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Linear programming and the simplex method
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Optimality conditions

For f differentiable, consider

(P )
minimize f(x)

subject to x ∈ S ⊆ IRn.

Proposition. Assume that S is a convex subset of IRn, and assume

that f : S → IR is a convex differentiable function on S. Then, x∗ ∈ S

is a global minimizer to (P ) if and only if ∇f(x∗)T(x− x∗) ≥ 0 for all

x ∈ S.

This condition is not immediate to verify, since it involves all feasible x.

We will consider more immediate conditions.
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Linear program

A linear program is a convex optimization problem on the form

(LP )

minimize
x∈IRn

cTx

subject to Ax = b,

x ≥ 0.

May be written on many (equivalent) forms.

The feasible set is a polyhedron, i.e., given by the intersection of a finite

number of hyperplanes in IRn.
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Example linear program

min −x1 + x2

subject to −2x1 + x2 ≥ −4,

2x1 − 3x2 ≥ −9,

−4x1 − x2 ≥ −16,

x1 ≥ 0,

x2 ≥ 0.
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Example linear program, cont.

Equivalent linear programs.

min −x1 + x2

subject to −2x1 + x2 ≥ −4,

2x1 − 3x2 ≥ −9,

−4x1 − x2 ≥ −16,

x1 ≥ 0,

x2 ≥ 0.

min −x1 + x2

subject to −2x1 + x2 − x3 = −4,

2x1 − 3x2 − x4 = −9,

−4x1 − x2 − x5 = −16,

xj ≥ 0, j = 1, . . . , 5.
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Example linear program, cont.

Equivalent linear programs.

min −x1 + x2

subject to −2x1 + x2 ≥ −4,

2x1 − 3x2 ≥ −9,

−4x1 − x2 ≥ −16,

x1 ≥ 0,

x2 ≥ 0.

min −x1 + x2

subject to 2x1 − x2 + x3 = 4,

−4x1 + 4x2 − x3 + x4 = 5,

4x1 − x2 − x3 − x4 + x5 = 3,

xj ≥ 0, j = 1, . . . , 5.
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Methods for linear programming

We will consider two type of methods for linear programming.

� The simplex method.

– Combinatoric in its nature.

– The iterates are extreme points of the feasible region.

� Interior methods.

– Approximately follow a trajectory created by a perturbation of

the optimality conditions.

– The iterates belong to the relative interior of the feasible region.
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Standard form and inequality form

We will consider linear programs on standard form,

min cTx

subject to Ax = b,

x ≥ 0.

By partitioning A = (B N) where B is m×m and invertible we obtain

min cT
BxB + cT

NxN

subject to BxB + NxN = b,

xB ≥ 0, xN ≥ 0.
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Standard form and inequality form, cont.

We will consider linear programs on standard form,

min cTx

subject to Ax = b,

x ≥ 0.

Elimination of xB as xB = B−1b−B−1NxN gives

min (cN −NTB−TcB)xN

subject to −B−1NxN ≥ −B−1b,

xN ≥ 0.

Equivalent problem on inequality form.
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Linear program and extreme points

Definition. Let S be a convex set. Then x is an extreme point to S if

x ∈ S and there are no y ∈ C, z ∈ C, y 6= x, z 6= x, and α ∈ (0, 1)

such that x = (1− α)y + αz.

(LP )

minimize
x∈IRn

cTx

subject to Ax = b,

x ≥ 0.

Theorem. Assume that (LP ) has at least one optimal solution. Then,

there is an optimal solution which is an extreme point.

One way of solving a linear program is to move from extreme point to

extreme point, requiring decrease in the objective function value. (The

simplex method.)
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Linear program extreme points and basic feasible solutions

Proposition. Let S = {x ∈ IRn : Ax = b where A ∈ IRm×n of rank m}.
Then, if x is an extreme point of S, we may partition A = (B N)

(column permuted), where B is m×m and invertible, and x

conformally, such that B N

0 I


 xB

xN

 =

 b

0

 , with xB ≥ 0 .

Note that xB = B−1b, xN = 0.

We refer to B as a basis matrix.

Extreme points are referred to as basic feasible solutions.
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Optimality of basic feasible solution

Assume that we have a basic feasible solution B N

0 I


 xB

xN

 =

 b

0

 .

Proposition. The basic feasible solution is optimal if cTpi ≥ 0,

i = 1, . . . , n−m, where pi is given by B N

0 I


 pi

B

pi
N

 =

 0

ei

 , i = 1, . . . , n−m.

Proof. If x̃ is feasible, it must hold that x̃− x =
∑n−m

i=1 γip
i, where

γi ≥ 0, i = 1, . . . , n−m. Hence, cT(x̃− x) ≥ 0.
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Test of optimality of basic feasible solution

Note that cTpi may be written as

cTpi =
(

cT
B cT

N

)  B N

0 I


−1  0

ei

 .

Let y and sN solve

 BT 0

NT I


 y

sN

 =

 cB

cN

.

Then cTpi =
(

yT sT
N

)  0

ei

 = (sN)i.

We may compute cTpi, i = 1, . . . , n−m, by solving one system of

equations.
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An iteration in the simplex method

� Compute simplex mulipliers y and reduced costs s from BT 0

NT I


 y

sN

 =

 cB

cN

.

� If (sN)t < 0, compute search direction p from B N

0 I


 pB

pN

 =

 0

et

.

� Compute maximum steplength αmax and limiting constraint r from

αmax = min
i:(pB)i<0

(xB)i

−(pB)i

, r = argmin
i:(pB)i<0

(xB)i

−(pB)i

.

� Let x = x + αmaxp.

� Replace (xN)t = 0 by (xB)r = 0 among the active constraints.
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An iteration in the simplex method, alternatively

� Compute simplex mulipliers y and reduced costs s from

BT y = cB, sN = cN −NTy.

� If (sN)t < 0, compute search direction p from

pN = et, BpB = −Nt.

� Compute maximum steplength αmax and limiting constraint r from

αmax = min
i:(pB)i<0

(xB)i

−(pB)i

, r = argmin
i:(pB)i<0

(xB)i

−(pB)i

.

� Let x = x + αmaxp.

� Replace (xN)t = 0 by (xB)r = 0 among the active constraints.
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To find a basic feasible solution

A basic feasible solution can be found by solving a Phase I-problem

min eTu

subject to Ax + u = b,

x ≥ 0, u ≥ 0,

where e has all components 1.

We assume that b ≥ 0. (If not, the correpsponding rows in Ax = b may

be multiplied by −1.)

Basic feasile solution to the Phase I-problem is given with u as basic

variables.

Solve the Phase I-problem by the simplex method. If the optimal value is

zero, we have a basic feasible solution to the original problem, otherwise

the original problem is infeasible.
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Primal and dual linear programs

For a primal linear program

(PLP )

minimize cTx

subject to Ax = b,

x ≥ 0,

we will associate a dual linear program

(DLP )

max bTy

subject to ATy + s = c,

s ≥ 0.

(We will derive the dual by Lagrangian relaxation later.)
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Weak duality for linear programming

Proposition. If x is feasible to (PLP ) and y, s is feasible to (DLP ),

then cTx− bTy = xTs ≥ 0.

Proof. Insertion gives the result.

It follows that weak duality holds, i.e., optval(PLP ) ≥ optval(DLP ).

Proposition. If x is feasible to (PLP ) and y, s is feasible to (DLP ),

and furthermore xTs = 0, then these solutions are optimal to the primal

and the dual, respectively.

Proof. A consequence of the previous result.

Note that if x ≥ 0 and s ≥ 0, then xTs = 0 if and only if xjsj = 0,

j = 1, . . . , n.
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Strong duality for linear programming

(PLP )

minimize
x∈IRn

cTx

subject to Ax = b,

x ≥ 0.

(DLP )

maximize
y∈IRm

bTy

subject to ATy + s = c,

s ≥ 0.

Theorem. If (PLP ) has a finite optimal value, then there exist

optimal solutions to (PLP ) and (DLP ). Moreover, the optimal values

are equal.

This result is referred to as strong duality for linear programming.
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