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Aims

After this lecture, you should be able to

= bound optimal value by solving (convex but maybe non-smooth) dual

= compute subgradients and use the subgradient method

= use dual decomposition for efficient large-scale optimization

= derive distributed optimization schemes using decomposition techniques

Disposition

- Lagrange duality review

- Subgradients and non-differentiable optimization
. Dual optimization

- Distributed optimization

- Primal decomposition

The Lagrangian

Optimization problem in standard form
minimize o)
subject to  fi(z) <0 i
i

1,...,m
hiz) =0 1,

p

variable r £ R", domain D, optimal value p”.

Lagrangian. L : B" x B™ x BP — R with domain D x R™ x RF

»

L A w) = folx) + Z A fila) + Z wilty ()

i=1 i=1

Weighted sum of objective and constraint functions,
« ; is Lagrange multiplier (or dual variable) associated with f,(x)< 0

= v;is Lagrange multiplier associated with h,(x)=0

Lagrange dual: concave and lower bounding

Lagrange dual function: g : R™
g(h, ) = inf Lz, M, v)
*=D

=inf (fo[.l') + Z Aifilx) + IZ rz.h.(.a'))
= = =1

Fact: g is concave (can be -oo for some 2, v)

Fact (lower bound property): if L = 0, then g(&,v) < p*

Dual problem: best lower bound

Lagrange dual problem:

maximize  g(\ )
subject to A > 0

Finds best lower bound d* on p* obtained from Lagrange dual function

Observations:
*a convex optimization problem; optimal value denoted d*
* &, v are dual feasible if A= 0 and (A, v)e dom g

-often simplified by making the constraint (i, v)e dom g explicit




Duality: structure of solution

If strong duality holds, optimal (x*, A*, v*) must satisfy KKT conditions:

1. Primal constraints:
fila")<0,i=1 m, hi{z*)=0,i=1,.._, P
2. Dual constraints:
AT=0
3. Complementary slackness:
MfiE")Y=0,i=1,..., m

4. Gradient of Lagrangian w.r.t. x vanishes
e r
Tipla™) 4+ ¥ VUL 4+ Y i Th(2®)
(LS e i SR L e U A LA E

=1 =1

Duality: sensitivity analysis

Nominal and perturbed problem

minimize  fa(z) minimize  fo(x)
subject to fi(z) <0 i=1,.... m  subject to fi(z)<w i=1l....m

p*(u) is optimal value as function of u
What can we say about p*(u) by solving the nominal primal and its dual?
By weak duality, If p*(u) differentiable
ap*(0)
(u) = p*(0) — Alu i =—
p'(u) = p*(0) ;;: i T,

%, is the sensitivity of p* with respect to ith constraint.

Duality: efficient optimization

Today’s lecture: duality sometimes enables efficient optimization

Disposition

- Lagrange duality review

- Subgradients and non-differentiable optimization
- Dual optimization

- Distributed optimization

. Primal decomposition

Subgradients

A subgradient h of a convex function f at x is any vector that satisfies
) = f@) +hT (@) - 2) for all y

Subgradients

= gives affine global underestimator of f

= if fis convex and differentiable, Vf(x) is a subgradient of f at x

The set of subgradients at x is called the subdifferetial, denoted & f(x)

Quiz: determine @ f(x) for f(x) = |x|,

Subgradient method

For convex function f, subgradient method uses iteration

=(t+ 1} = =(t) — a{Or{=(E))
where
- Xx(t) is tth iterate, g® any subgradient, a(t) >0 is step-length

Guaranteed to converge if (for example) h bounded and a satisfies

ZﬂQ(f} < 00, i at) =

=1
Proof:

Common choice:

alt) =

i

—— for some parameters a >0, b >0
t+b -




Extension: projected subgradient

When solving the dual problem, we need to enforce 1> O
Can be done by projected subgradient method
2(t + 1) = [2(t) — a(t)h(z(t)]}

where [-]* denotes projection on the positive orthant

Same steplength rules and convergence results as simple method

Example: piecewise linear minimization
Consider the problem

Quiz: determine the associated subgradient update

Example: PWL minimization cont’d

Convergence of subgradient method for different stepsize rules

Practical observation: convergence is slow (in the limit)

Subgradient method

Not a descent method
« function value iterates may increase
« distance to optimal set guaranteed to decrease (if stepsize small enough)

Subgradients and supgradients

Similarly, a supgradient of a function g at x is any vector h such that
(1) < (=) + kT () (y — ) for all y

(supgradients give global overestimators)

For concave maximization, supgradient method reads

2D = [0 4 () (0] T

Many texts do not make a difference between sup and subgradients.

Example: supgradient of dual function
Let x, be a minimizer for the Lagrangian, i.e.,

) = arg nliQ L{x,A)=arg r)j!iQ {fg(:t_‘) + i ,\,f,(.c)}

=1

then (f (x,) ... f,,(x,)) is a supgradient of the dual function at »

900 < 90 + 3o (K~ A)fila) for all X € R™

=1

Proof:

Observation: subgradient for free when evaluating dual function!




When is the dual differentiable?

Fact: If f, is strictly convex, f,, ..., f, linear, then g is differentiable
(much weaker formulations exist)

Disposition

- Lagrange duality review

- Subgradients and non-differentiable optimization
- Dual optimization

- Distributed optimization

- Primal decomposition

Basic idea

Optimization problem in many variables
minimize 374 for(eg)
subject to T fulep) <0

I € Xp i=1,..., n

with few coupling constraints (i.e., n is large, m is small)

Introducing dual variables for coupling constraints only
o(N) =inf Y forlen) + 3 Y finlar)
k i k

=% inf foula) + 3 Aifilay)
J._=1.r(_.\:. i

Dual function separable — easy to evaluate if X, has simple structure

Solving the dual

Dual problem can be solved with projected supgradient method

+
Mt 4+ 1) = [A() +a® Y filaf ()
k

At each iteration, g(1) underestimates optimal objective

Convergence in the limit

Example: resource allocation

minimize =30 log(xy + o)

subject to =0, 1fr<1
Introduce Lagrange multiplier & for coupling constraint ITar =1
Dual function

i =%,

Inner problems solved by

—log(zy + ap) + /\.F'ﬂ.] - A

xf, = max{0,1/v — ag}

Subgradient method: A(t+1)=[1+a(t)(T X, -1)]*

< Increase multipliers when resource overutilized, decrease if underutilized

Pricing or tax interpretation

Operation of enterprise subject to resource constraints

minimize  %; fi(x;)
subject to ¥ < Trot

fi(x;) cost of operating system i using x; amount of resources
Dual function
g(A) = inf fila) + Az,
T
Interpret A as resource price: systems operate to minimize total cost
Subgradient method:

— increase resource prices when resource is overutilized,
— decrease resource prices when resource is underutilized




Problems and challenges

Slow convergence of subgradient method
= cutting-plane methods faster, but computationally more intensive

Primal iterates x*(t) not necessarily feasible
« coupling constraints not enforced in dual formulation
= need structure, or heuristic, to produce (suboptimal) primal solutions

Disposition

- Lagrange duality review
- Subgradients and non-differentiable optimization
- Dual optimization

- Distributed optimization
- Primal decomposition

Distributed optimization

In some cases, decomposition schemes reveal solutions that rely on
« distributed optimization (in local variables)
= and coordination mechanisms (dual variable updates/prices)

A powerful methodology for finding decentralized solutions!

We will simply exemplify this on a model of Internet congestion control.

Internet congestion control

Users contend for limited network resources

Congestion control: helps share resources fairly and efficiently

= When router buffer fills up, packets are marked (or dropped)
= Users react to congestion signals by reducing transmission rate

Interplay between control mechanisms in routers and end nodes

Internet Congestion Control

Current Internet
< source algorithm is some Transmission Control Protocol (TCP)
= link algorithm is some Active Queue Management (AQM) scheme

Two types of fundamental studies
= equilibrium properties (fairness, throughput, ...) — via cvx. opt.

« dynamical properties (stability, convergence) — control theory

Our focus: equilibrium properties using a dual decomposition approach

Notation

Network with L links of finite capacities ¢, I=1, ..., L
Capacity shared by P source-destination pairs sending at rate s,

Sending rates must satsify capacity constraints
1 if source s, sends data across link [
Z mpsp S 6 where n, = {U otherwise

Capacity constraints on vector form

i'!T)iS{"r Il=1,....L




The utility maximization problem

Optimal network operation from solving utility maximization problem

maximize 7
subject to rf

where u, is a strictly concave utility function
Key observation: the dual problem admits decentralized solution
« links update congestion measures (Lagrange multipliers)

« sources react to congestion signals, update source rates

Gives insight into current (and future) congestion control schemes!

A dual approach

Lagrangian of utility maximization problem

elle, >0
o}l 20

=t j

Dual function

P L
90 =max D Juplop) = Y Mlrfs—e) = =
=1 =1

P L P L
=3 maxus) - (3 M, + Y=Y Bla)+ Y Aa
=1 =1

teLip) =1 p=1

Observation: sources can deduce optimal rate from q,=%. ;i

Equilibrium rates and utilities

Sources maximize utilities minus “resource cost”

maxup(sp) —sp 3., A = maxup(sp) — gpsp
S0 1256o) sp2D

Equilibrium rates from first-order conditions

* * -1
u}:(.‘ep] —gp=0 = s, =max {O. {ui,} (q.,,)}

Can also be used to deduce utility function from equilibrium (s}, q;,)

Solving the dual problem

Apply (sub-)gradient method to compute optimal multipliers

+
Af.l-l-l)_ )\FU+“(&)( \_. ",'J*’])
pEP(N)

Observation: links update multipliers based on local excess capacity

Common to use constant step-length

A synchronous gradient projection

Link algorithm (carried out at each link at each time k=1, ..., K)
1. Compute the requested aggregate data rate Z Sp
peP(I}
2. Update its price All(k+1) = [)‘g(k) + ath( Z sp—e)]™
peP(l)
3. Communicate new price to all sources p that use link |

Source algorithm (executed at each source)
1. Receive sum of link prices along its path 4p = z A
teL(p)

2. Choose new transmission rate -%,(,HU - -*“(‘I;m)

3. Communicate new rate to all links in path

Primal and dual decomposition

Consider the problem
minimize  fr(x) + fy(y)
subject to ge(z) < vz gy(y) <y
rz + Ty = ot
Dual decomposition: relax resource constraint, solve subproblems

minimize  fi(x) 4+ Ary minimize  f(y) + Ary
subject to gx(x) < rs subject to gy(y) < ry

Coordinate by subgradient method (that finds optimal resource price)




The primal approach

Re-write problem as
minimize pe(r) 4+ py(r)
where

pr(re) = inf {fz(x) | ge(z) < v}
pylrz) = inf {fy(w) | gu(¥) < Teor — 7}

Recall: p,(r,) is convex, a subgradient is given by —\,

Coordinator updates resource allocation (rather than prices)
- all iterates are feasible

Primal decomposition

A perfect research paper presentation topic!

Reference: "Notes on Decomposition Methods”, Boyd, Xiao and Mutapcic

Summary

subgradients and the subgradient method

solving the primal via the dual

dual decomposition for efficient optimization
distributed optimization example: duality model of TCP




