

KTH Mathematics

2E5295/5B5749 Convex optimization with engineering applications

Lecture 8

Smooth convex unconstrained and equality-constrained minimization

Unconstrained convex program

Consider a convex optimization problem on the form

(CP) minimize
$$f(x)$$
,

where $f : \mathbb{R}^n \to \mathbb{R}$ is convex and twice continuously differentiable.

Proposition. Let p^* denote the optimal value of (CP). Let x^* in \mathbb{R}^n , let $m = \eta_{\min}(\nabla^2 f(x))$ and let $M = \eta_{\max}(\nabla^2 f(x))$. Then,

$$f(x) - \frac{1}{2m} \|\nabla f(x)\|_2^2 \le p^* \le f(x) - \frac{1}{2M} \|\nabla f(x)\|_2^2.$$

Note that $\tilde{y} = x - (1/m)\nabla f(x)$ minimizes $\nabla f(x)^T(y-x) + \frac{m}{2} \|y-x\|_2^2$.

The direction $-(1/m)\nabla f(x)$ is a *steepest descent* step.

Iterative methods

(CP) minimize
$$f(x)$$

subject to $x \in I\!\!R^n$,

where $f \in C^2$, f convex on $I\!\!R^n$.

An iterative method generates x_0, x_1, x_2, \ldots such that $\lim_{k\to\infty} x_k = x^*$, where $\nabla f(x^*) = 0$.

Terminates when suitable convergence criteria is fulfilled, e.g., $\|\nabla f(x_k)\| < \epsilon$.

Linesearch methods

A *linesearch method* generates in each iteration a *search direction* and performs a *linesearch* along the search direction.

Iteration k takes the following form at x_k .

- Compute search direction p_k such that $\nabla f(x_k)^T p_k < 0$.
- Approximatively solve $\min_{\alpha \ge 0} f(x_k + \alpha p_k)$, which gives α_k .
- $x_{k+1} \leftarrow x_k + \alpha_k p_k$.

Different methods vary in choice of p_k and α_k .

Classes of linesearch methods

We will initially consider two fundamental methods.

- The steepest-descent method, where $p_k = -\nabla f(x_k)$, and
- Newton's method, where $\nabla^2 f(x_k) p_k = -\nabla f(x_k)$.

Steepest descent: + Search direction inexpensive to compute,

- Slow convergence.
- Newton's method: Search direction more expensive to compute, + Faster convergence.

There are methods "in-between", e.g., *quasi-Newton methods* that aim at mimicking Newton's method without computing second derivatives.

Quadratic objective function

Consider model problem with quadratic objective function

(QP) minimize
$$f(x) = \frac{1}{2}x^T H x + c^T x$$

subject to $x \in \mathbb{R}^n$,

where $H \succeq 0$.

Proposition. The following holds for (QP) depending on H and c: (i) If $H \succ 0$ then (QP) has a unique minimizer x^* given by $Hx^* = -c$. (ii) If $H \succeq 0$, $H \not\succ 0$ each x^* that fulfills $Hx^* = -c$ is a global minimizer to (QP). (There may possibly be no such x^*).

Proof. The condition $\nabla f(x^*) = 0$ gives the results. \Box

We assume $H \succ 0$ in the discussion.

Linesearch method on quadratic objective function

Consider (QP) with $f(x) = \frac{1}{2}x^THx + c^Tx$, where $H \succ 0$. We obtain: x^* minimizer to $(QP) \iff 0 = \nabla f(x^*) = Hx^* + c$. Suppose search direction p_k satisfies $\nabla f(x_k)^T p_k < 0$. Let $\varphi(\alpha) = f(x_k + \alpha p_k) = f(x_k) + \alpha \nabla f(x_k)^T p_k + \frac{\alpha^2}{2} p_k^T H p_k$. Then $\alpha_k = -\frac{\nabla f(x_k)^T p_k}{p_k^T H p_k}$ gives the minimizer to $\min_{\alpha \ge 0} f(x_k + \alpha p_k)$, i.e., we can perform *exact linesearch*.

Steepest descent on quadratic objective function

Assume that $f(x) = \frac{1}{2}x^T H x + c^T x$, where $H \succ 0$.

Further assume that steepest descent with exact linesearch is used, i.e., $p_k = -\nabla f(x_k)$ and $\alpha_k = -\frac{\nabla f(x_k)^T p_k}{p_k^T H p_k}$.

Then it can be shown that

$$f(x_{k+1}) - f(x^*) \leq \left(\frac{\operatorname{cond}(H) - 1}{\operatorname{cond}(H) + 1}\right)^2 (f(x_k) - f(x^*)).$$

$$\operatorname{cond}(H) \gg 1 \Rightarrow \frac{\operatorname{cond}(H) - 1}{\operatorname{cond}(H) + 1} \approx 1, \text{ i.e., slow linear convergence.}$$

For a nonlinear function, we typically get slow linear convergence, where H is replaced by $\nabla^2 f(x_k)$.

Speed of convergence

Definition. Assume that $x_k \in \mathbb{R}^n$, k = 0, 1, ..., and assume that $\lim_{k\to\infty} x_k = x^*$. We say that $\{x_k\}_{k=0}^{\infty}$ converges to x^* with speed of convergence r if

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^r} = C, \quad \text{where } C < \infty.$$

We have $||x_{k+1} - x^*|| \approx C \cdot ||x_k - x^*||^r$.

We want r large (and C close to zero). Of interest:

- r = 1, 0 < C < 1, linear convergence. (Steepest descent.)
- r = 1, C = 0, superlinear convergence. (Quasi-Newton.)
- r = 2, quadratic convergence. (Newton's method.)

Newton's method for solving a nonlinear equation

Consider solving the nonlinear equation $\nabla f(u) = 0$, where $f : \mathbb{R}^n \to \mathbb{R}$, $f \in C^2$.

Then, $\nabla f(u+p) = \nabla f(u) + \nabla^2 f(u)p + o(||p||).$

Linearization given by $\nabla f(u) + \nabla^2 f(u)p$.

Choose p so that $\nabla f(u) + \nabla^2 f(u)p = 0$, i.e., solve $\nabla^2 f(u)p = -\nabla f(u)$.

A Newton iteration takes the following form for a given u.

•
$$p$$
 solves $\nabla^2 f(u)p = -\nabla f(u)$.

• $u \leftarrow u + p$.

(The nonlinear equation need not be a gradient.)

Speed of convergence for Newton's method

Theorem. Assume that $f \in C^3$ and that $\nabla^2 f(u^*)$ is nonsingular. Then, if Newton's method (with steplength one) is started at a point sufficiently close to u^* , then it is well defined and converges to u^* with convergence rate at least two, i.e., there is a constant C such that $||u_{k+1} - u^*|| \leq C||u_k - u^*||^2$.

The proof can be given by studying a Taylor-series expansion,

$$u_{k+1} - u^* = u_k - \nabla^2 f(u_k)^{-1} \nabla f(u_k) - u^*$$

= $-\nabla^2 f(u_k)^{-1} (\nabla f(u^*) - \nabla f(u_k) + \nabla^2 f(u_k)(u^* - u_k)).$

For u_k sufficiently close to u^* ,

$$\|\nabla f(u^*) - \nabla f(u_k) + \nabla^2 f(u_k)(u^* - u_k)\| \le \overline{C} \|u_k - u^*\|^2$$

One-dimensional example for Newton's method

For a positive number d, consider computing 1/d by minimizing $f(u) = du - \ln u$.

Then, $f'(u) = d - \frac{1}{u}$, $f''(u) = \frac{1}{u^2}$. We see that $u^* = \frac{1}{d}$. $u_{k+1} = u_k - \frac{f'(u_k)}{f''(u_k)} = u_k - \frac{d - \frac{1}{u_k}}{\frac{1}{u_k^2}} = 2u_k - u_k^2 d$. Then, $u_{k+1} - \frac{1}{d} = 2u_k - u_k^2 d - \frac{1}{d} = -d\left(u_k - \frac{1}{d}\right)^2$.

One-dimensional example for Newton's method, cont.

Graphical picture for d = 2.

Sufficient descent direction

For a direction p_k to ensure convergence is must be a *sufficient descent* direction. Typical conditions are

$$-\frac{\nabla f(x_k)^T p_k}{\|\nabla f(x_k)\| \|p_k\|} \ge \sigma, \quad \text{where } \sigma \text{ is a positive constant}$$

This means that p_k must be "sufficiently similar" to the negative gradient.

For search direction p_k from $B_k p_k = -\nabla f(x_k)$ this is required by ensuring that $||B_k|| \leq M$ and $||B_k^{-1}|| \leq m$, where m and M are positive constants.

In a modified Newton method modifications of $\nabla^2 f(x_k)$ can be made, if needed, by a modified Cholesky factorization.

Linesearch

In the linesearch α_k is determined as an approximate solution to $\min_{\alpha \ge 0} \varphi(\alpha)$, where $\varphi(\alpha) = f(x_k + \alpha p_k)$. We want $f(x_{k+1}) < f(x_k)$, i.e., $\varphi(\alpha_k) < \varphi(0)$. This is not sufficient to ensure convergence.

Example requirement for step not too long:

$$\varphi(\alpha) \leq \varphi(0) + \mu \alpha \varphi'(0), \text{ i.e.,}$$

 $f(x_k + \alpha p_k) \leq f(x_k) + \mu \alpha \nabla f(x_k)^T p_k,$

where $\mu \in (0, \frac{1}{2}).$
(Armijo condition)

Example requirement for step not too short:

 $\begin{aligned} |\varphi'(\alpha)| &\leq -\eta \varphi'(0), \text{ i.e.,} & (\text{Wolfe condition}) \\ |\nabla f(x_k + \alpha p_k)^T p_k| &\leq -\eta \nabla f(x_k)^T p_k, \\ \text{where } \eta \in (\mu, 1). \text{ Alternative requirement for not too short step:} \\ \text{Take smallest nonnegative integer } i \text{ such that} \\ f(x_k + 2^{-i} p_k) &\leq f(x_k) + \mu 2^{-i} \nabla f(x_k)^T p_k. & (\text{``Backtracking''}) \end{aligned}$

Illustration of linesearch conditions

The linesearch conditions of Wolfe-Armijo type can be illustrated in the following picture.

Linesearch conditions

To find $\bar{\alpha}$ such that the Wolfe and Armijo conditions are fulfilled we may consider $\hat{\varphi}(\alpha) = \varphi(\alpha) - \varphi(0) - \mu \alpha \varphi'(0)$.

Then $\hat{\varphi}(0) = 0$ and $\hat{\varphi}'(0) < 0$. In addition, there must exist $\bar{\alpha} > 0$ such that $\hat{\varphi}(\bar{\alpha}) = 0$, otherwise φ is unbounded from below.

By the mean-value theorem there is an $\hat{\alpha} \in (0, \bar{\alpha})$ such that $\hat{\varphi}(\hat{\alpha}) < 0$ and $\hat{\varphi}'(\hat{\alpha}) = 0$.

Since $\mu < \eta$ we obtain $\varphi(\alpha) \leq \varphi(0) + \mu \alpha \varphi'(0)$ and $|\varphi'(\alpha)| \leq -\eta \varphi'(0)$ for α in a neighborhood of $\hat{\alpha}$.

For example, bisection in combination with polynomial interpolation can be used on $\hat{\varphi}$ to find a suitable α .

Newton's method and steepest descent

The steepest descent direction solves

$$\begin{array}{ll} \underset{p \in I\!\!R^n}{\text{minimize}} & \nabla f(x)^T p \\ \text{subject to} & p^T p \leq 1. \end{array}$$

The Newton direction solves

$$\begin{array}{ll} \underset{p \in I\!\!R^n}{\text{minimize}} & \nabla f(x)^T p \\ \text{subject to} & p^T \nabla^2 f(x) p \leq 1. \end{array}$$

The Newton step is a steepest-descent step in the norm defined by $\nabla^2 f(x)$, i.e.,

$$||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x) u)^{1/2}.$$

Self-concordant functions

- When proving polynomial complexity of *interior methods* for convex optimization, the notion of *self-concordant functions* is an important concept.
- **Definition.** A three times differentiable function $f : C \to \mathbb{R}$, which is convex on the convex set C, is self-concordant if $|f'''(x)| \leq 2f''(x)^{3/2}$.
- In essence, this means that the third derivatives are not "too large".
- An important self-concordant function is $f(x) = -\ln x$ for x > 0.

Suggested reading

Suggested reading in the textbook:

• Sections 9.1–9.7.

Equality-constrained convex program

Consider a convex optimization problem on the form

$$(CP_{=}) \quad \begin{array}{l} \underset{x \in I\!\!R^n}{\text{minimize}} \quad f(x) \\ \text{subject to} \quad Ax = b, \end{array}$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is convex and twice continuously differentiable.

If the Lagrangian function is defined as $l(x, \lambda) = f(x) - \lambda^T (Ax - b)$, the first-order optimality conditions are $\nabla l(x, \lambda) = 0$. We write them as

$$\begin{pmatrix} \nabla_x l(x,\lambda) \\ -\nabla_\lambda l(x,\lambda) \end{pmatrix} = \begin{pmatrix} \nabla f(x) - A(x)^T \lambda \\ Ax - b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Newton iteration

A Newton iteration on the optimality conditions takes the form

$$\begin{pmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} p \\ -\nu \end{pmatrix} = -\begin{pmatrix} \nabla f(x) - A^T \lambda \\ Ax - b \end{pmatrix}.$$

We may use

$$\| \left(\begin{array}{c} \nabla f(x) - A^T \lambda \\ Ax - b \end{array} \right) \|^2$$

as *merit function*, i.e., to measure how "good" a point is.

Variable elimination

Note that for a feasible point \bar{x} , it holds that $A(x - \bar{x}) = 0$ for all feasible x. Let Z be a matrix whose columns form a basis for null(A). Then $x = \bar{x} + Zv$, with a one-to-one correspondence between x and v.

Let $\varphi(v) = f(\bar{x} + Zv)$. We may then rewrite the problem as

 $(CP'_{=})$ minimize $\varphi(v)$.

Differentiation gives $\nabla \varphi(v) = Z^T \nabla f(\bar{x} + Zv)$, $\nabla^2 \varphi(v) = Z^T \nabla^2 f(\bar{x} + Zv) Z$.

This is an unconstrained problem. We may solve $(CP'_{=})$ and identify $x^* = \bar{x} + Zv^*$, where v^* is associated with $(CP'_{=})$.

 $Z^T \nabla f(x)$ is called the *reduced gradient* to f in x.

 $Z^T \nabla^2 f(x) Z$ is called the *reduced Hessian* to f in x.

First-order optimality conditions as a system of equations, cont.

The resulting Newton system may equivalently be written as

$$\begin{pmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} p \\ -(\lambda + \nu) \end{pmatrix} = \begin{pmatrix} -\nabla f(x) \\ -(Ax - b) \end{pmatrix},$$

alternatively

$$\begin{pmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} p \\ -\lambda^+ \end{pmatrix} = \begin{pmatrix} -\nabla f(x) \\ -(Ax-b) \end{pmatrix}$$

We prefer the form with λ^+ , since it can be directly generalized to problems with inequality constraints.

Quadratic programming with equality constraints

Compare with an equality-constrained quadratic programming problem

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}p^T H p + c^T p \\ (EQP) & \text{subject to} & Ap = b, \\ & p \in I\!\!R^n, \end{array}$$

where the unique optimal solution p and multiplier vector λ^+ are given by

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} p \\ -\lambda^+ \end{pmatrix} = \begin{pmatrix} -c \\ b \end{pmatrix},$$

if $Z^THZ \succ 0$ and A has full row rank, where Z is a matrix whose columns form a basis for null(A).

Newton iteration and equality-constrained quadratic program

Compare
$$\begin{pmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} p \\ -\lambda^+ \end{pmatrix} = \begin{pmatrix} -\nabla f(x) \\ -(Ax-b) \end{pmatrix}$$

with $\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} p \\ -\lambda^+ \end{pmatrix} = \begin{pmatrix} -c \\ b \end{pmatrix}$.
Identify: $\begin{aligned} \nabla^2 f(x) & \longleftrightarrow & H \\ \nabla f(x) & \longleftrightarrow & c \\ A & \longleftrightarrow & A \\ -(Ax-b) & \longleftrightarrow & b. \end{aligned}$

Newton iteration as a QP problem

A Newton iteration for solving the first-order necessary optimality conditions to $(CP_{=})$ may be viewed as solving the QP problem

minimize
$$\frac{1}{2}p^T \nabla^2 f(x)p + \nabla f(x)^T p$$

(QP₌) subject to $Ap = -(Ax - b),$
 $p \in \mathbb{R}^n,$

and letting $x^+ = x + p$, and λ^+ are given by the multipliers of $(QP_{=})$. Problem $(QP_{=})$ is well defined with unique optimal solution p and multiplier vector λ^+ if $Z^T \nabla^2 f(x) Z \succ 0$ and A has full row rank, where Z is a matrix whose columns form a basis for null(A).

An SQP iteration for problems with equality constraints

Given x, λ such that $Z^T \nabla^2 f(x) Z \succ 0$ and A has full row rank, a Newton iteration takes the following form.

- Compute optimal solution p and multiplier vector λ^+ to

minimize
$$\frac{1}{2}p^T \nabla^2 f(x)p + \nabla f(x)^T p$$

(QP₌) subject to $Ap = -(Ax - b),$
 $p \in I\!\!R^n,$

• $x \leftarrow x + p$, $\lambda \leftarrow \lambda^+$.

We call this method sequential quadratic programming (SQP). NB! $(QP_{=})$ is solved by solving a system of linear equations. NB! x and λ have given numerical values in $(QP_{=})$.

eed of convergence for SQP method for equality-constrained proble

Theorem. Assume that $f \in C^3$ is convex on \mathbb{R}^n and that $A \in \mathbb{R}^{m \times n}$ has full row rank. Further, assume that x^* is a minimizer of $(CP_{=})$ such that $Z^T \nabla^2 f(x) Z \succeq 0$, where Z is a matrix whose columns form a basis for null(A). If the SQP method (with steplength one) is started at a point sufficiently close to x^* , λ^* , then it is well defined and converges to x^* , λ^* with convergence rate at least two.

Proof. In a neighborhood of x^* , λ^* it holds that $Z^T \nabla^2 f(x) Z \succ 0$ and $\begin{pmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{pmatrix}$ is nonsingular. The subproblem $(QP_{=})$ is hence well defined and the result follows from the quadratic rate of convergence of Newton's method. \Box