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Smooth convex unconstrained and equality-constrained minimization
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Unconstrained convex program

Consider a convex optimization problem on the form

(CP)  minimize f(x),

reIR™

where f : IR™ — IR is convex and twice continuously differentiable.

Proposition. Let p* denote the optimal value of (CP). Let x* in IR",
let m = Nmin(V2f(2)) and let M = nmax (V2 f(2)). Then,

1 y 1
f(x) — %va(ﬂf)\\% <p < f(z) - mllvf(w)\li-

Note that g = x — (1/m)V f(z) minimizes V f(z) (y — x) + %Hy — |5

The direction —(1/m)V f(x) is a steepest descent step.
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Iterative methods

minimize T
subject to x € IR",

where f € C?, f convex on IR™.

An iterative method generates xqg, r1, T2, ... such that lim,_. . x;, = T

where Vf(z*) = 0.

Terminates when suitable convergence criteria is fulfilled, e.g.,
IV f(z)ll <e
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Linesearch methods

A linesearch method generates in each iteration a search direction and
performs a linesearch along the search direction.

lteration k takes the following form at x;.
e Compute search direction p;, such that V f(z:)'pr < 0.

e Approximatively solve min,>q f(xx + api), which gives ay.
® Tgi1 < T T+ QP

Different methods vary in choice of p, and «.
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Classes of linesearch methods

We will initially consider two fundamental methods.

e The steepest-descent method, where p, = —V f(xy), and

e Newton's method, where YV f(xz1)pr = —V f(x1).

Steepest descent:  +

Newton's method: —

_|_

Search direction inexpensive to compute,
Slow convergence.
Search direction more expensive to compute,

Faster convergence.

There are methods “in-between”, e.g., quasi-Newton methods that aim

at mimicking Newton’'s method without computing second derivatives.
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Quadratic objective function

Consider model problem with quadratic objective function

(QP) minimize  f(z) = 2a'Hx + ¢’z

subject to x € IR",
where H > 0.

Proposition. The following holds for ((QP) depending on H and c:
(i) If H = 0 then (QP) has a unique minimizer x* given by Hz™ = —c.
(i) If H =0, H % 0 each 2 that fulfills Hx* = —c is a global
minimizer to (QP). (There may possibly be no such x*).

Proof. The condition V f(z") = 0 gives the results. []

We assume H > 0 in the discussion.
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Linesearch method on quadratic objective function

Consider (QP) with f(z) = s2"Hzx + 'z, where H = 0. We obtain:
7™ minimizer to (QP) <= 0=V /f(2") = Hx" +c

Suppose search direction py, satisfies V f(x1)!pr < 0.

Let (@) = f(ar + ape) = flaw) + oV () ok + S pEHDr.

T
Then oy, = _Vf(xk) Dk

gives the minimizer to min,>q f(xx + apy),

l.e., we can perform exact linesearch.
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Steepest descent on quadratic objective function

Assume that f(z) = s2"Hz + ¢"x, where H > 0.

Further assume that steepest descent with exact linesearch is used, i.e.,

T —Vf(l'k) and o = —

Then it can be shown that ,
¥ d(H) -1 ¥
o) - 10" < () () - 76
cond(H) — 1
cond(H) +1

For a nonlinear function, we typically get slow linear convergence, where
H is replaced by V?f(xy).

cond(H) > 1=

~ 1, I.e., slow linear convergence.
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Speed of convergence

Definition. Assume that x;, € IR",k = 0,1, ..., and assume that
liMmy—oo 7 = . We say that {x;,}32, converges to x* with speed of

convergence r if
*
o =2l _

LRy P T

where (' < 0.

We have ||zp01 — 2 || = C - ||z — 25|

We want r large (and C' close to zero). Of interest:
e r=1,0< C <1, linear convergence. (Steepest descent.)
e r =1, C =0, superlinear convergence. (Quasi-Newton.)

e r = 2, quadratic convergence. (Newton's method.)
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Newton’s method for solving a nonlinear equation

Consider solving the nonlinear equation V f(u) = 0, where f : IR" — IR,
fecC-.

Then, Vf(u+p)=Vf(u)+ V*f(u)p+ of|pl).
Linearization given by V f(u) + V2 f(u)p.
Choose p so that V f(u) + V2f(u)p = 0, i.e., solve V2 f(u)p = —V f(u).
A Newton iteration takes the following form for a given w.
e psolves V2f(u)p = =V f(u).
® U< U+ P.

(The nonlinear equation need not be a gradient.)
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Speed of convergence for Newton’s method

Theorem. Assume that f € C? and that V2 f(u*) is nonsingular.
Then, if Newton's method (with steplength one) is started at a point
sufficiently close to " then it is well defined and converges to u" with

convergence rate at least two, i.e., there is a constant C' such that
s = || < Clluy, — w2,

The proof can be given by studying a Taylor-series expansion,
Upr — U = up — V2 f(u) IV F(ug) — o
= —V2f(ue) (V") = Vfue) + V2 fur) (0"~ ur)).

For wy, sufficiently close to «*,

[V £ (") = VF(ur) + V2 ) (@ = )| < Cllug, — "%
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One-dimensional example for Newton’s method

For a positive number d, consider computing 1/d by minimizing
f(u) =du —Inu.

1 1 1
Then, f'(u) =d — " f(u) = 3 We see that u* = 7
1
d— —
S (ug) U 2
Ukl = Up — — U — = 2uy, — u;d
S (ug) 1
uj
1 5 1 1\?
Then, Uki+1 — g = 2U/k — U/kd— g = —d (Uk; — g) :
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One-dimensional example for Newton’s method, cont.

Graphical picture for d = 2.
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Sufficient descent direction

For a direction p;, to ensure convergence is must be a sufficient descent

direction. Typical conditions are

vf(xk)Tpk

— > o0, Wwhere o Is a positive constant

IV f(xp)|lllpe]] —

This means that p, must be “sufficiently similar” to the negative

gradient.

For search direction p; from Bypr = —V f(x) this is required by
ensuring that || By|| < M and || B; || < m, where m and M are positive

constants.

In a modified Newton method modifications of V?f(x;) can be made, if
needed, by a modified Cholesky factorization.
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Linesearch

In the linesearch ay, is determined as an approximate solution to

min,>o ¢(a), where p(a) = f(zr + apr). We want f(zx1) < f(zk),
l.e., p(ax) < ©(0). This is not sufficient to ensure convergence.

Example requirement for step not too long:

e(a) < (0) + pay'(0), ie., (Armijo condition)
flzr + ape) < fla) + paV f(z) b,

where p € (0, 3).

Example requirement for step not too short:

| ()] < —n¢'(0), i.e., (Wolfe condition)
IV f(@r + apr)'prl < =0V f (k) e,

where 1 € (u, 1). Alternative requirement for not too short step:

Take smallest nonnegative integer ¢ such that

floe +27pe) < fon) + p27°V f(2x) P (“Backtracking”)
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lllustration of linesearch conditions

The linesearch conditions of Wolfe-Armijo type can be illustrated in the

following picture.
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Linesearch conditions

To find & such that the Wolfe and Armijo conditions are fulfilled we may
consider (o) = p(a) — p(0) — pa'(0).
Then $(0) = 0 and ¢'(0) < 0. In addition, there must exist & > 0 such

that p(a) = 0, otherwise ¢ is unbounded from below.

By the mean-value theorem there is an @ € (0, @) such that $(&) < 0
and ¢'(&) = 0.

Since p < n we obtain p(a) < ¢(0) + pay'(0) and |¢'(a)| < —ny'(0)
for o in a neighborhood of A.

For example, bisection in combination with polynomial interpolation can
be used on ¢ to find a suitable «.
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Newton’s method and steepest descent

The steepest descent direction solves

. . . T
minimize Vf(x)'p

subject to  plp < 1.

The Newton direction solves

. . . T
minimize Vf(x)'p

subject to  p'V2f(z)p < 1.

The Newton step is a steepest-descent step in the norm defined by
Vif(z), ie.,
Julloz s = (792 (2)u) 2.
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Self-concordant functions

When proving polynomial complexity of interior methods for convex

optimization, the notion of self~concordant functions is an important
concept.

Definition. A three times differentiable function f : C — IR, which is

convex on the convex set C, is self-concordant if | f"(z)| < 2f"(x)%/2.
In essence, this means that the third derivatives are not “too large”.

An important self-concordant function is f(x) = —Inz for x > 0.
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Suggested reading

Suggested reading in the textbook:

e Sections 9.1-9.7.
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Equality-constrained convex program

Consider a convex optimization problem on the form

minimize T
opy MmO
subject to Ax = b,

where f : IR™ — IR is convex and twice continuously differentiable.

If the Lagrangian function is defined as [(z, \) = f(x) — M {(Ax — b), the
first-order optimality conditions are VI(x, A\) = 0. We write them as

Vil(x, \) Vf(z)— A(z)'A 0

—Vl(z, \) Ax — b 0
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Newton iteration

A Newton iteration on the optimality conditions takes the form

Vif(z) AT p V/f(z)— AN
A 0 —V Ax —b

We may use

! Vf(x)— AT ||2
Ax — b

as merit function, i.e., to measure how “good” a point is.
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Variable elimination

Note that for a feasible point , it holds that A(x — &) = 0 for all
feasible x. Let Z be a matrix whose columns form a basis for null(A).
Then x = r + Zv, with a one-to-one correspondence between z and v.

Let p(v) = f(T + Zv). We may then rewrite the problem as

(CP.) minimize ©(v).

’UEBn_m

Differentiation gives Vio(v) = Z1V f(Z + Zv),
Vip) =21V f(z + Zv)Z.

This is an unconstrained problem. We may solve (C'P.) and identify
¥ = T + Zv*, where v" is associated with (C'PL).

Z1V f(z) is called the reduced gradient to f in x.
Z1N?2f(x)Z is called the reduced Hessian to f in x.
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First-order optimality conditions as a system of equations, cont.

The resulting Newton system may equivalently be written as

Vif(z) AT p —V[f(z)
A 0 —(A+v) —(Az — b)

7

alternatively

Vif(z) AY p ~Vf(z)
A 0 —AT —(Ax — D)

We prefer the form with AT, since it can be directly generalized to
problems with inequality constraints.

A. Forsgren, KTH 24 Lecture 8 Convex optimization 2006,/2007



Quadratic programming with equality constraints

Compare with an equality-constrained quadratic programming problem
minimize %pTHp+ch
(EQP)  subject to Ap =b,
p € IR",
where the unique optimal solution p and multiplier vector A* are given by
H AT D —c
A 0 — AT b

if Z'HZ ~ 0 and A has full row rank, where Z is a matrix whose

columns form a basis for null(A).
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Newton iteration and equality-constrained quadratic program

- (VQf(:v) A)( p )( V() )
ompare —
A 0 —AT —(Axz — D)
w (35 ) ()00
A 0 — A" b

Vif(x) +«— H
Vi) +— ¢
A — A
—(Ax —b) «—— .

|dentify:
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Newton iteration as a QP problem

A Newton iteration for solving the first-order necessary optimality
conditions to (C'P-) may be viewed as solving the QP problem

minimize %pTVQf(CC)p + Vf(z)'p
(QP-) subject to Ap = —(Ax —b),
p e IR",

and letting ™ = x + p, and A" are given by the multipliers of (QP-).

Problem (QQP-) is well defined with unique optimal solution p and
multiplier vector A\* if Z!V?f(x)Z > 0 and A has full row rank, where
Z is a matrix whose columns form a basis for null(A).
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An SQP iteration for problems with equality constraints

Given z, A such that Z'V?f(z)Z = 0 and A has full row rank, a
Newton iteration takes the following form.

e Compute optimal solution p and multiplier vector A™ to
minimize  sp"V2f(z)p+ Vf(z)p
(QP-) subject to Ap = —(Azx — ),
p € IR",
e r—x+p A AT,
We call this method sequential quadratic programming (SQP).

NB! (QP-) is solved by solving a system of linear equations.

NB! z and A have given numerical values in (QP-).
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2ed of convergence for SQP method for equality-constrained proble

Theorem. Assume that f € C° is convex on R" and that A € IR™*"
has full row rank. Further, assume that & is a minimizer of (C'P) such
that Z'N?f(x)Z = 0, where Z is a matrix whose columns form a basis
for null(A). If the SQP method (with steplength one) is started at a
point sufficiently close to «™, X*, then it is well defined and converges to
N with convergence rate at least two.

Proof. In a neighborhood of #*, X* it holds that Z7V?f(x)Z = 0 and
Vif(z) AT
A 0

defined and the result follows from the quadratic rate of convergence of
Newton's method. []

is nonsingular. The subproblem (Q)P-) is hence well
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