

KTH Mathematics 2E5295/5B5749 Convex optimization with engineering applications

Lecture 8

Smooth convex unconstrained and equality-constrained minimization

Unconstrained convex program

Consider a convex optimization problem on the form

$$
(C P) \quad \operatorname{minimize}_{x \in \mathbb{R} \mathbb{R}^{n}} \quad f(x),
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and twice continuously differentiable.
Proposition. Let p^{*} denote the optimal value of $(C P)$. Let x^{*} in \mathbb{R}^{n}, let $m=\eta_{\min }\left(\nabla^{2} f(x)\right)$ and let $M=\eta_{\max }\left(\nabla^{2} f(x)\right)$. Then,

$$
f(x)-\frac{1}{2 m}\|\nabla f(x)\|_{2}^{2} \leq p^{*} \leq f(x)-\frac{1}{2 M}\|\nabla f(x)\|_{2}^{2} .
$$

Note that $\tilde{y}=x-(1 / m) \nabla f(x)$ minimizes $\nabla f(x)^{T}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2}$.
The direction $-(1 / m) \nabla f(x)$ is a steepest descent step.

Iterative methods

$(C P) \quad$| minimize | $f(x)$ |
| :--- | :--- |
| subject to | $x \in \mathbb{R}^{n}$, |

where $f \in C^{2}, f$ convex on \mathbb{R}^{n}.
An iterative method generates $x_{0}, x_{1}, x_{2}, \ldots$ such that $\lim _{k \rightarrow \infty} x_{k}=x^{*}$, where $\nabla f\left(x^{*}\right)=0$.

Terminates when suitable convergence criteria is fulfilled, e.g.,
$\left\|\nabla f\left(x_{k}\right)\right\|<\epsilon$.

Linesearch methods

A linesearch method generates in each iteration a search direction and performs a linesearch along the search direction.

Iteration k takes the following form at x_{k}.

- Compute search direction p_{k} such that $\nabla f\left(x_{k}\right)^{T} p_{k}<0$.
- Approximatively solve $\min _{\alpha \geq 0} f\left(x_{k}+\alpha p_{k}\right)$, which gives α_{k}.
- $x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k}$.

Different methods vary in choice of p_{k} and α_{k}.

Classes of linesearch methods

We will initially consider two fundamental methods.

- The steepest-descent method, where $p_{k}=-\nabla f\left(x_{k}\right)$, and
- Newton's method, where $\nabla^{2} f\left(x_{k}\right) p_{k}=-\nabla f\left(x_{k}\right)$.

Steepest descent: + Search direction inexpensive to compute,

- Slow convergence.

Newton's method: - Search direction more expensive to compute,

+ Faster convergence.
There are methods "in-between", e.g., quasi-Newton methods that aim at mimicking Newton's method without computing second derivatives.

Quadratic objective function

Consider model problem with quadratic objective function

$$
\begin{array}{ll}
(Q P) & \text { minimize } f(x)=\frac{1}{2} x^{T} H x+c^{T} x \\
\text { subject to } x \in \mathbb{R}^{n}
\end{array}
$$

where $H \succeq 0$.
Proposition. The following holds for $(Q P)$ depending on H and c :
(i) If $H \succ 0$ then $(Q P)$ has a unique minimizer x^{*} given by $H x^{*}=-c$.
(ii) If $H \succeq 0, H \nsucc 0$ each x^{*} that fulfills $H x^{*}=-c$ is a global minimizer to $(Q P)$. (There may possibly be no such $\left.x^{*}\right)$.

Proof. The condition $\nabla f\left(x^{*}\right)=0$ gives the results. \square
We assume $H \succ 0$ in the discussion.

Linesearch method on quadratic objective function

Consider $(Q P)$ with $f(x)=\frac{1}{2} x^{T} H x+c^{T} x$, where $H \succ 0$. We obtain:
x^{*} minimizer to $(Q P) \Longleftrightarrow 0=\nabla f\left(x^{*}\right)=H x^{*}+c$.
Suppose search direction p_{k} satisfies $\nabla f\left(x_{k}\right)^{T} p_{k}<0$.
Let $\varphi(\alpha)=f\left(x_{k}+\alpha p_{k}\right)=f\left(x_{k}\right)+\alpha \nabla f\left(x_{k}\right)^{T} p_{k}+\frac{\alpha^{2}}{2} p_{k}^{T} H p_{k}$.
Then $\alpha_{k}=-\frac{\nabla f\left(x_{k}\right)^{T} p_{k}}{p_{k}^{T} H p_{k}}$ gives the minimizer to $\min _{\alpha \geq 0} f\left(x_{k}+\alpha p_{k}\right)$,
i.e., we can perform exact linesearch.

Steepest descent on quadratic objective function

Assume that $f(x)=\frac{1}{2} x^{T} H x+c^{T} x$, where $H \succ 0$.
Further assume that steepest descent with exact linesearch is used, i.e., $p_{k}=-\nabla f\left(x_{k}\right)$ and $\alpha_{k}=-\frac{\nabla f\left(x_{k}\right)^{T} p_{k}}{p_{k}^{T} H p_{k}}$.
Then it can be shown that
$f\left(x_{k+1}\right)-f\left(x^{*}\right) \leq\left(\frac{\operatorname{cond}(H)-1}{\operatorname{cond}(H)+1}\right)^{2}\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right)$.
$\operatorname{cond}(H) \gg 1 \Rightarrow \frac{\operatorname{cond}(H)-1}{\operatorname{cond}(H)+1} \approx 1$, i.e., slow linear convergence.
For a nonlinear function, we typically get slow linear convergence, where H is replaced by $\nabla^{2} f\left(x_{k}\right)$.

Speed of convergence

Definition. Assume that $x_{k} \in \mathbb{R}^{n}, k=0,1, \ldots$, and assume that $\lim _{k \rightarrow \infty} x_{k}=x^{*}$. We say that $\left\{x_{k}\right\}_{k=0}^{\infty}$ converges to x^{*} with speed of convergence r if

$$
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|^{r}}=C, \quad \text { where } C<\infty .
$$

We have $\left\|x_{k+1}-x^{*}\right\| \approx C \cdot\left\|x_{k}-x^{*}\right\|^{r}$.
We want r large (and C close to zero). Of interest:

- $r=1,0<C<1$, linear convergence. (Steepest descent.)
- $r=1, C=0$, superlinear convergence. (Quasi-Newton.)
- $r=2$, quadratic convergence. (Newton's method.)

Newton's method for solving a nonlinear equation

Consider solving the nonlinear equation $\nabla f(u)=0$, where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, $f \in C^{2}$.

Then, $\nabla f(u+p)=\nabla f(u)+\nabla^{2} f(u) p+o(\|p\|)$.
Linearization given by $\nabla f(u)+\nabla^{2} f(u) p$.
Choose p so that $\nabla f(u)+\nabla^{2} f(u) p=0$, i.e., solve $\nabla^{2} f(u) p=-\nabla f(u)$.
A Newton iteration takes the following form for a given u.

- p solves $\nabla^{2} f(u) p=-\nabla f(u)$.
- $u \leftarrow u+p$.
(The nonlinear equation need not be a gradient.)

Speed of convergence for Newton's method

Theorem. Assume that $f \in C^{3}$ and that $\nabla^{2} f\left(u^{*}\right)$ is nonsingular. Then, if Newton's method (with steplength one) is started at a point sufficiently close to u^{*}, then it is well defined and converges to u^{*} with convergence rate at least two, i.e., there is a constant C such that $\left\|u_{k+1}-u^{*}\right\| \leq C\left\|u_{k}-u^{*}\right\|^{2}$.

The proof can be given by studying a Taylor-series expansion,

$$
\begin{aligned}
u_{k+1}-u^{*} & =u_{k}-\nabla^{2} f\left(u_{k}\right)^{-1} \nabla f\left(u_{k}\right)-u^{*} \\
& =-\nabla^{2} f\left(u_{k}\right)^{-1}\left(\nabla f\left(u^{*}\right)-\nabla f\left(u_{k}\right)+\nabla^{2} f\left(u_{k}\right)\left(u^{*}-u_{k}\right)\right) .
\end{aligned}
$$

For u_{k} sufficiently close to u^{*},

$$
\left\|\nabla f\left(u^{*}\right)-\nabla f\left(u_{k}\right)+\nabla^{2} f\left(u_{k}\right)\left(u^{*}-u_{k}\right)\right\| \leq \bar{C}\left\|u_{k}-u^{*}\right\|^{2} .
$$

One-dimensional example for Newton's method

For a positive number d, consider computing $1 / d$ by minimizing $f(u)=d u-\ln u$.
Then, $f^{\prime}(u)=d-\frac{1}{u}, f^{\prime \prime}(u)=\frac{1}{u^{2}}$. We see that $u^{*}=\frac{1}{d}$.
$u_{k+1}=u_{k}-\frac{f^{\prime}\left(u_{k}\right)}{f^{\prime \prime}\left(u_{k}\right)}=u_{k}-\frac{d-\frac{1}{u_{k}}}{\frac{1}{u_{k}^{2}}}=2 u_{k}-u_{k}^{2} d$.
Then, $u_{k+1}-\frac{1}{d}=2 u_{k}-u_{k}^{2} d-\frac{1}{d}=-d\left(u_{k}-\frac{1}{d}\right)^{2}$.

One-dimensional example for Newton's method, cont.

Graphical picture for $d=2$.

Sufficient descent direction

For a direction p_{k} to ensure convergence is must be a sufficient descent direction. Typical conditions are

$$
-\frac{\nabla f\left(x_{k}\right)^{T} p_{k}}{\left\|\nabla f\left(x_{k}\right)\right\|\left\|p_{k}\right\|} \geq \sigma, \quad \text { where } \sigma \text { is a positive constant }
$$

This means that p_{k} must be "sufficiently similar" to the negative gradient.

For search direction p_{k} from $B_{k} p_{k}=-\nabla f\left(x_{k}\right)$ this is required by ensuring that $\left\|B_{k}\right\| \leq M$ and $\left\|B_{k}^{-1}\right\| \leq m$, where m and M are positive constants.

In a modified Newton method modifications of $\nabla^{2} f\left(x_{k}\right)$ can be made, if needed, by a modified Cholesky factorization.

Linesearch

In the linesearch α_{k} is determined as an approximate solution to $\min _{\alpha \geq 0} \varphi(\alpha)$, where $\varphi(\alpha)=f\left(x_{k}+\alpha p_{k}\right)$. We want $f\left(x_{k+1}\right)<f\left(x_{k}\right)$, i.e., $\varphi\left(\alpha_{k}\right)<\varphi(0)$. This is not sufficient to ensure convergence.

Example requirement for step not too long:
$\varphi(\alpha) \leq \varphi(0)+\mu \alpha \varphi^{\prime}(0)$, i.e.,
(Armijo condition)
$f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+\mu \alpha \nabla f\left(x_{k}\right)^{T} p_{k}$,
where $\mu \in\left(0, \frac{1}{2}\right)$.
Example requirement for step not too short:
$\left|\varphi^{\prime}(\alpha)\right| \leq-\eta \varphi^{\prime}(0)$, i.e.,
(Wolfe condition)
$\left|\nabla f\left(x_{k}+\alpha p_{k}\right)^{T} p_{k}\right| \leq-\eta \nabla f\left(x_{k}\right)^{T} p_{k}$,
where $\eta \in(\mu, 1)$. Alternative requirement for not too short step:
Take smallest nonnegative integer i such that
$f\left(x_{k}+2^{-i} p_{k}\right) \leq f\left(x_{k}\right)+\mu 2^{-i} \nabla f\left(x_{k}\right)^{T} p_{k}$.
("Backtracking")

Illustration of linesearch conditions

The linesearch conditions of Wolfe-Armijo type can be illustrated in the following picture.

Linesearch conditions

To find $\bar{\alpha}$ such that the Wolfe and Armijo conditions are fulfilled we may consider $\hat{\varphi}(\alpha)=\varphi(\alpha)-\varphi(0)-\mu \alpha \varphi^{\prime}(0)$.

Then $\hat{\varphi}(0)=0$ and $\hat{\varphi}^{\prime}(0)<0$. In addition, there must exist $\bar{\alpha}>0$ such that $\hat{\varphi}(\bar{\alpha})=0$, otherwise φ is unbounded from below.

By the mean-value theorem there is an $\hat{\alpha} \in(0, \bar{\alpha})$ such that $\hat{\varphi}(\hat{\alpha})<0$ and $\hat{\varphi}^{\prime}(\hat{\alpha})=0$.

Since $\mu<\eta$ we obtain $\varphi(\alpha) \leq \varphi(0)+\mu \alpha \varphi^{\prime}(0)$ and $\left|\varphi^{\prime}(\alpha)\right| \leq-\eta \varphi^{\prime}(0)$ for α in a neighborhood of $\hat{\alpha}$.

For example, bisection in combination with polynomial interpolation can be used on $\hat{\varphi}$ to find a suitable α.

Newton's method and steepest descent

The steepest descent direction solves

$\underset{p \in \mathbb{R ^ { n }}}{\operatorname{minimize}}$	$\nabla f(x)^{T} p$
subject to	$p^{T} p \leq 1$.

The Newton direction solves

$$
\begin{array}{ll}
\underset{p \in \mathbb{R ^ { n }}}{\operatorname{minimize}} & \nabla f(x)^{T} p \\
\text { subject to } & p^{T} \nabla^{2} f(x) p \leq 1 .
\end{array}
$$

The Newton step is a steepest-descent step in the norm defined by $\nabla^{2} f(x)$, i.e.,

$$
\|u\|_{\nabla^{2} f(x)}=\left(u^{T} \nabla^{2} f(x) u\right)^{1 / 2} .
$$

Self-concordant functions

When proving polynomial complexity of interior methods for convex optimization, the notion of self-concordant functions is an important concept.

Definition. A three times differentiable function $f: C \rightarrow \mathbb{R}$, which is convex on the convex set C, is self-concordant if $\left|f^{\prime \prime \prime}(x)\right| \leq 2 f^{\prime \prime}(x)^{3 / 2}$. In essence, this means that the third derivatives are not "too large".

An important self-concordant function is $f(x)=-\ln x$ for $x>0$.

Suggested reading

Suggested reading in the textbook:

- Sections 9.1-9.7.

Equality-constrained convex program

Consider a convex optimization problem on the form

$$
\begin{aligned}
& \left(C P_{=}\right) \\
& \begin{array}{ll}
\underset{x \in \mathbb{R}^{x}}{\operatorname{minime}} & f(x) \\
\text { subject to } & A x=b,
\end{array}
\end{aligned}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and twice continuously differentiable.
If the Lagrangian function is defined as $l(x, \lambda)=f(x)-\lambda^{T}(A x-b)$, the first-order optimality conditions are $\nabla l(x, \lambda)=0$. We write them as

$$
\binom{\nabla_{x} l(x, \lambda)}{-\nabla_{\lambda} l(x, \lambda)}=\binom{\nabla f(x)-A(x)^{T} \lambda}{A x-b}=\binom{0}{0} .
$$

Newton iteration

A Newton iteration on the optimality conditions takes the form

$$
\left(\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \\
A & 0
\end{array}\right)\binom{p}{-\nu}=-\binom{\nabla f(x)-A^{T} \lambda}{A x-b}
$$

We may use

$$
\left\|\binom{\nabla f(x)-A^{T} \lambda}{A x-b}\right\|^{2}
$$

as merit function, i.e., to measure how "good" a point is.

Variable elimination

Note that for a feasible point \bar{x}, it holds that $A(x-\bar{x})=0$ for all feasible x. Let Z be a matrix whose columns form a basis for null (A). Then $x=\bar{x}+Z v$, with a one-to-one correspondence between x and v.

Let $\varphi(v)=f(\bar{x}+Z v)$. We may then rewrite the problem as

$$
\left(C P_{=}^{\prime}\right) \underset{v \in \mathbb{R}^{n-m}}{\operatorname{minimize}} \varphi(v) .
$$

Differentiation gives $\nabla \varphi(v)=Z^{T} \nabla f(\bar{x}+Z v)$,
$\nabla^{2} \varphi(v)=Z^{T} \nabla^{2} f(\bar{x}+Z v) Z$.
This is an unconstrained problem. We may solve ($C P_{=}^{\prime}$) and identify $x^{*}=\bar{x}+Z v^{*}$, where v^{*} is associated with $\left(C P_{=}^{\prime}\right)$.
$Z^{T} \nabla f(x)$ is called the reduced gradient to f in x.
$Z^{T} \nabla^{2} f(x) Z$ is called the reduced Hessian to f in x.

First-order optimality conditions as a system of equations, cont.

The resulting Newton system may equivalently be written as

$$
\left(\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \\
A & 0
\end{array}\right)\binom{p}{-(\lambda+\nu)}=\binom{-\nabla f(x)}{-(A x-b)},
$$

alternatively

$$
\left(\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \\
A & 0
\end{array}\right)\binom{p}{-\lambda^{+}}=\binom{-\nabla f(x)}{-(A x-b)} .
$$

We prefer the form with λ^{+}, since it can be directly generalized to problems with inequality constraints.

Quadratic programming with equality constraints

Compare with an equality-constrained quadratic programming problem

$$
\begin{array}{lll}
& \text { minimize } & \frac{1}{2} p^{T} H p+c^{T} p \\
(E Q P) \quad \text { subject to } & A p=b, \\
& p \in \mathbb{R}^{n},
\end{array}
$$

where the unique optimal solution p and multiplier vector λ^{+}are given by

$$
\left(\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right)\binom{p}{-\lambda^{+}}=\binom{-c}{b},
$$

if $Z^{T} H Z \succ 0$ and A has full row rank, where Z is a matrix whose columns form a basis for null (A).

Newton iteration and equality-constrained quadratic program

Compare $\left(\begin{array}{cc}\nabla^{2} f(x) & A^{T} \\ A & 0\end{array}\right)\binom{p}{-\lambda^{+}}=\binom{-\nabla f(x)}{-(A x-b)}$
with $\left(\begin{array}{cc}H & A^{T} \\ A & 0\end{array}\right)\binom{p}{-\lambda^{+}}=\binom{-c}{b}$.

Identify:

$$
\begin{aligned}
\nabla^{2} f(x) & \longleftrightarrow H \\
\nabla f(x) & \longleftrightarrow c \\
A & \longleftrightarrow A \\
-(A x-b) & \longleftrightarrow b .
\end{aligned}
$$

Newton iteration as a QP problem

A Newton iteration for solving the first-order necessary optimality conditions to ($C P_{=}$) may be viewed as solving the QP problem

$$
\begin{array}{lll}
& \text { minimize } & \frac{1}{2} p^{T} \nabla^{2} f(x) p+\nabla f(x)^{T} p \\
\left(Q P_{=}\right) \quad \text { subject to } & A p=-(A x-b), \\
& p \in \mathbb{R}^{n},
\end{array}
$$

and letting $x^{+}=x+p$, and λ^{+}are given by the multipliers of $\left(Q P_{=}\right)$.
Problem ($Q P_{=}$) is well defined with unique optimal solution p and multiplier vector λ^{+}if $Z^{T} \nabla^{2} f(x) Z \succ 0$ and A has full row rank, where Z is a matrix whose columns form a basis for $\operatorname{null}(A)$.

An SQP iteration for problems with equality constraints

Given x, λ such that $Z^{T} \nabla^{2} f(x) Z \succ 0$ and A has full row rank, a Newton iteration takes the following form.

- Compute optimal solution p and multiplier vector λ^{+}to

$$
\begin{array}{lll}
& \text { minimize } & \frac{1}{2} p^{T} \nabla^{2} f(x) p+\nabla f(x)^{T} p \\
\left(Q P_{=}\right) \quad \text { subject to } & A p=-(A x-b), \\
& p \in \mathbb{R}^{n},
\end{array}
$$

- $x \leftarrow x+p, \quad \lambda \leftarrow \lambda^{+}$.

We call this method sequential quadratic programming (SQP).
NB! $\left(Q P_{=}\right)$is solved by solving a system of linear equations.
NB! x and λ have given numerical values in $\left(Q P_{=}\right)$.

eed of convergence for SQP method for equality-constrained proble

Theorem. Assume that $f \in C^{3}$ is convex on R^{n} and that $A \in \mathbb{R}^{m \times n}$ has full row rank. Further, assume that x^{*} is a minimizer of $\left(C P_{=}\right)$such that $Z^{T} \nabla^{2} f(x) Z \succeq 0$, where Z is a matrix whose columns form a basis for null (A). If the SQP method (with steplength one) is started at a point sufficiently close to x^{*}, λ^{*}, then it is well defined and converges to x^{*}, λ^{*} with convergence rate at least two.

Proof. In a neighborhood of x^{*}, λ^{*} it holds that $Z^{T} \nabla^{2} f(x) Z \succ 0$ and $\left(\begin{array}{cc}\nabla^{2} f(x) & A^{T} \\ A & 0\end{array}\right)$ is nonsingular. The subproblem $\left(Q P_{=}\right)$is hence well defined and the result follows from the quadratic rate of convergence of Newton's method. \square

