
Exercises

The following are recommended exercises.

Chapter 2

2.1 Let X : Ω → {1, 2, · · · , k} be a stochastic variable and σ(X) be the
sigma-algebra generated by X. Then X can be written,

X(ω) =
k∑

`=1

`I{X(ω)=`} =
k∑

`=1

`I{ω∈X−1(`)},

where IA is the indicator function of the set A.

Assume that Y ∈ L2(Ω, σ(X), P ), express Y in terms of the indicator
functions.

Extra:
Assume that Z ∈ L2(Ω, A, P ), where σ(X) ⊂ A, determine the condi-
tional expectation E[Z|X].

2.2 Show that A ⊥ B|X implies EA∨Xβ = EXβ for all β ∈ B.

2.3 The definition of a (Hilbert-)adjoint operator is as follows.
If T : H1 → H2 is a bounded linear operator, where H1 and H2 are
Hilbert spaces. Then the Hilbert-adjoint operator T ∗ of T is the oper-
ator T ∗ : H2 → H1 such that for all x ∈ H1 and y ∈ H2,

〈Tx, y〉 = 〈x, T ∗y〉.
We have claimed that the adjoint of the shift operator Ut : H → H is
U∗

t = U−1
t , and this is easy to verify from the definition. The adjoint

of the adjoint U∗
t is then Ut.

If we instead consider this operator U∗
t on the invariant subspace X−,

i.e. U∗
t : X− → X−, it’s adjoint is no longer Ut, why ?

On page 21 of the book, the compressed right shift

Tt : X− → X−

ξ 7→ EX−Utξ
, t ≥ 0,

is introduced and it is claimed that this is the adjoint of U∗
t on the

invariant subspace X−. Verify this from the definition.

The purpose of considering the compressed right shift is to characterize
the Markov property in terms of invariance for the operator T as in
Proposition 2.6.1.
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Chapter 3

3.1 Consider example 3.2.2. Use the expression for y(t) to derive the ex-
pression for Λ(τ). Then use the expression given for F to derive the
expression for Λ(τ) by determining the integral in (3.2.1).

3.2 Consider Theorem 3.5.5.

First note the difference between the operators Iw and Iŵ. The first
one is actually the sum defined in Theorem 3.5.1 and the second is
the stochastic integral with respect to the stochastic measure dŵ. (In
continuous time (cor 3.5.2) it is an integral and the notation makes
more sense)

Note that according to relation (3.5.6) arrows corresponding to the map
Iw can be added between the spaces `2

m and H(w) in the commutative
diagram of the theorem.

Take an f(t) ∈ `2 and try to see how it is mapped around by the
operators Iw, F, T and so on through the commutative diagram.

You could start with f(t) = δt, i.e. let f(0) = 1 and f(t) = 0 for all
other t.

3.3 We will consider a discrete time version of Example 3.6.2. So let x, y
be a joint stationary process generated by the linear stochastic system{

x(t + 1) = Ax(t) + Bw(t),
y(t) = Cx(t) + Dw(t),

where w is a normalized white noise process, i.e. it’s spectral distribu-
tion function Fw satisfies dFw(θ) = 1

2π
dθ. Assume that A is a stability

matrix so the sum

x(t) =
∞∑

k=0

AkBw(t− k − 1)

converges. (and it will not matter how x was initiated)

Corresponding to the white noise w, there is a spectral measure dŵ
such that

w(t) =

∫ π

−π

eiθtdŵ(θ).

According to Theorem 3.3.1 there is an f̂ such that x(0) has a spectral
representation

x(0) =

∫ π

−π

f̂(eiθ)dŵ(θ) = Iŵ(f̂),
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and then

x(t) =

∫ π

−π

eitθf̂(eiθ)dŵ(θ) = Iŵ(eitθf̂),

Determine f̂ .

Since x(0) is spanned by the white noise, it follows from Theorem 3.5.1
that

x(0) =
∞∑

s=−∞

f(−s)w(s) = Iw(f),

where f ∈ `2
m, and

x(t) =
∞∑

s=−∞

f(t− s)w(s) = Iw(T tf).

Determine f , and show that f̂ is the Fourier transform of f .

Now we will consider the process y. First note that y has a spectral
representation in terms of an orthogonal increment process ŷ such that
dŷ(θ) = W (eiθ)dŵ(θ), i.e.

y(t) =

∫ π

−π

eitθdŷ(θ) = Iŷ(e
itθ) =

∫ π

π

eitθW (eiθ)dŵ(θ) = Iŵ(eitθW ),

for some function W . Determine W .

Finally, use Theorem 3.1.3 and the spectral representation of y to derive
an expression for

Λ(τ) = E{y(t)y(t + τ)},

and determine the spectral distribution function Fy of y. (we can as-
sume that y is scalar)

Chapter 4

4.1 Show that the rational function

F (z) =
2z3 − 11z2 + 17z − 6

5z3 + 3z2 + z + 2

is in H2, and then determine the inner-outer factorization.
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4.2 Assume that x and y are two jointly stationary second order processes,
with spectral density given by

Φ(z) =

[
Φx Φxy

Φyx Φy

]
=

[
200+40(z+z−1)

3−(z+z−1)
1

z+1/2

1
z−1+1/2

ez+z−1

]
.

Determine a cascade implementation of the causal Wiener filter for
estimating x based on the past values of y.

Answer by giving W and F̂

Hint: If w is a process determined by filtering y with W−1, then Φxw =
ΦxyW

−1.

Would the result be different if we exchange the expressions for Φxy

and Φyx ?

4.3 Use the Beurling-Lax Theorem 4.6.4 to show that there exists an inner
function Q such that

Y := {W (z) ∈ H2|W (zk) = 0, |zk| > 1, k = 1, · · · , n} = H2Q,

and determine Q.

Furthermore, show that if f0 belongs to

J := {W (z) ∈ H2|W (zk) = αk, |zk| > 1, k = 1, · · · , n},

then an arbitrary f ∈ J can be decomposed as f = f0 + g where
g ∈ H2Q.

For those interested, I mention here that the orthogonal complement K
of H2Q in H2, i.e. K = H2 	 H2Q plays a key role in interpolation
theory. K is usually called the coinvariant subspace since it is invariant
with respect to the compressed shift in H2, compare exercise 2.3, it is
n-dimensional and it is spanned by the terms in the partial fraction
representation of Q. This space is introduced in chapter 9 in the book.

Chapter 6

6.1 Consider the forward stochastic system

Σ

{
x(t + 1) = Ax(t) + Bw(t)

y(t) = Cx(t) + Dw(t)
,
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where

A =

[
0 0

1/2 1/2

]
, B =

[
1
0

]
, C =

[
1 2/3

]
, D = 0;

and w(t) is a normalized white noise.

(a) Determine the transfer function W (z) for Σ.
Is Σ a minimal (deterministic) realization for W ?

(b) Determine the backward system Σ̄ corresponding to the same state
space Xt as for Σ.

(c) Determine the transfer function W̄ (z) for Σ̄.
Is Σ̄ a minimal (deterministic) realization for W̄ ?

(d) Is Σ a minimal (stochastic) realization for Σ ?

(e) Determine the structural function K of (Σ, Σ̄).
What are the poles and zeros of K ?

6.2 During the derivation of the backward system in class we used the
equations:

Ex(t)x(t + 1)′ = PA′

and
Ey(t)x(t + 1)′ = CPA′ + DB′.

Prove them using the state equations and the stationary state covari-
ance P = Ex(t)x(t)′.

6.3 Use the state equations to show the expression (6.6.3)

Λt =


CAt−1C̄ ′ for t > 0;
CPC ′ + DD′ for t = 0;
C̄(A′)|t|−1C ′ for t < 0,

for the output covariances.

6.4 As in proposition 6.9.1 we show here the expressions for the Kalman
gain and the recursion satisfied by the covariance matrix of the state
estimate x̂(t).

The Kalman gain is defined as the matrix that satisfies

E[ỹ(t)]x(t + 1) = K(t− τ)ỹ(t),
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where ỹ(t) = y(t)− ŷ(t) and ŷ(t) = Cx̂(t).

Then from (2.2.5) in the book, we have

K(t− τ) = E{x(t + 1)ỹ(t)} (E{ỹ(t)ỹ(t)′})−1
.

Now show (6.9.7) and (6.9.8) by completing the following steps:

(a) Use the orthogonality ỹ(t) ⊥ ŷ(t) to show that

E{ỹ(t)ỹ(t)′}+ E{ŷ(t)ŷ(t)′} = E{y(t)y(t)′}.

(b) Use the expression from (a) to show that

E{ỹ(t)ỹ(t)′} = Λ0 − CΠ(t− τ)C ′,

where Λ0 = Ey(t)y(t)′ and Π(t) = E{x̂(t + τ)x̂(t + τ)′}.
(c) Show that

E{x(t + 1)ỹ(t)′} = C̄ ′ − AΠ(t− τ)C ′

using the state equations x(t+1) = Ax(t)+Bw(t), y(t) = Cx(t)+
Dw(t), where w is normalized white noise, i.e. Ew(t)w(s) = δt,sI,
the state covariance matrix P = E{x(t)x(t)′}, and the definition
C̄ = CPA′ + DB′.

Hint: Show first that ỹ(t) = C(x(t)− x̂(t)) + Dw(t).

(d) Use the equation

x̂(t + 1) = Ax̂(t) + K(t− τ)(y(t)− Cx̂(t)), x̂(τ) = 0,

to show the recursion Π(0) = 0, and

Π(t + 1) = Π(t) + R(Π(t)), t = 0, 1, . . .

i.e.

Π(t+1) = AΠ(t)A′+(C̄ ′−AΠ(t)C ′) (Λ0 − CΠ(t)C ′)
−1

(C̄ ′−AΠ(t)C ′)′.

Hint: Show that x̂(t) ⊥ ỹ(t) and use that K(t − τ) = (C̄ ′ −
AΠ(t)C ′) (Λ0 − CΠ(t)C ′)−1 as shown in (b) and (c).

6.5 Let x̃(t) = x(t)− x̂(t). Show that

P − Π(t) = E{x̃(t + τ)x̃(t + τ)′}.

This is used in Lemma 6.9.2 to show that Π(t) is upper bounded by
any P ∈ P.
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6.6 The (forward) system

Σ

{
x(t + 1) = 4

5
x(t) +

[
3
√

6/5 0
]
u(t),

y(t) = 1
5
x(t) +

[
1
3

√
6/5 1/3

]
u(t),

is given. This system generates a stationary stochastic process with the
spectral density Φ(z). (which need not be determined in this problem)

(a) Determine the positive real part Φ+(z) of the spectral density
Φ(z).

(b) The Positive Real lemma (Kalman-Yakubovich-Popovs lemma)
states that Φ+(z) is positive real if and only if a certain set P is
non-empty.

Determine the set P for Φ+(z) from a).

(c) Determine the forward model Σ− of the predictor space H+/− for
the y-process.

(d) Determine the forward model Σ+ of the backward predictor space
H−/+ for the y-process.

(e) Determine the backward model Σ̄+ of the backward predictor
space H−/+ for the y-process.

(f) The student “Ture Teknolog” has determined the Kalman filter
for Σ and calculated the covariance for the state estimate x̂(4)
given measurements y(0), y(1), y(2), y(3). He got

E {x̂(4)2} = 27.

Is the result reasonable ? Explain.
(The Kalman filter need not be determined)

(g) What is the difference between the Kalman filter for Σ and Σ+ ?

6.7 Assume that
a(z) = a0z

n + a1z
n−1 + · · ·+ an,

σ(z) = σ0z
n + σ1z

n−1 + · · ·+ σn,

and
σ(z)

a(z)
=
∑
k=0

wkz
−k. (1)

Show that, then
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
w1 w2 · · · wn wn+1

w2 w3 · · · wn+1 wn+2
...

...
. . .

...
...

wn wn+1 · · · w2n−1 w2n




an

an−1
...
a1

a0

 = 0

and 
σ0

σ1
...

σn−1

σn

 =


w0 0 · · · 0 0

w1 w0
. . . 0 0

...
...

. . . . . .
...

wn−1 wn−2 · · · w0 0
wn wn−1 · · · w1 w0




a0

a1
...

an−1

an

 .

Hint: Multiply both sides of (1) with a(z) and identify coefficients.

6.8 An eigth order linear model has been used to generate the data sequence
y that can be obtained from the course homepage.

Use that data to estimate covariances by the truncated ergodic sum:

r̂k =
N−k∑
`=1

y`y`+k.

Then use exercise 6.7 to find a realization of a linear model, with trans-
fer function Φ+, matching the covariances r̂0/2, r̂1, · · · , r̂16.

Show that the function Φ+ is positive real. Then determine the spectral
factor W− of Φ(z) = Φ+(z) + Φ+(z−1) corresponding to the forward
predictor space.

Hint: To do the last step, it could be useful to iterate equation (6.9.8),
or to use the command dare in Matlab.

The spectral density of the data sequence y can be estimated in Mat-
lab using the command “psd(y)”. Compare this estimate with the
spectral density corresponding to W− and the spectral density of the
generating model. The spectral density of W− can be plotted using
the program “modelmag.m” available at the homepage. The data for
the spectral density of the generating model is included in the data file
“y data.mat”.

What happens if you try to match a fourth order model instead ?

8



Chapter 7

7.1 Assume that H− and H+ are conditionally orthogonal with respect to
X, i.e. H− ⊥ H+|X.

Show that 〈
EXλ, EXµ

〉
= 〈λ, µ〉 ,

for all λ ∈ H− and µ ∈ H+.

Hint: It may be useful to use the decomposition ξ = EXξ + EX⊥ξ.

7.2 Let X be a splitting subspace.

Applying the decomposition A = EAB ⊕ (A∩B⊥) on X together with
H− and H+ we get the two equations (7.3.12):

X = EXH+ ⊕
(
X ∩ (H+)⊥

)
X = EXH− ⊕

(
X ∩ (H−)⊥

)
Since X ∩ (H+)⊥ is the unobservable part and X ∩ (H−)⊥ is the un-
constructible part one could suspect that X is still a splitting subspace
if these parts are removed.

In fact, Lemma 7.3.4 say that if X is a splitting subspace, then EXH+

and EXH− are splitting subspaces.

Use the two equations above and Lemma 7.3.3 to prove Lemma 7.3.4.

7.3 This example will illustrate why (H−)⊥ is not a subspace of H+, even
if H− ∨H+ = H.

Let (x, y, z) be coordinates in R3. Now introduce the following sub-
spaces. Let H− be the subspace z = 0, which is a plane in R3. Let H+

be the subspace z = x, which also is a plane in R3. Then R3 = H−∨H+.

Determine (H−)⊥ and show that it is not a subspace of H+.

What is (H− ∨H+)	H− ?

7.4 Assume that A,B and C are subspaces of some Hilbert space H.

Show that (A∨B)∩C = (A∩C)∨ (B∩C) does not hold in general.

Hint: It is easy to find a counter example with H = R2.
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7.5 Show that
EH−H2 = X−,

and
EH+

H2 = X+.

Hint: Proposition 7.4.13 could be useful

7.6 Is the Frame space H2 a minimal Markovian splitting subspace ?

(In general? / In some special situation ?)

We know that H2 ∼ (S, S̄) for S = (N+)⊥ and S̄ = (N−)⊥.

Use Theorem 7.4.3 to determine (S1, S̄1), and then X1 = S1 ∩ S̄1.

Chapter 8

8.1 Use the same data as in exercise 6.8.

An approach to realizing a system from the data is to do something
like this:

We would like to define a state. Let

x(t) =


y(t− 1)
y(t− 2)

...
y(t− n)

 ,

and we will assume that X = {a′x(0)|a ∈ Rn} is a Markovian splitting
subspace. Is X an internal state ?

We could estimate a dynamics matrix A by minimizing∥∥∥∥∥
N−1∑
t=n

x(t + 1)− Ax(t)

∥∥∥∥∥
2

.

To solve this least-squares problem it can be useful to form the matrices:

H0 =


y(n) y(n + 1) · · · y(N − 1)

y(n− 1) y(n) · · · y(N − 2)
...

...
. . .

...
y(1) y(2) . . . y(N − n− 1)

 ,
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and

H1 =


y(n + 1) y(n + 2) · · · y(N)

y(n) y(n + 1) · · · y(N − 1)
...

...
. . .

...
y(2) y(3) . . . y(N − n)

 .

This method for determining A should be equivalent to approximating
(8.3.19) with truncated ergodic sums, i.e.

A = E{x(1)x(0)′}P−1

≈ 1

N − n− 1

N−1∑
t=n+1

x(t + 1)x(t)′

(
1

N − n

N∑
t=n+1

x(t)x(t)′

)−1

.

Use one of these methods to estimate A for the case n = 8.

To estimate B, we could again proceed in different ways. First, de-
fine w(t) = x(t + 1) − Ax(t). Assuming that the system is driven by
normalized white noise, B can be estimated by factoring

Ew(t)w(t)′ ≈ 1

N − n

N∑
t=n+1

w(t)w(t)′.

Finally, C and D can be obtained by noting that y(t) is the first com-
ponent of x(t + 1), and extracting the corresponding parts of A and
B.

As in exercise 6.8, the spectral density of the data sequence y can be
estimated in Matlab using the command “psd(y)”. Compare this esti-
mate with the spectral density corresponding to the model determined
here and the spectral density of the generating model.

8.2 Consider a state space (forward) system with matrices

A =

 0 −2/3 −1/3
−1/3 0 −2/3
−2/3 −1/3 0

 , B =

 5/3
−1/3
−4/3


C =

[
2 −1 2

]
, D =

[
1
]

Generate a stationary stochastic process y by feeding white noise through
this system. This can be acchieved by using “dlsim(A,B,C,D,U,X0)” in
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Matlab, where U is the white noise that can determined by “randn(1,1000)”,
and X0 is the initial condition that can be chosen as “randn(3,1)”.

Plot the output y.

Then determine the system in a basis adapted to the decomposition of
the signal y into one p.d and one p.n.d part as in Theorem 8.4.8.

Then plot y0(t) and y∞(t) in separate subplots.

Determine the corresponding backward model.

8.3 Repeat exercise 8.2 for the system defined by the data matrices A, B, C
and D in the file “model83.mat” available at the homepage.
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