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Aims

After this lecture, you should be able to

• bound optimal value by solving (convex but maybe non-smooth) dual
• compute subgradients and use the subgradient method
• use dual decomposition for efficient large-scale optimization
• derive distributed optimization schemes using decomposition techniques 

Disposition

• Lagrange duality review
• Subgradients and non-differentiable optimization
• Dual optimization
• Distributed optimization
• Primal decomposition

Weighted sum of objective and constraint functions,

• λi is Lagrange multiplier (or dual variable) associated with fi(x)· 0

• νi is Lagrange multiplier associated with hi(x)=0

The Lagrangian

Lagrange dual: concave and lower bounding

Fact: g is concave (can be -∞ for some λ, ν)

Fact (lower bound property): if λ º 0, then g(λ,ν) · pF

Finds best lower bound dF on pF obtained from Lagrange dual function

Observations: 

•a convex optimization problem; optimal value denoted dF

• λ, ν are dual feasible if λº 0 and (λ, ν)∈ dom g

•often simplified by making the constraint (λ, ν)∈ dom g explicit

Dual problem: best lower bound
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Duality: structure of solution

If strong duality holds, optimal (xF, λF, νF) must satisfy KKT conditions:

1. Primal constraints:

2. Dual constraints:

3. Complementary slackness:

4. Gradient of Lagrangian w.r.t. x vanishes

Duality: sensitivity analysis

Nominal and perturbed problem

pF(u) is optimal value as function of u

What can we say about pF(u) by solving the nominal primal and its dual? 

By weak duality, If pF(u) differentiable

λi is the sensitivity of pF with respect to ith constraint.

Duality: efficient optimization

Today’s lecture: duality sometimes enables efficient optimization

Disposition

• Lagrange duality review
• Subgradients and non-differentiable optimization
• Dual optimization
• Distributed optimization
• Primal decomposition

Subgradients

A subgradient h of a convex function f at x is any vector that satisfies

Subgradients
• gives affine global underestimator of f
• if f is convex and differentiable, ∇f(x) is a subgradient of f at x

The set of subgradients at x is called the subdifferetial, denoted ∂ f(x)

Quiz: determine ∂ f(x) for f(x) = |x|,

Subgradient method

For convex function f, subgradient method uses iteration

where
• x(t) is tth iterate, g(k) any subgradient, a(t) >0 is step-length

Guaranteed to converge if (for example) h bounded and α satisfies

Proof:

Common choice:
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Extension: projected subgradient

When solving the dual problem, we need to enforce λº 0

Can be done by projected subgradient method

where [·]+ denotes projection on the positive orthant

Same steplength rules and convergence results as simple method

Example: piecewise linear minimization

Consider the problem

Quiz: determine the associated subgradient update

Example: PWL minimization cont’d

Convergence of subgradient method for different stepsize rules

Practical observation: convergence is slow (in the limit)

Subgradient method
Not a descent method 
• function value iterates may increase
• distance to optimal set guaranteed to decrease (if stepsize small enough)

Subgradients and supgradients

Similarly, a supgradient of a function g at x is any vector h such that

(supgradients give global overestimators)

For concave maximization, supgradient method reads

Many texts do not make a difference between sup and subgradients.

Example: supgradient of dual function

Let xλ be a minimizer for the Lagrangian, i.e.,

then (f1(xλ) … fm(xλ)) is a supgradient of the dual function at λ

Proof: 

Observation: subgradient for free when evaluating dual function!
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When is the dual differentiable?

Fact: If f0 is strictly convex, f1, …, fm linear, then g is differentiable 
(much weaker formulations exist)

Disposition

• Lagrange duality review
• Subgradients and non-differentiable optimization
• Dual optimization
• Distributed optimization
• Primal decomposition

Basic idea

Optimization problem in many variables 

with few coupling constraints  (i.e., n is large, m is small)

Introducing dual variables for coupling constraints only

Dual function separable – easy to evaluate if Xk has simple structure

Solving the dual

Dual problem can be solved with projected supgradient method

At each iteration, g(λ) underestimates optimal objective

Convergence in the limit

Example: resource allocation

Introduce Lagrange multiplier λ for coupling constraint

Dual function

Inner problems solved by

Subgradient method: λ(t+1)=[λ+α(t)(∑ xk -1)]+

• Increase multipliers when resource overutilized, decrease if underutilized

Pricing or tax interpretation

Operation of enterprise subject to resource constraints

fi(xi) cost of operating system i using xi amount of resources

Dual function

Interpret λ as resource price: systems operate to minimize total cost

Subgradient method: 
– increase resource prices when resource is overutilized,
– decrease resource prices when resource is underutilized
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Problems and challenges

Slow convergence of subgradient method
• cutting-plane methods faster, but computationally more intensive

Primal iterates xF(t) not necessarily feasible 

• coupling constraints not enforced in dual formulation
• need structure, or heuristic, to produce (suboptimal) primal solutions 

Disposition

• Lagrange duality review
• Subgradients and non-differentiable optimization
• Dual optimization
• Distributed optimization
• Primal decomposition

Distributed optimization

In some cases, decomposition schemes reveal solutions that rely on  
• distributed optimization (in local variables)
• and coordination mechanisms (dual variable updates/prices)

A powerful methodology for finding decentralized solutions!

We will simply exemplify this on a model of Internet congestion control.

Internet congestion control

Users contend for limited network resources

A
B

Congestion control: helps share resources fairly and efficiently

• When router buffer fills up, packets are marked (or dropped)
• Users react to congestion signals by reducing transmission rate

Interplay between control mechanisms in routers and end nodes

Internet Congestion Control

Current Internet
• source algorithm is some Transmission Control Protocol (TCP)
• link algorithm is some Active Queue Management (AQM) scheme

Two types of fundamental studies
• equilibrium properties (fairness, throughput, …) – via cvx. opt.
• dynamical properties (stability, convergence) – control theory 

Our focus: equilibrium properties using a dual decomposition approach

Notation

Network with L links of finite capacities cl, l=1, …, L

Capacity shared by P source-destination pairs sending at rate sp

Sending rates must satsify capacity constraints

Capacity constraints on vector form



6

The utility maximization problem

Optimal network operation from solving utility maximization problem

where up is a strictly concave utility function

Key observation: the dual problem admits decentralized solution
• links update congestion measures (Lagrange multipliers)
• sources react to congestion signals, update source rates

Gives insight into current (and future) congestion control schemes!

A dual approach

Lagrangian of utility maximization problem

Dual function

Observation: sources can deduce optimal rate from qp=∑l∈ L(p)λl

Equilibrium rates and utilities

Sources maximize utilities minus “resource cost”

Equilibrium rates from first-order conditions

Can also be used to deduce utility function from equilibrium 

Solving the dual problem

Apply (sub-)gradient method to compute optimal multipliers

Observation: links update multipliers based on local excess capacity

Common to use constant step-length

A synchronous gradient projection

Link algorithm (carried out at each link at each time k=1, …, K)
1. Compute the requested aggregate data rate

2. Update its price

3. Communicate new price to all sources p that use link l 

Source algorithm (executed at each source)
1. Receive sum of link prices along its path

2. Choose new transmission rate

3. Communicate new rate to all links in path

Primal and dual decomposition

Consider the problem

Dual decomposition: relax resource constraint, solve subproblems

Coordinate by subgradient method (that finds optimal resource price)



7

The primal approach

Re-write problem as

where

Recall:  px(rx) is convex, a subgradient is given by –λx

Coordinator updates resource allocation (rather than prices)
• all iterates are feasible

Primal decomposition

A perfect research paper presentation topic!

Reference: ”Notes on Decomposition Methods”, Boyd, Xiao and Mutapcic

Summary

• subgradients and the subgradient method
• solving the primal via the dual
• dual decomposition for efficient optimization
• distributed optimization example: duality model of TCP


