

2E5295/5B5749 Convex optimization with engineering applications

Lecture 5

Convex programming and semidefinite programming

Convex quadratic program

A quadratic program is an optimization problem on the form

May be written on many (equivalent) forms.

We will only consider *convex* quadratic programs, where $H \succeq 0$.

The nonconvex quadratic programming problem is NP-hard.

Primal and dual quadratic programs

For a primal quadratic program

minimize
$$\frac{1}{2}x^THx + c^Tx$$
 (PQP) subject to $Ax = b$, $x > 0$,

we will associate a dual quadratic program

$$\max \qquad -\frac{1}{2}w^THw + b^Ty$$

$$(DQP) \qquad \text{subject to} \quad -Hw + A^Ty + s = c,$$

$$s \geq 0.$$

We may derive the dual by Lagrangian relaxation.

If $H \succ 0$, we may eliminate w.

Quadratic programming, optimality conditions

Primal and dual quadratic programs

$$(PQP) \qquad \begin{array}{ll} \text{minimize} & \frac{1}{2}x^THx + c^Tx \\ \text{subject to} & Ax = b, \quad x \geq 0, \\ \\ (DQP) & \max & -\frac{1}{2}w^THw + b^Ty \\ \\ \text{subject to} & -Hw + A^Ty + s = c, \quad s \geq 0. \end{array}$$

Optimality conditions:

$$Ax = b,$$

$$-Hx + A^{T}y + s = c,$$

$$x_{j}s_{j} = 0, \quad j = 1, \dots, n,$$

$$x \geq 0, \quad s \geq 0.$$

Nonlinearly constrained convex program

Consider a convex optimization problem on the form

minimize
$$f(x)$$
 subject to $g_i(x) \geq 0, \quad i \in \mathcal{I}, \qquad \mathcal{I} \cup \mathcal{E} = \{1, \dots, m\}, \ a_i^T x - b_i = 0, \quad i \in \mathcal{E}, \qquad \mathcal{I} \cap \mathcal{E} = \emptyset, \ x \in I\!\!R^n,$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $-g_i: \mathbb{R}^n \to \mathbb{R}$ are convex and twice continuously differentiable on \mathbb{R}^n .

Let
$$F = \{x \in \mathbb{R}^n : g_i(x) \ge 0, i \in \mathcal{I}, a_i^T x - b_i = 0, i \in \mathcal{E}\}.$$

Nonlinearly constrained problems require some regularity

For a nonlinearly constrained problem, the analogous first-order conditions are not always necessary.

Let
$$g(x) = \begin{pmatrix} -(x_1 - 1)^2 - x_2^2 + 1 \\ -(x_1 + 1)^2 - x_2^2 + 1 \end{pmatrix}$$
 with $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

The linearization of the constraints at x^* does not describe the feasible region "sufficiently well".

Constraint qualification

If the constraints satisfy some regularity condition, often referred to as a constraint qualification, the analogous results hold.

Definition. Let $F = \{x \in \mathbb{R}^n : g_i(x) \geq 0, i \in \mathcal{I}, a_i^T x - b_i = 0, i \in \mathcal{E}\}$, where $-g_i : \mathbb{R}^n \to \mathbb{R}$ are convex and twice continuously differentiable on \mathbb{R}^n . Then, the Slater constraint qualification holds if there is a point \bar{x} such that $g_i(\bar{x}) > 0$, $i \in \mathcal{I}$, $a_i^T \bar{x} - b_i = 0$, $i \in \mathcal{E}$.

With the Slater constraint qualification, strong duality holds.

Optimality conditions for convex program, cont.

Proposition. Let (CP) be a convex program for which the Slater constraint qualification holds. Then, the point x^* is a minimizer to (CP) if and only if there is a $\lambda^* \in \mathbb{R}^m$ such that

(i)
$$g_i(x^*) \geq 0$$
, $i \in \mathcal{I}$, and $a_i^T x^* - b_i = 0$, $i \in \mathcal{E}$,

(ii)
$$\nabla f(x^*) = \sum_{i \in \mathcal{I}} \nabla g_i(x^*) \lambda_i^* + \sum_{i \in \mathcal{E}} a_i \lambda_i^*$$
,

(iii)
$$\lambda_i^* \geq 0$$
, $i \in \mathcal{I}$,

(iv)
$$\lambda_i^* g_i(x^*) = 0, i \in \mathcal{I}.$$

These conditions are often referred to as the KKT conditions.

Metric for semidefinite matrices

For x and y in \mathbb{R}^n , the inner product is given by $x^Ty = \sum_{j=1}^n x_j y_j$.

- The associated norm is the Euclidean norm.
- Let S^n denote the space of symmetric $n \times n$ matrices.
- For X and Y in S^n , the inner product is given by

trace(
$$X^TY$$
) = trace(XY) = $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}y_{ij}$.

The associated norm is the Frobenius norm.

Proposition. If $A \succeq 0$ and $B \succeq 0$ belong to S^n , then trace $(AB) \geq 0$.

Proof. If $A = A^T \succeq 0$, there is an L such that $A = LL^T$. Then $\operatorname{trace}(AB) = \operatorname{trace}(LL^TB) = \operatorname{trace}(L^TBL) \geq 0$. \square

Semidefinite programming

In semidefinite programming X is a matrix in S^n . Linear programming is the special case when X is diagonal.

In LP we have constraints $A_i^T x = b_i$, i = 1, ..., m, where $A_i^T \in \mathbb{R}^n$ is row i of the constraint matrix A.

In SDP A_i belongs to S^n for $i=1,\ldots,m$, and the constraints become $\operatorname{trace}(A_iX)=b_i$, $i=1,\ldots,m$.

Analogously, LP has the objective function c^Tx , where $c \in \mathbb{R}^n$.

In SDP the objective function becomes trace(CX), where $C \in \mathcal{S}^n$.

A semidefinite program on standard form

A semidefinite program on standard form may be written as

minimize
$$\operatorname{trace}(CX)$$

$$(PSDP) \qquad \text{subject to} \quad \operatorname{trace}(A_iX) = b_i, \quad i = 1, \dots, m,$$

$$X = X^T \succ \mathbf{0}.$$

(If C and A_i , i = 1, ..., m, are diagonal we may choose X diagonal which gives (PLP).)

As for LP the form is not so interesting. The important feature is that we have a linear problem with equality constraints and matrix inequalities. (PSDP) is a convex problem.

Lagrangian relaxation of a semidefinite program

$$\begin{array}{ll} \underset{X \in \mathcal{S}^n}{\text{minimize}} & \text{trace}(CX) \\ (PSDP) & \text{subject to} & \text{trace}(A_iX) = b_i, \quad i = 1, \dots, m, \\ X = X^T \succeq \mathbf{0}. \end{array}$$

For a given $y \in \mathbb{R}^m$, we obtain

$$\varphi(y) = \underset{X = X^T \succeq 0}{\text{minimize}} \operatorname{trace}(CX) - \sum_{i=1}^m y_i (\operatorname{trace}(A_iX) - b_i)$$

$$= \begin{cases} b^T y & \text{if } \sum_{i=1}^m A_i y_i \preceq C, \\ -\infty & \text{otherwise.} \end{cases}$$

The dual of a semidefinite program

$$\begin{array}{ll} \underset{X \in \mathcal{S}^n}{\text{minimize}} & \text{trace}(CX) \\ (PSDP) & \text{subject to} & \text{trace}(A_iX) = b_i, \quad i = 1, \dots, m, \\ X = X^T \succeq \mathbf{0}. \end{array}$$

(DSDP)
$$\max_{y \in \mathbb{R}^m} \sum_{i=1}^m b_i y_i$$
subject to
$$\sum_{i=1}^m A_i y_i \leq C.$$

If X is feasible to (PSDP) and y, S are feasible to (DSDP), then $\mathsf{trace}(CX) - b^T y = \mathsf{trace}(XS).$

Semidefinite programs with no duality gap

Some regularity condition has to be enforced in order to ensure that there is no duality gap.

For example, the *Slater condition*, which requires a strictly feasible X, i.e., an X that satisfies

trace
$$(A_i X) = b_i, \quad i = 1, \dots, m,$$
$$X = X^T \succ 0.$$

Similar requirement on (DSDP) ensures no duality gap and existence of optimal solutions to both (PSDP) and (DSDP).

Semidefinite optimality

The set \mathcal{W} defined by

$$\mathcal{W} = \{ w \in \mathbb{R}^m : w_i = \text{trace}(A_i X), i = 1, \dots, m, X = X^T \succeq 0 \}$$

is not closed.

As an example, let
$$A_1=\begin{pmatrix}0&1\\1&0\end{pmatrix}$$
 and $A_2=\begin{pmatrix}1&0\\0&0\end{pmatrix}$.

For $\epsilon \geq 0$, let $w(\epsilon) = (2 \ \epsilon)^T$. Then, $w(\epsilon) \in \mathcal{W}$ for $\epsilon > 0$, where the associated $X(\epsilon)$ is given by

$$X(\epsilon) = \begin{pmatrix} \epsilon & 1 \\ 1 & x_{22}(\epsilon) \end{pmatrix}$$
 for $x_{22}(\epsilon) \ge \frac{1}{\epsilon}$.

However, $w(0) \notin \mathcal{W}$.

A semidefinite program may not have an optimal solution

Let
$$A_1=\left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight)$$
, $b_1=2$ and $C=\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight)$.

The primal problem has optimal value 0 but no optimal solution.

The dual problem has optimal value 0 and an optimal solution.

(Wolkowicz, Saigal and Vandenberghe: *Handbook of Semidefinite Programming*, Example 4.1.1.)

A semidefinite program may have duality gap

Let
$$A_1=egin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
, $A_2=egin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $b=egin{pmatrix} 1 \\ 0 \end{pmatrix}$ and

$$C = \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ where } a \text{ is a given positive number.}$$

The primal problem has optimal value a and an optimal solution.

The dual problem has optimal value 0 and an optimal solution.

(Wolkowicz, Saigal and Vandenberghe: *Handbook of Semidefinite Programming*, Example 4.1.2.)

Suggested reading

Suggested reading in the textbook:

- Section 4.4.
- Sections 5.4–5.9.