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Lecture 4

Linear programming, Lagrangian relaxation and duality
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Primal and dual linear programs

For a primal linear program

minimize clx

(PLP) subject to Ax = b,

x > 0,
we will associate a dual linear program
max bly
(DLP) subject to Aly + s =,
s > 0.

(We will derive the dual by Lagrangian relaxation later.)
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Weak duality for linear programming

Proposition. /f x is feasible to (PLP) and y, s is feasible to (DLP),

then clx — bly = z's > 0.
Proof. Insertion gives the result. []

It follows that weak duality holds, i.e., optval(PLP) > optval(DLP).

Proposition. If x is feasible to (PLP) and y, s is feasible to (DLP),
and furthermore x's = 0, then these solutions are optimal to the primal
and the dual, respectively.

Proof. A consequence of the previous result. []

Note that if z > 0 and s > 0, then x’s = 0 if and only if z;s; = 0,
7=1,...,n.
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Strong duality for linear programming

minimize clz maximize bly
reIR™ yelR™
(PLP) subject to Ax = b, (DLP) subject to Aly+s=c
x > 0. s > 0.

Theorem. [f (PLP) has a finite optimal value, then there exist
optimal solutions to (PLP) and (DLP). Moreover, the optimal values

are equal.

This result is referred to as strong duality for linear programming.
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Farkas’ lemma

Lemma. Let A be an m x n matrix, and let b be an m-dimensional

vector. Then exactly one of the following systems has a solution.

1. Az =0, z>0, 2. Aly>o0, vy <o.

Proof. Both systems cannot have a solution simultaneously. (Try.)
It remains to show that if 1 has no solution, then 2 has a solution.

let W={w e R":w= Az, x > 0}. Then W is a closed convex set.

(Closedness follows by reducing to basic feasible solutions.)
Then 1 has a solution if and only if b € W.

If b € VW, then by the separating hyperplane theorem, there is a y € IR™
such that y’b < y'z for all z € W. This y satisfies 2. [
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Proof of strong duality for linear programming

Proof. If (PLP) has optimal value v™, there is no solution to the system
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Associating this system with system 2 in Farkas' lemma, simplifications

of the corresponding system 1 give the existence of a solution to the

system

Aly <e,

bly > v

Hence, (D) has an optimal solution with value v*. The existence of a

primal optimal solution is proved analogously. []
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Linear programming, optimality conditions

Linear program:

min clx max bly
(PLP)  subject to Az = b, (DLP)  subjectto ATy +s=c
x > 0. s > 0.
Optimality conditions:
Ax = b,
Aly+s=c,
r;s;, =0, j7=1,...,n,
x > 0,
s > 0.
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Relaxation

minimize f(x) minimize fr(z)
(P) (Pr)
subject to r e S. subject to r € Sg.

Definition. Problem (Pg) is a relaxation of problem (P) if

(1) Sg2.S, and (i) fr(z) < f(x) forallz € S.

Proposition. The optimal values satisfy optval(Pr) < optval(P).

Proposition. If 2™ is a global minimizer to (Pr) such that ©* € S and
fr(2™) = f(2™), then 2™ is a global minimizer to (P).
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Lagrangian relaxation

minimize f(x)
(P) subject to gi(x) >0, €I, ZTUE =A{1,...,m},
gi(r) =0, i€, INE =70,
r € X.

Definition. For A € IR™, the Lagrangian is [(z, \) = f(x) — Mg(x).

For a given A € IR™ such that \; > 0, » € Z, the Lagrangian relaxation
problem is given by

minimize f(z) — Mg(2)
(Px)
subject to r e X.

NB! X is fixed when solving (P,), x is the variable.
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Lagrangian duality

The Lagrangian dual problem (D) is obtained by making the Lagrangian
relaxation as strong as possible.

maximize ()
(D)
subject to AeIR™, N >0,1€Z,

where
©(A\) = minimize f(x) — Mg(x).

reX

Weak duality. The optimal values satisfy optval(D) < optval(P). The
difference optval( P) — optval(D) is referred to as the duality gap.
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The dual of a linear program

T

minimize c¢c'x
reIR™
(PLP) subject to Ax = b,
x > 0.

For a given y € IR™, we obtain

Ty ATy <o
©(y) = minimize clo — yT(A;I; —b) = ¢ y yxc

220 — 00 otherwise.

\

Consequently,

maximize bly
(DLP) vl
subject to  Aly < c.
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Example of linear program: Curve fitting

Assume that a line y = kx + [ is to be fit to a set of given points

(.I'Z,yz),lz 1,...,m.

Consider to ways of fitting the line:

e Choose k and [ so that the maximum deviation in the y-direction is

minimized, i.e., let k& and [ solve ming ;{max; |kx; + 1 — y;|}.

e Choose k and [ so that the sum of the deviations in the y-direction

is minimized, i.e., let k and [ solve ming; >, |kz; + 1 — ;.

Both these curve fitting problems can be formulated as linear programs.
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Suggested reading

Suggested reading in the textbook:
e Sections 4.1-4.3.

e Sections 5.1-5.2.
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Linearly constrained convex program

We will consider a linearly constrained convex optimization problem on
the form
minimize )
(LCP) el TUE ={1,...,m}
subject to a;x —b; >0, 1€,
. = TNE =90,

~—
=g
S

~

a;x —b; =0, €€,

~

where f : IR™ — IR is convex and twice continuously differentiable.
let F={x € R":alx—b;>0,i€T,alxr—b; =0, i€t}

Definition. A direction p is a feasible direction to F in «* if there is
& > 0 such that 2* +ap € F for a € [0,d].

Definition. A direction p is a descent direction to f in 2 if
Vf(z")p < 0.

A. Forsgren, KTH 14 Lecture 4 Convex optimization 2006/2007



Optimality conditions for linearly constrained convex program

Let A(2") denote the set of constraints that are active at 2° € F, i.e.,
A(x®) = {i € {1,...,n} such that a’2™ — b; = 0}.

Then, 2* € F' is a minimizer to (LCP) if and only if there is no feasible

descent direction.

Proposition. The point x* € F is a minimizer to (LC P) if and only if

It IS @ minimizer to

Coe . X\T
minimize V(x")'p

(LP)  subjectto alp >0, ieZn A",
alp=0, i€é&.
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Jptimality conditions for linearly constrained convex program, cont.

Hence, if £° is a minimizer, the linear programs

. . . >k T
minimize V" )p
subject to alp >0, i€Zn A",
alp=0, i€eé&,

and

maximize ZiGA(x*) O\,
EA(SU*) a’i)\i — Vf(x*),
i >0, i€ZnAY).

subject to >

(The second problem is the LP-dual of the first one.)
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Jptimality conditions for linearly constrained convex program, cont.

The first-order necessary and sufficient optimality conditions for the

convex linearly constrained optimization problem can now be stated.

Proposition. The point & is a minimizer to (LC P) if and only if
there is a X* € IR™ such that

(i) alx* —b;>0,i€Z, and a’a™ —b; =0,i €&,

(i) V") =X" a)N = ATN,

(i) Xf>0,i€Z,

(iv) X(alz® —b)=0, icT.

These conditions are often referred to as the KKT conditions.
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Jptimality conditions for linearly constrained convex program, cont.

Let [(z, \) = f(z) — M(Az —b), let o(N) = mingepe [(z, \), and let
maximize ©(A)

(D)
subject to AelR™, XN >0,1€l.

i) states that 2™ is feasible to (LCP).

(
(i1) states that ™ solves mingcrn [(2, X°).
(4i7) states that \* is feasible to (D).

(

iv) states that f(2™) = (2™, X*) = o(\).

Consequently, the first-order optimality conditions are equivalent to

strong duality.
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