

KTH Mathematics

2E5295/5B5749 Convex optimization with engineering applications

Lecture 4

Linear programming, Lagrangian relaxation and duality

Primal and dual linear programs

For a *primal* linear program

$$\begin{array}{ll} \text{minimize} & c^T x\\ (PLP) & \text{subject to} & Ax = b,\\ & x \ge \mathbf{0}, \end{array}$$

we will associate a *dual* linear program

$$\begin{array}{ll} \max & b^T y \\ (DLP) & \mbox{subject to} & A^T y + s = c, \\ & s \geq 0. \end{array}$$

(We will derive the dual by *Lagrangian relaxation* later.)

Weak duality for linear programming

Proposition. If x is feasible to (PLP) and y, s is feasible to (DLP), then $c^Tx - b^Ty = x^Ts \ge 0$.

Proof. Insertion gives the result. \Box

It follows that weak duality holds, i.e., $optval(PLP) \ge optval(DLP)$. **Proposition.** If x is feasible to (PLP) and y, s is feasible to (DLP), and furthermore $x^Ts = 0$, then these solutions are optimal to the primal

and the dual, respectively.

Proof. A consequence of the previous result. \Box

Note that if $x \ge 0$ and $s \ge 0$, then $x^T s = 0$ if and only if $x_j s_j = 0$, j = 1, ..., n.

Strong duality for linear programming

$$\begin{array}{lll} \underset{x \in I\!\!R^n}{\text{minimize}} & c^T x & \underset{y \in I\!\!R^m}{\text{minimize}} & b^T y \\ (PLP) & \text{subject to} & Ax = b, & (DLP) & \text{subject to} & A^T y + s = c, \\ & x \ge 0. & s \ge 0. \end{array}$$

Theorem. If (PLP) has a finite optimal value, then there exist optimal solutions to (PLP) and (DLP). Moreover, the optimal values are equal.

This result is referred to as *strong duality* for linear programming.

Farkas' lemma

Lemma. Let A be an $m \times n$ matrix, and let b be an m-dimensional vector. Then exactly one of the following systems has a solution.

1.
$$Ax = b, x \ge 0,$$
 2. $A^T y \ge 0, b^T y < 0.$

Proof. Both systems cannot have a solution simultaneously. (Try.) It remains to show that if 1 has no solution, then 2 has a solution. Let $\mathcal{W} = \{w \in \mathbb{R}^m : w = Ax, x \ge 0\}$. Then \mathcal{W} is a closed convex set. (Closedness follows by reducing to basic feasible solutions.)

Then 1 has a solution if and only if $b \in \mathcal{W}$.

If $b \notin \mathcal{W}$, then by the separating hyperplane theorem, there is a $y \in \mathbb{R}^m$ such that $y^T b < y^T z$ for all $z \in \mathcal{W}$. This y satisfies 2. \Box

Proof of strong duality for linear programming

Proof. If (PLP) has optimal value v^* , there is no solution to the system

$$\begin{pmatrix} A & -b \\ -A & b \\ I & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \left(c^T & -v^* \right)^T \begin{pmatrix} x \\ t \end{pmatrix} < 0.$$

Associating this system with system 2 in Farkas' lemma, simplifications of the corresponding system 1 give the existence of a solution to the system

$$A^T y \le c, \quad b^T y \ge v^*.$$

Hence, (D) has an optimal solution with value v^* . The existence of a primal optimal solution is proved analogously. \Box

Linear programming, optimality conditions

Linear program:

Optimality conditions:

$$Ax = b,$$

$$A^{T}y + s = c,$$

$$x_{j}s_{j} = 0, \quad j = 1, \dots, n,$$

$$x \ge 0,$$

$$s \ge 0.$$

Relaxation

(P) $\begin{array}{ccc} \text{minimize} & f(x) & \text{minimize} & f_R(x) \\ \text{subject to} & x \in S. & \text{subject to} & x \in S_R. \end{array}$

Definition. Problem (P_R) is a relaxation of problem (P) if

(i) $S_R \supseteq S$, and (ii) $f_R(x) \le f(x)$ for all $x \in S$.

Proposition. The optimal values satisfy $optval(P_R) \leq optval(P)$.

Proposition. If x^* is a global minimizer to (P_R) such that $x^* \in S$ and $f_R(x^*) = f(x^*)$, then x^* is a global minimizer to (P).

Lagrangian relaxation

(P) minimize f(x)(P) subject to $g_i(x) \ge 0, \quad i \in \mathcal{I}, \qquad \mathcal{I} \cup \mathcal{E} = \{1, \dots, m\},$ $g_i(x) = 0, \quad i \in \mathcal{E}, \qquad \mathcal{I} \cap \mathcal{E} = \emptyset,$ $x \in X.$

Definition. For $\lambda \in \mathbb{R}^m$, the Lagrangian is $l(x, \lambda) = f(x) - \lambda^T g(x)$. For a given $\lambda \in \mathbb{R}^m$ such that $\lambda_i \geq 0$, $i \in \mathcal{I}$, the Lagrangian relaxation problem is given by

 $\begin{array}{ll} \text{minimize} & f(x) - \lambda^T g(x) \\ (P_{\lambda}) & \\ \text{subject to} & x \in X. \end{array}$

NB! λ is fixed when solving (P_{λ}) , x is the variable.

Lagrangian duality

The Lagrangian dual problem (D) is obtained by making the Lagrangian relaxation as strong as possible.

where

$$\varphi(\lambda) = \min_{x \in X} f(x) - \lambda^T g(x).$$

Weak duality. The optimal values satisfy $optval(D) \le optval(P)$. The difference optval(P) - optval(D) is referred to as the duality gap.

The dual of a linear program

$$\begin{array}{ll} \underset{x \in I\!\!R^n}{\text{minimize}} & c^T x\\ (PLP) & \text{subject to} & Ax = b,\\ & x \geq 0. \end{array}$$

For a given $y \in \mathbb{R}^m$, we obtain

$$\varphi(y) = \underset{x \ge 0}{\text{minimize } c^T x - y^T (Ax - b)} = \begin{cases} b^T y & \text{if } A^T y \le c, \\ -\infty & \text{otherwise.} \end{cases}$$

Consequently,

$$(DLP) \qquad \begin{array}{l} \underset{y \in I\!\!R^m}{\text{maximize}} \quad b^T y \\ \text{subject to} \quad A^T y \leq c. \end{array}$$

Example of linear program: Curve fitting

Assume that a line y = kx + l is to be fit to a set of given points (x_i, y_i) , i = 1, ..., m.

Consider to ways of fitting the line:

- Choose k and l so that the maximum deviation in the y-direction is minimized, i.e., let k and l solve min_{k,l} {max_i |kx_i + l − y_i|}.
- Choose k and l so that the sum of the deviations in the y-direction is minimized, i.e., let k and l solve $\min_{k,l} \sum_i |kx_i + l y_i|$.

Both these curve fitting problems can be formulated as linear programs.

Suggested reading

Suggested reading in the textbook:

- Sections 4.1–4.3.
- Sections 5.1–5.2.

Linearly constrained convex program

We will consider a linearly constrained convex optimization problem on the form

$$\begin{array}{ll} \underset{x \in I\!\!R^n}{\text{minimize}} & f(x) & \mathcal{I} \cup \mathcal{E} = \{1, \dots, m\} \\ (LCP) & \text{subject to} & a_i^T x - b_i \geq 0, \quad i \in \mathcal{I}, \\ & a_i^T x - b_i = 0, \quad i \in \mathcal{E}, \end{array} \qquad \begin{array}{ll} \mathcal{I} \cup \mathcal{E} = \{1, \dots, m\} \\ \mathcal{I} \cap \mathcal{E} = \emptyset, \\ \end{array}$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is convex and twice continuously differentiable. Let $F = \{x \in \mathbb{R}^n : a_i^T x - b_i \ge 0, i \in \mathcal{I}, a_i^T x - b_i = 0, i \in \mathcal{E}\}.$ **Definition.** A direction p is a feasible direction to F in x^* if there is $\bar{\alpha} > 0$ such that $x^* + \alpha p \in F$ for $\alpha \in [0, \bar{\alpha}].$

Definition. A direction p is a descent direction to f in x^* if $\nabla f(x^*)^T p < 0$.

Optimality conditions for linearly constrained convex program

Let $\mathcal{A}(x^*)$ denote the set of constraints that are active at $x^* \in F$, i.e., $\mathcal{A}(x^*) = \{i \in \{1, \ldots, n\} \text{ such that } a_i^T x^* - b_i = 0\}.$

Then, $x^* \in F$ is a minimizer to (LCP) if and only if there is no feasible descent direction.

Proposition. The point $x^* \in F$ is a minimizer to (LCP) if and only if it is a minimizer to

$$\begin{array}{ll} \underset{p \in I\!\!R^n}{\text{minimize}} & \nabla f(x^*)^T p \\ (LP) & \text{subject to} & a_i^T p \geq \mathsf{0}, \quad i \in \mathcal{I} \cap \mathcal{A}(x^*), \\ & a_i^T p = \mathsf{0}, \quad i \in \mathcal{E}. \end{array}$$

Optimality conditions for linearly constrained convex program, cont.

Hence, if x^* is a minimizer, the linear programs

$$\begin{array}{ll} \underset{p \in I\!\!R^n}{\text{minimize}} & \nabla f(x^*)^T p\\ \text{subject to} & a_i^T p \geq \mathsf{0}, \quad i \in \mathcal{I} \cap \mathcal{A}(x^*),\\ & a_i^T p = \mathsf{0}, \quad i \in \mathcal{E}, \end{array}$$

and

maximize
$$\sum_{i \in \mathcal{A}(x^*)} 0\lambda_i$$

subject to $\sum_{i \in \mathcal{A}(x^*)} a_i \lambda_i = \nabla f(x^*),$
 $\lambda_i \ge 0, \ i \in \mathcal{I} \cap \mathcal{A}(x^*).$

(The second problem is the LP-dual of the first one.)

Optimality conditions for linearly constrained convex program, cont.

- The first-order necessary and sufficient optimality conditions for the convex linearly constrained optimization problem can now be stated.
- **Proposition.** The point x^* is a minimizer to (LCP) if and only if there is a $\lambda^* \in \mathbb{R}^m$ such that
 - (i) $a_i^T x^* b_i \ge 0, i \in \mathcal{I}, \text{ and } a_i^T x^* b_i = 0, i \in \mathcal{E},$ (ii) $\nabla f(x^*) = \sum_{i=1}^m a_i \lambda_i^* = A^T \lambda^*,$ (iii) $\lambda_i^* \ge 0, i \in \mathcal{I},$ (iv) $\lambda_i^* (a_i^T x^* - b_i) = 0, i \in \mathcal{I}.$

These conditions are often referred to as the KKT conditions.

Optimality conditions for linearly constrained convex program, cont.

Let
$$l(x, \lambda) = f(x) - \lambda^T (Ax - b)$$
, let $\varphi(\lambda) = \min_{x \in \mathbb{R}^n} l(x, \lambda)$, and let

$$\begin{array}{ll} (D) & \\ & \text{maximize} & \varphi(\lambda) \\ & \\ & \text{subject to} & \lambda \in I\!\!R^m, \quad \lambda_i \geq 0, i \in \mathcal{I}. \end{array}$$

(i) states that
$$x^*$$
 is feasible to (LCP).

- (*ii*) states that x^* solves $\min_{x \in \mathbb{R}^n} l(x, \lambda^*)$.
- (*iii*) states that λ^* is feasible to (D).
- (*iv*) states that $f(x^*) = l(x^*, \lambda^*) = \varphi(\lambda^*)$.

Consequently, the first-order optimality conditions are equivalent to strong duality.