomorphism Iŵ, which hold if
and only if Q∗

+Q is coanalytic; i.e., if and only if Q∗Q+ is analytic. A symmetric
argument proves the second statement.

Corollary 9.2.21. Let (H, U,X) be a finite-dimensional proper Markovian rep-
resentation. Then the analytic spectral factor W of X is minimal in the sense of
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Definition 6.8.3 if and only if X ⊥ N+, and the coanalytic spectral factor W̄ is
minimal if and only if X ⊥N−.

Proof. Suppose that J := Q∗Q+ is analytic. Since therefore J∗ is coanalytic and
W = W+J

∗ is analytic, all poles of J∗ must be cancelled by zeros of W+. Hence
degW ≤ degW+. But W+ is minimal, and hence so is W . Conversely, suppose
that degW = degW+. Then J∗ must be coanalytic. Indeed, if J∗ had some pole in
the complement of the closed unit disc, then they would have to cancel some zero
of W+ for W = W+J

∗ to be analytic. However, W+, being maximum-phase, has
all its zeros in the open unit disc. Hence J must be analytic. Consequently, the
corollary follows from Proposition 9.2.20.

This result provides a natural infinite-dimensional generalization of minimality
of spectral factors.

Definition 9.2.22. An analytic spectral factor of a strictly noncyclic process is
minimal if its inner factor Q has the property that Q∗Q+ is analytic. Likewise,
a coanalytic spectral factor is minimal if its inner factor Q̄ has the property that
Q̄∗Q− is coanalytic.

We can now state the following corollary of Theorem 9.1.4, which of course
has a symmetric “backward” counterpart.

Corollary 9.2.23. Let y be strictly noncyclic. Then there is a one-one corre-
spondence (mod O) between minimal Markovian representations (H, U,X) and pairs
(W, z) where W is a minimal spectral factor and z is a stationary process with the
properties prescribed in Theorem 9.1.4.

Proof. By Theorem 9.2.19, X is minimal if and only if X is observable and S ⊥ N+,
i.e. W is minimal. From the observability condition S̄ = H+ ∨S⊥ (Theorem 7.4.9)
we see that W̄ is determined once W has been chosen (Corollary 9.2.4).

In particular, if W and W̄ are square, W is minimal if and only if Q is a left
inner divisor of Q+, and W̄ is minimal if and only if Q̄ is a left inner divisor of Q̄−.

Consequently, we have a procedure for determining the inner triplets (K,Q, Q̄)
of all minimal Markovian representation: First choose Q so that Q∗Q+ is analytic.
Then form T := z−1ΘQ, and determine Q̄ and K as the coprime factors in

Q̄K = T. (9.2.19)

9.3 Degeneracy

A proper Markovian representation (H, U,X) is said to be degenerate if its structural
function is singular at infinity; i.e., if K(∞) is singular. Degeneracy is inherent
to the discrete-time setting and, as we shall see in the next chapter, it does not
occur for continuous-time Markovian representations. However, in the discrete-time
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framework, this phenomon occurs in important subclasses of stochastic systems, a
case in point being moving-avarage processes. As a simple example, take the process
y with spectral density Φ(z) = 5 + 2(z + z−1). It has only two internal minimal
Markovian splitting subspaces, namely X− corresponding to W−(z) = z−1 + 2 and
W̄−(z) = 1 + 2z and X+ corresponding to W+(z) = 1 + 2z−1 and W̄+(z) = z + 2.
As prescribed by Corollary 9.2.15, they have the same structural function, namely
K(z) = z−1, which equals zero at infinity. Hence they are degenerate.

Proposition 9.3.1. If one minimal Markovian representation is degenerate, then
all are.

Proof. By Theorem 9.2.14, detK is the same for all minimal Markovian represen-
tations, and therefore these are degenerate at the same time.

Consequently, degeneracy of minimal Markovian representations is a prop-
erty of the process y. We shall say that y is state-space degenerate if its minimal
Markovian representations are degenerate.

Next we show that (H, U,X) is degenerate if and only if A and Ā in Theo-
rem 8.7.4 have nontrivial nullspaces. For nondegenerate (H, U,X), A and Ā are
quasi-invertible, or, in the finite-dimensional case, invertible.

Proposition 9.3.2. A proper Markovian representation (H, U,X) is degenerate if
and only if kerU(X) 6= 0, or, equivalently, kerU(X)∗ 6= 0.

Since, in view of Lemma 8.8.3,

kerU(X) = X ∩ (U∗W) (9.3.1a)

kerU(X)∗ = X ∩ W̄, (9.3.1b)

Proposition 9.3.2 implies that a degenerate X contains some linear combination of
the components of w(−1) and of w(0). In particular, some linear functional of the
state process x(t) is white noise. This can also be seen from (8.7.14) by taking
f ∈ kerA∗ and forming

〈f, x(t + 1)〉X = 〈f,Bw(t)〉X,

which is white noise, and analogously for f ∈ kerA and (8.7.24).
Proposition 9.3.2 follows immediately by taking (W1,W2) = (W, W̄ ) and

(w1, w2) = (w, w̄) in the following lemma, which is a variation of [?, Theorem
13].

Lemma 9.3.3. Let W1 and W2 be two spectral factors, of dimensions m× p1 and
m× p2, respectively, and let w1 and w2 be vector Wiener processes, of dimensions
p1 and p2, such that

y(t) =

∫ π

−π

eiθtW1(e
iθ)dŵ1 =

∫ π

−π

eiθtW2(e
iθ)dŵ2. (9.3.2)
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Then, if H−(w2) ⊂ H−(w1), there is a p2 × p1 inner function R such that W1 =
W2R, and

rank R(∞) = p2 − dimkerU(Y)∗, (9.3.3)

where Y := H−(w1)	H−(w2). Similarly, if H+(w1) ⊂H+(w2), there is a p1×p2

conjugate inner function R̄ such that W2 = W1R̄, and

rank R̄∗(∞) = p1 − dimkerU(Ȳ), (9.3.4)

where Ȳ := H+(w2)	H+(w1). If p1 = p2, both conditions hold, and R̄ = R∗.

Proof. Suppose that H−(w2) ⊂ H−(w1). Then p2 ≤ p1, and we have I−1
w1

Iw2H
2
p2
⊂

H2
p1

. However, I−1
w1

Iw2 is a bounded linear operator that commutes with the shift
z−1, and therefore it must be a multiplication operator MR sending f ∈ H2

p2
to

fR ∈ H2
p1

(Theorem 4.3.3). Hence H2
p2
R ⊂ H2

p1
. Since H−(w2) is invariant under

the shift U−1, the subspace H2
p2
R is invariant under z−1, and therefore R must be

inner (Theorem 4.6.4). In view of (9.3.2), we have a′y(0) = Iw1a
′W1 = Iw2a

′W2 for
any a ∈ R, and hence W1 = W2R.

Now, taking orthogonal complements in some common ambient space, H−(w1)
and (H−(w2))

⊥ intersect perpendicularly (Corollary 7.2.5), and hence, in view of
Lemma 8.8.3,

kerU(Y)∗ = H−(w1) ∩W2,

where W2 := {a′w2(0) | a ∈ Rp2}. Then, for any η ∈ kerU(Y)∗, there is a vector
a ∈ Rp2 such that η = a′w2(0) ∈ H−(w1); i.e., I−1

w1
Iw2a

′ ∈ z−1H2
p1

, or, equivalently,
a′R ∈ z−1H2

p1
, which holds if and only if a′R(∞) = 0. Hence (9.3.3) holds.

Next, suppose that H+(w1) ⊂ H+(w2). Then p1 ≤ p2, and we proceed as
above to see that there is a conjugate inner function R̄ such that H̄2

p1
R̄ ⊂ H̄2

p2
and

W2 = W1R̄. Moreover, from Lemma 8.8.3 we have that

kerU(Ȳ) = H+(w2) ∩ (U∗W1),

where W1 := {a′w1(0) | a ∈ Rp1}. Therefore, for any η ∈ kerU(Ȳ), there is an
a ∈ Rp1 such that η = a′w1(−1) ∈ H+(w2); i.e., a′R̄ ∈ zH̄2

p , or, equivalently,

a′R̄∗ ∈ z−1H2
p , which is the same as a′R̄∗(∞) = 0. This establishes (9.3.4). The

last statement follows trivially.

Error-space degeneracy

In Section 8.8 we introduced the error spaces

Z := S	H− = H−(w) 	H−(w−) (9.3.5a)

Z̄ := S̄	H+ = H+(w̄)	H−(w̄+) (9.3.5b)

of a proper Markovian splitting subspace X ∼ (S, S̄). Applying Lemma 9.3.3 to
these, we obtain the outer-inner factorizations

W = W−Q and W̄ = W̄+Q̄ (9.3.6)
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of (9.1.17) and the conditions

rank Q(∞) = p− dimkerU(Z), (9.3.7a)

rank Q̄∗(∞) = p− dimkerU(Z̄)∗. (9.3.7b)

In particular, comparing this with Proposition 8.8.2, we have

rank D = rank Q̄∗(∞) and rank D̄ = rank Q(∞), (9.3.8)

which of course could be obtained directly from (9.3.6) by observing thatD = W (∞)
and D̄ = W̄ ∗(∞). Indeed,

D = D−Q(∞) and D̄ = D̄+Q̄
∗(∞), (9.3.9)

where D− and D̄+ have full rank; see page 231.

Proposition 9.3.4. Let (H, U,X) be a proper Markovian representation with spec-
tral inner factors Q and Q̄. Then the standard forward realization (8.7.14) is regular
if and only if Q̄∗(∞) has full rank, and the standard backward realization (8.7.24)
is regular if and only if Q(∞) has full rank.

We shall say that a Markovian representation (Markovian splitting subspace)
is regular if both the forward and the backward realization is regular, and singular
otherwise.

Proposition 9.3.5. If one minimal Markovian representation is singular, then all
internal minimal Markovian representation are singular.

Proof. For a singular minimal Markovian representation, either DD∗ or D̄D̄∗ is
singular. First suppose that DD∗ is singular. Then, by (8.8.4), D+D

∗
+ is singular,

and hence Q+(∞) is singular. Now, consider an arbitrary internal minimal Marko-
vian representation (H, U,X) with spectral inner factors Q and Q̄. Then, by (9.2.2)
and (9.2.5), QK∗Q̄ = Q+K

∗
+, and hence

detQ detK∗ det Q̄∗ = detQ+ detK∗
+.

However, by Theorem 9.2.14, detK∗ = detK∗
+, and therefore

detQ det Q̄∗ = detQ+,

so if Q+(∞) is singular, then so is either Q(∞) or Q̄(∞), establishing that (H, U,X)
is singular. By a completely symmetric argument, we can also show that, if D̄D̄∗

is singular, then all internal minimal Markovian representations are singular.

The word “internal” in Proposition 9.3.5 is essential. In fact, it is easy to
construct a counter example where the internal minimal Markovian representations
are singular and the noninternal ones are all regular: Suppose y has the spectral
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density Φ(z) = 1
(z− 1

2 )(z−1− 1
2 )

. Then Q−(z) = Q̄∗
+(z) = z−1, and hence the only two

internal minimal Markovian splitting subspaces, X− and X+, are both singular.
However, proceeding along the lines of Example 6.8.5, It is not hard to see that all
noninternal minimal Markovian representation are regular.

By Proposition 9.3.5, singularity of minimal Markovian representations is a
property of the process y. We say that y is error-space degenerate if its internal
minimal Markovian representations are singular.

Corollary 9.3.6. A strictly noncyclic process y is error-space degenerate if and
only if Q+(∞) is singular, or, equivalently, Q̄∗

−(∞) is singular.

Then, in view of (9.3.7), we also have the following corollary.

Corollary 9.3.7. A strictly noncyclic process y is error-space degenerate if and
only if kerU(Z+) 6= 0 is singular, or, equivalently, kerU(Z̄−)∗ 6= 0 is singular.

Degenerate processes

Recall from section 7.4 that

H = N− ⊕H2 ⊕N+, (9.3.10)

where the frame space H2 = X−∨X+ is the closed linear hull of all internal minimal
splitting subspaces, and N− := H−∩(H+)⊥ and N+ := H+∩(H−)⊥ are subspaces
generally discarded in minimal state-space construction.

Definition 9.3.8. A strictly noncyclic process y is degenerate if its frame space
H2 is degenerate.

Since H2 ∼ ((N+)⊥, (N−)⊥), the generating processes of H2 are (w+, w̄−).
In particular, since W+ ⊂ N+ and U∗W̄− ⊂ N−, Proposition 9.3.2 and (9.3.1)
imply that y is degenerate if and only if (UH2) ∩N+ 6= 0 and (U∗H2) ∩N− 6= 0
both hold. Hence degeneracy of y implies that, as H2 is shifted one step forward
or backward in time, some elements of the “discarded” spaces N− and N+ become
part of the new frame space.

Theorem 9.3.9. A strictly noncyclic process y is degenerate if and only if it
is either state-space degenerate or error-space degenerate or both, If y is scalar
(m = 1), both cannot happen at the same time.

Proof. The frame space H2 is proper (Corollary 9.2.10), and its structural function
is given by

K2 = W̄−1
− W+ = W̄−1

− W−W
−1
− W+ = K+Q+.

Therefore y is degenerate if and only either detK+(∞) = 0 or detQ+(∞) = 0 or
both conditions hold. However, detK(∞) is the same for all minimal Markovian
representations (Theorem 9.2.14), and hence detK+(∞) = 0 if and only if y is
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state-space degenerate. Moreover, detQ+(∞) = 0 if and only if y is error-space
degenerate (Corollary 9.3.6). This establishes the first statement.

To prove the second statement, note that, by Proposition 9.3.2 and (9.3.1a),
y is state-space degenerate if and only if

kerU(X+) = X+ ∩ (U∗W+) 6= 0. (9.3.11)

Moreover, by Corollary 9.3.7 and (8.8.7a), y is error-space degenerate if and only if

kerU(Z+) = Z+ ∩ (U∗W+) 6= 0. (9.3.12)

However, dimU∗W+ = m = 1, and hence (9.3.11) yields UW+ ⊂ X+ and (9.3.12)
yields UW+ ⊂ Z+. Hence X+∩Z+ 6= 0. However this contradicts the constructibil-
ity of X+ (Proposition 8.8.1), and hence the second statement holds.

We can illustrate Theorem 9.3.9 by means of the forward stochastic realization
of the frame space H2. To this end, first establish some direct-sum decompositions
of H2.

Proposition 9.3.10. Let Z+ be the forward error space of the backward predictor
space X+ and Z̄− be the backward error space of the forward predictor space X−.
Then the frame space has the orthogonal decompositions

H2 = X− ⊕ Z+ = X+ ⊕ Z̄− (9.3.13)

and the direct-sum decompositions

H2 = X+ + Z+ = X− + Z̄−. (9.3.14)

Proof. By Lemma 2.2.6, H− = X− ⊕N−. Moreover, Z+ = (N+)⊥ 	H−. Hence,

H = N− ⊕X− ⊕ Z+ ⊕N+,

which compared with (9.3.10) yields the first of equations (9.3.13). The second of
equations (9.3.13) is derived by a symmetric argument. Since X− is observable,
Z̄− ∩X− = 0 (Proposition 8.8.1). Taking the orthogonal complement of this in H2

and using (9.3.13), we obtain H2 = X+ ∨ Z+, which must be a direct sum, since
X+ is constructible, and thus X− ∩ Z− = 0 (Proposition 8.8.1). This establishes
the first of decompositions (9.3.14). The proof of the second is analogous.

The frame space H2 has generating processes (w+, w̄−). In particular, it has
the same forward generating process as X+ and as Z+ := (N+)⊥ ∩ (H−)⊥, and
therefore (9.3.14) yields the forward state equation of H2,

[
x+(t+ 1)
z+(t+ 1)

]
=

[
A+ 0
0 F+

] [
x+(t)
z+(t)

]
+

[
B+

G+

]
w+(t), (9.3.15)

by amending the system (8.8.2) corresponding to Z+ to the state equation of (8.7.14)
corresponding to X+. Likewise, H2 has the same backward generating process as
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X− and as Z̄− := (N−)⊥ ∩ (H+)⊥. Hence the second decomposition (9.3.14) yields
backward state equation of H2,

[
x̄−(t− 1)
z̄−(t− 1)

]
=

[
A∗

− 0
0 F+

] [
x̄−(t)
z̄−(t)

]
+

[
B̄−
Ḡ−

]
w̄−(t). (9.3.16)

Consequently, for H2, and hence for y, to be degenerate, either kerA+ 6= 0 or
kerF+ 6= 0 or both, which is in harmony with Theorem 9.3.9. In fact, A+ is similar
to U(X+)∗, and F+ is similar to U(Z+)∗, and therefore kerA+ 6= 0 if and only if
K(∞) is singular, and kerF+ 6= 0 if and only if Q+(∞) is singular (Lemma 9.3.3),
and thus the first statement of Theorem 9.3.9 follows (Corollary 9.3.6). The same
conclusion can be drawn from (9.3.16).

Degeneracy can also be described in terms of the behavior of the spectral
density at zero and infinity. For simplicity, we shall only consider the rational case,
and denote by Φ−1(z) the inverse of Φ(z) in the field of rational functions.

Theorem 9.3.11. Suppose that y has a rational, m×m, full-rank spectral density
Φ. (i) If there is a nonzero a ∈ Rm such that Φ(∞)a = 0, then y is error-space
degenerate. If y is not state-space degenerate, then this condition is also necessary.
(ii) If there is a nonzero a ∈ Rm such that a′Φ−1(0) = 0, then y is state-space
degenerate. If y is not error-space degenerate, then this condition is also necessary.
In particular, if y is scalar, y is error-space degenerate if and only if Φ(∞) = 0
and state-space degenerate if and only if Φ−1(0) = 0.

Proof. (i) Since Φ(z) = W+(z)W+(z−1)′ and W+(z) = W−(z)Q+(z), we have
W−(z)Q+(z) = Φ(z)W−1

+ (z−1)′. Now, W+ has all its zeros outside the unit disc

(Corollary 6.7.4), and hence W−1
+ (0)′ is well-defined. Hence

D−Q+(∞) = W−1
+ (0)′Φ(∞),

where W−(∞) = D− is nonsingular (see page 231), and consequently, if there is
a nonzero a ∈ Rm such that Φ(∞)a = 0, then Q+(∞) is singular; i.e., y is error-
space degenerate (Corollary 9.3.6). The converse holds if W−1

+ (0) is nonsingular;
that is, if W+ has no pole at z = 0. But this happens exactly when kerA = 0 or,
equivalently, kerU(X) = 0; i.e., when y is not state-space degenerate.

(ii) Since Φ(z−1)′ = Φ(z) = W̄−(z)W̄−(z−1)′, we have

K−(z) := W̄−1
− (z)W−(z) = W̄−(z−1)′Φ−1(z−1)′W−(z).

However, W̄− has no poles in the unit disc, and hence W̄−(0) is well-defined, so we
can form

K−(∞)D−1
− = W̄−(0)′Φ−1(0)′,

which singular if there is a nonzero a ∈ Rm such that a′Φ−1(0) = 0. However,
K−(∞) is singular precisely when y is state-space degenerate. The converse would
also hold if we could show that W̄−(0) is nonsingular. However, in view of (9.3.9),
W̄−(0) = D̄+Q̄−(0), where D̄+ is nonsingular (see page 231), and hence the converse
holds if y is not error-space degenerate (Corollary 9.3.6).
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Finally, by Theorem 9.3.9, a scalar y cannot be state-space degenerate and
error-space degenerate at the same time. Hence the last statement follows.

Some examples

To illustrate the results of this section, we provide two examples taken from [75].

Example 9.3.12. Consider a scalar process y with the rational spectral density

Φ(z) =
(z − 2

3 )(z − 1
4 )(z−1 − 2

3 )(z−1 − 1
4 )

(z − 1
2 )2(z − 1

3 )2(z−1 − 1
2 )2(z−1 − 1

3 )2
.

It is not hard see that the predictor space X− corresponds to the pair of spectral
factors

W−(z) =
z2(z − 2

3 )(z − 1
4 )

(z − 1
2 )2(z − 1

3 )2
, W̄−(z) =

z2(z − 2
3 )(z − 1

4 )

(1 − 1
2z)

2(1− 1
3z)

2
.

In fact, W− has all its poles and zeros in the open unit disc, and D− = W (∞) 6= 0.
Moreover,

K(z) := W̄−(z)−1W−(z) =
(1− 1

2z)
2(1− 1

3z)
2

(z − 1
2 )2(z − 1

3 )2
,

is inner and coprime with both Q− = I and

Q̄∗
−(z) =

(1− 2
3z)(1− 1

4z)

z2(z − 2
3 )(z − 1

4 )
,

ensuring minimality (Theorem 9.2.3). Since y is scalar, all internal minimal Marko-
vian representations have the same structural function K (Corollary 9.2.15). Simi-
larly, the backward predictor space X+ corresponds to the spectral factors

W+(z) =
(1− 2

3z)(1− 1
4z)

(z − 1
2 )2(z − 1

3 )2
, W̄+(z) =

(1− 2
3z)(1− 1

4z)

(1 − 1
2z)

2(1 − 1
3z)

2
,

because W̄+ has all its poles and zeros in the complement of the closed unit disc
and D̄+ = W̄+(0) 6= 0, and W̄−1

+ W+ = K.
Next, let us determine all internal minimal Markovian splitting subspaces. To

this end, set ψ(z) := (z − 1
2 )2(z − 1

3 )2 in terms of which K = ψ̄/ψ, and note that,
by Corollary 9.1.6,

H(K) =

{
z
ρ

ψ
| deg ρ < 4

}
.

Therefore, by Theorem 9.1.5, if X is an internal minimal Markovian splitting sub-
space with corresponding analytic spectral factor W = π/ψ, then

X =

∫ π

−π

z−1H(K)W−1dŷ =

∫ π

−π

{ ρ
π
| deg ρ < 4

}
dŷ;
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i.e., X is uniquely determined by the numerator polynomial π and the degψ. In
particular, π−(z) = z2(z− 2

3 )(z− 1
4 ), and consequently, by partial fraction expansion,

X− is spanned by
∫
z−1dŷ,

∫
z−2dŷ,

∫
(z − 2

3 )−1dŷ, and
∫

(z − 1
4 )−1dŷ, and hence

X− = span {y(−1), y(−2), x−1 , x
−
2 },

where x−1 :=
∑−1

k=−∞(2/3)−k−1y(k) and x−2 :=
∑−1

k=−∞(1/4)−k−1y(k). Likewise,

X+ = span {y(0), y(1), x+
1 , x

+
2 },

where x+
1 :=

∑∞
k=0(2/3)ky(k) and x+

2 :=
∑∞

k=0(1/4)ky(k). Therefore the frame
space, the closed linear hull of all minimal Markovian splitting subspaces, is the
eight-dimensional space

H2 = span {y(−1), y(−2), y(0), y(1), x−1 , x
−
2 , x

+
1 , x

+
2 },

and each π of degree at most four satisfying

π(z)π(z−1) = π−(z)π−(z−1), (9.3.17)

corresponds to a minimal Markovian splitting subspace with spectral factors

(W, W̄ ) = (π/ψ, π/ψ̄),

and we list them together with the corresponding π.

X− = span {y(−1), y(−2), x−1 , x
−
2 }, π−(z) = z2(z − 2

3
)(z − 1

4
)

X2 = span {y(0), y(−1), x−1 , x
−
2 }, π2(z) = z(z − 2

3
)(z − 1

4
)

X3 = span {y(1), y(0), x−1 , x
−
2 }, π3(z) = (z − 2

3
)(z − 1

4
)

X4 = span {y(−1), y(−2), x−1 , x
+
2 }, π4(z) = z2(z − 2

3
)(1− 1

4
z)

X5 = span {y(0), y(−1), x−1 , x
+
2 }, π5(z) = z(z − 2

3
)(1− 1

4
z)

X6 = span {y(1), y(0), x−1 , x
+
2 }, π6(z) = (z − 2

3
)(1− 1

4
z)

X7 = span {y(−1), y(−2), x+
1 , x

−
2 }, π7(z) = z2(1 − 2

3
z)(z − 1

4
)

X8 = span {y(0), y(−1), x+
1 , x

−
2 }, π8(z) = z(1− 2

3
z)(z − 1

4
)

X9 = span {y(1), y(0), x+
1 , x

−
2 }, π9(z) = (1 − 2

3
z)(z − 1

4
)

X7 = span {y(−1), y(−2), x+
1 , x

−
2 }, π7(z) = z2(1 − 2

3
z)(z − 1

4
)

X8 = span {y(0), y(−1), x+
1 , x

−
2 }, π8(z) = z(1− 2

3
z)(z − 1

4
)

X9 = span {y(1), y(0), x+
1 , x

−
2 }, π9(z) = (1 − 2

3
z)(z − 1

4
)
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X10 = span {y(−1), y(−2), x+
1 , x

+
2 }, π10(z) = z2(1 − 2

3
z)(1− 1

4
z)X11 = span {y(0), y(−1), x+

1 , x
+
2 }, π

We note that eight of these minimal Markovian splitting subspaces contain y(0),
indicating degeneracy. In fact, since Q̄∗

−(∞) = 0, y is error-space degenerate (Corol-
lary 9.3.6). This also follows from Theorem 9.3.11 by observing that Φ(∞) = 0. On
the other hand, as expected (Theorem 9.3.9), y is not state-space degenerate, since
K(∞) = 1/36 6= 0. We return to this example in Section 9.4.

Example 9.3.13. Let us return to Example 9.2.18, which demonstrates that a
process y can be both state-space degenerate and error-space degenerate. In fact,
since k2(∞) = 0, K(∞) is singular for all minimal Markovian splittting subspaces,
and hence y is state-space degenerate. Moreover,

Q+(∞) =

[
1/6 0
0 0

]
,

so y is also error-space degenerate (Corollary 9.3.6).

9.4 Models without observation noise

Let us now return to the framework of Section 8.9 with t = 0 contained in both the
past and the future. More precisely, consider proper Markovian splitting subspaces
X ∼ (S, S̄) with respect to

{
H− = span{a′y(t) | t ≤ 0; a ∈ Rm}
H+ = span{a′y(t) | t ≥ 0; a ∈ Rm} (9.4.1)

with generating processes (w, w̄) such that
{

S = H−(w) := span{a′w(t) | t ≤ 0; a ∈ Rp}
S̄ = H+(w̄) := span{a′w̄(t) | t ≥ 0; a ∈ Rp} . (9.4.2)

In this setting,
X = S	 S̄⊥ = H−(w)	 [U∗H−(w̄)],

that is, applying the isomorpisms (9.1.6),

I
−1
ŵ X = H2

p 	 [I−1
ŵ U∗I ˆ̄wH

2
p ] = H2

p 	 [z−1I
−1
ŵ I ˆ̄wH

2
p ].

In the same way as in Section 9.1, we can show that there is a p× p inner function
K such that

z−1I
−1
ŵ I ˆ̄w = MK , (9.4.3)

and hence
I−1
ŵ X = H(K) := H2

p 	H2
pK. (9.4.4)

Next, introduce the pair (W, W̄ ) of spectral factors corresponding to X via
(9.1.13). Then, for all a ∈ Rm,

a′W = I−1
ŵ a′y(0) = I−1

ŵ I ˆ̄wa
′W̄ = za′W̄K,
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and therefore
W = zW̄K. (9.4.5)

Together with the spectral inner factors defined by (9.1.17), the structural
function K defines an inner triplet (K,Q, Q̄), where only K has been altered. Re-
placing the phase function (9.2.1) by

Θ := W̄−1
+ W−, (9.4.6)

the factorization (9.2.2) remains valid. Accordingly, a straightforward modification
of Theorems 9.1.5 and 9.2.3 then yields the following theorem.

Theorem 9.4.1. Given the framework (9.4.1), let (H, U,X) be a proper Markovian
representation with inner triplet (K,Q.Q̄) and generating processes (w, w̄). Then,

X =

∫ π

−π

H(K)dŵ =

∫ π

−π

H̄(K∗)d ˆ̄w, (9.4.7)

and X is finite dimensional if and only if K is rational, in which case dimX equals
the McMillan degree of K. Moreover, X is constructible if and only if K and Q are
right coprime and observable if and only if K∗ and Q̄ are right coprime. Finally,
the pair (W, W̄ ) of spectral factors corresponding to X satisfies (9.4.5).

The other Hardy space results of this chapter remain valid for this setting
with obvious modifications.

To illustrate the theory of modeling without observation noise, as developed
in this section and in Section 8.9, we revisit some previous examples.

Example 9.4.2. Consider a process y with the spectral density analyzed in Exam-
ples 6.8.5 and 9.2.17. Clearly, the backward predictor space X+ (in the traditional
setting) has the standard forward realization

{
x+(t+ 1) = 1

2x+(t) + 5
2w+(t)

y(t) = x+(t) + 1
2w+(t),

and Q+(z) = (1 + 1
2z)/(z − 1

2 ). Since D = 1
2 , the forward realization is regular.

Moreover, since Q+(∞) = 1
2 6= 0, the standard backward realization is regular; i.e.,

D̄ 6= 0 (Proposition 9.3.4). Consequently, by Corollary 8.9.3, X := X+ ⊕W+ is
a minimal Markovian splitting subspace in the framework of (9.4.1), and hence,
setting x = (x+, w+)′,






x(t+ 1) =

[
1
2

5
2

0 0

]
x(t) +

[
0

1

]
w+(t)

y(t) =
[
1 1

2

]
x(t)

is a minimal realization in the framework of (9.4.1) of precisely the required form
(8.9.2).
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266 Chapter 9. Proper Markovian Representations in Hardy Space

Example 9.4.3. The process y in Example 9.3.12 is error-space degenerate, since
Q̄∗

−(∞) = 0 (Corollary 9.3.6), and hence extensions along the lines of Example 9.4.2
will yield nonminimal representations. Using the same indexing of minimal splitting
subspaces as in Example 9.3.12, we see that, for example, (W−, W̄2) satisfies (9.4.5)
with K = ψ̄/ψ, and all pairs (Wk, W̄k+1) produce the same K. Hence the family
of minimal Markovian splitting subspaces in the framework (9.4.1) is a subset of
the family of minimal Markovian splitting subspaces in the old framework. By
Theorem 9.4.1, these splitting subspaces are given by

X =

∫ π

−π

H(K)W−1dŷ =

∫ π

−π

{
z
ρ

π
| deg ρ < 4

}
dŷ,

where the polynomial π is a solution of (9.3.17) such that deg zπ ≤ 4. Consequently,
X2, X3, X5, X6, X8, X9,X11 and X+ are minimal Markovian splitting subspaces
in the framework (9.4.1), as also manifested by the fact that they are precisely the
X containing y(0), and the frame space is the seven-dimensional space

H2 = span {y(−1), y(0), y(1), x−1 , x
−
2 , x

+
1 , x

+
2 }.

Example 9.4.4. In Example 9.2.18/Example 9.3.13 a routine calculation shows
thatK− (andK+) have McMillan degree three, and therefore all minimal realization
in the standard framework have dimension three. Extending these X along the
lines of Corollary 8.9.3 will produce five-dimensional Markovian splitting subspaces.
However, due to error space degeneracy, none of these are minimal in the framework
(9.4.1). In fact, it can be seen that the minimal ones are four-dimensional, which
is consistent with the fact that kerQ+(∞) is one-dimensional.

9.5 Bibliographical notes

Hardy-space representations of Markovian representations in the present form were
introduced in [78], inspired by realization theory in Hardy space [35], and was
developed further in [113, 81, 82, 83, 84, 33, 32, 31, 76, 115, 75, 87, 88].

In this chapter, Section 9.1 is based on [88] and follows closely the develop-
ment there. A version of Theorem 9.1.5 appeared in [81]. Section 9.2 is based on
[81, 82, 84, 87] and was generalized in [88] to the noninternal setting. Theorem 9.2.3
appeared in [82] in the internal setting, but is closely related to a similar result in
[35]. Theorems 9.2.14 and 9.2.19 were presented in [84] for internal Markovian repre-
sentations and generalized to noninternal representations in [88]. Proposition 9.2.20
is a generalization of [113, 81].

Sections 9.3 follows [75] closely and generalizes result therein to the noninternal
setting. The examples are taken from [75]. A version of Theorem 9.3.11 appears in
[74]; also see [103]. Finally, Section 9.4 is based on [76].
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Chapter 10

Stochastic Realization
Theory in Continuous
Time

This chapter is devoted to continuous-time versions of the basic results in Chap-
ters 6, 8 and 9. In this context, the linear stochastic model (6.0.1) corresponds to
a system {

dx = Axdt+Bdw

dy = Cxdt+Ddw

of stochastic differential equations driven by the increments of a vector Wiener
process w. The state process x will still be a stationary process, but the output
process y has stationary increments. In the case when D = 0, we may instead
consider a model {

dx = Axdt +Bdw

y = Cx

for which the output is a stationary process.

10.1 Continuous-time stochastic models

A basic object of our study are linear stochastic systems of the type

(Σ)

{
dx = Axdt+Bdw

dy = Cxdt +Ddw
(10.1.1)

defined for all t ∈ R, where w is a p-dimensional vector Wiener process, and A, B,
C, D are constant matrices with A being a stability matrix, which, in the present
continous-time setting, amounts to having all its eigenvalues in the open left half-
plane. The system is in statistical steady state so that the n-dimensional state
process x and the increments of the m-dimensional output process y are jointly
stationary. We shall think of Σ as a representation of the (increments of the) process
y; such a representation will be called a (finite-dimensional) stochastic realization
of dy. The number of state variables n will be called the dimension of Σ, denoted
dimΣ.

267
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268 Chapter 10. Stochastic Realization Theory in Continuous Time

Systems of this type have been used in the engineering literature since the early
1960’s as models for random signals. An alternative but, as we shall see below, not
entirely equivalent way of representing the signal dy is obtained by eliminating the
state x from (10.1.1). In this way we obtain a scheme which generates dy by passing
white noise dw through a shaping filter with rational transfer function

W (s) = C(sI −A)−1B +D (10.1.2)

as explained in Section 3.6. This produces a stationary increment process dy with
the spectral representation

y(t)− y(s) =

∫ ∞

−∞

eiωt − eiωs

iω
W (iω)dŵ (10.1.3)

and hence with the rational spectral density

W (s)W (−s)′ = Φ(s). (10.1.4)

In other words, W is a spectral factor of Φ, which, in view of the fact that A is a
stability matrix, is analytic, i.e. has all its poles in the open left halfplane.

However, as in the discrete-time setting, the model Σ is more than just a
representation of a stochastic process in terms of white noise. Much more important
in applications is that the model (10.1.1) contains a state process x which serves as
a dynamical memory for dy, which is described in terms of the splitting geometry
of Chapter 7. However, let us first present some preliminary observations about
stochastic models.

Minimality and nonminimality of models

As usual, we shall say that Σ is minimal if dy has no other stochastic realization of
smaller dimension. Occasionally, as for example in noncausal estimations, we shall
also need to consider nonminimal Σ. Therefore, it is important to understand the
relation between degW , the McMillan degree of W , and dimΣ.

Before turning to this point, we need to recall a few well-known facts about
the state process x. Since A is a stability matrix, we have

x(t) =

∫ t

−∞
eA(t−τ)Bdw(τ), (10.1.5)

from which it is seen that the state process is a stationary wide-sense Markov process
with a constant covariance matrix

P := E{x(t)x(t)′} =

∫ ∞

0

eAτBB′eA′τdτ, (10.1.6)

which clearly satisfies the Lyapunov equation

AP + PA′ +BB′ = 0. (10.1.7)
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From (10.1.6) it is seen that P is the reachability Grammian for the pair (A,B),
and therefore the system Σ is reachable if and only if P is positive definite (P > 0),
i.e. if and only if {x1(0), x2(0), . . . , xn(0)} is a basis in the space

X = span{x1(0), x2(0), . . . , xn(0)} (10.1.8)

consisting of all linear combinations of the components of x(0). As we shall see be-
low, X is a Markovian splitting subspace, and hence we can appeal to the geometric
theory of Chapter 7.

However, as in the discrete-time setting, X and Σ are not equivalent repre-
sentations, as trivially there may be redundancy in Σ due to nonreachability which
cannot be seen in X. The following proposition makes this point more precise
and gives a preview of some facts concerning X and W to be studied in detail in
Sections 10.3 and 10.4.

Proposition 10.1.1. Let dy be a stationary-increment process with a rational spec-
tral density Φ having a finite-dimensional stochastic realization Σ of type (10.1.1)
with spectral factor W given by (10.1.2), and let X be the state space (10.1.8). Then

1

2
deg Φ ≤ degW ≤ dimX ≤ dimΣ (10.1.9)

Moreover, degW = dimX if and only if (C,A) is observable, and dimX = dimΣ
if and only if (A,B) is reachable.

The statements concerning the last of inequalities (10.1.9) follows immediately
from the preceding discussion, while those concerning the second inequality are a
consequence of Theorem 10.3.13 below. The first inequality in the chain follows
from Proposition 10.4.2.

From Proposition 10.1.1 we may learn several things about stochastic realiza-
tions (10.1.1). First, for Σ to be minimal it is not sufficient that Σ is both observable
and reachable. For this we must also have

degW =
1

2
deg Φ (10.1.10)

A W satisfying this condition will be called a minimal spectral factor. Secondly,
if dy is generated by a stochastic system (10.1.1) with A being a stability matrix,
reachability plays no role in the geometric theory since the basic object of it is X
and not Σ.

On the other hand, if we allow A to have eigenvalues on the unit circle, the
geometric concept of reachability introduced in Section 8.4 becomes important.
However, in this chapter we shall not dwell on this, as the necessary modifications
needed to accommodate a purely deterministic component in X can easily be filled
in by the reader by following the path in Section 8.4.

The idea of state space and Markovian representations

There is a trivial equivalence relation between realizations of dy corresponding to a
change of coordinates in the state space and constant orthogonal transformations of
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the input Wiener process dw, which we would like to factor out before undertaking
the study of the family of (minimal and nonminimal) stochastic realizations. The
equivalence classes are defined by

(A,B,C,D, dw) ∼ (T1AT
−1
1 , T1BT

−1
2 , CT−1

1 , DT−1
2 , T2dw) (10.1.11)

where T1, is an n × n nonsingular matrix and T2 is a p × p orthogonal matrix.
Clearly, the state space X , defined by (10.1.8), is an invariant of this equivalence,
and we shall look for conditions under which this invariant is complete in the sense
that there is bijective correspondence between equivalence classes [Σ] and spaces

X. Since realizations Σ and Σ̃ such that

[
B
D

]
dw =

[
B̃

D̃

]
dw̃ give rise to the same

X, an obvious necessary condition is that

rank

[
B
D

]
= p. (10.1.12)

Moreover, as pointed out above, it is necessary to consider only models Σ for which

(A,B) reachable. (10.1.13)

We shall prove that under these two conditions the above one-one correpondence
holds.

We proceed to characterize these X spaces. Given a realization Σ, first denote
by H and H the spaces of random variables

H := H(dw) H := H(dy), (10.1.14)

defined as in Section 2.7, and let {Ut; t ∈ R} be the shift induced by dw, i.e. the
strongly continuous group of unitary operators on H such that

Ut[w(τ) − w(σ)] = w(τ + t)− w(σ + t). (10.1.15)

Obviously X and H are subspaces of H, H being doubly invariant for the shift so
that Utx(τ) = x(τ + t) and

Ut[y(τ) − y(σ)] = y(τ + t)− y(σ + t). (10.1.16)

Next define
X− := H−(x), X+ := H+(x), (10.1.17a)

H− := H−(dy), H+ := H+(dy). (10.1.17b)

Now solving (10.1.1) we have

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bdw(τ) (10.1.18a)

y(t)− y(0) =

∫ t

0

CeAτdτx(0) +

∫ t

0

[∫ t

τ

CeA(τ−σ)Bdσ +D

]
dw(τ). (10.1.18b)
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Therefore, since H− ∨X− ⊂ H−(dw) ⊥ H+(dw),

EH−∨X−

λ = EX λ for all λ ∈ H+ ∨X+ (10.1.19)

which, by Proposition 2.4.2, is the conditional orthogonality

H− ∨X− ⊥ H+ ∨X+ | X. (10.1.20)

Consequently, since

X− = ∨t≤0UtX and X+ = ∨t≥0UtX, (10.1.21)

X ∼ (S, S̄) is a Markovian splitting subspace with S := H− ∨X− and S̄ := H+ ∨
X+(Section 7.4).

Moreover,
H = H ∨ span{UtX | t ∈ Z}. (10.1.22)

In fact, if this were not the case, there would be a nonzero a ∈ Rp such that
a′[w(τ) − w(σ)] ⊥ H ∨ span{U tX | t ∈ Z} for some τ, σ (which actually may be
chosen arbitrarily, since the space is doubly invariant), and consequently, using the
integral definition of (10.1.1), we have

E

{[
x(t)− x(0)
y(t)− y(0)

]
[w(τ) − w(σ)]′

}
a =

[
B
D

]
a = 0,

which contradicts the assumption (10.1.12). Therefore, appropriately modifying the
discrete-time definition of Chapter 8, as we shall do in the next section, (H, {Ut},X)
is a Markovian representation of dy.

Conversely, as we show in this chapter, to each such Markovian representation
(H, {Ut},X) of dy, there is an equivalence class [Σ] of realizations (10.1.1). More
precisely, in particular we show that there is a one-one correspondence between
equivalence classes [Σ] of stochastic realizations of dy satisfying conditions (10.1.12)
and (10.1.13) and proper finite-dimensional Markovian representations (H, {Ut},X)
of dy under which H(dw) = H and the state x(0) = {x1(0), x2(0), . . . , xn(0)} of each
Σ ∈ [Σ] is a basis in X.

Modeling stationary processes

Before proceeding to the geometric state space construction, let us consider realiza-
tions {

dx = Axdt +Bdw

y = Cx
(10.1.23)

of a stationary process y. As before, the ambient space H, defined as in (10.1.14),
is endowed with the shifts (10.1.15), under which

Utyk(0) = yk(t), k = 1, 2, . . . ,m, (10.1.24a)

Utxk(0) = xk(t), k = 1, 2, . . . n. (10.1.24b)
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Let H− and H+ be the spaces

H− := H−(y), H+ := H+(y), (10.1.25)

and let H := H(y), which as before is a doubly invariant subspace of H. Solving
(10.1.23) we have

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bdw(τ). (10.1.26)

Therefore, since X− ⊂H−(dw) ⊥H+(dw), with X− and X+ given by (10.1.21),

EX−

λ = EX λ for all λ ∈ X+, (10.1.27)

which, by Proposition 2.4.2, is the Markovian property

X− ⊥ X+ | X. (10.1.28)

Moreover,
y(0) = X, (10.1.29)

and
H = span{UtX | t ∈ Z}. (10.1.30)

Consequently, X is a Markovian splitting subspace (Section 7.4) with the ambient
space H.

10.2 Markovian representations

Let the past space H− and the future space H+ be given by either (10.1.17b) or
(10.1.25), depending on whether we want a representation of a stationary increments
dy or of a stationary process y, and let

H− ∨H+ = H.

For the rest of this chapter we assume that the underlying process (y or dy) is
purely nondeterministic and reversible and hence purely nondeterministic also in
the backward direction.

Assumption 10.2.1. The remote past of H− and the remote future of H+ are
trivial; i.e., ∩0

−∞U
tH− = 0 and ∩∞0 U tH+ = 0.

Definition 10.2.2. A Markovian representation of dy [y] is a triplet (H, {Ut},X)
consisting of a Markovian splitting subspace X in a Hilbert space H of random
variables with a strongly continuous group of unitary operators (shifts) on H with
the the properties:

(i) H ⊂ H is a doubly invariant subspace, and the restricted shifts Ut|H are the
natural shifts on H; i.e., satisfying (10.1.16) [(10.1.24a)], and

UtH
− ⊂ H− for t ≤ 0 and UtH

+ ⊂ H+ for t ≥ 0.
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(ii) H is the ambient space of X in the sense that

H = H ∨ span{U tX | t ∈ Z}

and has finite multiplicity under the shifts {Ut}.
A Markovian representation is said to be internal if H = H and observable, con-
structible or minimal if the splitting subspace X is.

Then, with obvious change of notation, Theorem 8.1.1 holds verbatim.

Theorem 10.2.3. Given a stationary-increment vector process dy (or a stationary
vector process y), (H, {Ut},X) is a Markovian representation of dy [y] if and only
if

X = S ∩ S̄ (10.2.1)

for some pair (S, S̄) of subspaces of H such that

(i) H− ⊂ S and H+ ⊂ S̄,

(ii) U−tS ⊂ S and UtS̄ ⊂ S̄ for all t ≥ 0, and

(iii) H = S̄⊥ ⊕ (S ∩ S̄)⊕ S⊥.

Moreover, the correspondence X↔ (S, S̄) is one-one. In fact,

S = H− ∨X− and S̄ = H+ ∨X+. (10.2.2)

Finally, (H, U,X) is observable if and only if

S̄ = H− ∨ S⊥, (10.2.3)

and constructible if and only if

S = H+ ∨ S̄⊥, (10.2.4)

and minimal if and only if both (8.1.4) and (8.1.5) hold.

Given a Markovian representation (H, {Ut},X) we introduce the restricted
shift on the Markovian splitting subspace X ∼ (S, S̄), namely

Ut(X) = EX Ut|X. (10.2.5)

Since {Ut} is a strongly continuous group of unitary operators, (10.2.5) defines a
strongly continuous contraction semigroup {Ut(X); t ≥ 0} satisfying (7.5.3) (Theo-
rem 7.5.1).

Theorem 10.2.4. The semigroup Ut(X) tends strongly to zero as t → ∞ if and
only if

S−∞ :=
⋂

t≤0

UtS = 0, (10.2.6)
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and Ut(X)∗ tend strongly to zero as t→∞ if and only if

S̄∞ :=
⋂

t≥0

UtS̄ = 0. (10.2.7)

Proof. The proof that Ut(X) tends strongly to zero if S−∞ = 0 is a trivial modifi-
cation of the corresponding part of the proof of Theorem 8.2.1. Conversely, suppose
that Ut(X) tends strongly to zero. Then U1(X)k tends strongly to zero as k → ∞
through the natural numbers, and hence ∩0

k=−∞UkS = 0. However, UtS ⊂ UkS for
t > k. and hence S−∞ = 0. This proves the first statement. The second statement
follows by symmetry.

Definition 10.2.5. The Markovian representation (H, , {Ut},X) is normal if S−∞ =
S̄∞ and proper if S−∞ = S̄∞ = 0.

The remaining results of Section 8.2 can now be carried over to the continuous-
time setting with trivial modifications. In particular we have the following counter-
part of Corollary 8.2.6.

Proposition 10.2.6. A finite-dimensional Markovian representation (H, {Ut}W,X)
is normal.

Applying this proposition to the Markovian representations constructed in
Section 10.1, we see that they are proper. In fact, S ⊂ H−(dw), and hence S−∞ = 0.
Then, by Proposition 10.2.6, S̄∞ = 0.

State space construction

To construct a functional model of this geometry we apply the continuous-time Wold
decomposition of Section 5.1. Given a proper Markovian representation (H, {Ut},X)
of multiplicity p ≥ m with X ∼ (S, S̄), there is a pair (dw, dw̄) of p-dimensional
Wiener processes such that H(dw) = H(dw̄) = H and

S = H−(dw) and S̄ = H+(dw̄) (10.2.8)

(Theorem 5.1.1). These processes are called the generating processes of the Marko-
vian representation, and they are uniquely determined modulo multiplication by a
constant p× p orthogonal matrix.

In view of (10.2.8), every random variable η ∈ S can be represented by a
stochastic integral with respect to dw,

η =

∫ ∞

−∞
f(−t)dw(t) =: Iwf, (10.2.9)

of a function f ∈ L2
p(R) that vanishes on the negative real line. In particular,

this naturally leads to representations of dy (or y) by means of causal input-output
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map driven by the white noise processes dw. The most efficient way to study such
representations is by spectral-domain techniques. In fact, as explained in Section ??,

η =

∫ ∞

−∞
f̂(iω)dŵ =: Iŵf̂ , (10.2.10)

where f̂ ∈ H2
p , the Hardy space of p-dimensional square integrable functions, an-

alytic in the right half of the complex plane. Here f̂ is the Fourier transform of
f , and dŵ is a (complex) stationary increment process with the property (3.6.3).
In the same way, every random variable η̄ ∈ S̄ can be represented by a stochastic
integral can be represented by a stochastic integral with respect to dw̄,

η̄ =

∫ ∞

−∞
f̄(−t)dw̄(t) =: Iw̄f̄ , (10.2.11)

of a function f̄ ∈ L2
p(R) that vanishes on the positive real line, or, equivalently,

η̄ =

∫ ∞

−∞

ˆ̄f(iω)d ˆ̄w =: I ˆ̄w
ˆ̄f, (10.2.12)

where ˆ̄f ∈ H̄2
p , the Hardy space of p-dimensional square integrable functions, ana-

lytic in the left half of the complex plane. This defines two unitary maps, Iŵ and
I ˆ̄w, from L2

p(I) to H, establishing unitary isomorphisms between S and S̄ and the

Hardy spaces H2
p and H̄2

p respectively; i.e.,

IŵH
2
p = H−(dw) = S and I ˆ̄wH̄

2
p = H+(dw̄) = S̄. (10.2.13)

(See Section 5.3.) Under each of these isomorphisms the shift Ut becomes multipli-
cation by eiωt; i.e.,

UtIŵ = IŵMeiωt , (10.2.14)

and the orthogonal decomposition

H = H−(dw) ⊕H+(dw̄) (10.2.15)

becomes
L2

p(I) = H2
p ⊕ H̄2

p .

In view of Assumption 10.2.1, there are also Wiener processes dw− and dw̄+

such that
H− = H−(dw−) and H+ = H−(dw̄+) (10.2.16)

(Theorem 5.1.1). This is the forward and backward innovation process, respectively,
and they are unique modulo multiplication by a unitary transformation.

Recall that a function Q ∈ H∞ is called inner if the multiplication operator
MQ is an isometry which sends analytic functions (i.e., functions in H2

p ) to analytic
functions. A function with the corresponding properties with respect to the conju-
gate Hardy space H̄2

p will be called conjugate inner. The phase function is not in
general inner, as this happens if and only if H− and H+ intersect perpendicularly.
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Lemma 10.2.7. Let (H, {Ut},X) be a proper Markovian representation with gen-
erating processes (dw, dw̄). Then there is an inner p × p matrix functions K, an
inner m×p matrix function Q and a conjugate inner m×p matrix function Q̄ such
that

(Iŵ)−1I ˆ̄w = MK , (Iŵ)−1Iŵ−
= MQ, (I ˆ̄w)−1I ˆ̄w+

= MQ̄, (10.2.17)

where MV denotes the multiplication operator MV f = fV . Moreover,

(Iŵ−
)−1I ˆ̄w+

= MΘ, (10.2.18)

where Θ is a unitary m×m matrix function on I that satisfies

Θ = Q̄KQ∗. (10.2.19)

Proof. In view of (10.2.14),

(Iŵ)−1I ˆ̄wMeiωt = (Iŵ)−1UtI ˆ̄w = Meiωt(Iŵ)−1I ˆ̄w.

Moreover, from the geometry of X ∼ (S, S̄) we have

X = S	 S̄ (10.2.20)

(Theorem 10.2.3). This implies that S̄⊥ ⊂ S, or, equivalently that H−(dw̄) ⊂
H−(dw); i.e., I ˆ̄wH

2
p ⊂ I ˆ̄wH

2
p , which yields

(Iŵ)−1I ˆ̄wH
2
p ⊂ H2

p .

Consequently, (Iŵ)−1I ˆ̄w is a unitary map from H2
p to H2

p that commutes with the
shift. Therefore, by a continuous-time version of Theorem 4.3.3 [35, p. 185], there
is an inner p× p-matrix function K such that (Iŵ)−1I ˆ̄w = MK .

In the same way, we see that (Iŵ)−1Iŵ−
commutes with the shift, and H− ⊂ S

yields Iŵ−
H2

m ⊂ IŵH
2
p ; i.e., (Iŵ)−1Iŵ−

H2
m ⊂ H2

p . Therefore, (Iŵ)−1Iŵ−
= MQ for

some Q ∈ H∞
m×p [35, p. 185]. However, (Iŵ)−1Iŵ−

is an isometry, and hence Q is
inner. The last of the equations (10.2.17) follows by symmetry.

Finally, the last statement of the lemma follows from (10.2.17).

The inner function K is called the structural function and (K,Q, Q̄) the inner
triplet of the Markovian representation (H, {Ut},X). The function Θ is called the
phase function. We return to their connection to spectral factors below.

This leads to a functional model for Markovian splitting subspaces of the
type studied in [71], [120] and [35] that allows us to charaterize various systems-
theoretic properties of Markovian splitting subspaces (observability, constructibility
and minimality) in function-theoretic terms.

Theorem 10.2.8. Let (H, {Ut},X) be a proper Markovian representation with
generating processes (dw, dw̄) and inner triplet (K,Q, Q̄). Then

X =

∫ ∞

−∞
H(K)dŵ =

∫ ∞

−∞
H̄(K∗)d ˆ̄w, (10.2.21)
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where H(K) := H2
p	H2

pK and H̄(K∗) := H̄2
p	H̄2

pK
∗. Moreover, X is constructible

if and only if K and Q are right coprime, i.e. they have no nontrivial common right
inner factor, and X is observable if and only if K∗ and Q̄ are right coprime, i.e.
they have no nontrivial common right conjugate inner factor.

Proof. From (10.2.20) and Lemma 10.2.7 we have

I
−1
ŵ X = H2

p 	 (I−1
ŵ I ˆ̄wH

2
p ) = H2

p 	H2
pK,

which yields the first of equations (10.2.21). The second follows in the same way
from X = S̄	 S⊥.

Likewise, the constructibilty condition (10.2.4) yields

H2
p = I−1

ŵ S = (I−1
ŵ Iŵ−

H2
m) ∨ (I−1

ŵ I ˆ̄wH
2
p );

that is, by Lemma 10.2.7,

H2
p = (H2

mQ) ∨ (H2
pK). (10.2.22)

For (10.2.22) to hold, Q and K must clearly be right coprime. Conversely, suppose
thatQ andK are right coprime, and consider the right member of (10.2.22). Clearly
it is a full-range invariant subspace of H2

p , because H2
pK is, and therefore, by the

half-plane version of Beurling-Lax Theorem 4.6.4 [?], it has the form H2
pJ where

J is inner. But then J must be a common right inner factor of Q and K, and
hence J = I, concluding the proof of the constructibility criterion. The proof of the
observability part is by symmetry.

In Section 10.3 we show that X is finite dimensional if and only if the struc-
tural function K is rational, in which case dimX equals the McMillan degree of K
(Theorem 10.3.8).

In view of (10.2.19), the inner triplets (K,I, Q̄−) and (K+, Q+, I) of the predic-
tor space X− and the backward predictor space X+, respectively, can be determined
from the phase function Θ via the coprime factorizations

Θ = Q̄−K− = K+Q
∗
+. (10.2.23)

To be able to determine the other minimal Markovian splitting subspaces from Θ,
we need to assume that dy (y) is strictly noncyclic; i.e., the kernels of the operators

H := EH+ |H− and H∗ := EH− |H+

have full range; cf. Definition 9.2.5. This is equivalent to the frame space H2 being
proper; cf. Proposition 9.2.6. Modifying the proof of Lemma 9.2.7 to the continuous-
time setting, this condition can be expressed in terms of the phase function Θ. More
precisely, provided y is purely nondeterministic and reversible, dy (y) is strictly
noncyclic if and only if the Hankel operator

HΘ := PH2
pMΘ|H̄2

p
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has full range kernel; i.e., Θ is a strictly noncyclic function [35, p. 253]. A processes
dy (y) with a rational spectral density are strictly noncyclic, since the range of H and
H∗, X− and X+, respectively, are finite-dimensional, and thus proper. However, a
scalar process with spectral density Φ(iω) = (1 + ω2)−3/2 is not strictly noncyclic,
since X− = H− and X+ = H+ [28, p. 99].

Strict noncyclicity is a geometric condition on dy (y) determined by the split-
ting geometry, and therefore all of the results of Section 9.2 apply also in the
present continuous-time setting with no or obvious modifications. In particular,
Theorem 9.2.12 and 9.2.19 have the following counterpart.

Theorem 10.2.9. Let dy (y) be purely nondeterministic. Then dy (y) is strictly
noncyclic if and only if all minimal Markovian representations are proper. In this
case, the following conditions are equivalent.

(i) X is minimal

(ii) X is observable and X ⊥ N+

(iii) X is constructible and X ⊥ N−

Therefore, from Proposition 9.2.20, which is completely geometric and hence
remains unaltered, and Theorem 10.2.8, we see that a proper Markovian represen-
tation (H, {Ut},X) with inner triplet (K,Q, Q̄) is minimal if and only if one of the
following conditions hold.

(ii)′ K∗ and Q̄ are right coprime, and Q∗Q+ is analytic;

(iii)′ K and Q are right coprime, and Q̄∗Q− is coanalytic.

This leads to a procedure for determining the inner triplets (K,Q, Q̄) of all minimal
Markovian representation: Select Q so that Q∗Q+ is analytic. Then form T := ΘQ,
and determine Q̄ and K as the coprime factors in Q̄K = T .

Theorem 9.2.14 and Corollary 9.2.15 can also be carried over verbatim.

Theorem 10.2.10. Suppose that dy (y) is strictly noncyclic. Then all internal
minimal Markovian splitting subspaces have the same invariant factors; let us denote
them

k1, k2, k3, . . . , km. (10.2.24)

Moreover, a Markovian splitting subspace of multiplicity p is minimal if and only if
m invariant factors are given by (10.2.24) and the remaining p−m are identically
one. If m = 1, all internal minimal Markovian splitting subspaces have the same
structural function.

Example 10.2.11. Let y be a two-dimensional process with the rational spectral
density

Φ(s) :=
1

(s2 − 1)(s2 − 4)

[
17− 2s2 −(s+ 1)(s− 2)

−(s− 1)(s+ 2) 4− s2
]
.
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Then, using the factorization procedure above, it can be seen that the structural
function of X− is

K−(s) =
s− 1

(s+ 1)(s+ 2)

[
s− 1.2 1.6

1.6 s+ 1.2

]

and that the one of X+ is

K+(s) =
s− 1

(s+ 1)(s+ 2)

[
s− 70/37 24/37

24/37 s+ 70/37

]
.

These functions look quite different, but they have the same invariant factors,
namely

k1(s) =
s− 1

s+ 1
and k2(s) =

(s− 1)(s− 2)

(s+ 1)(s+ 2)
,

and are therefore quasi-equivalent.

Spectral factors and the structural function

First consider an m-dimensional, mean-square continuous, purely nondeterministic,
stationary process y with a full rank spectral density Φ. Recall from Section 3.3
that y has a spectral representation

y(t) =

∫ ∞

−∞
eiωtdŷ, (10.2.25)

(Theorem 3.3.2) where

E{dŷdŷ∗} =
1

2π
Φ(iω)dω. (10.2.26)

Moreover, by Corollary 5.3.6, Φ admits a factorization

W (s)W (−s)′ = Φ(s), (10.2.27)

where W is m × p with p ≥ m. A spectral factor W is analytic if its rows belong
to H2

p and coanalytic if they belong to H̄2
p . A spectral m×m factor W is outer if

H2
mW is dense in H2

m and conjugate outer if H̄2
mW is dense in H̄2

m; see Section 5.3.
The outer and conjugate outer spectral factors are unique modulo an orthogonal

transformation from the right.

Proposition 10.2.12. Let y be given by (10.2.25). If dw is a Wiener process such
that H− ⊂ H−(dw), there is a unique analytic spectral factor W such that

dŷ = Wdŵ, (10.2.28)

and H− = H−(dw) if and only if W is outer. Likewise, if dw̄ is a Wiener process
such that H+ ⊂ H+(dw̄), there is a unique coanalytic spectral factor W̄ such that

dŷ = W̄d ˆ̄w, (10.2.29)
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and H+ = H+(dw̄) if and only if W̄ is conjugate outer.

Proof. LetW be the matrix function withm rows given by Iŵyk(0), k = 1, 2, . . . ,m.
Then

y(t) =

∫
eiωtWdŵ,

which compared with (10.2.25) yields dŷ = Wdŵ. Now, if H− ⊂ H−(dw) holds,
then

a′W = I
−1
ŵ y(0) ⊂ I

−1
ŵ H−(dw) = H2

p

for all a ∈ Rm, and hence W is analytic. Next, since

H− = span{a′y(t) | t ≤ 0, a ∈ Rm} =

∫
span{eiωta′W | t ≤ 0, a ∈ Rm}dŵ,

H− = H−(dw) if and only

span{eiωta′W | t ≤ 0, a ∈ Rm} = H2
m;

i.e., if and only if W is outer. A symmetric argument yields the second statement.

Next, consider an an m-dimensional, mean-square continuous purely nonde-
terministic, stationary-increment process dy with a full rank (incremental) spectral
density Φ. Then, by Theorem 3.6.1,

y(t)− y(s) =

∫ ∞

−∞

eiωt − eiωs

iω
dŷ, t, s ∈ R, (10.2.30)

where the stochastic measure again satisfies (10.2.26) and the spectral density Φ
admits a spectral factorization (10.2.27) (Theorem 5.3.5). However, the spectral
factors W may not be square-integrable. In fact, in Section 5.3 we introduced
the modified Hardy spaces W2

p and W̄2
p consisting of the p-dimensional row vector

functions g and ḡ respectively such that χ̄hg ∈ H2
p and χhḡ ∈ H̄2

p , where

χh(iω) =
eiωh − 1

iω
(10.2.31)

and χ̄h(iω) = χh(−iω). Note that, for h > 0, χ̄h ∈ H∞ and χh ∈ H̄∞. For reasons
explained in Section 5.3, a spectral factor W with rows inW2

p will be called analytic

and a spectral factor W̄ with rows in W̄2 coanalytic.

Proposition 10.2.13. Let dy be given by (10.2.30). If dw is a Wiener process
such that H− ⊂ H−(dw), there is a unique analytic spectral factor W such that

dŷ = Wdŵ, (10.2.32)

and H− = H−(dw) if and only if χ̄hW is outer for h > 0. Likewise, if dw̄ is a
Wiener process such that H+ ⊂ H+(dw̄), there is a unique coanalytic spectral factor
W̄ such that

dŷ = W̄d ˆ̄w, (10.2.33)
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and H+ = H+(dw̄) if and only if χhW̄ is conjugate outer.

Proof. For a fixed h > 0, let W be the m × p matrix-valued functions with rows
χ̄−1

h I−1
ŵ [yk(0)− yk(−h)], k = 0, 1, . . . ,m. Then

y(−h)− y(0) =

∫ ∞

−∞

e−iωh − 1

iω
W (iω)dŵ,

which compared with (10.2.30) yields dŷ = Wdŵ. In fact, the spectral measure dŷ
is uniquely determined by dy (Theorem 3.6.1). Clearly, W is a spectral factor that
does not depend on the choice of h. If H− ⊂ H−(dw),

χ̄ha
′W = I−1

ŵ a′[y(0)− y(−h)] ⊂ I−1
ŵ H−(dw) = H2

p

for all a ∈ Rm, and hence W is an analytic spectral factor by the definition above.
Moreover, since

H− = span{a′[y(t)− y(t− h)] | t ≤ 0, a ∈ Rm}

=

∫
span{eiωtχ̄h(iω)a′W (iω) | t ≤ 0, a ∈ Rm}dŵ,

we have H− = H−(dw) if and only χ̄h(iω)a′W ∈ H2
m, as claimed.

Defining W̄ to be the m×p matrix-valued functions with rows χ−1
h I−1

ˆ̄w
[yk(h)−

yk(0)], k = 0, 1, . . . ,m, a symmetric argument yields the second statement.

Consequently, although the spectral factor may belong to different spaces,
the spectral representations (10.2.26) and (10.2.27) are formally the same in the
stationary and the stationary-increment cases, and therefore we shall formulate the
spectral results in these quantities. To unify notations, we shall say that a spectral
factor W− is minimum-phase if it is either outer (when y is given) or χ̄hW− is
outer (when dy is given). Likewise W̄+ is conjugate minimum-phase if it is either
conjugate outer or χhW̄+ is conjugate outer.

Corollary 10.2.14. Given either (10.2.25) or (10.2.30), let dw− and dw̄+ be the
forward and backward innovation, respectively, uniquely defined (modulo an orthog-
onal transformation) by (10.2.16). Then there is a unique minimum-phase spectral
factor W− and a unique conjugate minimum-phase spectral factor W̄+ such that

W−dŵ− = dŷ = W̄+dŵ+. (10.2.34)

Moreover, the phase function (10.2.18) can be written

Θ = W̄−1
+ W−. (10.2.35)

We have thus established that the geometry of a Markovian representation
can be described in terms of a pair of spectral factors, one analytic and the other
coanalytic.
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Theorem 10.2.15. Let (H, {Ut},X) be a proper Markovian representation of dy
[y] with inner triplet (K,Q, Q̄) and generating processes (dw, dw̄). Then there is
a unique pair (W, W̄ ) of spectral factors, the first being analytic and the second
coanalytic, such that

dŷ = Wdŵ = W̄d ˆ̄w. (10.2.36)

Moreover,
d ˆ̄w = Kdŵ, (10.2.37)

and
W = W̄K, (10.2.38a)

W = W−Q, W̄ = W̄+Q̄, (10.2.38b)

where W− is the minimum-phase spectral factor and W̄+ is the conjugate minimum-
phase spectral factor.

Proof. By Proposition 10.2.12 (in the case that y is given by (10.2.25)) or Propo-
sition 10.2.13 (in the case that dy is given by (10.2.30)), it immediately follows
that there unique spectral factors W and W̄ such that (10.2.36) holds. Next, by
Lemma 10.2.7, for any f ∈ L2

p(I), I−1
ŵ I ˆ̄wf = fK; i.e.,

∫
fd ˆ̄w =

∫
fKdŵ,

proving (10.2.37). From (10.2.36) and (10.2.37) we have dŷ = Wdŵ = W̄Kdŵ, from
which (10.2.38a) follows by uniqueness (Proposition 10.2.12 or Proposition 10.2.13).

Likewise, proceeding as above, we show that

dŵ− = Qdŵ and d ˆ̄w+ = Q̄d ˆ̄w,

which together with (10.2.34) yields (10.2.38b).

As in Chapter 9, we call (K,W, W̄ ) of Theorem 10.2.15 the Markovian triplet
of (H, {Ut},X). In particular,

w̄(h)− w̄(0) =

∫ ∞

−∞

eiωh − 1

iω
K(iω)dŵ. (10.2.39)

Obviously (10.2.38b) are the inner-outer factorizations of the spectral factorsW and
W̄ . Since the spectral factors W and W̄ are uniquely determined by the generating
processes (dw, dw̄), which, in turn, are unique modulo orthogonal transformations,
as in Section 9.1, there is an equivalence class [K,W, W̄ ] of Markovian triplets
described by

(W, W̄ ,K) ∼ (WT1, W̄T2, T
−1
2 KT1), (10.2.40)

where T1 and T2 are arbitrary orthogonal transformations.
Internal Markovian representation have multiplicity p = m, and thus W and

W̄ are square and hence invertible, since Φ is full rank. In this case, therefore,
(10.2.37) may be written

K = W̄−1W.
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In particular, the predictor spaces X− and X+ have Markovian triplets (W−, W̄−,K−)
and (W+, W̄+,K+) respectively, where K− := W̄−1

− W− and K+ := W̄−1
+ W+.

From spectral factors to Markovian representations

Next, we consider the inverse problem of constructing Markovian representations
from Markovian triplets. To this end, we need a procedure for constructing the
generating processes of X ∼ (S, S̄) starting from (W, W̄ ,K). In the internal case this
is a simple matter sinceW and W̄ can be inverted in (10.2.36) to yield unique dw and
dw̄. However, in general, the systems (10.2.36) are underdetermined, introducing
nonuniqueness in the corresponding generating processes.

Lemma 10.2.16. Let W be an m× p spectral factor with the right inverse W ] :=
W ∗Φ−1, and let

Π := I −W ]W. (10.2.41)

Then, the p-dimensional Wiener processes dw satisfying

dŷ = Wdŵ (10.2.42)

are given by

dŵ = W ]dŷ + dẑ (10.2.43)

where dz is any p-dimensional stationary increment process with incremental spec-
tral density 1

2π Π such that H(dz) ⊥H. Moreover, Π(iω) is an orthogonal projection
on H(dz) for almost all ω ∈ R, and

dẑ = Πdŵ. (10.2.44)

Proof. First note that, since Π(iω)2 = Π(iω) and Π(iω)∗ = Π(iω), Π(iω) is an
orthogonal projection. For any dŵ satisfying (10.2.42), W ]dŷ = (I − Π)dŵ, and
therefore (10.2.43) holds with dz given by (10.2.44). Now,

E{dẑdẑ∗} =
1

2π
Π2dω =

1

2π
Πdω,

and hence 1
2π Π is the incremental spectral density of dz. Moreover, E{dŷdẑ∗} =

1
2πWΠdω = 0 establishing the orthogonality H(dz) ⊥ H. Conversely, given a
process dz with a spectral density (10.2.41) and with H(dz) ⊥ H, let dw be given
by (10.2.43). Then

E{dŵdŵ∗} =
1

2π
W ]Φ(W ])∗dω +

1

2π
Πdω =

1

2π
Idω,

so dw is a Wiener process. MoreoverWdŵ = dŷ+Wdẑ. However,W E{dẑdẑ∗}W ∗ =
0, and hence (10.2.42) holds.
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Consequently, given a Markovian triplet (W, W̄ ,K), by Lemma 10.2.16 we can
construct pairs of generating processes

{
dŵ = W ]dŷ + dẑ

d ˆ̄w = W̄ ]dŷ + dˆ̄z
, (10.2.45)

where the spectral density of dz is 1
2π Π with Π given by (10.2.41), and that of dz̄

is 1
2π Π̄, where

Π̄ := I − W̄ ]W̄ . (10.2.46)

We now build the space H corresponding to the Markovian representation so that
H = H(dw) = H(dw̄). Of course, to this end, we must choose dz and dz̄ so that

H(dz̄) = H(dz). (10.2.47)

Then the multiplication operators MΠ and MΠ̄ both represent the projection

EH⊥

from H onto the doubly invariant subspace H⊥ = H(dz̄) = H(dz). In fact, if
λ ∈ H and f := I−1

ŵ λ,

λ =

∫
fW ]dŷ +

∫
fdẑ

by (10.2.45), and hence, in view of (10.2.44),

EH⊥

λ =

∫
fdẑ =

∫
fΠdŵ = IŵfΠ,

showing that EH⊥

corresponds to MΠ under the isomorphism Iŵ. A symmetric

argument shows that EH⊥

corresponds to MΠ̄ under the isomorphism I ˆ̄w. More
specifically, IŵMΠI−1

ŵ = I ˆ̄wMΠ̄I−1
ˆ̄w

; i.e., MΠIŵI ˆ̄w = I−1
ŵ I ˆ̄wMΠ̄. Therefore, by

Lemma 10.2.7,
KΠ = Π̄K, (10.2.48)

from which we see that Π̄d ˆ̄w = KΠdŵ; i.e.,

dˆ̄z = Kdẑ. (10.2.49)

The following theorem describes the relation between Markovian representations
and Markovian triplets (W, W̄ ,K).

Theorem 10.2.17. There is a one-one correspondence between proper Markovian
representations (H, {Ut},X) and pairs ([W, W̄ ,K], dz), where [W, W̄ ,K] is an equiv-
alence class of Markovian triplets and dz is a vector stationary-increment process
(defined mod O) with spectral density Π := I −W ]W such that H(dz) ⊥ H. Under
this correspondence

H = H⊕H(dz) (10.2.50)

and
X = H−(dw) ∩H+(dw̄) (10.2.51)
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where (dw, dw̄) are the generating processes given by (10.2.45).

Proof. Given a Markovian representation (H, {Ut},X), we have shown above that
there is a unique equivalence class [W, W̄ ,K] of Markovian triplets and a correspond-
ing pair of generating processes (dw, dw̄), defined mod O and consequently a unique
dẑ = Πdŵ having the required properties. Conversely, given a triplet (W, W̄ ,K)
and a process dz with the stated properties, we define (dŵ, d ˆ̄w) by (10.2.45) and set
S := H−(dw) and S̄ := H+(dw̄). Then since (W, W̄ ,K) is a Markovian triplet, W
is analytic implying that S ⊃ H−, W̄ is coanalytic implying that S ⊃ H+, and K is
inner which is equivalent to perpendicular intersection. Hence, by Theorem 10.2.3,
X = S ∩ S̄ is a Markovian splitting subspace with ambient space H = H⊕H(dz),
for the invariance condition (ii) is trivially satisfied. The shift is induced by dy and
dz.

Let (W−, W̄−,K−) and (W+, W̄+,K+) be the Markovian triplets of X− and
X+, respectively. In view of (10.2.38b) and the fact that

W ] := W ∗Φ−1 = Q∗W ∗
−(W−W

∗
−)−1 = Q∗W−1

− ,

we may reformulate Definition 9.2.22 as follows.

Definition 10.2.18. An analytic spectral factor W of a strictly noncyclic process
is minimal if W ]W+ is analytic. Likewise, a coanalytic spectral factor W̄ is minimal
if W̄ ]W̄− is coanalytic.

In view of Theorem 10.2.9, we have the following counterpart of Corollary 9.2.23.

Proposition 10.2.19. Let dy [y] be strictly noncyclic. Then there is a one-one
correspondence (mod O) between minimal Markovian representations (H, {Ut},X)
and pairs (W, z) where W is a minimal spectral factor and dz is a stationary process
with the properties prescribed in Lemma 10.2.16.

Proof. By Theorem 10.2.9 and condition (ii)′ below it, X is minimal if and only
if W ]W+ = Q∗Q+ is analytic, i.e. W is minimal, and K∗ and Q̄ are coprime.
However, by (10.2.19) and (10.2.35), Q̄K = ΘQ = W̄−1

+ W−Q, which can be solved
for Q̄ (and K) uniquely mod O. Hence W̄ is determined once W has been chosen.

These result all hold for infinite- as well as finite-dimensional Markovian rep-
resentations. In the next section we consider the special case that X is finite di-
mensional, and in Section 10.5 we return to the general case.
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10.3 Forward and backward realizations for
finite-dimensional Markovian representations

Given a finite-dimensional Markovian representation (H, {Ut},X) determined by its
Markovian triplet (W, W̄ ,K) and its generating processes (dw, dw̄), in this section
we shall derive two stochastic realizations having the same splitting subspace X ∼
(S, S̄), namely a forward realization Σ corresponding to S with transfer function W
and generating noise dw, and a backward one Σ̄ corresponding to S̄ with transfer
function W̄ and generating noise dw̄. There are several reasons why it is natural
and useful to study such pairs (Σ, Σ̄) of stochastic realizations. There is an intrinsic
symmetry between past and future in the geometric theory which naturally carries
over to the state-space representation Σ and Σ̄. Recall, for example, that minimality
is characterized by the two conditions of observability and constructability which
are symmetric with respect to direction of time. As we shall see, observability is
a property of Σ and constructibility a property of Σ̄. In applications to noncausal
estimation it is natural to consider, not only backward models, but also nonminimal
representations which are best understood in terms of pairs (Σ, Σ̄).

Lemma 10.3.1. Let (H, {Ut},X) be a proper Markovian representation. Then X
is finite-dimensional if and only if its structural function K is rational.

Proof. By Theorem 7.3.6 and (10.2.8),

X = ES S̄ = EH−(dw) H+(w̄) = Iŵ range{HK},

where HK : H̄2
p → H2

p is the Hankel operator with symbol K sending f to PH2
pfK,

the orthogonal projection of fK onto H2
p , which is finite-dimensional if and only if

K is rational [35, Theorem 3.8, p. 256].

Suppose that X is finite-dimensional and that K has McMillan degree n.
Then, by Lemma 10.3.1,

K(s) = M̄(s)M(s)−1, (10.3.1)

for some invertible p×p matrix polynomials M and M̄ , which are right coprime, i.e.,
any right divisor is unimodular [35]. The matrix polynomials M and M̄ are unique
modulo a common unimodular factor. Since K is inner, detM has all its roots in the
open left half of the complex plane, and, we have det M̄(s) = κ detM(−s), where
κ is a complex number with modulus one. To maintain the symmetry between the
past and the future in our presentation, we also note that

K∗(s) = M(s)M̄(s)−1. (10.3.2)

The following result shows that H(K), the isomorphic image of X under Iŵ

(Theorem 10.2.8), consists of rational row-vector functions that that are strictly
proper; i.e., in each component, the numerator polynomial is is of lower degree than
the denominator polynomial.
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Theorem 10.3.2. Let K be a rational p × p inner function with the polynomial
matrix-fraction representation (10.3.1). Then

H(K) = {gM−1 | g ∈ Rp[s]; gM−1 strictly proper}, (10.3.3)

where Rp[s] is the vector space of p-dimensional row vectors of polynomials.

Proof. Let us first show that, if K is rational, the space H(K) consists of strictly
proper rational functions. To this end, set k := detK. Then H2

pk ⊂ H2
pK [35,

p. 187], and consequently H(K) ⊂ H(kI). Therefore, it is no restriction to to
consider the scalar case p = 1. In fact, if K is rational, then so is k. Hence, if we
can prove that the space H(k) of scalar functions consists of strictly proper rational
functions, the same holds true for H(kI) and thus for H(K). A scalar rational inner
function k is a finite Blaschke product; i.e., a finite product of coprime functions
ki(s) := (s−si)

νi(s+ s̄i)
−νi , where for each i, si is a complex number, s̄i its complex

conjugate, and νi is an integer. Then H2k =
⋂

iH
2ki, and hence H(k) =

∨
i H(ki),

so it is enough to show that any H(ki) consists of strictly proper rational functions.
To this end, we quote from [28, p. 34] that

ej(s) =
1

s+ s̄i

[
s− si

s+ s̄i

]j

, j = 0, 1, 2 . . .

is an orthogonal basis in H2. However, ejki = ei+j , and hence H2ki is spanned by
{eνi

, eνi+1, . . . }. Therefore, H(ki) is the span of {e0, e1, . . . , eνi−1}, which is a space
of strictly proper rational functions. Consequently, the same is true for H(K), as
required.

Next, recall that

H(K) = H2
p ∩ (H̄2

pK) = {f ∈ H2
p | fK∗ ∈ H̄2

p}, (10.3.4)

and hence, for any f ∈ H(K), f̄ := fK∗ ∈ H̄2
p . Now, in view of (10.3.2), f̄ =

fMM̄−1, and therefore
g := fM = f̄ M̄ .

Since fM is analytic in the closed right half-plane and f̄M̄ is analytic in the closed
left half-plane, g must be analytic in the whole complex plane. However, since f
is rational, then so is g, and therefore g ∈ Rp[s]. We have shown above that all
f := gM−1 ∈ H(K) are strictly proper, and hence (10.3.3) follows from (10.3.4).

Corollary 10.3.3. Let (H, {Ut},X) be a finite-dimensional proper Markovian rep-
resentation of y [dy] with Markovian triplet (K,W.W̄ ). Then, if K is given by
(10.3.1), there is an m× p polynomial matrix N such that

W (s) = N(s)M(s)−1, (10.3.5a)

W̄ (s) = N(s)M̄(s)−1. (10.3.5b)
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Moreover, W and W̄ are proper rational matrix functions.

Proof. From (10.2.38a) it follows that W = W̄K, which together with (10.3.1)
yields WM = W̄M̄ , which matrix function we name N . Since WM is analytic
in the right half plane and W̄M̄ in the left, N must be an entire m × p matrix
function. Therefore, if we can show that W is rational, it follows that N is a
polynomial matrix.

To this end, consider first the stationary case. Then, a′W ∈ H2
p and a′W̄ ∈

H̄2
p , and hence since

a′W̄ = a′WK∗, for all a ∈ Rm, (10.3.6)

(10.3.4) implies that a′W ∈ H(K) for all a ∈ Rm. Hence W is rational and strictly
proper (Theorem 10.3.2). In the stationary-increment case (dy), a′W ∈ W2

p =

(1 + s)H2
p and a′W̄ ∈ W̄2

p = (1 − s)H̄2
p (Theorem 5.2.3). Therefore, restating

(10.3.6) to read

1

1− sa
′W̄ =

1

1 + s
a′WK̃∗, for all a ∈ Rm,

where K̃(s) := K(s)1−s
1+s is inner and rational, we see that 1

1+sa
′W ∈ H2

p , which con-
sists of (strictly proper) rational functions (Theorem 10.3.2). Hence W is rational
and proper.

Corollary 10.3.4. The process y [dy] has a rational spectral density if and only if
it has a finite-dimensional Markovian representation.

Proof. The Markovian triplet of a finite-dimensional Markovian representation
consists of rational matrix functions (Lemma 10.3.1 and Corollary 10.3.3), and
hence the spectral density (10.2.27) must also be rational. Conversely, if the spectral
density is rational, so are the outer and conjugate outer spectral factors, and hence
the same holds for the phase function (10.2.35). Therefore the coprime factor K+

in (10.2.23) is rational, and hence X+ is finite-dimensional (Lemma 10.3.1).

The structural function (10.3.1) can also be expressed as minimal realization

K(s) = I − B̄′(sI −A)−1B, (10.3.7)

where (A,B) and (A′, B̄) are reachable. Since the Markovian triplet (W, W̄ ,K)
is defined modulo orthogonal transformations (10.2.40), we can always choose a
version of K such that K(∞) = I. Since K is analytic, the eigenvalues of A lie in
the open left complex halfplane.

Lemma 10.3.5. Let K be a rational inner function with minimal realization
(10.3.7). Then

B̄ = P−1B, (10.3.8)
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where P is the unique symmetric solution of the Lyapunov equation

AP + PA′ +BB′ = 0. (10.3.9)

Proof. Given (10.3.7), we have

K(s)−1 = I + B̄′(sI −A−BB̄′)−1B

and
K∗(s) = K(−s)′ = I +B′(sI +A′)−1B̄.

However, since K is inner, we must have K(s)−1 = K∗(s), and consequently there
is a regular matrix P such that

(A+BB̄′, B, B̄′) = (−PA′P−1, P B̄, B′P−1).

This implies that P satisfies the Lyapunov equation (10.3.7) and that B̄ = P−1B,
as claimed.

Lemma 10.3.6. Let K be a rational inner function with McMillan degree n and
minimal realization (10.3.7), and let H(K) and H̄(K) be the subspaces defined in
Theorem 10.2.8. Then, the rows of (sI−A)−1B form a basis in H(K) and the rows
of (sI +A′)−1B̄ form a basis in H̄(K∗). In particular,

dimH(K) = dim H̄(K) = n. (10.3.10)

Proof. A straight-forward calculation using (10.3.8) and(10.3.9) yields

(sI −A)−1BK∗(s) = P (sI +A′)−1B̄. (10.3.11)

Therefore, since a′(sI −A)−1B ∈ H2
p and a′P (sI +A′)−1B̄ ∈ H̄2

p for all a ∈ Rn, it
follows from (10.3.4) that

a′(sI −A)−1B ∈ H(K), for all a ∈ Rn;

i.e., the rows of (sI − A)−1B all belong to H(K). To see that they actually span
H(K), first compare (10.3.1) and (10.3.7) to observe that deg detM = n, which
together with (10.3.3) implies that dimH(K) = n. Moreover, since (A,B) is reach-
able, the n rows of (sI − A)−1B are linearly independent, and consequently they
span H(K). The statements about H̄(K) follow by symmetry.

Remark 10.3.7. For any f, g ∈ H(K) there correspond a, b ∈ Rn such that
f = a′(sI −A)−1B and g = b′(sI −A)−1B. Then

〈f, g〉H(K) = a′
∫ ∞

−∞
(iωI −A)−1BB′(−iω −A′)−1dω b = a′Pb =: 〈a, b〉P ,
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where P is the (positive definite) solution of the Lyapunov equation (10.3.9), thus
defining a scalar product with respect to the basis in Lemma 10.3.6.

In view of the fact that H(K) is the isomorphic image of X under Iŵ, the
results of Lemmas 10.3.1 and 10.3.6 may be summarized as follows.

Theorem 10.3.8. Let (H, {Ut},X) be a proper Markovian representation. Then
X is finite-dimensional if and only if its structural function K is rational, in which
case the dimension of X equals the McMillan degree of K.

Theorem 10.3.9. Let (H, {Ut},X) be an n-dimensional proper Markovian rep-
resentation with generating processes (dw, dw̄) and structural function K given by
(10.3.7), and consider the vector Markov processes x and x̄ defined by

x(t) =

∫ t

−∞
eA(t−τ)Bdw(τ), (10.3.12a)

x̄(t) = −
∫ ∞

t

eA′(τ−t)B̄dw̄(τ). (10.3.12b)

Then x(0) and x̄(0) are two bases in X. The processes x and x̄ are related by the
linear transformation

x̄(t) = P−1x(t), (10.3.13)

where P := E{x(t)x(t)′} is the unique symmetric solution of the Lyapunov equation
(10.3.9) and B̄ is given (10.3.8). Moreover,

dw̄ = dw − B̄′xdt. (10.3.14)

Proof. Since A is a stability matrix, the integrals (10.3.12) are well-defined. More-
over, from (10.3.15a), we have

P := E{x(t)x(t)′} =

∫ t

−∞
eA(t−τ)BB′eA′(t−τ)dσ =

∫ ∞

0

eAσBB′eA′σdσ,

which clearly is constant. Therefore differentiation with respect to t shows that P
is the unique solution of the Lyapunov equation (10.3.9).

In view of (3.6.4), (10.3.12a) can be written as (3.6.11) and analogously for
(10.3.12b); i.e.,

x(t) =

∫ ∞

−∞
eiωt(iωI −A)−1Bdŵ, (10.3.15a)

x̄(t) =

∫ ∞

−∞
eiωt(iωI +A′)−1B̄d ˆ̄w. (10.3.15b)

Therefore, by Theorem 10.2.8 and Lemma 10.3.5, Lemma 10.3.6 implies that x(0)
and x̄(0) are bases in X, as claimed. Next, applying IŵMeiωt to both sides of
(10.3.11) and observing that MK∗ = I

−1
ˆ̄w

Iŵ (Lemma 10.2.7), we obtain
∫ ∞

−∞
eiωt(iωI −A)−1Bdŵ = P

∫ ∞

−∞
eiωt(iωI +A′)−1B̄d ˆ̄w;
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i.e., x(t) = P x̄(t), which is the same as (10.3.13).
Finally, in view of (10.3.7) and (10.3.15a), (10.2.37) yields

w̄(h)− w̄(0) =

∫ ∞

−∞
χh(iω)K(iω)dŵ

=

∫ ∞

−∞
χh(iω)dŵ −

∫ h

0

∫ ∞

−∞
eiωtB̄′(iωI −A)−1Bdŵdt

= w(h) − w(0)−
∫ h

0

B̄′x(t)dt,

which establishes (10.3.14).

Corollary 10.3.10. Let (H, {Ut},X) be a finite-dimensional proper Markovian
representation of a stationary process y, and let the processes x and x̄ be given by
(10.3.12). Then there are unique m× n matrices C and C̄ such that

y(t) = Cx(t) = C̄x̄(t), C̄ = CP, (10.3.16)

where P is the unique solution of the Lyapunov equation (10.3.9).

Proof. Since a′y(0) ∈ H− ∩ H+ ⊂ S ∩ S̄ = X for all a ∈ Rm (Theorem 10.2.3)
and x(0) and x̄(0) are bases in X (Theorem 10.3.9), there are matrices C and C̄
such that y(0) = Cx(0) = C̄x̄(0), to which we apply the shift Ut componentwise to
obtain the required representations. Then, (10.3.13) yields C̄ = CP .

Consequently given any Markovian representation (H, {Ut},X) of a stationary
process y, there two stochastic realizations of y, namely

(Σ0)

{
dx = Axdt+Bdw

y = Cx,
(Σ̄0)

{
dx̄ = −A′x̄dt+ B̄dw̄

y = C̄x̄.
(10.3.17)

Here

{a′x(0) | a ∈ Rn} = X = {a′x̄(0) | a ∈ Rn}, (10.3.18)

and, since, by Theorem 10.2.3,

H = H−(dw̄)⊕X⊕H+(dw), (10.3.19)

Σ0 is a forward realization and Σ̄0 is a backward one. In fact, the future input noise
in Σ0 is orthogonal to present state X and past output H− ⊂ H−(dw) making the
system forward, and the past input noise of Σ̄0 is orthogonal to present state and
future output H+ making Σ̄0 a backward system.

Theorem 10.3.11. Let (H, {Ut},X) be a finite-dimensional proper Markovian
representation of a stationary-increment process dy with incremental spectral density
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Φ, and let the processes x and x̄ be given by (10.3.12). Then there are unique
matrices C, C̄ and D such that

dy = Cxdt+Ddw (10.3.20a)

dy = C̄x̄dt+Ddw̄. (10.3.20b)

Here D = W (∞) = W̄ (∞) satisfies

DD′ = R := Φ(∞), (10.3.21)

and the m× n matrices C and C̄ satisfy

C̄ = CP +DB′. (10.3.22)

Moreover, the Markovian triplet (K,W, W̄ ) is given by (10.3.7) and

W (s) = C(sI −A)−1B +D (10.3.23a)

W̄ (s) = C̄(sI +A′)−1B̄ +D. (10.3.23b)

Proof. By Corollary 10.3.3, the analytic spectral factor W is a proper rational
matrix function. Hence, W = W (∞) +G, where G is strictly proper with rows in

H2
p . Therefore, since χ(iω) =

∫ h

0 e
iωtdt,

y(h)− y(0) =

∫ ∞

−∞
χh(iω)W (iω)dŵ

= W (∞)[w(h) − w(0)] +

∫ h

0

z(t)dt,

where

zk(t) =

∫ ∞

−∞
eiωtGk(iω)dŵ = Utzk(0), k = 1, 2, . . . ,m

with Gk the k:th row of G; i.e., {z(t)}t∈R is the stationary vector process defined
by the conditional derivatives

zk(t) = lim
h↓0

1

h
EUtS[yk(t+ h)− yk(t)], k = 1, 2, . . . ,m,

where X ∼ (S, S̄). Clearly, by Theorem 10.2.3,

a′z(0) ∈ ES H− ⊂ ES S̄ = S ∩ S̄ = X

for all a ∈ Rm. Therefore, since x(0) is a basis in X, there is an m × n matrix C
such that z(0) = Cx(0); i.e., z(t) = Cx(t). Hence, setting D := W (∞), we obtain
(10.3.20a). Then (10.3.23a) follows from this and (10.3.12a), and (10.3.21) is then
immediate. Next, inserting dw = dw̄+B′x̄dt, obtained from (10.3.14), (10.3.8) and
(10.3.13), into (10.3.20a), we obtain

dy = (CP +DB′)x̄dt+Ddw̄,
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which is the same as (10.3.20b) if we set C̄ = CP +DB′. Then (10.3.23b) follows
from (10.3.12b).

Combining the representations of Theorems 10.3.9 and 10.3.11, we have now
constructed a forward stochastic realization for (H, {Ut},X),

(Σ)

{
dx = Axdt+Bdw

dy = Cxdt+Ddw
, (10.3.24)

corresponding to the analytic spectral factor W and the forward generating process
dw and a backward realization for (H, {Ut},X),

(Σ̄)

{
dx̄ = −A′x̄dt+ B̄dw̄

dy = C̄x̄dt+Ddw̄
, (10.3.25)

corresponding to the coanalytic spectral factor W̄ and the backward generating
process dw̄, such that (10.3.18) hold. As for the models without observation noise,
Σ0 and Σ̄0, the forward and backward character of Σ and Σ̄, respectively, is again
a consequence of the splitting property (10.3.19).

Remark 10.3.12. We notice here that, by choosing K to be normalized as in
(10.3.7), we can take D to be the same in the forward representation (10.3.20a) and
in the backward representation (10.3.20b) . Moreover, we may actually choose the
nonzero part of D to be the same for all Markovian representations by, for example,
choosing the arbitrary orthogonal transformation of dw so that

[
B
D

]
=

[
B1 B2

R1/2 0

]
(10.3.26)

where R1/2 is the symmetric positive square root of R, and B2 is a full-rank matrix
chosen in some canonical way. This shows a drastic difference from the situation
in the discrete-time setting, where D could vary even in rank over the family of
minimal Markovian representations. Hence we will not encounter the fine structure
of degeneracy of Sections 8.8 and 9.3 in the continuous-time setting.

We close this section with the continuous-time versions of the results in Sec-
tion 6.6.

Theorem 10.3.13. Let (H, {Ut},X) be a Markovian representation with forward
realization Σ [Σ0] and backward realization Σ̄ [Σ̄0] and Markovian triplet (K,W, W̄ ).
Then, then given the representations of Corollary 10.3.3, the following statements
are equivalent

(i) X is observable,

(ii) (C,A) is observable,

(iii) the factorization W = NM−1 of (10.3.5a) is coprime.
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Symmetrically the following statements are equivalent

(iv) X is constructible,

(v) (C̄, A′) is observable,

(vi) the factorization W̄ = NM̄−1 of (10.3.5b) is coprime.

In particular, degW ≤ dimX with equality if and only if X is observable, and
deg W̄ ≤ dimX with equality if and only if X is constructible. Moreover, W [W̄ ] is
minimal if and only if its degree is minimal.

Proof. We consider only the first part. The second follows by symmetry. The
equivalence of (ii) and (iii) follows from, e.g., [35, p. 41], so it only remains to show
that (i) and (ii) are equivalent. To this end, let us first consider the stationary case.
Setting ξ = a′x(0), ξ ∈ X ∩ (H+)⊥ if and only if

a′x(0) ⊥ b′y(t) for all b ∈ Rm and t ≥ 0; (10.3.27)

i.e., E{y(t)x(0)′}a = 0 all t ≥ 0. However, since E{y(t)x(0)′}a = CeAtPa, this is
equivalent to

Pa ∈
∞⋂

t=0

kerCeAt, (10.3.28)

and consequently, since P is nonsingular, X∩(H+)⊥ = 0 if and only if
⋂∞

t=0 kerCeAt =
0; i.e., (C,A) is observable [62]. Next, consider the case that dy is a process with
independent increments. Then (10.3.27) needs to be replace by

a′x(0) ⊥ b′[y(t+ h)− y(t)] for all b ∈ Rm and t ≥ 0,

where h > 0. This is the same as E{[y(t + h) − y(t)]x(0)′}a = 0 all t ≥ 0, or,
equivalently,

∫ t+h

t

CeAtPadt = 0, for all t ≥ 0 and all h > 0,

which, in turn is equivalent, to (10.3.28). Hence (i) and (ii) are equivalent also in
this case.

Moreover, in view of the representations K = M̄M−1, W = NM−1 and
W̄ = NM̄−1, where the first is always coprime, the degrees of W and W̄ do not
exceed that of K. Moreover, degW = dimX if and only if W = NM−1 is coprime,
and degW = dimX if and only W̄ = NM̄−1 is coprime. Finally, given a spec-
tral factor W , let X be a corresponding observable Markovian splitting subspace.
Then degW = dimX. Since W is minimal if and only if X is minimal (Proposi-
tion 10.2.19), and X is minimal if and only if dimX is minimal (Corollary 7.6.3), W
is minimal if and only degW is minimal. The proof of the corresponding statement
for W̄ is analogous.

Corollary 10.3.14. Let (H, {Ut},X) be a Markovian representation with Marko-
vian triplet (K,W, W̄ ). Then the following conditions are equivalent.
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(i) X is minimal,

(ii) W is minimal and degW = dimX,

(iii) W̄ is minimal and deg W̄ = dimX.

Proof. By Definition 10.2.18,W is minimal if and only if condition (ii)′ on page 278,
or, equivalently, X ⊥ N+ holds. By Theorem 10.3.13, degW = dimX if and only if
X is observable. Hence the equivalence of (i) and (ii) follows from Theorem 10.2.9.
The equivalence of (i) and (iii) follows by symmetry.

We also have the continuous-time counterpart of Corollary 6.6.5.

Corollary 10.3.15. A stochastic realization Σ is minimal if and only if (i) (C,A)
is observable, (ii) (A,B) is reachable, and (iii) (CP +DB,A) is observable, where
P is the unique solution of the Lyapunov equation AP + PA′ +BB′ = 0.

Note that minimality of a stochastic realization is a condition that involves
both the forward and the backward realization. Moreover, the minimal realizations
are characterized by the numerator polynomial matrix N , W and W̄ having the
same zeros.

Theorems 10.3.13 and 10.2.9 suggest a procedure for determining a coprime
factorizaton of W = W̄K for any analytic rational spectral factor.

Corollary 10.3.16. Let W be an analytic rational spectral factor, let W = NM−1

be a coprime matrix fraction representation, and let M̄ be the solution of the matrix
polynomial factorization problem

M̄(−s)′M̄(s) = M(−s)′M(s) (10.3.29)

with all its zeros in the right half plane. Then the coprime factorization problem
W = W̄K has the solution K = M̄M−1 and W̄ = NM̄−1, where the latter repre-
sentation is coprime if and only if W is a minimal spectral factor.

Proof. Since W = NM−1 is coprime, the corresponding X is observable (Theo-
rem 10.3.13). Then K∗ and Q̄ are right coprime (Theorem 10.2.8); i.e., the fac-
torization W = W̄K is coprime. Then W̄ = NM−1 is coprime if and only if X
is minimal (Theorem 10.3.13), which in turn holds if and only if W is minimal
(Theorem 10.2.9).

10.4 Spectral factorization and Kalman filtering

In Section 7.7 we parametrized the family X of equivalence classes of minimal Marko-
vian splitting subspaces by a set P of covariance matrices; see Remark 7.7.6. One of
the main results of this section identifies the set P with the solution set of a certain
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linear matrix inequality and connects this with spectral factorization. This estab-
lishes a one-one correspondence between X and the family (of equivalence classes)
of minimal spectral factors, in harmony with Proposition 10.2.19.

Uniform choice of bases

Let (H, {Ut},X) be an n-dimensional proper Markovian representation with forward
and backward realizations, Σ and Σ̄, given by (10.3.24) and (10.3.25), respectively.
From (10.3.12a) we have, for t ≥ 0,

Ut(X)a′x(0) = a′eAtx(0), for all a ∈ Rn, (10.4.1)

where Ut(X) is the restricted shift (10.2.5).
Now, consider the partial ordering of minimal Markovian splitting subspaces

introduced in Section 7.7, and, in particular, the continuous-time version of Defini-
tion 8.6.1. Following Section 7.7, and in analogy with the theory of Section 8.6 for
the discrete-time setting, we introduce a uniform choice of bases for the family of
minimal Markovian splitting subspaces by first fixing a basis x+(0) in X+ and then
choosing the basis x(0) in any other minimal X so that

a′x(0) = EX a′x+(0), for all a ∈ Rn. (10.4.2)

As discussed in Section 7.7, the covariance matrices

P = E{x(0)x(0)′} (10.4.3)

of the corresponding bases form a set P that is partially order so that P1 ≤ P2 if
and only if X1 ≺ X2 (Definition 7.7.1 and Proposition 7.7.7).There is a one-one cor-
respondence between P and X, the set of equivalence classes of minimal Markovian
splitting subspaces. In fact, in this ordering, P has a minimal element P−, corre-
sponding to the predictor space X−, and a maximal element P+, corresponding to
the backward predictor space X+ (Theorem 7.7.3).

Theorem 10.4.1. Consider the family of minimal Markovian representations of
a stationary increment process dy with rational spectral density. Then all forward-
backward pairs (Σ, Σ̄) of stochastic realizations (10.3.24)–(10.3.25) corresponding to
a uniform choice of basis (10.4.2) have the same matrices A, C, and C̄. Conversely,
for any realization (10.3.24) [(10.3.25)] there is a choice of basis x+(0) in X+ so
that (10.4.2) holds.

Proof. Since dy has a rational spectral density, all finite-dimensional Markovian
splitting subspaces are finite-dimensional (Corollary 10.3.4 and Theorem 7.6.1).
Let X ∼ (S, S̄) be an arbitrary minimal Markovian splitting subspace. We want
to prove that (A,C, C̄) corresponding to X equals (A+, C+, C̄+) corresponding to
X+ ∼ (S+, S̄+). First note that (10.4.2) may be written

a′x(0) = Ô∗a′x+(0), for all a ∈ Rn, (10.4.4)
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where Ô is the restricted observability map of Corollary 7.6.5, which, in the present
finite-dimensional setting, is invertible (Corollary 7.6.6 and Theorem 10.2.9). More-
over, by Corollary 7.6.6, we have

Ut(X)Ô∗a′x+(0) = Ô∗Ut(X+)a′x+(0),

and, since the left member equals Ut(X)a′x(0) because of (10.4.4), this is, in view
of (10.4.1), equivalent to

a′eAtx(0) = Ô∗a′eA+tx+(0).

Again applying (10.4.4), this is seen to be the same as

a′eAtx(0) = a′eA+tx(0),

yielding a′eAtP = a′eA+tP for all a ∈ Rn and t ≥ 0, where P := E{x(0)x(0)′} is
nonsingular. This proves that A = A+.

Next, recall from the proof of Theorem 10.3.11 that

b′Cx(0) = lim
h↓0

ES b′[y(h)− y(0)] = lim
h↓0

EX b′[y(h)− y(0)]

for all b ∈ Rm. Since X is minimal, X ⊥ N+ (Theorem 10.2.9), and hence, since
S+ = (N+)⊥, we have X ⊂ S+ ⊕H⊥. Therefore, since b′[y(h)− y(0)] ⊥ H,

b′Cx(0) = lim
h↓0

ES+ b′[y(h)− y(0)] = EX b′C+x+(0) = b′C+x(0),

where the last equality follows from (10.4.2). This establishes that C = C+. A
symmetric argument shows that C̄ = C̄−. Then, taking X = X+, it follows that
C̄+ = C̄−, and hence C̄ = C̄+ for any minimal X. Finally, to prove the last
statement of the lemma, note that, since Ô∗ is invertible, x+(0) can be solved
uniquely in terms of x(0) from (10.4.4). If instead x̄(0) is given, x(0) can first be
determined from (10.3.13).

Spectral factorization, the Linear Matrix Inequality and set P

Since the matrices A, C,C̄ and R are invariant with the uniform choice of bases,
one should be able to determine them from the spectral density Φ. To show that
this is indeed the case, insert (10.3.23a) into (10.2.27) to obtain

Φ(s) = [C(sI −A)−1B +D][B′(−sI −A′)−1C′ +D′]

= C(sI −A)−1BB′(−sI −A′)−1C′ + C(sI −A)−1BD′

+DB′(−sI −A′)−1C′ +DD′. (10.4.5)

Now, let P be the unique symmetric solution of the Lyapunov equation AP +PA′+
BB′ = 0, given by (10.3.9), which we rewrite the form

BB′ = (sI −A)P + P (−sI −A′). (10.4.6)
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Inserting this into (10.4.5) then yields

Φ(s) = Φ+(s) + Φ+(−s), (10.4.7)

where, setting C̄ := CP +DB′ as in (10.5.57) and DD′ = R as in (10.3.21),

Φ+(s) = C(sI −A)−1C̄′ +
1

2
R. (10.4.8)

An analytic function Φ+ satisfying (10.4.7), where Φ is a spectral density, is called
positive real, and hence we shall refer to (10.4.8) as the positive real part of Φ. We
note that Φ+ can be determined from Φ by partial fraction expansion.

From this construction we also have the following simple but important ob-
servation.

Proposition 10.4.2. For any rational analytic spectral factor W of Φ,

degW ≥ deg Φ+ =
1

2
deg Φ, (10.4.9)

where Φ+ is the positive real part of Φ. If W is a minimal spectral factor, degW =
deg Φ+.

Proof. Let (A,B,C,D) be a minimal realization of W . Then, if A is n × n,
degW = n. From the construction above we have deg Φ+ ≤ n, and hence degW ≥
deg Φ+. From (10.4.8) we have deg Φ = 2 degΦ+. In view of Theorem 10.3.13, to
prove the last statement we only need to show that the equality can be attained in
(10.4.9). To this end, let now (C,A, C̄, 1

2R) be a minimal realization of Φ+. Then,
the Markovian splitting subspace X with the basis x(0) given by (10.3.12a) yields
the stochastic realization (10.3.24) with transfer function (10.3.23a). Then, if A is
n× n, dimX = n = dimΦ+, and consequently degW = n by Theorem 10.3.13 and
(10.4.9).

Conversely, suppose that Φ+ is given, and let (10.4.8) be a minimal realization
of Φ+; i.e., (C,A) is observable and (A, C̄′) is reachable, or, equivalently, (C,A)
and (C̄, A′) are observable. Then it follows from (10.4.7) that

Φ(s) =
[
C(sI −A)−1 I

] [0 C̄′

C̄ R

] [
(−sI −A′)−1C′

I

]
. (10.4.10)

However, in view of the identity

−AP − PA′ = (sI −A)P + P (−sI −A′),

we have, for all symmetric P

0 =
[
C(sI −A)−1 I

] [−AP − PA′ −PC′

−CP 0

] [
(−sI −A′)−1C′

I

]
, (10.4.11)
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which added to (10.4.10) yields

Φ(s) =
[
C(sI −A)−1 I

]
M(P )

[
(−sI −A′)−1C′

I

]
, (10.4.12)

where M : Rn×n → R(n+m)×(n+m) is the linear map

M(P ) =

[
−AP − PA′ C̄′ − PC′

C̄ − CP R

]
. (10.4.13)

If therefore P satisfies the Linear Matrix Inequality

M(P ) ≥ 0, (10.4.14)

there is a minimal factorization

M(P ) =

[
B
D

] [
B′ D′] , (10.4.15)

where the factor

[
B
D

]
is unique modulo an orthogonal transformation from the left.

Inserted into (10.4.12), this yields

W (s)W (−s)′ = Φ(s), (10.4.16)

where
W (s) = C(sI −A)−1B +D. (10.4.17)

Theorem 10.4.3 (Positive Real Lemma). The rational matrix function Φ+

with minimal realization (10.4.8) is positive real if and only if the Linear Matrix
Inequality (10.4.14) has a symmetric solution P .

Therefore the equations

AP + PA′ +BB′ = 0 (10.4.18a)

PC′ +BD′ = C̄′ (10.4.18b)

DD′ = R (10.4.18c)

are called the positive-real-lemma equations.

Proof. Suppose that P is a symmetric matrix satisfying (10.4.14). Then M(P )
can be factored as in (10.4.15) to yield a spectral factor (10.4.17). Hence

[
C(sI −A)−1 I

]
M(P )

[
(−sI −A)−1C′

I

]
= W (s)W (−s)′,

from which we subtract the identity (10.4.11) to yield

Φ+(s) + Φ+(−s) = W (s)W (−s)′. (10.4.19)
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Hence Φ+ is positive real. Conversely, if Φ+ is positive real, there is a spectral
factor W that we may take to be minimal so that (10.4.19). Let

W (s) = H(sI − F )−1B +D (10.4.20)

be a minimal realization. Moreover, let P be the unique solution of the Lyapunov
equation FP+PF ′+BB′ = 0 and setG := PH ′+BD′. Then, formingW (s)W (−s)′
as in (10.4.5), we obtain (10.4.7), where now the positive part of Φ becomes

Φ+(s) = H(sI −A)−1G+
1

2
DD′.

However, then there must be a nonsingular matrix T such that

(H,F,G) = (CT−1, TAT−1, T C̄′).

Then, choosing T = I, P satisfies the positive-real lemma equations (10.4.18), and
hence M(P ) ≥ 0.

Theorem 10.4.4. Given a minimal realization (10.4.8) of the positive real part
Φ+ of the spectral density Φ, let M be the linear map given by (10.4.13). Then
there is a one-one correspondence between the symmetric solutions of the the linear
matrix inequality (10.4.14) and the family of equivalence classes of minimal spectral

factors of Φ. In fact, given a symmetric solution P of (10.4.14), take

[
B
D

]
to be

the unique (mod O) full-rank factor of M(P ) as in (10.4.15) and let W (s) be given
by (10.4.17). Then W is a minimal spectral factor. Viceversa, given an equivalence
class [W ] of W as in (10.4.17), there is a unique symmetric P > 0 solving (10.4.18)
and hence (10.4.14).

Proof. Let P be a solution of (10.4.14). If the matrix A is n × n, deg Φ+ = n.
Then the spectral factor (10.4.17), obtained by the construction above, satisfies
degW ≤ n. Hence, by Proposition 10.4.2, W is minimal. Conversely, given a
minimal spectral factor (10.4.17) with minimal realization (10.4.20), proceed as in
the end of the proof of Theorem 10.4.3 to show that there is a unique P such that
M(P ) ≥ 0.

We are now in a position to prove the following theorem, which establishes
every symmetric solution P of (10.4.14) as a legitimate state covariance.

Theorem 10.4.5. The ordered set P of state covariances (10.4.3) is precisely the
set of all symmetric solutions of the linear matrix inequality (10.4.14).

Proof. By definition, each P ∈ P corresponds to a minimal stochastic realization
(10.3.24). Therefore, Theorems 10.3.9 and 10.3.11 imply that P satisfies (10.4.18)
for some (B,D), and hence (10.4.14). Conversely, suppose that P satisfies the lin-
ear matrix inequality (10.4.14). Let W be a corresponding minimal spectral factor
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(10.4.17), prescribed by Theorem 10.4.4. Then, choosing an arbitrary dz of appro-
priate dimension, (10.2.43) defines a generating process dw, which together with
(A,B,C,D) yields a forward realization (10.3.24) with a state process (10.3.12a)
such that x(0) has the covariance matrix P and is a basis in the corresponding
splitting subspace X (Theorem 10.3.9). Now, dimX = degW , and hence, since W
is minimal, X is minimal (Corollary 10.3.14). Then, by Theorem 10.4.1, there is a
basis x+(0) in X+ and a corresponding stochastic realization Σ+ having parameters
(A,C, C̄) and a state process x+ such that (10.4.2) holds. Hence P ∈ P, as claimed.

In particular, it follows from this theorem and Theorem 10.4.5 that two finite-
dimensional minimal Markovian splitting subspaces are equivalent (in the sense
defined in Section 7.7) if and only if they have the same analytic (coanalytic) spectral
factor W (W̄ ) mod O.

Theorem 10.4.6. The family P is a closed, bounded, convex set with a maximal
element P+ and a minimal element P−. Here P+ = E{x+(0)x+(0)}, where x+(0)
is the selected basis in the backward predictor space X+, and P− = E{x−(0)x−(0)},
where x−(0) is the uniformly chosen basis in the predictor space X−, i.e., a′x−(0) =
EX− a′x+(0) for all a ∈ Rn.

Proof. It follows immediately from the linear matrix inequality (10.4.14) that P is
closed and convex. Proposition 7.7.5 states that the partially ordered set P and X are
isomorphic. Therefore, since X has a maximal element, X+, and a minimal element,
X−, given by (7.7.9), there are corresponding P+ and P− with the properties stated.
From this it also follows that P is bounded.

The algebraic Riccati inequality

Recall that a rational spectral density Φ is a rational m ×m matrix function that
is positive semidefinite on the imaginary axis I and parahermitian in the sense that

Φ(−s) = Φ(s)′.

As before, we assume that the positive real part Φ+ has the minimal realization

Φ+(s) = C(sI −A)−1C̄′ +
1

2
R, (10.4.21)

where R := Φ(∞).
From now on we shall also assume that the spectral density Φ is coercive; i.e.,

Φ has no zeros on the imaginary axis I including the points at infinity. In particular
this implies that R > 0. Then the set P can be identified with the symmetric
solutions of the algebraic Riccati inequality

Λ(P ) ≤ 0, (10.4.22)
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where Λ : Rn×n → Rn×n is the quadratic matrix function

Λ(P ) = AP + PA′ + (C̄ − CP )′R−1(C̄ − CP ) (10.4.23)

where (A,C, C̄) are given by (10.4.21). In fact, since R > 0, M(P ) can be block
diagonalized as [

I T
0 I

]
M(P )

[
I 0
T ′ I

]
=

[
−Λ(P ) 0

0 R

]

where
T = −(C̄ − CP )

′

R−1,

from which it follows that M(P ) ≥ 0 if and only if Λ(P ) ≤ 0. Moreover, for any
P ∈ P,

p := rank M(P ) = m+ rank Λ(P ) ≥ m.
Consequently, in view of (10.4.12), (10.4.15) and (10.4.17), those P ∈ P that cor-
respond to square m × m specttral factors W , and hence to internal Markovian
representations, are precisely those that satisfy the Algebraic Riccati Equation

Λ(P ) = 0. (10.4.24)

Proposition 10.4.7. Suppose R := Φ(∞) > 0. Then

P = {P | P ′ = P ; Λ(P ) ≤ 0}. (10.4.25)

Moreover, the subset P0 ⊂ P corresponding to internal Markovian splitting subspaces
is given by

P0 = {P | P ′ = P ; Λ(P ) = 0}. (10.4.26)

It is convenient in this situation to fix a representative in each equivalence
class of spectral factors by choosing the arbitrary orthogonal transformation in the
factorization of (10.4.15) so that (10.3.26) holds. Then (10.4.18b) can be solved for
B1; i.e.,

B1 = (C̄ − PC)
′

R−1/2, (10.4.27)

which inserted in (10.4.18b) yields

Λ(P ) = −B2B
′

2. (10.4.28)

Now, to each P ∈ P there corresponds in a one-to-one fashion an element in X;
i.e., an equivalence class of minimal Markovian splitting subspaces with a forward
realization {

dx = Axdt+B1du+B2dv

dy = Cxdt+R1/2du
(10.4.29)

which is uniquely determined except for the arbitrariness of the possible external

part of the driving noise dw =

[
du
dv

]
. Clearly, the internal realizations (10.4.29) are

precisely those for which B2 = 0 so that (10.4.24) holds.
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Kalman filtering

Let Σ be a linear observable (but not necesserily minimal) stochastic system (10.3.24)
with state covariance P , and let H−

[0,t](dy) be the subspace generated by the ob-

served process dy on the finite interval [0, t]. Then the linear minimum-variance
estimate {x̂(t) | t ≥ 0} defined by

a′x̂(t) = E
H

−

[0,t]
(dy)

a′x(t), for all a ∈ Rn and t ≥ 0, (10.4.30)

is given by the Kalman filter

dx̂ = Ax̂dt+K(t)[dy − Cx̂dt], x̂(0) = 0, (10.4.31)

where the gain
K(t) = [Q(t)C′ +BD′]R−1 (10.4.32)

is determined by the error covariance matrix function

Q(t) = E{[x(t)− x̂(t)][x(t) − x̂(t)]′}, (10.4.33)

which satisfies the matrix Riccati equation

{
Q̇ = AQ+QA′ − (QC

′

+BD′)R−1(QC′ +BD′)′ +BB′

Q(0) = P
. (10.4.34)

(See,e.g., [62].) It is also well-known and is demonstrated below (Corollary 10.4.10),
that, under the present conditions, Q(t) tends to a limit Q∞ ≥ 0 as t → ∞, thus
defining a steady-state Kalman filter

dx̂ = Ax̂dt+K∞[dy − Cx̂dt], (10.4.35)

where the gain K∞ is constant, the system is defined on the whole real line, and

a′x̂∞(t) = EUtH
−

a′x(t), for all a ∈ Rn and all t ∈ R. (10.4.36)

Let the stationary process represented by this system be denoted x̂∞(t). Then,
because the innovation process

dν = R1/2[dy − Cx̂∞dt] (10.4.37)

is a Wiener process (see, e.g., [80] for details), (10.4.35) defines a stochastic realiza-
tion {

x̂∞ = Ax̂∞dt+K∞R−1/2dν

dy = Cx̂∞dt+R1/2dν
(10.4.38)

of dy on the real line. By assumption, the Markovian splitting subspace X defined
by Σ is observable, and hence Proposition 7.4.13 and Corollary 7.4.14 imply that

EH−

X = X−. (10.4.39)
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Consequently, since

EH−

a′x(0) = a′x̂∞(0), for all a ∈ Rn, (10.4.40)

x̂∞(0) is a generator of X−. As explained in Section 10.1, x̂∞(0) is a basis if and
only if the model (10.4.38) is reachable. We shall prove that reachability of (10.4.38)
is equivalent to minimality of the underlying model Σ.

Proposition 10.4.8. An observable system Σ is a minimal realization of dy if and
only if its steady state Kalman filter (10.4.38) is reachable.

Proof. Let the dimension of X− be n. Then all minimal X have this dimension
(Theorem 7.6.1). We have already seen above that (10.4.38) is reachable if and
only if the dimension of x̂∞(0) is n. However, dimX ≤ dimx(0) = dim x̂∞(0), and
consequently (10.4.38) is reachable if and only if dimX ≤ n, from which the stated
result follows.

Now, suppose that the linear stochastic system Σ, regarded as a realization
of dy, is minimal. Then, it follows from what has just been discussed that the
steady-state Kalman filtering estimate x̂∞ equals x−, the (forward) state process
corresponding to the predictor space X− in a uniform basis. To see this, com-
pare (10.4.40) with (7.7.15) in Proposition 7.7.7, remembering that, by splitting,

EH−

λ = EX− λ for all λ ∈ S̄ ⊃ X.
With Σ being an arbitrary minimal stochastic realization, we would like to

express the Kalman-filtering equations (10.4.32) and (10.4.34) in terms of the in-
variant parameters (A,C, C̄, R) of the realization (10.4.21) of Φ+. To this end,
introduce a change of variables

Π(t) := E{x̂(t)x̂(t)′} = P −Q(t) (10.4.41)

and use the positive real lemma equations (10.4.18) to transform (10.4.32) and
(10.4.34) into

K(t) = [C̄ − CΠ(t)]R−1 (10.4.42)

and

Π̇ = Λ(Π), Π(0) = 0, (10.4.43)

where Λ is defined by (10.4.23). The matrix Riccati equation (10.4.43) is invariant
in the sense that it is independent of the particular choice of model Σ, in harmony
with the property (10.4.43).

Proposition 10.4.9. The matrix Riccati equation (10.4.43) has a unique solution
for t ∈ (0,∞). Moreover, for each P ∈ P,

0 ≤ Π(τ) ≤ Π(t) ≤ P, τ ≤ t. (10.4.44)

Finally, as t→∞, Π(t)→ P− ∈ P0.
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Proof. First note that P−Π(t) = Q(t) ≥ 0 for all t ≥ 0. This establishes the upper
bound. Next, differentiate (10.4.43) to obtain the matrix differential equation

Π̈ = ΓΠ̇ + Π̇Γ′, Π̇(0) = Λ(0) = C̄R−1C̄′,

where Γ := A− (C̄ − CΠ)′R−1C. Integrating this, we obtain

Π̇(t) =

∫ t

0

Ψ(t, τ)C̄R−1C̄′Ψ(t, τ)′dτ ≥ 0,

where Ψ is the Green’s function satisfying

∂

∂t
Ψ(t, τ) = Γ(t)Ψ(t, τ), Ψ(τ, τ) = I.

Consequently, Π is monotone nondecreasing and bounded from above. Therefore,
as t → ∞, Π(t) tends to a limit Π∞, which must satisfy Π∞ ≤ P for all P ∈ P.
However, Λ(Π∞) = 0; i.e., Π∞ ∈ P0 ⊂ P. Consequently, P = P−, as claimed.

In view (10.4.41), we immediately have the following corollary of Proposi-
tion 10.4.9.

Corollary 10.4.10. The matrix Riccati equation (10.4.34) has a unique solution
for t ∈ (0,∞), and Q(t) tends to a limit Q∞ ≥ 0 as t→∞.

Analogously, starting from a minimal backward realization (10.3.25), we can
define a backward Kalman filter, the steady-state version of which can be identified
with the backward realization of X+. This yields a dual matrix Riccati equation

˙̄Π = Λ̄(Π̄), Π̄(0) = 0, (10.4.45)

where
Λ̄(P̄ ) = A′P̄ + (P̄A+ (C − C̄(P̄ )′R−1(C − C̄(P̄ ). (10.4.46)

A symmetric argument then shows that

Π̄(t)→ P̄+ = (P+)−1 (10.4.47)

and P̄+ ≤ P̄ , or, equivalently, P ≤ P+ or all P ∈ P.

10.5 Forward and backward stochastic realizations
(the general case)

In Section 10.3, given a Markovian representation (H, {Ut},X) of finite dimension
n, we constructed a state process {x(t); t ∈ R} taking values in Rn and forward and
backward differential equation representations for it. If (H, {Ut},X) is a Markovian
representation of a stationary process y, this construction leads to pair of forward
and backward realizations (10.3.17). Similarly if (H, {Ut},X) corresponds to a
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stationary increment process dy, the construction leads to a pair of realizations
(10.3.24)–(10.3.25). This corresponds to the situation where y (dy) has a rational
spectral density (incremental spectral density).

On the other hand, the geometric theory of Markovian representations is ab-
solutely independent of any restrictions of the dimension of X. Moreover, many
engineering problems involve random processes with nonrational spectra, e.g. tur-
bulence, wave spectra, gyroscopic noise, etc. The natural question to ask at this
point is thus the following. Given a Markovian splitting subspace of an infinite
dimension, when is it possible to obtain differential equation representations of the
type described above?

This is basically a representation problem in which one seeks a global descrip-
tion in terms of local or infinitesimal data. As such it has no meaningful solution
in general. Obtaining differential equation representations for a process with non-
rational spectrum necessarily involves restrictions of a technical nature (essentially
smoothness conditions) on the underlying spectral factors; such restrictions do not
occur in discrete-time setting of Chapter 8. The elucidation of these conditions is
one of the goals of this section. Note that there are several possible mathematical
frameworks for infinite-dimensional Markov processes as solutions of stochastic dif-
ferential equations, all of which coincide when specialized to the finite- dimensional
case. Here we shall work in a setting which looks most natural to us, but other
approaches are possible.

Forward state representation

Suppose that (H, {Ut},X) is an infinite-dimensional, proper Markovian representa-
tion with the forward generating process dw. As in Section 8.7 (p. 220) we want
to construct an X-valued stochastic process, where X is define from X via an iso-
morphism T : X → X such that 〈Tξ, T η〉X = 〈ξ, η〉X. To this end, we define X

as

X = (Iw)−1X, (10.5.1)

where Iw is defined (10.2.9); i.e.,

Iwf =

∫ ∞

−∞
f(−t)dw(t).

Now, recalling that (Iŵ)−1X = H(K) and that (Iŵ)−1Iw = F, the (L2) Fourier
transform, FX = H(K) ⊂ H2

p ; see (10.2.10) and Theorem 3.5.6. Consequently, f
vanishes on the negative real axis, so, as T ∗ = T−1 = Iw|X, we actually have

T ∗f =

∫ 0

−∞
f(−t)dw(t). (10.5.2)

We recall from Section 10.2 that

Ut(X) = EX Ut|X (10.5.3)
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defines a strongly continuous contraction semigroup {Ut(X); t ≥ 0} satisfying
(7.5.3). The infinitesimal generator

Γ = lim
h→0+

Ut(X)− I
h

is a closed (unbounded) linear operator with a domain D(Γ) that is dense in X; see,
e.g., [129, 71]. Moreover, the adjoint Γ∗ is the infinitesimal generator of the adjoint
semigroup {Ut(X)∗; t ≥ 0} [71, p. 251].

In analogy with the construction in Section 8.7, we define

A := TΓ∗T ∗, (10.5.4)

which is then the infinitesimal generator of a contraction semigroup which we denote
{eAt; t ≥ 0}. Likewise, A∗ is the infinitesimal generator of the adjoint semigroup
which we denote {eA∗t; t ≥ 0}. Consequently,

eAt = TUt(X)∗T ∗ and eA∗t := TUt(X)T ∗. (10.5.5)

The domains D(A) and D(A∗) are both dense in X.
Now, for an arbitrary ξ ∈ X, let f ∈ X be the corresponding point in the state

space; i.e., f = Tξ. Then, in view of (10.5.2),

Utξ =

∫ 0

−∞
f(−τ)dw(τ + t) =

∫ t

−∞
f(t− τ)dw(τ). (10.5.6)

Then, since S = H−(dw), (7.5.5a) yields

Ut(X)ξ =

∫ 0

−∞
f(t− τ)dw(τ),

and consequently

(eA∗tf)(τ) =

{
f(t+ τ) for τ ≥ 0,

0 for τ < 0.
(10.5.7)

Therefore, whenever defined, A∗f is the derivative of f in the L2 sense.
Now, by a standard construction, define Z to be the domain D(A∗) of the

unbounded operator A∗ equipped with the graph topology

〈f, g〉Z = 〈f, g〉X + 〈A∗f,A∗g〉X. (10.5.8)

Since A∗ is a closed operator with a dense domain, Z is a Hilbert space that is
densely embedded in X. The topology of Z is stronger than that of X, and therefore
all continuous linear functionals on X are continuous on Z as well. Consequently, we
can think of the dual space X∗ as embedded in the dual space Z∗. Then, identifying
X∗ with X we have

Z ⊂ X ⊂ Z∗, (10.5.9)

where Z is dense in X, which in turn is dense in Z∗. We shall write (f, f∗) to denote
the value of the linear functional f∗ ∈ Z∗ evaluated at f ∈ Z (or, by reflexivity,
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the value at f∗ of f regarded as a functional on Z∗. Clearly, the bilinear form
(f, f∗) coincides with the inner product 〈f, f∗〉X whenever f∗ ∈ X. Since A∗f is
the derivative of f , Z is a subspace of the Sobolev space H1(R+), and Z∗ is a space
of distributions (see, e.g., [5]).

In same way, we define Z as the space obtained by equipping D(Γ) with the
graph topology

〈ξ, η〉Z = 〈ξ, η〉X + 〈Γξ,Γη〉X. (10.5.10)

Then Z is continuously embedded in the splitting subspace X, and (10.5.9) corre-
sponds to

Z ⊂ X ⊂ Z∗. (10.5.11)

Returning to the setting of (10.5.9), define Q : Z→ X to be the differentiation
operator on Z. Then Qf = A∗f for all f ∈ Z, but, since ‖Qf‖X ≤ ‖f‖Z, Q is a
bounded operator (in the Z-topology). Its adjoint Q∗ : X→ Z∗ is the extension of
A to X, because (f,Q∗g) = 〈A∗f, g〉X. Since {eA∗t; t ≥ 0} is a strongly continuous
contraction semigroup, Q is dissipative; i.e., 〈Qf, f〉X ≤ 0 for all f ∈ Z, and I −Q
maps Z onto X; i.e.,

(I −Q)Z = X (10.5.12)

[129, p. 250]. Moreover, in view of the dissipative property,

‖(I −Q)f‖2X ≥ ‖f‖2X + ‖Qf‖2X, (10.5.13)

and therefore I −Q is injective. Consequently, (I −Q)−1 : X→ Z is defined on all
of X, and, as can be seen from (10.5.13), it is a bounded operator. Likewise, the
adjoint (I −Q∗)−1 is a bounded operator mapping Z∗ onto X. Finally,

‖f‖2Z ≤ ‖(I −Q)f‖2X ≤ 2‖f‖2Z. (10.5.14)

In fact, the first inequality is precisely (10.5.13), whereas the second follows from
the inequality (a− b) ≤ 2(a+ b)2.

For later reference, we state the following simple lemma.

Lemma 10.5.1. A subset M is dense in Z if and only if (I −Q)M is dense in X.

Proof. Suppose that (I −Q)M is dense in X. Then (10.5.12) and the first of the
inequalities (10.5.14) imply that M is dense in Z. Conversely, if M is dense in Z,
(10.5.12) and the second of the inequalities (10.5.14) imply that (I −Q)M is dense
in X.

Let f ∈ Z. Since Z is a subspace of the Sobolev space H1(R+), which is
contained in the space of continuous functions (with a stronger topology) [5, p.
195], we can evaluate f at each point, and consequently, (10.5.7) yields

f(t) = (eA∗tf)(0). (10.5.15)

However, X is our state space, and therefore we use (10.5.12) to reformulate (10.5.15)
as

f(t) = [(I −Q)−1eA∗t(I −Q)f ](0). (10.5.16)
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In fact, since A∗ commutes with eA∗t, then so does (I −Q). Now, since (I −Q)−1

maps X to Z,
B∗g = [(I −Q)−1g](0) (10.5.17)

defines a bounded map B∗ : X → Rp. Let B : Rp → X be its adjoint. Then
(10.5.16) may be written

f(t) = B∗eA∗t(I −Q)f, (10.5.18)

and therefore, if ek is the kth unit axis vector in Rp,

fk(t) = 〈B∗eA∗t(I −Q)f, ek〉Rp = 〈(I −Q)f, eAtBek〉X, k = 1, 2, . . . , p;

that is,
fk(t) = 〈g, eAtBek〉X, k = 1, 2, . . . , p, (10.5.19)

where g := (I − Q)f . This together with (10.5.6) yields, for each ξ ∈ Z, the
representation

Utξ =

p∑

k=1

∫ t

−∞
〈g, eA(t−τ)Bek〉Xdwk(τ), (10.5.20)

where g = (I −Q)Tξ.
Now define the X-valued stochastic integral

x(t) =

∫ t

−∞
eA(t−τ)Bdw(τ) (10.5.21)

for each t ∈ R in the weak sense described in Section 8.7 via the recipe

〈g, x(t)〉X :=

p∑

k=1

∫ t

−∞
〈g, eA(t−τ)Bek〉Xdwk(τ). (10.5.22)

In fact, since (10.5.19) is square-integrable by construction, the right member of
(10.5.19) is well-defined. Then, for any ξ ∈ Z, (10.5.20) yields

Utξ = 〈g, x(t)〉X, (10.5.23)

where g := (I − Q)Tξ is the corresponding function in X. Consequently, for each
ξ ∈ Z there is a g ∈ X such that ξ = 〈g, x(0)〉X; i.e., x(0) is a (weak) exact generator
of Z. Moreover since Z is dense in X,

cl {〈g, x(0)〉X | g ∈ X} = X; (10.5.24)

i.e., x(0) is a (weak) generator of X that is not exact. Moreover, if fi := (I−Q)−1gi,
i = 1, 2, a straight-forward calculation yields

E{〈g1, x(0)〉X〈g2, x(0)〉X} = 〈f1, f2)〉X = 〈g1, P g2〉X, (10.5.25)

where P : X→ X is the state covariance operator

P = (I −A)−1(I −A∗)−1. (10.5.26)
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Theorem 10.5.2. Let (H, {Ut},X) be a proper Markovian representation with
the forward generating process w, and let X := (Iw)−1X. Let the operators A and
B be defined by (10.5.4) and (10.5.17), respectively, and let {x(t)}t∈R be the X-
valued stochastic process defined in the weak sense via (10.5.22). Then, if Γ is the
infinitesimal generator of Ut(X),

{〈g, x(0)〉X | g ∈ X} = D(Γ) ⊂ X, (10.5.27)

where D(Γ) is dense in X. In fact, for any ξ ∈ D(Γ), there is a g ∈ X such that

Utξ = 〈g, x(t)〉X, (10.5.28)

and it is given by g := (I − A∗)Tξ. The pair (A,B) is reachable in the sense that
∩∞0 kerB∗eA∗t = 0. Finally the covariance operator (10.5.26) satisfies the Lyapunov
equation

AP + PA∗ +BB∗ = 0. (10.5.29)

Proof. It only remains to prove that (A,B) is reachable and tha (10.5.29) holds. In
view of (10.5.18), g ∈ ∩t≥0 kerB∗eA∗t holds if and only if f = 0; i.e., g = 0, which
proves reachability. To prove that (10.5.26) satisfies the the Lyapunov equation
(10.5.29), recallA∗f = Qf for all f ∈ D(A∗), whereQ is the differentiation operator.
Let g1, g2 ∈ X. Then fi = (I −A∗)−1gi ∈ Z, i = 1, 2, and

〈A∗f1, f2〉X + 〈f1, A∗f2〉X =

∫ ∞

0

(ḟ1f
′
2 + f1ḟ

′
2)dt = −f1(0)f2(0)′. (10.5.30)

Also, in view of (10.5.18),

〈g1, BB∗g2〉X = 〈B∗(I −Q)f1, B
∗(I −Q)f2〉Rp = f1(0)f2(0)′. (10.5.31)

Now adding (10.5.30) and (10.5.31) we obtain

〈g1, (AP + PA∗ +BB∗)g2〉X = 0,

where P := (I −A)−1(I −A∗)−1, as claimed.

Backward state representation

To develop a backward state representation, define the operator T̄ to be restriction
of (Iw̄)−1 to X, where Iw̄ is given by (10.2.11); i.e.,

T̄ ∗f̄ =

∫ ∞

−∞
f̄(−t)dw(t).

Then, setting X̄ := T̄X, T̄ : X → X̄ is an isomorphism such that 〈T̄ ξ, T̄ η〉X̄ =
〈ξ, η〉X. Since I ˆ̄w, defined by (10.2.12), equals Iw̄F−1, where F is the (L2) Fourier
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transform, FX̄ = H̄(K∗) ⊂ H̄2
p , f̄ vanishes on the negative real axis, so we actually

have

T̄ ∗f̄ =

∫ ∞

0

f̄(−t)dw̄(t). (10.5.32)

Moreover,
Ā := T̄ΓT̄ ∗ (10.5.33)

and its adjoint Ā∗ are the infinitesimal generators of two adjoint semigroups which
we denote

eĀt := T̄Ut(X)T̄ ∗ and eĀ∗t := T̄Ut(X)∗T̄ ∗, (10.5.34)

and the domains D(Ā) and D(Ā∗) are clearly dense in X̄.
For an arbitrary ξ ∈ X,

Utξ =

∫ ∞

t

f̄(t− τ)dw̄(τ), (10.5.35)

where f̄ = T̄ ξ, and therefore

Ut(X)∗ξ = ES

∫ ∞

−t

f̄(−t− τ)dw̄(τ) =

∫ ∞

0

f̄(−t− τ)dw̄(τ).

Consequently,

(eĀ∗tf̄)(τ) =

{
f̄(−t+ τ) for τ ≥ 0,

0 for τ < 0,
(10.5.36)

so Ā∗ is a differentiation operator. Hence, defining Z̄ to be D(Ā∗) equipped with
the corresponding graph topology and Z̄ := T̄ ∗Z̄ to be the corresponding space of
stochastic variables, we may define an operator Q̄ : Z̄→ X̄ such that Q̄f̄ = Ā∗f̄ for
all f̄ ∈ Z̄. Moreover, for all f̄ ∈ Z̄, (10.5.36) yields

f̄(−t) = (eĀ∗tf̄)(0) = [(I − Q̄)−1eĀ∗t(I − Q̄)f̄)(0), t ≥ 0. (10.5.37)

Now, let B̄ : Rp → X̄ be defined via its adjoint

B̄∗ḡ = [(I − Q̄)−1ḡ](0). (10.5.38)

Then, in view of (10.5.37),

f̄(−t) = B̄∗eĀ∗t(I − Q̄)f̄ .

Therefore, analogously to the forward setting,

f̄k(−t) = 〈g, eĀtB̄ek〉X̄, k = 1, 2, . . . , p, (10.5.39)

where ḡ := (I − Q̄)f̄ . Consequently, in view of (10.5.35), for each ξ ∈ Z̄,

Utξ =

p∑

k=1

∫ ∞

t

〈ḡ, eĀtB̄ek〉X̄dw̄k(τ) (10.5.40)
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with ḡ := (I − Q̄)T̄ ξ ∈ X̄, which may also be expressed in the form

Utξ = 〈ḡ, x̄(t)〉X̄ (10.5.41)

via

〈ḡ, x̄(t)〉X̄ :=

p∑

k=1

∫ ∞

t

〈ḡ, eĀtB̄ek〉Xdw̄k(τ). (10.5.42)

Now the weakly defined X̄-valued stochastic process {x̄(t)}t∈R has the representation

x̄(t) =

∫ ∞

t

eĀ(τ−t)B̄dw̄(τ). (10.5.43)

Analogously to the forward setting, x̄(0) is a (weak) exact generator of Z̄ and
a (weak) generator (that is not exact) of X in the sense that

cl
{
〈ḡ, x̄(0)〉X̄ | ḡ ∈ X̄

}
= X. (10.5.44)

Moreover, if f̄i := (I − Q̄)−1ḡi, i = 1, 2, a straight-forward calculation yields

E{〈ḡ1, x(0)〉X̄〈ḡ2, x(0)〉X̄} = 〈f̄1, f̄2)〉X̄ = 〈ḡ1, P̄ ḡ2〉X̄, (10.5.45)

where P̄ : X̄→ X̄ is the state covariance operator

P̄ = (I − Ā∗)−1(I − Ā)−1. (10.5.46)

We can now establish the backward version of Theorem 10.5.2.

Theorem 10.5.3. Let (H, {Ut},X) be a proper Markovian representation with the
backward generating process w̄, and let X̄ := (Iw̄)−1X. Let the operators Ā and
B̄ be defined by (10.5.33) and (10.5.38), respectively, and let {x̄(t)}t∈R be the X̄-
valued stochastic process defined in the weak sense via (10.5.42). Then, if Γ is the
infinitesimal generator of Ut(X),

{
〈ḡ, x̄(0)〉X | ḡ ∈ X̄

}
= D(Γ∗) ⊂ X, (10.5.47)

where D(Γ∗) is dense in X. In fact, for any ξ ∈ D(Γ∗), there is a ḡ ∈ X̄ such that

Utξ = 〈ḡ, x̄(t)〉X̄, (10.5.48)

and it is given by ḡ := (I − Ā∗)T̄ ξ. The pair (Ā, B̄) is reachable in the sense that
∩∞0 ker B̄∗eĀ∗t = 0. Finally the covariance operator (10.5.46) satisfies the Lyapunov
equation

ĀP̄ + P̄ Ā∗ + B̄B̄∗ = 0. (10.5.49)

Remark 10.5.4. To establish a connection between the forward and the backward
setting, define the isomorphism R := T T̄ ∗ : X̄→ X. Then, if ξ = T ∗f = T̄ ∗f̄ ,

f = Rf̄. (10.5.50)

Moreover,
ReĀtR∗ = eA∗t, A∗R = RĀ. (10.5.51)
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Stochastic realizations of a stationary process

Given an infinite-dimensional, proper Markovian representation (H, {Ut},X) of an
m-dimensional, stationary stochastic process {y(t)}t∈R, is it possible to construct
a stochastic realization based on the forward state representation (10.5.21)? From
Theorem 10.5.2 it is clear that a necessary and sufficient condition for this is that

yk(0) ∈ D(Γ), k = 1, 2, . . . ,m, (10.5.52)

where Γ is the infinitesimal generator of the semigroup {Ut(X)}. In the same way,
Theorem 10.5.3 implies that there is a stochastic realization based on the backward
state representation (10.5.43) if and only if

yk(0) ∈ D(Γ∗), k = 1, 2, . . . ,m. (10.5.53)

Proposition 10.5.5. Let (H, {Ut},X) be a proper Markovian representation with
analytic spectral factor W and coanalytic spectral factor W̄ , and let Γ is the in-
finitesimal generator of the semigroup {Ut(X)}. Then the condition (10.5.52) holds
if and only if the rows of iωW (iω)−N belong to H2

p for some constant m×p matrix

N . Similarly, the condition (10.5.53) holds if and only if the rows of iωW̄ (iω)− N̄
belong to H̄2

p for some constant m× p matrix N̄ .

Proof. Clearly condition (10.5.52) is equivalent to F∗a′W ∈ D(A∗) for all a ∈ Rm,
which in turn is equivalent to the condition that iωW (iω) − N belong to H2

p for
some constant m× p matrix N [71, Lemma 3.1]. The second statement follows by
symmetry.

Now, suppose condition (10.5.52) holds. Then it follows from (10.5.22) and
(10.5.23) that

y(t) =

∫ t

−∞
CeA(t−τ)Bdw(τ), (10.5.54)

where the bounded operator C : X→ Rm is given by

a′Cg = 〈(I −Q)F∗a′W, g〉X, for all a ∈ Rm. (10.5.55)

Likewise, if condition (10.5.53) holds, it follows from (10.5.40) that

y(t) =

∫ ∞

t

C̄eĀ(τ−t)B̄dw̄(τ), (10.5.56)

where the bounded operator C̄ : X̄→ Rm is given by

a′C̄ḡ = 〈(I − Q̄)F∗a′W̄ , ḡ〉X̄, for all a ∈ Rm. (10.5.57)

Theorem 10.5.6. Let (H, {Ut},X) be a proper Markovian representation of an
m-dimensional, stationary stochastic process with spectral factors (W, W̄ ) and gen-
erating processes (dw, dw̄). If condition (10.5.52) holds,

y(t) = Cx(t), (10.5.58)
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where {x(t)}t∈R is the weak X-valued stochastic process (10.5.21). The pair (C,A)
is (completely) observable in the sense that ∩t≥0 kerCeAt = 0 if and only if X is
observable. Moreover,

Λ(t) := E{y(t)y(0)′} = CeAtPC∗, (10.5.59)

where P is given by (10.5.26) and satisfies the operator Lyapunov equation (10.5.29).
Likewise, if condition (10.5.53) holds,

y(t) = C̄x̄(t), (10.5.60)

where {x̄(t)}t∈R is the weak X̄-valued stochastic process (10.5.21). The pair (C̄, Ā)
is (completely) observable in the sense that ∩t≥0 ker C̄eĀt = 0 if and only if X is
constructible, and

Λ(t) := E{y(t)y(0)′} = C̄eĀtPC̄∗, (10.5.61)

where P̄ is given by (10.5.46) and satisfies the operator Lyapunov equation (10.5.49).
Consequently, for {y(t)}t∈R to have both a forward and a backward represen-

tation with respect to the splitting subspace X, we must have

yk(0) ∈ D(Γ) ∩D(Γ∗), k = 1, 2, . . . ,m.

The representations (10.5.58) and (10.5.60) follows from what has already
been said above. To prove the statements about observability and constructibility
we need to introduce a few concepts. Define M to be the vector space

M = span{EX yk(t); t ≥ 0, k = 1, 2, . . . ,m}. (10.5.62)

Since EX yk(t) = Ut(X)yk(0), M is invariant under the action of Ut(X); i.e.,
Ut(X)M ⊂ M for all t ≥ 0. Moreover, D(Γ) is invariant under Ut(X); this is
a well-known property of of a semigroup. Hence it follows from (10.5.52) that
M ⊂ Z. Now, if X is observable, M is dense in X (Corollary 7.4.12), but this
does not automatically imply that M is dense in Z (in the graph topology). In the
present case, however, this is true, as can be seen from the following lemma, noting
that

M := TM = span{eA∗tF∗Wk; t ≥ 0, k = 1, 2, . . . ,m} ⊂M (10.5.63)

and that eA∗t = TUt(X)T ∗. In the terminology of [5, p. 101], this means that the
Hilbert space Z, containing the vector space M and continuously embedded in the
Hilbert space X, is normal.

Lemma 10.5.7. Suppose that M is a subset of Z that is invariant in the sense that
eA∗tM ⊂ M for all t ≥ 0, and suppose that M is dense in X. Then M is dense in
Z (in the graph topology).

Proof. Suppose that M ⊂ Z ⊂ X and that M is dense in X. Let M be the closure of
M in the graph topology. We know that M ⊂ Z, and we want to show that M = Z.
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To this end, define Q to be the restriction of Q to M. Then Q is an unbounded
operator defined on a dense subset of X, and, like Q, it is closed and dissipative.
Hence the range of (I −Q) is closed [34, Theorem 3.4, p. 79]. Therefore, if we can
show that the range of (I − Q) is dense in X, we know that it is all of X. This
would mean that Q is maximal dissipative [34, Theorem 3.6, p. 81]. However, Q is
a dissipative extension of of Q, and hence Q = Q. Then D(Q) = D(Q); i.e., M = Z,
as required.

Consequently, it remains to prove that (I − Q)M is dense in X. Since M is
dense in X, we only need to show that the equation (I −Q)f = g; i.e., ḟ − f = −g,
has a solution f ∈ M for each g ∈ M. However, for such a g, the differential
equation ḟ − f = −g has the L2 solution

f(t) =

∫ ∞

0

e−τg(t+ τ)dτ =

∫ ∞

0

(eA∗τg)(t)dm(τ), (10.5.64)

where dm = e−τdτ , so it remains to show that this f belongs to M. Since
eA∗τM ⊂ M, by continuity, eA∗τg ∈ M for each τ ≥ 0. The function τ → eA∗τg is
therefore mapping R+ into M. It is clearly strongly measurable, and, since eA∗τ is
a contraction, ‖eA∗τg‖

M
≤ ‖g‖

M
. Hence

∫ ∞

0

‖eA∗τg‖2
M
dm(τ) <∞,

and consequently (10.5.64) is a Bochner integral [129, p. 133]. Hence, by definition,
f ∈M as required.

To conclude the proof of Theorem 10.5.6, we first note that, since eA∗t and
(I −Q) commute,

a′CeAtg = 〈(I −Q)eA∗tF∗(a′W ), g〉X
for all a ∈ Rm. Hence, in view of (10.5.63), g ∈ ∩t≥0 kerCeAt if and only if

〈h, g〉 = 0, for all h ∈ (I −Q)M. (10.5.65)

Now, if (C,A) is observable; i.e., ∩t≥0 kerCeAt = 0, only g = 0 satisfies (10.5.65).
Hence (I − Q)M is dense in X. Therefore, M is dense in Z (Lemma 10.5.1); i.e.,
X is observable. Conversely, assume that X is observable. Then M is dense in
Z (Lemma 10.5.7), and consequently (I − Q)M is dense in X (Lemma 10.5.1).
However, then only g = 0 can satisfy (10.5.65), and therefore (C,A) is observable.
This concludes the observability part of Theorem 10.5.6. The contructibility part
follows from a symmetric argument.

Stochastic realizations of a stationary-increment process

Suppose that (H, {Ut},X) is a proper Markovian representation of anm-dimensional,
stationary increment process dy, and that X ∼ (S, S̄) has spectral factors (W, W̄ )
and generating processes (dw, dw̄).
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In Section 10.3 we were able to construct a forward stochastic realization
(10.3.24) for the finite-dimentional case by first observing that W can be decom-
posed as

W (s) = G(s) +D, (10.5.66)

where the rows of G belong to H2
p and D is an m × p matrix. A necessary and

sufficient condition for this to hold in the infinite-dimensional case is that dy is
conditionally Lipschitz with respect to S (Corollary 5.5.2).

In this case, as explained in Chapter 5 in more detail,

y(h)− y(0) =

∫ ∞

−∞

eiωh − 1

iω
W (iω)dŵ =

∫ h

0

z(t)dt+D[w(h) − w(0)],

where {z(t)}t∈R is the stationary process

z(t) =

∫ ∞

−∞
eiωtG(iω)dŵ.

By Theorem 10.2.3,

a′z(0) ∈ ES H− ⊂ ES S̄ = S ∩ S̄ = X

for all a ∈ Rm. Consequently,

dy = zdt+ dw, (10.5.67)

where the components of z(0) belong to X. Moreover, zk(0), k = 1, 2, . . . ,m are
the conditional derivatives

zk(t) = lim
h↓0

1

h
EUtS[yk(t+ h)− yk(t)], k = 1, 2, . . . ,m,

with respect to S.
Similarly, dy is conditionally Lipschitz with respect to S̄ if and only if

W̄ (s) = Ḡ(s) + D̄, (10.5.68)

where the rows of Ḡ belong to H2
p and D̄ is an m × p matrix, in which case there

is a stationary process

z̄(t) =

∫ ∞

−∞
eiωtḠ(iω)d ˆ̄w,

so that
dy = z̄dt+Ddw̄, (10.5.69)

where z̄k(0), k = 1, 2, . . . ,m belong to X and are the conditional derivatives of dy
with respect to S̄.

Theorem 10.5.8. Let (H, {Ut},X) be a proper Markovian representation of an
m-dimensional, stationary increment process dy with spectral factors (W, W̄ ) and
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generating processes (dw, dw̄), let X ∼ (S, S̄), and let Γ be the infinitesimal gener-
ator of the semigroup {Ut(X)}.

Then, if dy is conditionally Lipschitz continuous with respect to S, and if the
conditional derivatives zk(0), k = 1, 2, . . . ,m, belong to D(Γ), then

dy = Cx(t)dt +Ddw, (10.5.70)

where {x(t)}t∈R is the weak X-valued stochastic process (10.5.21), D := W (∞), and
the bounded operator C : X→ Rm is given by

a′Cg = 〈(I −Q)F∗a′(W −D), g〉X, for all a ∈ Rm. (10.5.71)

The pair (C,A) is (completely) observable in the sense that ∩t≥0 kerCeAt = 0 if
and only if X is observable.

Similarly, if dy is conditionally Lipschitz continuous with respect to S̄, and if
the conditional derivatives z̄k(0), k = 1, 2, . . . ,m, belong to D(Γ∗), then

dy = C̄x̄(t)dt+ D̄dw̄, (10.5.72)

where {x̄(t)}t∈R is the weak X̄-valued stochastic process (10.5.21), D̄ := W̄ (∞), and
the bounded operator C̄ : X̄→ Rm is given by

a′C̄g = 〈(I − Q̄)F∗a′(W̄ − D̄), ḡ〉X̄, for all a ∈ Rm. (10.5.73)

The pair (C̄, A∗) is (completely) observable in the sense that ∩t≥0 ker C̄eA∗t = 0 if
and only if X is observable.

Proof. If z1(0), z2(0), . . . , zm(0) ∈ D(Γ), it follows from (10.5.22) and (10.5.23)
that

z(t) =

∫ t

−∞
CeA(t−τ)Bdw(τ), (10.5.74)

where the bounded operator C : X→ Rm is given by (10.5.71), and therefore z(t) =
Cx(t), which together with (10.5.67) yields (10.5.70), as claimed. The backward
representation (10.5.72) follows by a symmetric argument.

The proof of the statement of observability follows the same lines as that in
Theorem 10.5.6, now taking M to be

M := span{EX[yk(t+ h)− yk(t)]; t ≥ 0, k = 1, 2, . . . ,m}

and observing that

M = span{EX zk(t); t ≥ 0, k = 1, 2, . . . ,m}.

The proof of the constructibility statement follows by symmetry.
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10.6 Bibliographical notes

Basic references for the geometric theory this chapter are [80, 87, 86, 88]. Sections
10.1 and 10.2 follow [88] closely, and Section 10.3 follows [87, 88]. Theorem 10.4.1
in Section 10.4 is from [88].

The classical theory of stochastic realization, primarily dealing with spectral
factorization, the linear matrix inequality and the algebraic Riccati equation was
initiated by Kalman [58] and mainly developed by by Anderson [4] and Faurre [29].
Theorem 10.4.4 is due to Anderson [4] and solves the so-called “inverse problem of
stationary covariance generation” stated by Anderson in [4]. The theory around the
Positive Real Lemma is based on classical result due to Yakubovich [128], Kalman
[57] and Popov [107]. The geometry of the set P has been studied by Faurre et. al.
[29] and the geometric part of Theorem 10.4.6 is due to Faurre. The theory of the
Linear Matrix Inequality, the Algebraic Riccati Equation and the Algebraic Riccati
Inequality was developed to quite some completeness by Willems [125].

Section 10.5 is based on [85, 87] and, as for representations of stationary-
increment processes, [86]. The construction of shift realizations is analogous to
that in the infinite-dimensional deterministic realization theory of [6, 7, 34, 35, 49]
except that the framework is transposed to accommodate the appropriate relation
between observability (constructibility) and forward (backward) realizations. The
proof of Lemma 10.5.7, which appeared in [85], was originally suggested to us by
A. Gombani.



“Book”
2007/1/28
page 393

i

i

i

i

i

i

i

i

Appendix A

Appendix

A.1 Hilbert spaces

The scope of this section is just to set notations and to recall the basic facts.
Recall that an inner product or (scalar product) on a vector space V is a

function
〈 · , · 〉 : V ×V→ C

which is

1. linear in the first argument

〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉 x, y, z ∈ V

2. antisymmetric
〈y, x〉 = 〈x, y〉

where the overline denotes complex conjugate,

3. positive, in the sense that

‖x‖2 := 〈x, x〉 > 0 for all x 6= 0.

The quantity ‖x‖ is called the norm induced by the inner product 〈 · , · 〉. Every
inner product satisfies the Schwartz inequality

|〈x, y〉| ≤ ‖x‖ ‖y‖
It is easy to check that ‖ · ‖ satisfies also the axioms of a norm and in particular
the triangle inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖ x, y ∈ V.

A Hilbert space is an inner product space (H, 〈 · , · 〉) which is complete with respect
to the metric induced by the inner product. In other words every Cauchy sequence
has a limit in H. Examples of Hilbert spaces which are used frequently in this book
are :

393
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1. The space of square summable m-dimensional sequences, `2m. The elements
of this space are sequences x = {x(t)}t∈Z of real (or complex) m-dimensional
vectors x(t), which we shall always write as row vectors, indexed by the integer-
valued parameter t, satisfying

‖x‖2 :=

+∞∑

t=−∞
x(t)x(t)∗ <∞

where ∗ denotes complex conjugate transpose. This norm is sometimes called
the “energy” of the signal x. It is induced by the inner product

〈x, y〉 :=
+∞∑

t=−∞
x(t) y(t)∗.

A simple proof that `2m is complete can be found in YOUNG’s book [132].

2. The Lebesgue space L2
m.

Let [a, b] be an interval (not necessarily bounded) of the real line. We shall
denote by L2

m([a, b]) the space of functions with values in a m-dimensional
vector space which are square integrable on [a, b] with respect to the Lebesgue
measure. The values, f(t), of the functions will also be written as row vectors.
It is well-known that this space is a Hilbert space under the inner product

〈f, g〉 :=
∫ b

a

f(t) g(t)∗dt .

No subscript will be used to denote the scalar `2 and L2 spaces. The reason for
using a row-vector notation for these spaces is that their elements naturally appear
as multipliers in the combination of vector random quantities. Other important
examples of Hilbert spaces (e.g. the Hardy spaces H2

m) will be introduced in the
next sections.

In this book the term subspace of a Hilbert space H, will in general mean
closed subspace. The sum of two linear vector spaces X + Y, is, by definition, the
linear vector space {x + y | x ∈ X, y ∈ Y}. It may happen that, even when X
and Y are both (closed) subspaces, their sum fails to be closed. This may happen
only when both X, Y are infinite dimensional. A classical example of sum of two
infinite-dimensional subspaces which is not closed, can be found in [45, p. 28.]. The
(closed) vector sum of X and Y, denoted X ∨Y, is the closure of X + Y.

The symbols +, ∨, u and ⊕ will denote sum, (closed) vector sum, direct
sum (i.e. X u Y = X + Y with the extra condition that X ∩ Y = {0}), and
orthogonal direct sum of subspaces. An orthogonal sum of subspaces is always
closed. The linear vector space generated by a family of elements {xα}α∈A ⊂ H,
denoted span {xα | α ∈ A} is the vector space whose elments are all finite linear
combinations of the generators {xα}. The subspace generated by the family {xα}α∈A

is the closure of this linear vector space, and is denoted by span {xα | α ∈ A}.
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Important examples of subspaces of `2m are the subspaces of causal signals,
`2+m , which are zero for negative values of t (f(t) = 0, t < 0) and the anticausal
signals, `2−m , wich are instead zero for positive values of t, (f(t) = 0, t > 0). These
two subspaces have a non-empty intersection which is isomorphic to Rm (or to
Cm). The orthogonal complement, `2+⊥

m , of `2+m in `2m is the subspace of strictly
anticausal functions which are zero also for t = 0. Evidently we have the orthogonal
decomposition

`2m = `2+m ⊕ `2+⊥
m . (A.1.1)

We shall often have the occasion of dealing with series of orthogonal random
variables. A simple but basic result on convergence of these series is the following.

Lemma A.1.1. A series of orthogonal elements in a Hilbert space,

∞∑

k=0

xk, xk ⊥ xj , k 6= j,

converges if and only if
∞∑

k=0

‖xk‖2 <∞ (A.1.2)

i.e., the series of the square norms of the elements converges.

Proof. In fact the series converges if and only if

‖
m∑

k=0

xk −
n−1∑

k=0

xk‖ → 0

as n,m→∞ which is the same as ‖∑m
k=n xk‖2 → 0 which in turn is equivalent to∑m

k=n ‖xk‖2 → 0 as n,m→∞.

Let {ek} be an an orthonormal sequence in a Hilbert space H. Since, for an
arbitrary x ∈ H, the “approximation error”

‖x−
N∑

k=0

〈x, ek〉ek‖2 ≤ ‖x‖2 −
N∑

k=0

| 〈x, ek〉 |2

is non-negative, we have

N∑

k=0

| 〈x, ek〉 |2 ≤ ‖x‖2 for all N

and hence the series
∑∞

k=0 〈x, ek〉 ek converges. An immediate consequence of this
fact is that the sequence of the Fourier coefficients f(k) := 〈x, ek〉, k = 1, . . . is in
`2.
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Operators and their adjoints

A linear operator T from a Hilbert space H1 to another Hilbert space H2, is a linear
map between the two spaces. In general T may not be defined on the whole of H1

(think for example of the differentiation operator in L2
m). If this is instead the case,

one says that T is defined on H1. The simplest linear operators to work with are
the continuous, or bounded operators, which are defined on the whole space and
satisfy an inequality of the type

‖Tx‖2 ≤ k‖x‖1, x ∈ H1

for some constant k, the subscripts referring to the different norms in the two
Hilbert spaces. As one can see, a continuous linear operator is in reality uniformly
continuous. The infimum of the k’s for which the inequality holds is called the norm
of the operator T and is denote by ‖T ‖.

Proposition A.1.2. Let T : H→ H be a bounded operator, then

‖T ‖ = sup
‖Tf‖
‖f‖ , f ∈ H

or, equivalently

‖T ‖ = sup
|〈Tf, g〉|
‖f‖‖g‖ , f, g ∈ H .

If T is bounded, it is easy to see that there is a unique bounded linear operator
T ∗ : H2 → H1, which satisfies

〈Tx, z〉2 = 〈x, T ∗z〉1 ∀x ∈ H1, z ∈ H2

The operator T ∗ is called the adjoint of T . Adjoints of unbounded operators may
also exist, under suitable conditions. A linear operator from H into itself, for which
T ∗ = T is called selfadjoint. On a finite dimensional space the concept of adjoint
corresponds to taking the transpose (or the Hermitian conjugate) of the matrix
representing the operator with respect to an orthonormal basis (warning: this is
not true if the basis is not orthonormal!).

The image or range of an operator T , is the linear manifold Im T := {Tx |
x ∈ H1}. This manifold needs not be closed, i.e. a subspace of H2. If this is
the case T is said to have closed range. The kernel or nullspace of an operator T ,
Ker T := {x | Tx = 0}, is instead always closed. Operators for which Im T = H2

will be called densely onto. The following simple but important result, is sometimes
called the Fredholm alternative

Theorem A.1.3. Let T : H1 → H2 be a bounded operator from the Hilbert space
H1 to the Hilbert space H2, then

H1 = Ker T ⊕ Im T ∗ (A.1.3)

H2 = Ker T ∗ ⊕ Im T (A.1.4)
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A bounded operator T is left-invertible if there exists a bounded operator S
such that ST = I1 and right-invertible if there exists a bounded operator R such
that TR = I2. Clearly, right-invertibility implies that T is onto H2 while left-
invertibility implies that T is injective (i.e. one-to-one). In fact it can be shown
that a bounded operator T is right-invertible if and only if it is onto. However the
dual statement for left-invertibilty is in general false.

Theorem A.1.4. A bounded linear operator from one Hilbert space to another is
left-invertble if and only if it is injective and has closed range.

If T is both left- and right- invertible it is called invertible tout-court. Note
that left- or right- inverses are in general non-unique. However a two-sided inverse
is unique.

A linear map T between two Hilbert spaces preserving the inner products, i.e.
a map for which

〈Tx, T y〉2 = 〈x, y〉1, x, y ∈ H1

is called an isometry. An isometry is always an injective map. The following basic
result is used repeatedly in this book.

Theorem A.1.5. Every isometry defined on a family of elements {xα | α ∈ A} of a
Hilbert space H can be extended by linearity and continuity to the whole Hilbert space
span{xα | α ∈ A} linearly generated by the family {xα}, preserving the property of
isometry. The isometric extension is unique.

One can find a proof of this result in [109, p.14-15].
Note that isometric operators satisfy the relation 〈x, T ∗Tx〉1 = 〈x, x〉1, from

which T ∗T = I1 (the identity operator in H1). If T is surjective (TH1 = H2) one
sees that

T ∗ = T−1.

A surjective isometry is called a unitary operator. Two linear operators A : H1 →
H1 and B : H2 → H2 which are related by

A = T−1BT

where T is unitary, are unitarily equivalent. Unitary equivalence is a relation which
preserves the fundamental characteristics of a linear operator, among which the
spectrum. The Fourier Transform which will be defined shortly, is an example of a
unitary operator.

A subspace X is invariant for the operator T if TX ⊂ X. If a subspace X
is invariant for T we denote by T|X the restriction of T to the subspace X. Recall
that a subspace X is said to be reducing for a linear operator T if it is invariant
for T and there is a complementary subspace Y, i.e.

H = X + Y



“Book”
2007/1/28
page 398

i

i

i

i

i

i

i

i

398 Appendix A. Appendix

which is also invariant. In this case T has, with respect to this decomposition, a
matrix representation

T =

[
T|X 0
0 T|Y

]

Lemma A.1.6. Let T be a linear operator on a Hilbert space H. Then

TX ⊂ X⇔ T ∗X⊥ ⊂ X⊥

If T is self-adjoint, both X and X⊥ are reducing for T .

Proof.

For X is T -invariant iff 〈Tx, y〉 = 0 for all x ∈ X and y ∈ X⊥. Then just
apply the definition of adjoint.

A.2 Subspace algebra

It is well-known that the family of subspaces of a vector space forms a lattice (i.e. a
partially ordered set where any pair of elements has an inf and sup) with respect to
the operations of intersection (∩) and vector sum (∨). Note that while the Boolean
operations on sets are always distributive, i.e. (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)
for any sets A,B,C, this does no longer hold for subspace operations when the
set-theoretical operation of union is substituted by vector sum.

It is well-know that the lattice of subspaces of a vector space is not distributive.
If the vector space is finite-dimensional, this lattice is modular, in the sense that, if
A,B,C are subspaces and A ⊃ B, then

A ∩ (B ∨C) = (A ∩B) ∨ (A ∩C) = B ∨ (A ∩C). (A.2.1)

The modularity condition can obviously also be stated exchanging C and B and
requiring A ⊃ C, in which case the last member should be substitud by (A∩B)∨C.
For arbitrary subspaces the left member in (A.2.1) contains, but needs not be equal
to, (A ∩B) ∨ (A ∩C). It is easy to construct counterexamples in R2.

The non modularity in an infinite dimensional space has to do with the fact
that the vector sum of two subspaces may not be closed, see [?, p. 175]. By
substituting “sum” in place of “vector sum” we can obtain somewhat more general
statements.

Proposition A.2.1. Let A,B,C be vector subspaces. If one of them is contained
in any of the others, the distributive law

A ∩ (B + C) = (A ∩B) + (A ∩C) (A.2.2)

holds. In particular an analogous statement holds if B, C are closed orthogonal
subspaces when the sum is replaced by orthogonal direct sum.
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Proof. First note that if either B ⊂ C or B ⊃ C, we clearly have A ∩ (B + C) =
(A ∩B) + (A ∩C) since one of the two subspaces in the last sum is contained in
the other.

Now, suppose that A ⊃ B. If α ∈ A ∩ (B + C) then α = β + γ for some
β ∈ B and γ ∈ C. Since β must belong to A, γ = α − β ∈ A as well, whence
α = β + γ ∈ (A ∩ B) + (A ∩ C). Hence we have shown that the left member of
(A.2.2) is contained in the right member and therefore (A.2.2) holds.

Next, suppose that A ⊂ B. Then

A = A ∩B ⊂ A ∩ (B + C) ⊂ A

which implies that A = A∩ (B + C). On the other hand, A = A + (A∩C) which
is the same as A = (A ∩B) + (A ∩C). Substituting in the previous identity one
gets (A∩B) + (A∩C) = A∩ (B +C). Since, in the two last arguments, B and C
can be interchanged, the proof of the first assertion is complete. The last statement
follows since orthogonal direct sum is a particular case of sum of subspaces.

Corollary A.2.2. Let A,B,C be (closed) subspaces. If one of them is contained
in any of the others and one, but not necessarily the same, is finite-dimensional,
the distributive law

A ∩ (B ∨C) = (A ∩B) ∨ (A ∩C) (A.2.3)

holds.

Proof. It only remains to show that (A.2.2) implies (A.2.3) when A ⊃ B, if one of
the subspaces A,B,C is finite-dimensional. If either B or C is finite-dimensional,
their sum is closed and coincides with B ∨ C, and required condition holds. If is
A is finite-dimensional, then a fortiori B is, and again we see that the required
condition holds.

The dual of a lattice expression is obtained by interchanging ∩ and ∨ and
reversing the ordering, i.e., exchanging ⊂ for ⊃ everywhere. In particular, equality
signs are preserved. If a lattice equation is true so is its dual. For example, the
following two equations (both stating the unimodularity law) are dual to each other

A ∩ ((A ∩B) ∨C) = (A ∩B) ∨ (A ∩C)

(A ∨B) ∩ (A ∨C) = A ∨ ((A ∨B) ∩C).

The dual of Proposition A.2.1 can be stated by saying that the inclusion

A ∨ (B ∩C) ⊂ (A ∨B) ∩ (A ∨C)

becomes an equality if (at least) one of the subspaces A,B,C is contained in any
of the others and at least one of them is finite-dimensional.

When the vector space is actually a Hilbert space H, then the family of (closed)
subspaces of H forms a orthocomplemented lattice . The duality relations involving
orthogonal complement are described in the following Proposition.
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Proposition A.2.3. For any family of subspace Xα of a Hilbert space, the following
identities hold,

(∨αXα)⊥ = ∩αX⊥
α , (∩αXα)⊥ = ∨αX⊥

α (A.2.4)

The following lemma describes other situations where some weak form of dis-
tributivity can be proven to hold.

Lemma A.2.4. Let A,B,C be subspaces of a linear vector space with A ∩C = 0
and B ∩C = 0. Then

A ∩ (B + C) = A ∩B, (A.2.5)

(A + C) ∩ (B + C) = (A ∩B) + C. (A.2.6)

Assume in addition that the vector space is a Hilbert space and that A ⊥ C and
B ⊥ C, then (A.2.5) and (A.2.6) hold with orthogonal direct sum ⊕ in place of
direct sum.

Proof. To prove the first statement, notice that the first member in (A.2.5) cer-
tainly contains the intersection A ∩ B. Now all elements of the first subspace are
vectors α ∈ A which can be written also as α = β + γ, β ∈ B, γ ∈ C, so that
α− β = γ, i.e. γ ∈ A + B. But this can only happen if γ = 0 since the only vector
that C may have in common withth A + B is zero. Therefore all elements of the
first member are vectors of A, α = β for some β ∈ B. This establishes (A.2.5).

For the second equality, it is again obvious that the left-hand member contains
the expression on the right. The opposite inclusion is proved by noting that any
λ ∈ (A + C)∩ (B + C) must be of the form λ = α+ ξ1 = β + ξ2, ξ1 ξ2 ∈ C so that
α− β = ξ1 − ξ2 ∈ C. Since however (A ∨B) ∩C is zero we must have α = β and
ξ1 = ξ2 = ξ so that λ = α+ ξ ∈ (A ∩B) + C.

The shift acting on subspaces

We shall collect below a number of simple but useful technical facts describing how
a unitary operator commutes with the most common subspaces operations on a
Hilbert space.

Proposition A.2.5. Let U be a unitary operator acting on a Hibert space H and
X, Y, Z be subspaces of H. Then

1. X ⊂ Y ⇔ UX ⊂ UY.

2. X = ∩α∈AXα ⇔ UX = ∩α∈AUXα for an arbitrary family of subspaces Xα.

3. span {Uxα | α ∈ A} = U span {xα | α ∈ A} for any familiy of elements
xα ∈ H.

4. X = ∨α∈AXα ⇔ UX = ∨α∈AUXα for an arbitrary family of subspaces Xα.
The statement also holds if in place of vector sums one has direct sums or
orthogonal direct sums.
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Proof.

1. The direct implication ⇒ is valid for an arbitrary function. The converse
follows, for the same reason, by applying U∗ to the subspace inclusion on the
right.

2. This statement follows from general properties of the pre-image f−1 of an
arbitrary function f . Precisely, f−1 is a Boolean algebra isomorphism with
repect to set-theoretical operations, in particular

f−1(∩α∈AXα) = ∩α∈Af
−1(Xα)

for an arbitrary family of sets Xα.

3. This is just the statement that U has closed range which is obvius since
‖Ux‖ ≥ ‖x‖.

4. The equality on the right is clearly true for the vector space linearly generated
by the Xα’s. It extends to the closures in force of the previous result.

A.3 Some facts from linear algebra

The Moore-Penrose pseudoinverse

Every A ∈ Cn×m is a one-to-one and onto map from the orthogonal complement
of its nullspace (Ker A)⊥ = Im A∗ to its range, Im A. Hence the restriction of A
to Im A∗ as a map onto Im A has an inverse. The Moore-Penrose generalized- or
pseudo- inverse, A+, of A is introduced by solving the equation Ax = y, y ∈ Cn

in the least square sense as follows. One first projects y onto Im A obtaining a
vector ŷ ∈ Im A; then there is one and only one vector x0 ∈ (Ker A)⊥ which solves
Ax0 = ŷ. The solution x0 = A+ŷ, can be shown to be the unique solution of the least
squares problem minx ‖Ax− y‖, of minimum norm. The formal characterization of
A+ following from this definition is stated in the following lemma (whose proof can
be found in the literature).

Lemma A.3.1. For any A ∈ Cn×m the matrix A+ is the unique matrix in Cm×n

which satisfies the following four properties

A+AA+ = A+, AA+A = A, (AA+)∗ = AA+, (A+A)∗ = A+A. (A.3.1)

This matrix is called the Moore-Penrose pseudoinverse of A.

Observe that when A is square nonsingular A+ = A−1.
The following properties follow directly from the four basic relations (A.3.1).
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1. Let A ∈ Rn×m, T1 ∈ Rn×n and T2 ∈ Rm×m, with T1 e T2 orthogonal matrices.
Then

(T1AT2)
+ = T−1

2 A+T−1
1 = T ∗

2A
+T ∗

1 . (A.3.2)

2. Let

A =

[
A1 0
0 0

]
∈ Rn×m

with A1 ∈ Rp×p invertibile. One has,

A+ =

[
A−1

1 0
0 0

]
. (A.3.3)

3. Let

A =
[
U1 U2

] [ Σ1 0
0 0

] [
V ′

1

V ′
2

]

be the singular value decomposition of A with Σ1 the diagonal matrix of
nonzero singular values. Then

A+ =
[
V1 V2

] [ Σ−1
1 0
0 0

] [
U ′

1

U ′
2

]
. (A.3.4)

For a more complete treatment of the subject the reader should consult [10].

Lyapunov equations

Proposition A.3.2. Consider the discrete matrix Lyapunov equation

X = AXA′ +Q. (A.3.5)

Assume Q = BB′; then any two of the following statements imply the remaining
one

i) (A,B) is a reachable pair;

ii) matrix A has all eigenvalues strictly inside the unit circle i.e. |λ{A}| < 1;

iii) (A.3.5) admits a symmetric positive definite solution.

If |λ{A}| < 1, the solution of (A.3.5) is unique and is given by

P =

∞∑

0

AkBB′(A′)k. (A.3.6)

Proof. The last sentence actually follows from a lemma of a slightly wider scope.

Lemma A.3.3. The Lyapunov equation (A.3.5) has a unique solution for an
arbitrary Q ∈ Rn×n, if and only if the spectrum of A does not contain reciprocal
elements, i.e. λk ∈ σ(A)⇒ 1/λk /∈ σ(A).
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Proof. The linear map from Rn×n in to itself

X 7→ X −AXA′ (A.3.7)

has eigenvalues 1 − λkλ̄j where the {λk} are the eigenvalues of A. In fact, if ak is
the eigenvactor of A corresponding to λk, one readily sees that

Xkj = ak a
∗
j

is the “eigenmatrix” of (A.3.7) corresponding to the eigenvalue 1−λkλ̄j . It is obvious
that (A.3.7) is injective (and hence also surjective) iff it has no zero eigenvalues, i.e.
1− λkλ̄j 6= 0.

Therefore, whenever condition ii) holds, there always exist a unique solution
of (A.3.5). Since the (convergent) series (A.3.6) is a solution, it is the only solution.

That i) and ii) imply iii) is obvious, since P ≥ ∑n−1
k=0 A

kBB′(A′)k, which is
the reachability Gramian of (A,B).

That i) and iii) imply ii) can be seen by contradiction. In fact, assume that
A has an eigenvalue λ0 of modulus greater or equal to one with a corresponding
eigenvector a (in general complex). It follows from iii) that

a∗Pa = |λ0|2 a∗Pa+ a∗BB′a,

that is, (
1− |λ0|2

)
a∗Pa = a∗BB′a, (A.3.8)

where the left member is ≤ 0 since a∗Pa > 0, while the term on the right is ≥ 0. It
follows that both must be zero. In particular, a∗B = 0 so there is an eigenvector a
of A that is orthogonal to the columns of B. This contradicts reachability of (A,B).
Hence |λ0|2 must be < 1.

A similar argument shows that ii) and iii) imply i). In fact, assuming that
there is some vector a 6= 0 orthogonal to the columns of [BAB . . . An−1B], one
easily shows, using Cayley-Hamilton’s Theorem, that a must also be orthogonal to
the columns of AkB for all k. Hence

a∗
+∞∑

0

AkB B′(A′)k a = a∗Pa = 0,

which contradicts the strict positivity of P .
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Markovian representations, 214
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