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Disposition

• SDP basics
• Applications in control
• Applications in communications (next week)

Linear matrix inequalities

An inequality on the form

where Fi are symmetric matrices, and x1, …, xn are scalar unknowns

Note: Fi can be complex-valued Hermetian matrices

Some standard problems

SDPs (convex)

Generalized eigenvalue problems (quasi-convex)

Max-det problems (convex)

SDP dual

Recall that the dual to the SDP

is the SDP

Key techniques

Some key tricks and techniques for LMIs in control
1. S-procedure
2. Schur complements
3. Congruence transforms
4. Finsler’s lemma

We will cover 1-3 in some detail.



2

S-procedure

Does it hold that

Equivalently: do we have

By weak and strong duality:
• yes, if there exists λ ≥ 0 with

• Suppose C, f, g, convex and ∃x0∈ C with g(x0)<0, then above 
conditions are necessary and sufficient

S-procedure cont’d

Nontrivial result without convexity:

Let f,g be quadratic functions such that ∃ x0 with g(x0)<0, then the
answer is yes if and only if there exists λ≥ 0 such that

Let f(x)=xTFx and g(x)=xTGx, then the above condition reads

an LMI in the variable λ

Example: quadratic confinement

Let Qi = { x | qi(x)= xTAix+2bi
Tx+ci≥ 0}. Does Q1⊆ Q2?

Yes, if there is λ≥ 0 such that

Example: does: {x : -x1
2-x2

2+1≥ 0}⊆ {x : -2x1x2+2≥ 0}

Yes, since

for, e.g., λ=1.5

One (of many) extensions

We have

If and only if there exists λ≥ 0 such that

Schur complement

The condition

holds if and only if

Schur complement proof

The condition

is equivalent to

i.e.

The minimum is attained for x=-Q-1Sy, so this is equivalent to
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Congruence transforms

The condition

holds if and only if

for some nonsingular matrix T.

Example. Shur complement proved by congruence transform with

Disposition

• SDP basics
• Applications in control

Control system setup

Design controller that maps measurements y into controls u
• Stability of closed-loop system
• Performance (e.g., surpression of disturbance w)
• Many different control structures; here full state feedback

Plant

Controller

wz

yu

Stability analysis via Lyapunov functions

The system               is exponentially stable iff there exists P with 

In particular, there exists ε>0 such that all trajectories satsify

Note: multiple LMIs still LMI, Lyapunov inequalities equivalent to

Lyapunov proof

The Lyapunov inequalities imply that there is ε>0 such that

Let V(x)=xTPx. Then, for all t∈R,

After integration, this yields, for all t≥ t0

The result now follows from

Simultaneous Lyapunov function

Consider the piecewise linear system

All trajectories of the system go to zero exponentially if there is P with

Still LMI conditions.

Challenge: derive less conservative conditions when 
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Example:

Consider the piecewise linear system

No common Lyapunov function unless partition information exploited!

Simultaneous stabilization

Given the system

Is there a state feedback u=Lx, which stabilizes the system? 

Lyapunov conditions read

Not LMIs! Considering congruence transform with Q=P-1 gives

LMI conditions in (Q,Y) where

No common Lyapunov function

For given Ai, how would you prove that there is no solution P to 

Claim: if there exist Ri>0 such that 

then there is no P satisfying the Lyapunov inequalities above.

Proof: 

Example: L2 gain analysis

Closed loop linear system with disturbance w and output y

has L2 gain γ if, for all (square integrable) w and all t≥ 0, 

Alternative characterization: non-negative storage function V(x)≥ 0

How to find storage function? How to find the best one (smallest γ)? 

L2 gain analysis via convex optimization

Fact: for linear systems, sufficient to consider quadratic V(x)

Gain conditions translate to linear matrix inequalities (in P, γ2)

Convex conditions: can find optimal P and smallest γ efficiently!

State feedback design

Find state feedback law             that minimizes L2 induced gain w→y

Claim: If there exists Q, γ and Y such that

then, the state feedback u=YQ-1x makes the induced L2-gain of the
closed-loop system less than γ

Proof:
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Much more

The framework has many extensions:
• H2 and H∞ designs
• Constraints on closed loop pole locations
• Dynamic output feedback
• Systems in discrete-time
• Uncertain systems
• Nonlinear and parameter-varying systems
• Hybrid systems
M


