
2E5295/5B5749 Convex optimization with engineering applications

Lecture 4

Linear programming, Lagrangian relaxation and duality
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Primal and dual linear programs

For a primal linear program

(PLP )

minimize cTx

subject to Ax = b,

x ≥ 0,

we will associate a dual linear program

(DLP )

max bTy

subject to ATy + s = c,

s ≥ 0.

(We will derive the dual by Lagrangian relaxation later.)
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Weak duality for linear programming

Proposition. If x is feasible to (PLP ) and y, s is feasible to (DLP ),

then cTx− bTy = xTs ≥ 0.

Proof. Insertion gives the result.

It follows that weak duality holds, i.e., optval(PLP ) ≥ optval(DLP ).

Proposition. If x is feasible to (PLP ) and y, s is feasible to (DLP ),

and furthermore xTs = 0, then these solutions are optimal to the primal

and the dual, respectively.

Proof. A consequence of the previous result.

Note that if x ≥ 0 and s ≥ 0, then xTs = 0 if and only if xjsj = 0,

j = 1, . . . , n.
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Strong duality for linear programming

(PLP )

minimize
x∈IRn

cTx

subject to Ax = b,

x ≥ 0.

(DLP )

maximize
y∈IRm

bTy

subject to ATy + s = c,

s ≥ 0.

Theorem. If (PLP ) has a finite optimal value, then there exist

optimal solutions to (PLP ) and (DLP ). Moreover, the optimal values

are equal.

This result is referred to as strong duality for linear programming.
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Farkas’ lemma

Lemma. Let A be an m× n matrix, and let b be an m-dimensional

vector. Then exactly one of the following systems has a solution.

1. Ax = b, x ≥ 0, 2. ATy ≥ 0, bTy < 0.

Proof. Both systems cannot have a solution simultaneously. (Try.)

It remains to show that if 1 has no solution, then 2 has a solution.

Let W = {w ∈ IRm : w = Ax, x ≥ 0}. Then W is a closed convex set.

(Closedness follows by reducing to basic feasible solutions.)

Then 1 has a solution if and only if b ∈ W .

If b 6∈ W , then by the separating hyperplane theorem, there is a y ∈ IRm

such that yTb < yTz for all z ∈ W . This y satisfies 2.
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Proof of strong duality for linear programming

Proof. If (PLP ) has optimal value v∗, there is no solution to the system

A −b

−A b

I 0

0 1


 x

t

 ≥



0

0

0

0

 ,
(

cT −v∗
)T

 x

t

 < 0.

Associating this system with system 2 in Farkas’ lemma, simplifications

of the corresponding system 1 give the existence of a solution to the

system

ATy ≤ c, bTy ≥ v∗.

Hence, (D) has an optimal solution with value v∗. The existence of a

primal optimal solution is proved analogously.
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Linear programming, optimality conditions

Linear program:

(PLP )

min cTx

subject to Ax = b,

x ≥ 0.

(DLP )

max bTy

subject to ATy + s = c,

s ≥ 0.

Optimality conditions:

Ax = b,

ATy + s = c,

xjsj = 0, j = 1, . . . , n,

x ≥ 0,

s ≥ 0.
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Relaxation

(P )
minimize f(x)

subject to x ∈ S.
(PR)

minimize fR(x)

subject to x ∈ SR.

Definition. Problem (PR) is a relaxation of problem (P ) if

(i) SR ⊇ S, and (ii) fR(x) ≤ f(x) for all x ∈ S.

Proposition. The optimal values satisfy optval(PR) ≤ optval(P ).

Proposition. If x∗ is a global minimizer to (PR) such that x∗ ∈ S and

fR(x∗) = f(x∗), then x∗ is a global minimizer to (P ).
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Lagrangian relaxation

(P )

minimize f(x)

subject to gi(x) ≥ 0, i ∈ I,

gi(x) = 0, i ∈ E ,

x ∈ X.

I ⋃ E = {1, . . . ,m},

I ⋂ E = ∅,

Definition. For λ ∈ IRm, the Lagrangian is l(x, λ) = f(x)− λTg(x).

For a given λ ∈ IRm such that λi ≥ 0, i ∈ I, the Lagrangian relaxation

problem is given by

(Pλ)
minimize f(x)− λTg(x)

subject to x ∈ X.

NB! λ is fixed when solving (Pλ), x is the variable.

A. Forsgren, KTH 9 Lecture 4 Convex optimization 2006/2007



Lagrangian duality

The Lagrangian dual problem (D) is obtained by making the Lagrangian

relaxation as strong as possible.

(D)
maximize ϕ(λ)

subject to λ ∈ IRm, λi ≥ 0, i ∈ I,

where

ϕ(λ) = minimize
x∈X

f(x)− λTg(x).

Weak duality. The optimal values satisfy optval(D) ≤ optval(P ). The

difference optval(P )− optval(D) is referred to as the duality gap.
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The dual of a linear program

(PLP )

minimize
x∈IRn

cTx

subject to Ax = b,

x ≥ 0.

For a given y ∈ IRm, we obtain

ϕ(y) = minimize
x≥0

cTx− yT(Ax− b) =

 bTy if ATy ≤ c,

−∞ otherwise.

Consequently,

(DLP )
maximize

y∈IRm
bTy

subject to ATy ≤ c.
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Example of linear program: Curve fitting

Assume that a line y = kx + l is to be fit to a set of given points

(xi, yi), i = 1, . . . ,m.

Consider to ways of fitting the line:

� Choose k and l so that the maximum deviation in the y-direction is

minimized, i.e., let k and l solve mink,l{maxi |kxi + l − yi|}.

� Choose k and l so that the sum of the deviations in the y-direction

is minimized, i.e., let k and l solve mink,l
∑

i |kxi + l − yi|.

Both these curve fitting problems can be formulated as linear programs.
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Suggested reading

Suggested reading in the textbook:

� Sections 4.1–4.3.

� Sections 5.1–5.2.
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Linearly constrained convex program

We will consider a linearly constrained convex optimization problem on

the form

(LCP )

minimize
x∈IRn

f(x)

subject to aT
i x− bi ≥ 0, i ∈ I,

aT
i x− bi = 0, i ∈ E ,

I ⋃ E = {1, . . . ,m},

I ⋂ E = ∅,

where f : IRn → IR is convex and twice continuously differentiable.

Let F = {x ∈ IRn : aT
i x− bi ≥ 0, i ∈ I, aT

i x− bi = 0, i ∈ E}.

Definition. A direction p is a feasible direction to F in x∗ if there is

ᾱ > 0 such that x∗ + αp ∈ F for α ∈ [0, ᾱ].

Definition. A direction p is a descent direction to f in x∗ if

∇f(x∗)Tp < 0.
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Optimality conditions for linearly constrained convex program

Let A(x∗) denote the set of constraints that are active at x∗ ∈ F , i.e.,

A(x∗) = {i ∈ {1, . . . , n} such that aT
i x
∗ − bi = 0}.

Then, x∗ ∈ F is a minimizer to (LCP ) if and only if there is no feasible

descent direction.

Proposition. The point x∗ ∈ F is a minimizer to (LCP ) if and only if

it is a minimizer to

(LP )

minimize
p∈IRn

∇f(x∗)Tp

subject to aT
i p ≥ 0, i ∈ I ∩ A(x∗),

aT
i p = 0, i ∈ E .
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Optimality conditions for linearly constrained convex program, cont.

Hence, if x∗ is a minimizer, the linear programs

minimize
p∈IRn

∇f(x∗)Tp

subject to aT
i p ≥ 0, i ∈ I ∩ A(x∗),

aT
i p = 0, i ∈ E ,

and

maximize
∑

i∈A(x∗)
0λi

subject to
∑

i∈A(x∗)
aiλi = ∇f(x∗),

λi ≥ 0, i ∈ I ∩ A(x∗).

(The second problem is the LP-dual of the first one.)
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Optimality conditions for linearly constrained convex program, cont.

The first-order necessary and sufficient optimality conditions for the

convex linearly constrained optimization problem can now be stated.

Proposition. The point x∗ is a minimizer to (LCP ) if and only if

there is a λ∗ ∈ IRm such that

(i) aT
i x
∗ − bi ≥ 0, i ∈ I, and aT

i x
∗ − bi = 0, i ∈ E ,

(ii) ∇f(x∗) =
∑m

i=1 aiλ
∗
i = AT λ∗,

(iii) λ∗i ≥ 0, i ∈ I,

(iv) λ∗i (aT
i x
∗ − bi) = 0, i ∈ I.

These conditions are often referred to as the KKT conditions.
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Optimality conditions for linearly constrained convex program, cont.

Let l(x, λ) = f(x)− λT(Ax− b), let ϕ(λ) = minx∈IRn l(x, λ), and let

(D)
maximize ϕ(λ)

subject to λ ∈ IRm, λi ≥ 0, i ∈ I.

(i) states that x∗ is feasible to (LCP ).

(ii) states that x∗ solves minx∈IRn l(x, λ∗).

(iii) states that λ∗ is feasible to (D).

(iv) states that f(x∗) = l(x∗, λ∗) = ϕ(λ∗).

Consequently, the first-order optimality conditions are equivalent to

strong duality.
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