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Lecture 5

Convex programming and semidefinite programming
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Convex quadratic program

A quadratic program is an optimization problem on the form

(LP )

minimize
x∈IRn

1
2
xTHx + cTx

subject to Ax = b,

x ≥ 0.

May be written on many (equivalent) forms.

We will only consider convex quadratic programs, where H � 0.

The nonconvex quadratic programming problem is NP-hard.
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Primal and dual quadratic programs

For a primal quadratic program

(PQP )

minimize 1
2
xTHx + cTx

subject to Ax = b,

x ≥ 0,

we will associate a dual quadratic program

(DQP )

max −1
2
wTHw + bTy

subject to −Hw + ATy + s = c,

s ≥ 0.

We may derive the dual by Lagrangian relaxation.

If H � 0, we may eliminate w.
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Quadratic programming, optimality conditions

Primal and dual quadratic programs

(PQP )
minimize 1

2
xTHx + cTx

subject to Ax = b, x ≥ 0,

(DQP )
max −1

2
wTHw + bTy

subject to −Hw + ATy + s = c, s ≥ 0.

Optimality conditions:

Ax = b,

−Hx + ATy + s = c,

xjsj = 0, j = 1, . . . , n,

x ≥ 0, s ≥ 0.
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Nonlinearly constrained convex program

Consider a convex optimization problem on the form

(CP )

minimize f(x)

subject to gi(x) ≥ 0, i ∈ I,

aT
i x− bi = 0, i ∈ E ,

x ∈ IRn,

I ⋃ E = {1, . . . ,m},

I ⋂ E = ∅,

where f : IRn → IR and −gi : IRn → IR are convex and twice

continuously differentiable on IRn.

Let F = {x ∈ IRn : gi(x) ≥ 0, i ∈ I, aT
i x− bi = 0, i ∈ E}.
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Nonlinearly constrained problems require some regularity

For a nonlinearly constrained problem, the analogous first-order

conditions are not always necessary.

Let g(x) =

 −(x1 − 1)2 − x2
2 + 1

−(x1 + 1)2 − x2
2 + 1

 with x∗ =

 0

0

.

1x

x2

x*

The linearization of the constraints at x∗ does not describe the feasible

region “sufficiently well”.
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Constraint qualification

If the constraints satisfy some regularity condition, often referred to as a

constraint qualification, the analogous results hold.

Definition. Let F = {x ∈ IRn : gi(x) ≥ 0, i ∈ I, aT
i x− bi = 0, i ∈ E},

where −gi : IRn → IR are convex and twice continuously differentiable

on IRn. Then, the Slater constraint qualification holds if there is a point

x̄ such that gi(x̄) > 0, i ∈ I, aT
i x̄− bi = 0, i ∈ E .

With the Slater constraint qualification, strong duality holds.
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Optimality conditions for convex program, cont.

Proposition. Let (CP ) be a convex program for which the Slater

constraint qualification holds. Then, the point x∗ is a minimizer to

(CP ) if and only if there is a λ∗ ∈ IRm such that

(i) gi(x
∗) ≥ 0, i ∈ I, and aT

i x
∗ − bi = 0, i ∈ E ,

(ii) ∇f(x∗) =
∑

i∈I ∇gi(x
∗)λ∗i +

∑
i∈E aiλ

∗
i ,

(iii) λ∗i ≥ 0, i ∈ I,

(iv) λ∗i gi(x
∗) = 0, i ∈ I.

These conditions are often referred to as the KKT conditions.
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Metric for semidefinite matrices

For x and y in IRn, the inner product is given by xTy =
n∑

j=1

xjyj.

The associated norm is the Euclidean norm.

Let Sn denote the space of symmetric n× n matrices.

For X and Y in Sn, the inner product is given by

trace(XTY ) = trace(XY ) =
n∑

i=1

n∑
j=1

xijyij.

The associated norm is the Frobenius norm.

Proposition. If A � 0 and B � 0 belong to Sn, then trace(AB) ≥ 0.

Proof. If A = AT � 0, there is an L such that A = LLT . Then

trace(AB) = trace(LLT B) = trace(LT BL) ≥ 0.
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Semidefinite programming

In semidefinite programming X is a matrix in Sn. Linear programming is

the special case when X is diagonal.

In LP we have constraints AT
i x = bi, i = 1, . . . ,m, where AT

i ∈ IRn is

row i of the constraint matrix A.

In SDP Ai belongs to Sn for i = 1, . . . ,m, and the constraints become

trace(AiX) = bi, i = 1, . . . ,m.

Analogously, LP has the objective function cTx, where c ∈ IRn.

In SDP the objective function becomes trace(CX), where C ∈ Sn.
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A semidefinite program on standard form

A semidefinite program on standard form may be written as

(PSDP )

minimize trace(CX)

subject to trace(AiX) = bi, i = 1, . . . ,m,

X = XT � 0.

(If C and Ai, i = 1, . . . ,m, are diagonal we may choose X diagonal

which gives (PLP ).)

As for LP the form is not so interesting. The important feature is that we

have a linear problem with equality constraints and matrix inequalities.

(PSDP ) is a convex problem.
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Lagrangian relaxation of a semidefinite program

(PSDP )

minimize
X∈Sn

trace(CX)

subject to trace(AiX) = bi, i = 1, . . . ,m,

X = XT � 0.

For a given y ∈ IRm, we obtain

ϕ(y) = minimize
X=XT�0

trace(CX)−
m∑

i=1

yi(trace(AiX)− bi)

=

 bTy if
∑m

i=1 Aiyi � C,

−∞ otherwise.
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The dual of a semidefinite program

(PSDP )

minimize
X∈Sn

trace(CX)

subject to trace(AiX) = bi, i = 1, . . . ,m,

X = XT � 0.

(DSDP )
maximize

y∈IRm

∑m
i=1 biyi

subject to
∑m

i=1 Aiyi � C.

If X is feasible to (PSDP ) and y, S are feasible to (DSDP ), then

trace(CX)− bTy = trace(XS).
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Semidefinite programs with no duality gap

Some regularity condition has to be enforced in order to ensure that

there is no duality gap.

For example, the Slater condition, which requires a strictly feasible X,

i.e., an X that satisfies

trace(AiX) = bi, i = 1, . . . ,m,

X = XT � 0.

Similar requirement on (DSDP ) ensures no duality gap and existence of

optimal solutions to both (PSDP ) and (DSDP ).
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Semidefinite optimality

The set W defined by

W = {w ∈ IRm : wi = trace(AiX), i = 1, . . . ,m, X = XT � 0}

is not closed.

As an example, let A1 =

 0 1

1 0

 and A2 =

 1 0

0 0

.

For ε ≥ 0, let w(ε) = (2 ε)T . Then, w(ε) ∈ W for ε > 0, where the

associated X(ε) is given by

X(ε) =

 ε 1

1 x22(ε)

 for x22(ε) ≥
1

ε
.

However, w(0) 6∈ W .
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A semidefinite program may not have an optimal solution

Let A1 =

 0 1

1 0

, b1 = 2 and C =

 1 0

0 0

.

The primal problem has optimal value 0 but no optimal solution.

The dual problem has optimal value 0 and an optimal solution.

(Wolkowicz, Saigal and Vandenberghe: Handbook of Semidefinite

Programming, Example 4.1.1.)
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A semidefinite program may have duality gap

Let A1 =


1 0 0

0 0 1

0 1 0

, A2 =


0 0 0

0 1 0

0 0 0

, b =

 1

0

 and

C =


a 0 0

0 0 0

0 0 0

, where a is a given positive number.

The primal problem has optimal value a and an optimal solution.

The dual problem has optimal value 0 and an optimal solution.

(Wolkowicz, Saigal and Vandenberghe: Handbook of Semidefinite

Programming, Example 4.1.2.)
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Suggested reading

Suggested reading in the textbook:

� Section 4.4.

� Sections 5.4–5.9.
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