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Aims

After this lecture, you should be able to

= perform parametric estimation via convex optimization
« determine optimal detectors

= compute maximum margin linear classifiers

= perform optimal transceiver design

Parametric distribution estimation

Distribution estimation: estimate probability density function p(y) of
a random variable based on observations y

Parametric distribution estimation: choose from famility of densities
p,(y) indexed by a parameter x

Maximum likelihood estimation
maximize (over z) logp:(y)

convex if log-likelihood function {{x) = log px(y] is concave in x

Can add constraints = £ (' explicitly, or let p,(y)=0 forx & '

Linear measurement with 11D noise

Linear measurement model

ui = ”;r.r + v, i=1,..., D

x is vector of unknown parameters, v, is 11D noise with density p(z)
m

measurements y; have density px(y) = [] p(u: — alz)

i=

maximum likelihood estimate: any solution to

maximize [(x) = ¥, logp(u — u; x)

Examples

If noise is zero-mean Gaussian,
/ 22 /(a2
plz) = (2?(!2)" 1/2,—2%/(20%)
ML estimate is the least-squares solution
For Laplacian noise
plz) = 1/(2a)e”

ML estimate is the |;-norm solution

For uniform noise on —[a,a], ML estimate is any x with |ui-T.r yil <a

Proof:

Link with penalty function approximation

Any penalty function approximation problem
minimize 7, é(alz — b;)

can be interpreted as a maximum likelihood problem
m N
maximize % log p(y; "?_J' )
i=1

with noise density

o )
() =+

e t(u) dy




Logistic regression Logistic regression example

Random variable ye{0,1} with distribution Example: n=1, m=50 measurements

exp( alu + by

p=Prob(y=1)= 1+ exp(alu + b) .

where a,b are parameters and u € R™are (observable) explanatory variables

probiy

Claim: The log-likelihood function is concave in (a,b)
Proof: S

dots are measured values (u;, y;)

solid line is estimated probability p=Prob(y=1)

Disposition (Binary) hypothesis testing

Detection (hypothesis testing) problem:

given observation of a random variable Xe{1, N}, choose between
= Hypothesis 1: X was generated by distribution p={p,, ..., py}
= Hypothesis 2: X was generated by distribution g={q;, ..., qy}

< parametric estimation
= optimal detection
< maximum margin linear classifiers

= optimal tranceiver design Randomized detector

- anonnegative matrix T' € B2*™ with 177 =1
- if we observe X=k, we choose distribution p with probability t,,
and distribution g wit probability t,,

If all elements of T are in {0,1} detector is deterministic

Detection probability and optimal design

Detection probability matrix
— [ Tel = 1_pr Prn
D=[Tp “".*[ Pp 11— P

= Py, is probability of selecting hypothesis 2 when X is generated by
distribution p (false positive)

= Py, is probability of selecting hypothesis 1 when X is generated by
distribution q (false negative)

Multicriterion formulation of optimal design:

minimize (w.r.t :—1‘:) (Fip. P
subject to

(Tpz, Tq1)
E=1,...

Optimal detector design

Scalarization (with weight 1)
minimize  Tpe + A(Tq)
subject to L+l =1, 4 >0 i=12 k=1,..

an LP with a simple analytical solution

(1, 0)  pp > Age
tp. top) = -
(t1gs t2r) {(0. 1) pe< gk

Optimal detector is deterministic, and relies on likelihood ratio test

Minimax design

minimize  max(Tpz. Tq)
subject to  typ 4+ tap =1, ty >0

i=1,2 k=1

An LP; solution is usually not deterministic




Example: binary hypothesis testing

Example:
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solutions 1,2,3 (and endpoints) deterministic; 4 is minimax detector

Linear discrimination

Separate two sets of points {x,, ..., Xy}, {¥1, ... Yu} by a hyperplane

aTr+b>0, i=1,... N aTyi+b<0, i=1,... M

Homogeneous in a,b; equivalent to
aTr;+b>1, i=1,. . .1 N alyi+b< —1, i=1,...,1 M

a set of linear inequalities in a,b

Robust linear discrimination

Euclidean distance between hyperplanes

Hy={z|a’z+b=1}
Ho={z|a"z4b= -1}

is dist(Hy, Hz) = 2/|al|2

To separate two sets of points with maximum margin

minimize  ||a/|3
subject to alx;+b>1,
alyj+b< -1, i=1,....1 v

a quadratic program in a,b.

Disposition

parametric estimation

optimal detection

maximum margin linear classifiers
optimal transceiver design

Single user communication scheme

Here,

< sis input signal (assumed to be statistically white)

¥ is a linear time-invariant (FIR) channel (assumed known)
- fis a transmitter filter

= g is an equilizer/receiver filter

= nis additive (Gaussian) noise

e heR

Tranceiver design

From a course perspective: the use of four key techniques

= Variable elimination

= A variable transformation
« A monotonicity argument
= The Schur complement




Two-user multiple access scheme

We assume thatE{ql‘H} = J Then, the average transmit powers are
2 I I
E{} lwil°} = E{u'wi} = E{Truw,; }

J
and the transmit power constraints can be written as

E{Tryu/'} = B{Te{Fis;s{' F/'} = ToF P! < py or

Two-user multiple access scheme

Biaf} =1 J§
B{wa"} = R V=

Assuming s, s,, n mutually uncorrelated, the received signal is
x= HiFis1 + HoFaso 4 n
with covariance matrix
E{z2f} =
= E{H Fysys FT T+ HoPosos PH Y 4 unlly =
= H + HoR P nl + R
w-t

Optimal tranceiver design

With
H=E-—N=Gx—x
Optimal (minimal mean-square error) tranceiver design problem
minimize  fo(F1,G1. Fa.G2) = E{elle; + elfeo} = TrE{e1el’} + E{ecelf

subject to Efyfly1} < p1tor
E{vd 2} < pator

Optimal tranceiver design

Study first term of objective function

Eferef'} = E{(31 —s1)(51 — s}
= E{(G1z — 51)(G1z — 51)'}
= E{C-‘]_;r:ﬂHTC-‘{‘T serG{{ C.'lms-f‘T + sls{'r}
=W el -G Hy PRy — (G H DT+ 1

where we have used that

E{asil} = B{(HFis1 + HoFass + n)si’}
= E{H1F1s1s{'} = H1Fy

Optimal tranceiver design

Optimization formulation
minimize  fo(Fy, Gy, Fa,Go) = T‘I'{Erelpi’ +E ﬁgteg}
subject to Tr ;'ﬂ'{f < p1tot
Tr F2F3 < pa ot
Non-convex due to coupling between F; and G;.

Observation: G; are unconstrained. Rewrite objective as

JolF1,#2) = (T'{':'? fol#, Gy, F2,G2)

First key step

Re-write objective as

folF1, F2) = Mmin fo(Fy, Gy, F2,G2)

11.G2
Only first (second) term depends on G, (G,):
Efeief} = w1 — aymr — (G ) 41
Minimum attained for
= FTHw

resulting in

E{erefy =1 - FiaffwH,




First key step cont'd

Can simplify objective function
Tr Elf{f + Tr 5265‘1
=Tl — F W P + T — 123 uEwhsry
=2n—Te F H{WH,F, - Tr FY HYWHS Py
=2n—TeWH FyFITHI — Te W Ho o FAT HAT
=2n — TeW(H I PP Hf + Hors s nih
=2n-—TeW(W - R)
=n+TrWR

First key step cont'd

Current formulation
minimize TrWkR
subject to Tr Fy FI < py o1
Tr FoF5' < patot

where W= (H P P EY + o HE 4 R)y—!

Second key step

A change-of variables:

Uy = rfl
Up = FoFs!
leads to

minimize TrWR

subject to Trl'y < p1 tot. Uy =0
TrUz = patot. Uz=0
where W = (HyUy HY + HaUsHE + 1)1

Nonlinear equality constraint problematic?

Third key step

Can consider inequality for W rather than equality, e.g.

minimize TrWH
subject to TrlU; < p1tot- =0
TrUs < po2 tot. U2~0
, [Tyid s 1
W (HU T 4 HaUs AT 4 12)

Why?

Third key step cont’d

Recall that
Tr ZY > 0 whenever Z,Y = 0
Consider the formulation
minimize TrWR
WeX, Xedi&
If the inequality is not tight at optimum, there exists S 0:
W'=X"4+8
Note, however, that W=W"-S achieves a lower objective value since
TTW'R-TrWR=TrSR>0

which contradicts that W* is optimal

Fourth key step

Transform nonlinear equality into LMI using Schur complement

minimize TrWk

subject to Trl; < p1 tot. Uy =0
TrUz < patot, Uz = 0
w 1

o
I H U HY + HoUn HY + R| = 0

A semidefinite programming problem in W, U, and U_2.

Optimal filter via Cholesky factorization of U, U,.




Much much more...

Other performance objectives
Other channel models (MIMO, Broadcast)
Further simpliciations and efficient algorithms

Convex optimization applications abound in communications

Filter design

Beamforming

Coding

Resource allocation problems

Many more applications were presented at research paper day!

Summary

parametric estimation via convex optimization
optimal detectors

maximum margin linear classifiers

optimal transceiver design




