

KTH Mathematics 2E5295/5B5749 Convex optimization with engineering applications

Lecture 3

Linear programming and the simplex method

Optimality conditions

For f differentiable, consider

(P)	minimize	$f(x)$
subject to	$x \in S \subseteq \mathbb{R}^{n}$.	

Proposition. Assume that S is a convex subset of \mathbb{R}^{n}, and assume that $f: S \rightarrow \mathbb{R}$ is a convex differentiable function on S. Then, $x^{*} \in S$ is a global minimizer to (P) if and only if $\nabla f\left(x^{*}\right)^{T}\left(x-x^{*}\right) \geq 0$ for all $x \in S$.

This condition is not immediate to verify, since it involves all feasible x.
We will consider more immediate conditions.

Linear program

A linear program is a convex optimization problem on the form

$$
(L P) \quad \begin{array}{ll}
\underset{x \in \mathbb{R ^ { n }}}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

May be written on many (equivalent) forms.
The feasible set is a polyhedron, i.e., given by the intersection of a finite number of hyperplanes in \mathbb{R}^{n}.

Example linear program

$$
\begin{array}{ll}
\min & -x_{1}+x_{2} \\
\text { subject to } & -2 x_{1}+x_{2} \geq-4 \\
& 2 x_{1}-3 x_{2} \geq-9 \\
& -4 x_{1}-x_{2} \geq-16 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{array}
$$

Example linear program, cont.

Equivalent linear programs.

$$
\begin{array}{llll}
\min & -x_{1}+x_{2} & \min & -x_{1}+x_{2} \\
\text { subject to } & -2 x_{1}+x_{2} \geq-4, & \text { subject to } & -2 x_{1}+x_{2}-x_{3}=-4, \\
& 2 x_{1}-3 x_{2} \geq-9, & & 2 x_{1}-3 x_{2}-x_{4}=-9, \\
& -4 x_{1}-x_{2} \geq-16, & -4 x_{1}-x_{2}-x_{5}=-16, \\
x_{1} \geq 0, & x_{j} \geq 0, \quad j=1, \ldots, 5 \\
x_{2} \geq 0 . &
\end{array}
$$

Example linear program, cont.

Equivalent linear programs.
min

$$
-x_{1}+x_{2}
$$

min
$-x_{1}+x_{2}$
subject to $-2 x_{1}+x_{2} \geq-4$,
subject to $2 x_{1}-x_{2}+x_{3}=4$,

$$
\begin{aligned}
& 2 x_{1}-3 x_{2} \geq-9 \\
& -4 x_{1}-x_{2} \geq-16 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

$$
-4 x_{1}+4 x_{2}-x_{3}+x_{4}=5
$$

$$
4 x_{1}-x_{2}-x_{3}-x_{4}+x_{5}=3
$$

$$
x_{j} \geq 0, \quad j=1, \ldots, 5
$$

Methods for linear programming

We will consider two type of methods for linear programming.

- The simplex method.
- Combinatoric in its nature.
- The iterates are extreme points of the feasible region.
- Interior methods.
- Approximately follow a trajectory created by a perturbation of the optimality conditions.
- The iterates belong to the relative interior of the feasible region.

Standard form and inequality form

We will consider linear programs on standard form,

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { subject to } & A x=b, \\
& x \geq 0 .
\end{array}
$$

By partitioning $A=(B N)$ where B is $m \times m$ and invertible we obtain min

$$
c_{B}^{T} x_{B}+c_{N}^{T} x_{N}
$$

subject to $B x_{B}+N x_{N}=b$,

$$
x_{B} \geq 0, \quad x_{N} \geq 0 .
$$

Standard form and inequality form, cont.

We will consider linear programs on standard form,

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

Elimination of x_{B} as $x_{B}=B^{-1} b-B^{-1} N x_{N}$ gives

$$
\begin{array}{ll}
\min & \left(c_{N}-N^{T} B^{-T} c_{B}\right) x_{N} \\
\text { subject to } & -B^{-1} N x_{N} \geq-B^{-1} b, \\
& x_{N} \geq 0
\end{array}
$$

Equivalent problem on inequality form.

Linear program and extreme points

Definition. Let S be a convex set. Then x is an extreme point to S if $x \in S$ and there are no $y \in C, z \in C, y \neq x, z \neq x$, and $\alpha \in(0,1)$ such that $x=(1-\alpha) y+\alpha z$.

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad c^{T} x
$$

$(L P) \quad$ subject to $A x=b$, $x \geq 0$.

Theorem. Assume that (LP) has at least one optimal solution. Then, there is an optimal solution which is an extreme point.

One way of solving a linear program is to move from extreme point to extreme point, requiring decrease in the objective function value. (The simplex method.)

Linear program extreme points and basic feasible solutions

Proposition. Let $S=\left\{x \in \mathbb{R}^{n}: A x=b\right.$ where $A \in \mathbb{R}^{m \times n}$ of rank $\left.m\right\}$. Then, if x is an extreme point of S, we may partition $A=(B N)$ (column permuted), where B is $m \times m$ and invertible, and x conformally, such that

$$
\left(\begin{array}{cc}
B & N \\
0 & I
\end{array}\right)\binom{x_{B}}{x_{N}}=\binom{b}{0}, \quad \text { with } x_{B} \geq 0
$$

Note that $x_{B}=B^{-1} b, x_{N}=0$.
We refer to B as a basis matrix.
Extreme points are referred to as basic feasible solutions.

Optimality of basic feasible solution

Assume that we have a basic feasible solution

$$
\left(\begin{array}{cc}
B & N \\
0 & I
\end{array}\right)\binom{x_{B}}{x_{N}}=\binom{b}{0} .
$$

Proposition. The basic feasible solution is optimal if $c^{T} p^{i} \geq 0$, $i=1, \ldots, n-m$, where p^{i} is given by

$$
\left(\begin{array}{cc}
B & N \\
0 & I
\end{array}\right)\binom{p_{B}^{i}}{p_{N}^{i}}=\binom{0}{e_{i}}, \quad i=1, \ldots, n-m .
$$

Proof. If \widetilde{x} is feasible, it must hold that $\widetilde{x}-x=\sum_{i=1}^{n-m} \gamma_{i} p^{i}$, where $\gamma_{i} \geq 0, i=1, \ldots, n-m$. Hence, $c^{T}(\widetilde{x}-x) \geq 0 . \square$

Test of optimality of basic feasible solution

Note that $c^{T} p^{i}$ may be written as

$$
c^{T} p^{i}=\left(\begin{array}{ll}
c_{B}^{T} & c_{N}^{T}
\end{array}\right)\left(\begin{array}{cc}
B & N \\
0 & I
\end{array}\right)^{-1}\binom{0}{e_{i}} .
$$

Let y and s_{N} solve $\left(\begin{array}{cc}B^{T} & 0 \\ N^{T} & I\end{array}\right)\binom{y}{s_{N}}=\binom{c_{B}}{c_{N}}$.
Then $c^{T} p^{i}=\left(\begin{array}{ll}y^{T} & s_{N}^{T}\end{array}\right)\binom{0}{e_{i}}=\left(s_{N}\right)_{i}$.
We may compute $c^{T} p^{i}, i=1, \ldots, n-m$, by solving one system of equations.

An iteration in the simplex method

- Compute simplex mulipliers y and reduced costs s from

$$
\left(\begin{array}{cc}
B^{T} & 0 \\
N^{T} & I
\end{array}\right)\binom{y}{s_{N}}=\binom{c_{B}}{c_{N}} .
$$

- If $\left(s_{N}\right)_{t}<0$, compute search direction p from

$$
\left(\begin{array}{cc}
B & N \\
0 & I
\end{array}\right)\binom{p_{B}}{p_{N}}=\binom{0}{e_{t}} .
$$

- Compute maximum steplength $\alpha_{\text {max }}$ and limiting constraint r from

$$
\alpha_{\max }=\min _{i:\left(p_{B}\right)_{i}<0} \frac{\left(x_{B}\right)_{i}}{-\left(p_{B}\right)_{i}}, \quad r=\underset{i:\left(p_{B}\right)_{i}<0}{\operatorname{argmin}} \frac{\left(x_{B}\right)_{i}}{-\left(p_{B}\right)_{i}} .
$$

- Let $x=x+\alpha_{\max } p$.
- Replace $\left(x_{N}\right)_{t}=0$ by $\left(x_{B}\right)_{r}=0$ among the active constraints.

An iteration in the simplex method, alternatively

- Compute simplex mulipliers y and reduced costs s from

$$
B^{T} y=c_{B}, \quad s_{N}=c_{N}-N^{T} y
$$

- If $\left(s_{N}\right)_{t}<0$, compute search direction p from

$$
p_{N}=e_{t}, \quad B p_{B}=-N_{t} .
$$

- Compute maximum steplength $\alpha_{\text {max }}$ and limiting constraint r from

$$
\alpha_{\text {max }}=\min _{i:\left(p_{B}\right)_{i}<0} \frac{\left(x_{B}\right)_{i}}{-\left(p_{B}\right)_{i}}, \quad r=\underset{i:\left(p_{B}\right)_{i}<0}{\operatorname{argmin}} \frac{\left(x_{B}\right)_{i}}{-\left(p_{B}\right)_{i}} .
$$

- Let $x=x+\alpha_{\max } p$.
- Replace $\left(x_{N}\right)_{t}=0$ by $\left(x_{B}\right)_{r}=0$ among the active constraints.

To find a basic feasible solution

A basic feasible solution can be found by solving a Phase l-problem

$$
\begin{array}{ll}
\min & e^{T} u \\
\text { subject to } & A x+u=b \\
& x \geq 0, \quad u \geq 0
\end{array}
$$

where e has all components 1 .
We assume that $b \geq 0$. (If not, the correpsponding rows in $A x=b$ may be multiplied by -1 .)

Basic feasile solution to the Phase I-problem is given with u as basic variables.

Solve the Phase l-problem by the simplex method. If the optimal value is zero, we have a basic feasible solution to the original problem, otherwise the original problem is infeasible.

Primal and dual linear programs

For a primal linear program

$$
\begin{array}{ll}
\text { minimize } & c^{T} x \\
(P L P) \quad \text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

we will associate a dual linear program

$$
\begin{array}{ll}
\max \quad & b^{T} y \\
(D L P) \quad \text { subject to } & A^{T} y+s=c \\
& s \geq 0
\end{array}
$$

(We will derive the dual by Lagrangian relaxation later.)

Weak duality for linear programming

Proposition. If x is feasible to $(P L P)$ and y, s is feasible to $(D L P)$, then $c^{T} x-b^{T} y=x^{T} s \geq 0$.

Proof. Insertion gives the result. \square
It follows that weak duality holds, i.e., optval $(P L P) \geq$ optval $(D L P)$.
Proposition. If x is feasible to $(P L P)$ and y, s is feasible to $(D L P)$, and furthermore $x^{T} s=0$, then these solutions are optimal to the primal and the dual, respectively.

Proof. A consequence of the previous result. \square
Note that if $x \geq 0$ and $s \geq 0$, then $x^{T} s=0$ if and only if $x_{j} s_{j}=0$, $j=1, \ldots, n$.

Strong duality for linear programming

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}}^{\min } \quad c^{T} x
$$

$$
\underset{y \in \mathbb{R}^{m}}{\operatorname{maximize}} \quad b^{T} y
$$

$(D L P) \quad$ subject to $A^{T} y+s=c$,
$s \geq 0$.

Theorem. If $(P L P)$ has a finite optimal value, then there exist optimal solutions to $(P L P)$ and $(D L P)$. Moreover, the optimal values are equal.

This result is referred to as strong duality for linear programming.

