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Applications in Control and Communications

Disposition

« SDP basics
= Applications in control
= Applications in communications (next week)

Linear matrix inequalities

An inequality on the form
F(a)=Fo+ Y. 2:F; >0
i=1

where F; are symmetric matrices, and x,, ..., X, are scalar unknowns

Note: F; can be complex-valued Hermetian matrices

Some standard problems

SDPs (convex)
minimize  ¢Tx

subject to F(x) = Fp+ ¥ x>0
Generalized eigenvalue problems (quasi-convex)

minimize A
subject to AB(x) — A(x) > 0. B(x) >0,

Max-det problems (convex)

minimize logdet A(x) 1
subject to A(z) >0 B(x) >0

C(x) >0

SDP dual

Recall that the dual to the SDP

minimize  eTa
subject to F(x) =+ XL @il >0

is the SDP
maximize Tr(fpZ)

subject to Tr(FZ)=¢
Z>0

Key techniques

Some key tricks and techniques for LMIs in control
1. S-procedure

2. Schur complements

3. Congruence transforms

4. Finsler’'s lemma

We will cover 1-3 in some detail.




S-procedure

Does it hold that

flx) >0 for all z @ g(x) <0

Equivalently: do we have

inf flz) =C
e, g{x)<0

By weak and strong duality:
< yes, if there exists A > O with
f@)+2Tg(z) =0 forall z € ©

= Suppose C, f, g, convex and 3x,e C with g(x,)<0, then above
conditions are necessary and sufficient

S-procedure cont’d

Nontrivial result without convexity:

Let f,g &" — & be quadratic functions such that 3 x, with g(x,)<0, then the
answer is yes if and only if there exists A> 0 such that

fla)+ Ag(z) =0 for all x € C

Let f(x)=x"Fx and g(x)=x"Gx, then the above condition reads
F+ M >0

an LMI in the variable 1

Example: quadratic confinement

Let Q; = { x | g(})= x"TAx+2b;"x+c;> 0}. Does Q,C Q,?
Yes, if there is 4> O such that

Aa b A b
CERCER
by cp by oo

Example: does: {X : -X;2-X,?+1> 0}C {X : -2X,X,+2> 0}

Yes, since
(0 -1 0') [—1 1] 0} L
1 0 0 Al O 1 0(>0 O

0o 0 2 0 0 1,

for, e.g., .=1.5

One (of many) extensions
We have
C+X'B+B"X + XTAX >0 for all X with I - X"DX >0

If and only if there exists 2> 0 such that

¢ BT I 0
B _4]”\[0 —D]?O

Schur complement

The condition

@ s
M= [S; R] >0

holds if and only if

Q>0 R-sTg 's>0

Schur complement proof

The condition
M=0

is equivalent to

. T Q b' - T . - -
;:| [_5'T H] [;] =2TQu + 227 Sy+ g"l Ry >0 for all (x,y)

i.e.
inf2"Qx + 22" Sy + v Ry > 0 for all y

The minimum is attained for x=-Q1Sy, so this is equivalent to

y[R-—8TQ 18]y >0 for all y




Congruence transforms

The condition
M=0
holds if and only if
TTMT >0
for some nonsingular matrix T.
Example. Shur complement proved by congruence transform with

(1 —g-1s

I=_0 1

Disposition

= SDP basics
« Applications in control

Control system setup

Plant

Controller

Design controller that maps measurements y into controls u
= Stability of closed-loop system

= Performance (e.g., surpression of disturbance w)

= Many different control structures; here full state feedback

Stability analysis via Lyapunov functions

The system & = Ax is exponentially stable iff there exists P with
] Tp ]
P>0 AP+ PA<C
In particular, there exists ¢>0 such that all trajectories satsify

Amax(FP) _ o

[l=(e)]l < [l=(0) |\ Ferin(P)

Note: multiple LMIs still LMI, Lyapunov inequalities equivalent to

P 0 )
[0 —ATp 4 !’.l] <0

Lyapunov proof

The Lyapunov inequalities imply that there is ¢>0 such that
ATP4+ PA4 el <0
Let V(x)=x"Px. Then, for all teR,
%1'(;(:)} + eV (z(t)) = 2 ()AL P + PA)x(t) + ea’ Pz
=27 [ATP+ PA+cPlz <0

After integration, this yields, for all t> t,
2T Px(t) < 27 (tg) Pa(tg)e

The result now follows from Amin(P)]|z]? < 27 Pz < Amax(P)||=|®

Simultaneous Lyapunov function

Consider the piecewise linear system
= A;r for r € Xj

All trajectories of the system go to zero exponentially if there is P with

P>0
AT'P4+Pa; <0, i

Still LMI conditions.

Challenge: derive less conservative conditions when

Xi={z|27Qx > 0}




Example:

Consider the piecewise linear system

—
\
_[101 é 1 if myzp >0 \l|
p=fp ] -
__il —10.1 if apen < 0

No common Lyapunov function unless partition information exploited!

Simultaneous stabilization

Given the system
&= Az 4+ Bju for x € X;

Is there a state feedback u=Lx, which stabilizes the system?
&= Az 4+ Diu for x £ X;

Lyapunov conditions read
P>0 (Ai+BL) P+ P(A;+ BiL) <0

Not LMIs! Considering congruence transform with Q=P-1 gives
Q>0 QAT+ AQ+QLTBf + BLQ <0

LMI conditions in (Q,Y) whereY = L{}

No common Lyapunov function

For given A;, how would you prove that there is no solution P to

P=0
ATP+PA; <0, i

Claim: if there exist R;>0 such that
S RAT+ AR >0
i
then there is no P satisfying the Lyapunov inequalities above.

Proof:

Example: L, gain analysis

Closed loop linear system with disturbance w and output y
= Ax 4+ Bw y=Cx x(0)=0

has L, gain v if, for all (square integrable) w and all t> 0,
t T 2t T
f w(r) () dr <= [ w(r) wir) dr
=0 =0
Alternative characterization: non-negative storage function V(x)> 0

av . o
{'J (Ax + Buw) < vl w—yly
e

How to find storage function? How to find the best one (smallest y)?

L, gain analysis via convex optimization

Fact: for linear systems, sufficient to consider quadratic V(x)
Viiz) = 2T Px
Gain conditions translate to linear matrix inequalities (in P, y2)
P>0

AP+ PA+Cle PB

BP —21) <0

Convex conditions: can find optimal P and smallest y efficiently!

State feedback design

Find state feedback law * = L that minimizes L, induced gain w—y

i = Az + Byu + Bw

y=0Cr

Claim: If there exists Q, y and Y such that

Q>0
AQ+ QAT + B,Y + YTBI 4+ BBT qcT| _ a
cQ —21| =

then, the state feedback u=YQ-'x makes the induced L,-gain of the
closed-loop system less than y

Proof:




Much more

The framework has many extensions:

H, and H_ designs

Constraints on closed loop pole locations
Dynamic output feedback

Systems in discrete-time

Uncertain systems

Nonlinear and parameter-varying systems
Hybrid systems




