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Lecture 3

Linear programming and the simplex method
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Optimality conditions

For f differentiable, consider

minimize f(x)

(P)

subject to xe S CIR".

Proposition. Assume that S is a convex subset of IR", and assume
that f : S — IR is a convex differentiable function on S. Then, ¥ € S
is a global minimizer to (P) if and only if V f(z*) (x — ) > 0 for all
res.

This condition is not immediate to verify, since it involves all feasible .

We will consider more immediate conditions.
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Linear program

A linear program is a convex optimization problem on the form

minimize clx
zeIR™
(LP) subject to Ax = b,
x > 0.

May be written on many (equivalent) forms.

The feasible set is a polyhedron, i.e., given by the intersection of a finite
number of hyperplanes in IR".
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min

subject to

Example linear program

—T1 + I»

—211 + 12 > —4,
2x1 — 312 > —9,
—4xy — xy > —16,
ry > 0,

To > 0.

x2
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Example linear program, cont.

Equivalent linear programs.

min

subject to

—T1 + Io

—2r1 + 15 > —4,
2x1 — 31 > —9,
—4xy — xy > —16,
r1 > 0,

To > 0.

min

subject to

—T1 + Io

—2T1 + Ty — 13 = —4,
201 — 31, — x4 = —9,
—4x1 — 19 — 15 = —186,

ijO, ]:1,,5
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Example linear program, cont.

Equivalent linear programs.

min —T1 + 25 min —T1 + 25

subject to —2x; 4+ 2o > —4, subject to 2x; — 7z + 23 = 4,

2x1 — 31 > —9, —4x1 + 4y — 13+ 24 = 5,
—4x1 — 1o > —16, Ary — Tp — X3 — Ta + T5 =
r1 > 0, r; >0, 7=1,...,5.
To > 0.
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Methods for linear programming

We will consider two type of methods for linear programming.

e [he simplex method.
— Combinatoric in its nature.

— The iterates are extreme points of the feasible region.

e Interior methods.

— Approximately follow a trajectory created by a perturbation of
the optimality conditions.

— The iterates belong to the relative interior of the feasible region.
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Standard form and inequality form

We will consider linear programs on standard form,

min cly

subject to Ax = b,
x > 0.

By partitioning A = (B N) where B is m x m and invertible we obtain

min CHUB + cATN
subject to Bxg + Nzy =0,
rg >0, xny=>0.
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Standard form and inequality form, cont.

We will consider linear programs on standard form,

min cly

subject to Ax = b,
x > 0.

Elimination of 25 as 23 = B71b — B~ Nxy gives

min (cv — N'Blep)xy
subject to —B 'Nzy > —B71b,
TN Z 0.

Equivalent problem on inequality form.
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Linear program and extreme points

Definition. Let S be a convex set. Then x is an extreme point to S If
v € S and therearenoy € C, z€ C,y#x, z# x, and a € (0,1)
such that x = (1 — a)y + az.

minimize ¢z
reIR™
(LP) subject to Ax = b,
x > 0.

Theorem. Assume that (LP) has at least one optimal solution. Then,

there is an optimal solution which is an extreme point.

One way of solving a linear program is to move from extreme point to
extreme point, requiring decrease in the objective function value. (The

simplex method.)
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Linear program extreme points and basic feasible solutions

Proposition. Let S = {z € IR": Ax = b where A € IR™*" of rank m}.
Then, if x is an extreme point of S, we may partition A = (B N)
(column permuted), where B is m x m and invertible, and x

conformally, such that

B N B b .
= , withxg >0

0 1 TN 0

Note that zz = B~ b, zn = 0.
We refer to B as a basis matrix.

Extreme points are referred to as basic feasible solutions.
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Optimality of basic feasible solution
Assume that we have a basic feasible solution

B N T b
0 [ TN 0

Proposition. The basic feasible solution is optimal if c'p* > 0,

i=1,...,n—m, where p' is given by
B N Pl 0

. — ) Z:]-a y TV — M
0 I Dy €;

Proof. If T is feasible, it must hold that 7 — z = > "= v;p", where
v >0,1=1,...,n—m. Hence, c/(z —x) > 0. O
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Test of optimality of basic feasible solution

Note that ¢!p’ may be written as

_ ( . T) B N 0
cp =\ c C
7 " 0 1 €;
BT 0 c
Let ¥y and s, solve N I
Nt T SN Cn

. 0
Then c'p' = (yT s ) = (sn)i-
€;

We may compute c¢!pt, i = 1.....n — m, by solving one system of
y P p o y g y

equations.
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An iteration in the simplex method

e Compute simplex mulipliers y and reduced costs s from
BT 0 Y Cp
NT T Sn Cn
e If (sy): <0, compute search direction p from
B N o 0
0 I Dy 4

e Compute maximum steplength a. and limiting constraint » from

B : (ajB)i . - (xB)i
Omax — . min ? = argmin .
©:(pp)i<0 _(pB)i i:(pB)i<0 _(pB)i

o Let x = = 4+ amaxD.

e Replace (zy); =0 by (z5), = 0 among the active constraints.
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An iteration in the simplex method, alternatively
e Compute simplex mulipliers y and reduced costs s from
BTy = Cp, Sy =Cy — NTy.
e If (sy): <0, compute search direction p from
Py =€, Bpg = —N;.
e Compute maximum steplength apmax and limiting constraint » from

B : (373)73 o : (xB)i
Omax — min , r = argmin
i:(pp)i<0 —(pB)Z' i:(pp)i<0 _(pB)i

o Let v = = 4+ amaxD.

e Replace (xy); =0 by (z3), = 0 among the active constraints.
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To find a basic feasible solution
A basic feasible solution can be found by solving a Phase I-problem

min ely

subject to Ax +u = b,
x>0, u=>0,

where e has all components 1.

We assume that b > 0. (If not, the correpsponding rows in Az = b may
be multiplied by —1.)
Basic feasile solution to the Phase |-problem is given with u as basic

variables.

Solve the Phase |-problem by the simplex method. If the optimal value is
zero, we have a basic feasible solution to the original problem, otherwise
the original problem is infeasible.

A. Forsgren, KTH 16 Lecture 3 Convex optimization 2006/2007



Primal and dual linear programs

For a primal linear program

minimize clx

(PLP) subject to Ax = b,

x > 0,
we will associate a dual linear program
max bly
(DLP) subject to Aly + s =,
s > 0.

(We will derive the dual by Lagrangian relaxation later.)
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Weak duality for linear programming

Proposition. /f x is feasible to (PLP) and y, s is feasible to (DLP),

then clx — bly = z's > 0.
Proof. Insertion gives the result. []

It follows that weak duality holds, i.e., optval(PLP) > optval(DLP).

Proposition. If x is feasible to (PLP) and y, s is feasible to (DLP),
and furthermore x's = 0, then these solutions are optimal to the primal
and the dual, respectively.

Proof. A consequence of the previous result. []

Note that if z > 0 and s > 0, then x’s = 0 if and only if z;s; = 0,
7=1,...,n.
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Strong duality for linear programming

minimize clz maximize bly
reIR™ yelR™
(PLP) subject to Ax = b, (DLP) subject to Aly+s=c
x > 0. s > 0.

Theorem. [f (PLP) has a finite optimal value, then there exist
optimal solutions to (PLP) and (DLP). Moreover, the optimal values

are equal.

This result is referred to as strong duality for linear programming.
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