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Aims

After this lecture, you should be able to

• perform parametric estimation via convex optimization
• determine optimal detectors 
• compute maximum margin linear classifiers 
• perform optimal transceiver design

Parametric distribution estimation

Distribution estimation: estimate probability density function p(y) of
a random variable based on observations y

Parametric distribution estimation: choose from famility of densities
px(y) indexed by a parameter x

Maximum likelihood estimation

convex if log-likelihood function                           is concave in x

Can add constraints          explicitly, or let px(y)=0 for 

Linear measurement with IID noise

Linear measurement model

x is vector of unknown parameters, vi is IID noise with density p(z)

measurements yi have density

maximum likelihood estimate: any solution to

Examples

If noise is zero-mean Gaussian,

ML estimate is the least-squares solution

For Laplacian noise

ML estimate is the l1-norm solution

For uniform noise on –[a,a], ML estimate is any x with

Proof:

Link with penalty function approximation

Any penalty function approximation problem

can be interpreted as a maximum likelihood problem

with noise density
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Logistic regression

Random variable y∈{0,1} with distribution

where a,b are parameters and            are (observable) explanatory variables 

Claim: The log-likelihood function is concave in (a,b)

Proof:

Logistic regression example

Example: n=1, m=50 measurements

dots are measured values (ui, yi)
solid line is estimated probability p=Prob(y=1)

Disposition

• parametric estimation
• optimal detection 
• maximum margin linear classifiers 
• optimal tranceiver design

(Binary) hypothesis testing

Detection (hypothesis testing) problem:

given observation of a random variable X∈{1, …, N}, choose between
• Hypothesis 1: X was generated by distribution p={p1, …, pN}
• Hypothesis 2: X was generated by distribution q={q1, …, qN}

Randomized detector
• a nonnegative matrix 
• if we observe X=k, we choose distribution p with probability t1k

and distribution q wit probability t2k

If all elements of T are in {0,1} detector is deterministic

Detection probability and optimal design

Detection probability matrix

• Pfp is probability of selecting hypothesis 2 when X is generated by
distribution p (false positive)

• Pfn is probability of selecting hypothesis 1 when X is generated by
distribution q (false negative)

Multicriterion formulation of optimal design:

Optimal detector design

Scalarization (with weight λ)

an LP with a simple analytical solution

Optimal detector is deterministic, and relies on likelihood ratio test

Minimax design

An LP; solution is usually not deterministic
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Example: binary hypothesis testing

Example:

solutions 1,2,3 (and endpoints) deterministic; 4 is minimax detector

Linear discrimination

Separate two sets of points {x1, …, xN}, {y1, …, yM} by a hyperplane

Homogeneous in a,b; equivalent to 

a set of linear inequalities in a,b

Robust linear discrimination

Euclidean distance between hyperplanes

is

To separate two sets of points with maximum margin

a quadratic program in a,b.

Disposition

• parametric estimation
• optimal detection 
• maximum margin linear classifiers 
• optimal transceiver design

Single user communication scheme

Here,
• s is input signal (assumed to be statistically white)
• is a linear time-invariant (FIR) channel (assumed known)
• f is a transmitter filter
• g is an equilizer/receiver filter
• n is additive (Gaussian) noise

Tranceiver design

From a course perspective: the use of four key techniques

• Variable elimination
• A variable transformation
• A monotonicity argument 
• The Schur complement
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We assume that                  . Then, the average transmit powers are

and the transmit power constraints can be written as

Two-user multiple access scheme Two-user multiple access scheme

Assuming s1, s2, n mutually uncorrelated, the received signal is

with covariance matrix

Optimal tranceiver design

With

Optimal (minimal mean-square error) tranceiver design problem

Optimal tranceiver design

Study first term of objective function

where we have used that

Optimal tranceiver design

Optimization formulation

Non-convex due to coupling between Fi and Gi.

Observation: Gi are unconstrained. Rewrite objective as

First key step

Re-write objective as

Only first (second) term depends on G1 (G2):

Minimum attained for

resulting in 



5

First key step cont’d

Can simplify objective function

First key step cont’d

Current formulation

Second key step

A change-of variables: 

leads to

Nonlinear equality constraint problematic?

Third key step

Can consider inequality for W rather than equality, e.g.  

Why?

Third key step cont’d

Recall that

Consider the formulation

If the inequality is not tight at optimum, there exists Sº 0:

Note, however, that W=W*-S achieves a lower objective value since

which contradicts that W* is optimal

Fourth key step

Transform nonlinear equality into LMI using Schur complement

A semidefinite programming problem in W, U1 and U_2.

Optimal filter via Cholesky factorization of U1, U2.
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Much much more…

• Other performance objectives 
• Other channel models (MIMO, Broadcast)
• Further simpliciations and efficient algorithms

Convex optimization applications abound in communications
• Filter design
• Beamforming
• Coding
• Resource allocation problems
M

Many more applications were presented at research paper day!

Summary

• parametric estimation via convex optimization
• optimal detectors 
• maximum margin linear classifiers 
• optimal transceiver design


