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Lecture 8

Smooth convex unconstrained and equality-constrained minimization
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Unconstrained convex program

Consider a convex optimization problem on the form

(CP ) minimize
x∈IRn

f(x),

where f : IRn → IR is convex and twice continuously differentiable.

Proposition. Let p∗ denote the optimal value of (CP ). Let x∗ in IRn,

let m = ηmin(∇2f(x)) and let M = ηmax(∇2f(x)). Then,

f(x)− 1

2m
‖∇f(x)‖22 ≤ p∗ ≤ f(x)− 1

2M
‖∇f(x)‖22.

Note that ỹ = x− (1/m)∇f(x) minimizes ∇f(x)T(y−x) +
m

2
‖y−x‖22.

The direction −(1/m)∇f(x) is a steepest descent step.
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Iterative methods

(CP )
minimize f(x)

subject to x ∈ IRn,

where f ∈ C2, f convex on IRn.

An iterative method generates x0, x1, x2, . . . such that limk→∞ xk = x∗,
where ∇f(x∗) = 0.

Terminates when suitable convergence criteria is fulfilled, e.g.,

‖∇f(xk)‖ < ε.
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Linesearch methods

A linesearch method generates in each iteration a search direction and

performs a linesearch along the search direction.

Iteration k takes the following form at xk.

� Compute search direction pk such that ∇f(xk)
Tpk < 0.

� Approximatively solve minα≥0 f(xk + αpk), which gives αk.

� xk+1 ← xk + αkpk.

Different methods vary in choice of pk and αk.
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Classes of linesearch methods

We will initially consider two fundamental methods.

� The steepest-descent method, where pk = −∇f(xk), and

� Newton’s method, where ∇2f(xk)pk = −∇f(xk).

Steepest descent: + Search direction inexpensive to compute,

− Slow convergence.

Newton’s method: − Search direction more expensive to compute,

+ Faster convergence.

There are methods “in-between”, e.g., quasi-Newton methods that aim

at mimicking Newton’s method without computing second derivatives.
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Quadratic objective function

Consider model problem with quadratic objective function

(QP )
minimize f(x) = 1

2
xTHx + cTx

subject to x ∈ IRn,

where H � 0.

Proposition. The following holds for (QP ) depending on H and c:

(i) If H � 0 then (QP ) has a unique minimizer x∗ given by Hx∗ = −c.

(ii) If H � 0, H 6� 0 each x∗ that fulfills Hx∗ = −c is a global

minimizer to (QP ). (There may possibly be no such x∗).

Proof. The condition ∇f(x∗) = 0 gives the results.

We assume H � 0 in the discussion.
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Linesearch method on quadratic objective function

Consider (QP ) with f(x) = 1
2
xTHx + cTx, where H � 0. We obtain:

x∗ minimizer to (QP ) ⇐⇒ 0 = ∇f(x∗) = Hx∗ + c.

Suppose search direction pk satisfies ∇f(xk)
Tpk < 0.

Let ϕ(α) = f(xk + αpk) = f(xk) + α∇f(xk)
Tpk + α2

2
pT

kHpk.

Then αk = −∇f(xk)
Tpk

pT
kHpk

gives the minimizer to minα≥0 f(xk + αpk),

i.e., we can perform exact linesearch.
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Steepest descent on quadratic objective function

Assume that f(x) = 1
2
xTHx + cTx, where H � 0.

Further assume that steepest descent with exact linesearch is used, i.e.,

pk = −∇f(xk) and αk = −∇f(xk)
Tpk

pT
kHpk

.

Then it can be shown that

f(xk+1)− f(x∗) ≤
(

cond(H)− 1

cond(H) + 1

)2

(f(xk)− f(x∗)).

cond(H)� 1⇒ cond(H)− 1

cond(H) + 1
≈ 1, i.e., slow linear convergence.

For a nonlinear function, we typically get slow linear convergence, where

H is replaced by ∇2f(xk).
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Speed of convergence

Definition. Assume that xk ∈ IRn, k = 0, 1, . . ., and assume that

limk→∞ xk = x∗. We say that {xk}∞k=0 converges to x∗ with speed of

convergence r if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖r

= C, where C <∞.

We have ‖xk+1 − x∗‖ ≈ C · ‖xk − x∗‖r.

We want r large (and C close to zero). Of interest:

� r = 1, 0 < C < 1, linear convergence. (Steepest descent.)

� r = 1, C = 0, superlinear convergence. (Quasi-Newton.)

� r = 2, quadratic convergence. (Newton’s method.)
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Newton’s method for solving a nonlinear equation

Consider solving the nonlinear equation ∇f(u) = 0, where f : IRn → IR,

f ∈ C2.

Then, ∇f(u + p) = ∇f(u) +∇2f(u)p + o(‖p‖).

Linearization given by ∇f(u) +∇2f(u)p.

Choose p so that ∇f(u)+∇2f(u)p = 0, i.e., solve ∇2f(u)p = −∇f(u).

A Newton iteration takes the following form for a given u.

� p solves ∇2f(u)p = −∇f(u).

� u← u + p.

(The nonlinear equation need not be a gradient.)

A. Forsgren, KTH 10 Lecture 8 Convex optimization 2006/2007



Speed of convergence for Newton’s method

Theorem. Assume that f ∈ C3 and that ∇2f(u∗) is nonsingular.

Then, if Newton’s method (with steplength one) is started at a point

sufficiently close to u∗, then it is well defined and converges to u∗ with

convergence rate at least two, i.e., there is a constant C such that

‖uk+1 − u∗‖ ≤ C‖uk − u∗‖2.

The proof can be given by studying a Taylor-series expansion,

uk+1 − u∗ = uk −∇2f(uk)
−1∇f(uk)− u∗

= −∇2f(uk)
−1(∇f(u∗)−∇f(uk) +∇2f(uk)(u

∗ − uk)).

For uk sufficiently close to u∗,

‖∇f(u∗)−∇f(uk) +∇2f(uk)(u
∗ − uk)‖ ≤ C̄‖uk − u∗‖2.
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One-dimensional example for Newton’s method

For a positive number d, consider computing 1/d by minimizing

f(u) = du− ln u.

Then, f ′(u) = d− 1

u
, f ′′(u) =

1

u2
. We see that u∗ =

1

d
.

uk+1 = uk −
f ′(uk)

f ′′(uk)
= uk −

d− 1

uk

1

u2
k

= 2uk − u2
kd.

Then, uk+1 −
1

d
= 2uk − u2

kd−
1

d
= −d

(
uk −

1

d

)2

.
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One-dimensional example for Newton’s method, cont.

Graphical picture for d = 2.
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Sufficient descent direction

For a direction pk to ensure convergence is must be a sufficient descent

direction. Typical conditions are

− ∇f(xk)
Tpk

‖∇f(xk)‖‖pk‖
≥ σ, where σ is a positive constant .

This means that pk must be “sufficiently similar” to the negative

gradient.

For search direction pk from Bkpk = −∇f(xk) this is required by

ensuring that ‖Bk‖ ≤M and ‖B−1
k ‖ ≤ m, where m and M are positive

constants.

In a modified Newton method modifications of ∇2f(xk) can be made, if

needed, by a modified Cholesky factorization.
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Linesearch

In the linesearch αk is determined as an approximate solution to

minα≥0 ϕ(α), where ϕ(α) = f(xk + αpk). We want f(xk+1) < f(xk),

i.e., ϕ(αk) < ϕ(0). This is not sufficient to ensure convergence.

Example requirement for step not too long:

ϕ(α) ≤ ϕ(0) + µαϕ′(0), i.e., (Armijo condition)

f(xk + αpk) ≤ f(xk) + µα∇f(xk)
Tpk,

where µ ∈ (0, 1
2
).

Example requirement for step not too short:

|ϕ′(α)| ≤ −ηϕ′(0), i.e., (Wolfe condition)

|∇f(xk + αpk)
Tpk| ≤ −η∇f(xk)

Tpk,

where η ∈ (µ, 1). Alternative requirement for not too short step:

Take smallest nonnegative integer i such that

f(xk + 2−ipk) ≤ f(xk) + µ2−i∇f(xk)
Tpk. (“Backtracking”)

A. Forsgren, KTH 15 Lecture 8 Convex optimization 2006/2007



Illustration of linesearch conditions

The linesearch conditions of Wolfe-Armijo type can be illustrated in the

following picture.
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Linesearch conditions

To find ᾱ such that the Wolfe and Armijo conditions are fulfilled we may

consider ϕ̂(α) = ϕ(α)− ϕ(0)− µαϕ′(0).

Then ϕ̂(0) = 0 and ϕ̂′(0) < 0. In addition, there must exist ᾱ > 0 such

that ϕ̂(ᾱ) = 0, otherwise ϕ is unbounded from below.

By the mean-value theorem there is an α̂ ∈ (0, ᾱ) such that ϕ̂(α̂) < 0

and ϕ̂′(α̂) = 0.

Since µ < η we obtain ϕ(α) ≤ ϕ(0) + µαϕ′(0) and |ϕ′(α)| ≤ −ηϕ′(0)

for α in a neighborhood of α̂.

For example, bisection in combination with polynomial interpolation can

be used on ϕ̂ to find a suitable α.
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Newton’s method and steepest descent

The steepest descent direction solves

minimize
p∈IRn

∇f(x)Tp

subject to pTp ≤ 1.

The Newton direction solves

minimize
p∈IRn

∇f(x)Tp

subject to pT∇2f(x)p ≤ 1.

The Newton step is a steepest-descent step in the norm defined by

∇2f(x), i.e.,

‖u‖∇2f(x) = (uT∇2f(x)u)1/2.
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Self-concordant functions

When proving polynomial complexity of interior methods for convex

optimization, the notion of self-concordant functions is an important

concept.

Definition. A three times differentiable function f : C → IR, which is

convex on the convex set C, is self-concordant if |f ′′′(x)| ≤ 2f ′′(x)3/2.

In essence, this means that the third derivatives are not “too large”.

An important self-concordant function is f(x) = − ln x for x > 0.
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Suggested reading

Suggested reading in the textbook:

� Sections 9.1–9.7.
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Equality-constrained convex program

Consider a convex optimization problem on the form

(CP=)
minimize

x∈IRn
f(x)

subject to Ax = b,

where f : IRn → IR is convex and twice continuously differentiable.

If the Lagrangian function is defined as l(x, λ) = f(x)− λT(Ax− b), the

first-order optimality conditions are ∇l(x, λ) = 0. We write them as ∇xl(x, λ)

−∇λl(x, λ)

 =

 ∇f(x)− A(x)Tλ

Ax− b

 =

 0

0

 .
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Newton iteration

A Newton iteration on the optimality conditions takes the form ∇2f(x) AT

A 0


 p

−ν

 = −

 ∇f(x)− ATλ

Ax− b

 .

We may use

‖

 ∇f(x)− ATλ

Ax− b

 ‖2
as merit function, i.e., to measure how “good” a point is.
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Variable elimination

Note that for a feasible point x̄, it holds that A(x− x̄) = 0 for all

feasible x. Let Z be a matrix whose columns form a basis for null(A).

Then x = x̄ + Zv, with a one-to-one correspondence between x and v.

Let ϕ(v) = f(x̄ + Zv). We may then rewrite the problem as

(CP ′
=) minimize

v∈IRn−m
ϕ(v).

Differentiation gives ∇ϕ(v) = ZT∇f(x̄ + Zv),

∇2ϕ(v) = ZT∇2f(x̄ + Zv)Z.

This is an unconstrained problem. We may solve (CP ′
=) and identify

x∗ = x̄ + Zv∗, where v∗ is associated with (CP ′
=).

ZT∇f(x) is called the reduced gradient to f in x.

ZT∇2f(x)Z is called the reduced Hessian to f in x.
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First-order optimality conditions as a system of equations, cont.

The resulting Newton system may equivalently be written as ∇2f(x) AT

A 0


 p

−(λ + ν)

 =

 −∇f(x)

−(Ax− b)

 ,

alternatively ∇2f(x) AT

A 0


 p

−λ+

 =

 −∇f(x)

−(Ax− b)

 .

We prefer the form with λ+, since it can be directly generalized to

problems with inequality constraints.
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Quadratic programming with equality constraints

Compare with an equality-constrained quadratic programming problem

(EQP )

minimize 1
2
pTHp + cTp

subject to Ap = b,

p ∈ IRn,

where the unique optimal solution p and multiplier vector λ+ are given by H AT

A 0


 p

−λ+

 =

 −c

b

 ,

if ZTHZ � 0 and A has full row rank, where Z is a matrix whose

columns form a basis for null(A).
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Newton iteration and equality-constrained quadratic program

Compare

 ∇2f(x) AT

A 0


 p

−λ+

 =

 −∇f(x)

−(Ax− b)



with

 H AT

A 0


 p

−λ+

 =

 −c

b

.

Identify:

∇2f(x) ←→ H

∇f(x) ←→ c

A ←→ A

−(Ax− b) ←→ b.
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Newton iteration as a QP problem

A Newton iteration for solving the first-order necessary optimality

conditions to (CP=) may be viewed as solving the QP problem

(QP=)

minimize 1
2
pT∇2f(x)p +∇f(x)Tp

subject to Ap = −(Ax− b),

p ∈ IRn,

and letting x+ = x + p, and λ+ are given by the multipliers of (QP=).

Problem (QP=) is well defined with unique optimal solution p and

multiplier vector λ+ if ZT∇2f(x)Z � 0 and A has full row rank, where

Z is a matrix whose columns form a basis for null(A).
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An SQP iteration for problems with equality constraints

Given x, λ such that ZT∇2f(x)Z � 0 and A has full row rank, a

Newton iteration takes the following form.

� Compute optimal solution p and multiplier vector λ+ to

(QP=)

minimize 1
2
pT∇2f(x)p +∇f(x)Tp

subject to Ap = −(Ax− b),

p ∈ IRn,

� x← x + p, λ← λ+.

We call this method sequential quadratic programming (SQP).

NB! (QP=) is solved by solving a system of linear equations.

NB! x and λ have given numerical values in (QP=).
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Speed of convergence for SQP method for equality-constrained problems

Theorem. Assume that f ∈ C3 is convex on Rn and that A ∈ IRm×n

has full row rank. Further, assume that x∗ is a minimizer of (CP=) such

that ZT∇2f(x)Z � 0, where Z is a matrix whose columns form a basis

for null(A). If the SQP method (with steplength one) is started at a

point sufficiently close to x∗, λ∗, then it is well defined and converges to

x∗, λ∗ with convergence rate at least two.

Proof. In a neighborhood of x∗, λ∗ it holds that ZT∇2f(x)Z � 0 and ∇2f(x) AT

A 0

 is nonsingular. The subproblem (QP=) is hence well

defined and the result follows from the quadratic rate of convergence of

Newton’s method.
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