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Interior methods
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Nonlinearly constrained convex program

Consider a convex optimization problem on the form

(CP )

minimize f(x)

subject to gi(x) ≥ 0, i ∈ I,

aT
i x− bi = 0, i ∈ E ,

x ∈ IRn,

I ⋃ E = {1, . . . ,m},

I ⋂ E = ∅,

where f : IRn → IR and −gi : IRn → IR are convex and twice

continuously differentiable on IRn.

The inequality constraints give an added combinatorial problem of

identifying the constraints that are active at the solution.

One way of dealing with inequality constraints is via a barrier

transformation.
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Barrier transformation

Consider replacing an inequality constraint gi(x) ≥ 0 by a logarithmic

barrier term − ln(gi(x)) added to the objective function.

Other barrier terms are possible. The logarithmic barrier term is the

”canonic” choice.

The effect is a perturbed problem where an infinite cost is incurred as

gi(x)→ 0.

The weight which we put on the barrier term is denoted by µ and

referred to as the barrier parameter.

The combinatorial effect is removed at the expense of a perturbation of

the original problem.
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The problem resulting from a barrier transformation

For a positive barrier parameter µ, the barrier transformed problem

becomes

(CPµ)
minimize

x∈IRn
f(x)− µ

∑
i∈I ln(gi(x))

aT
i x− bi = 0, i ∈ E ,

I ⋃ E = {1, . . . ,m},

I ⋂ E = ∅.

Note that convexity is preserved.

Proposition. Let gi : IRn → IR be a concave function on IRn. Then,

− ln(gi(x)) is a convex function on the convex set

{x ∈ IRn : gi(x) > 0}.
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The barrier trajectory

Under suitable assumptions, the barrier transformed problem has a

unique optimal solution x(µ) and corresponding Lagrange multipliers

λi(µ), i ∈ E , for each µ > 0.

In this situation, the barrier trajectory is defined as the set

{x(µ) : µ > 0}. The barrier trajectory is sometimes referred to as the

central path.

Theorem. Under suitable assumptions, the barrier trajectory is well

defined and it holds that limµ→0 x(µ) = x∗, limµ→0 µ/gi(x(µ)) = λ∗i ,
i ∈ I, and limµ→0 λi(µ) = λ∗i , i ∈ E , where x∗ is an optimal solution to

(CP ), and λ∗ is an associated Lagrange multiplier vector.

Hence, the barrier trajectory converges to an optimal solution.

A. Forsgren, KTH 5 Lecture 9 Convex optimization 2006/2007



A primal approach: Sequential unconstrained minimization

We may now apply the methods outlined previously for (approximately)

solving a sequence of unstrained minimization problems for decreasing

values of the barrier parameter µ.

This is sometimes referred to as sequential unconstrained minimization

techniques. We shall refer to this approach as a primal approach. The

method is an interior method, i.e., it generates points that lie in the

(relative) interior of the feasible set.

Let fµ(x) = f(x)− µ
∑

i∈I ln(gi(x)). Then,

∇2fµ(x) = ∇2f(x)−
∑
i∈I

µ

gi(x)
∇2gi(x) +

∑
i∈I

µ

(gi(x))2
∇gi(x)∇gi(x)T .

As µ→ 0, ∇2fµ(x(µ)) becomes increasingly ill-conditioned in general,

with the condition number tending to infinity.
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Optimality conditions for the barrier transformed problem

We may write the necessary optimality conditions for (Pµ) as

∇f(x)−
∑
i∈I
∇gi(x)

µ

gi(x)
−

∑
i∈E

aiλi = 0,

aT
i x− bi = 0, i ∈ E ,

where gi(x) > 0, i ∈ I, is required implicitly.

If auxiliary variables λi, i ∈ I are introduced, as defined by

λi = µ/gi(x), i ∈ I, we obtain

∇f(x)−
∑
i∈I
∇gi(x)λi −

∑
i∈E

aiλi = 0,

aT
i x− bi = 0, i ∈ E ,

λi −
µ

gi(x)
= 0, i ∈ I.
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A primal-dual reformulation of the optimality conditions

Note that if gi(x) > 0, then λi − µ/(gi(x)) = 0 if and only if

gi(x)λi − µ = 0,

The optimality conditions for (CPµ) are thus equivalent to

∇f(x)−
∑
i∈I
∇gi(x)λi −

∑
i∈E

aiλi = 0,

aT
i x− bi = 0, i ∈ E ,

gi(x)λi − µ = 0, i ∈ I,

with the implicit requirement gi(x) > 0, i ∈ I.

We will refer to this form of nonlinear equations defining the optimality

conditions for (CPµ) as the primal-dual nonlinear equations, and a

method based on approximately solving these equations as a primal-dual

interior method.
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Perturbed optimality conditions

We may view the primal-dual nonlinear equations

∇f(x)−
∑
i∈I
∇gi(x)λi −

∑
i∈E

aiλi = 0,

aT
i x− bi = 0, i ∈ E ,

gi(x)λi − µ = 0, i ∈ I,

with the implicit requirement gi(x) > 0, i ∈ I, as a perturbation of the

optimality conditions for (CP ),

∇f(x)−
∑
i∈I
∇gi(x)λi −

∑
i∈E

aiλi = 0,

aT
i x− bi = 0, i ∈ E ,

gi(x) ≥ 0, λi ≥ 0, i ∈ I,
gi(x)λi = 0, i ∈ I.
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Interior methods

� The term interior methods is used as a common name for methods

of barrier type for nonlinear optimization.

� Barrier methods in primal form are from the 60s. They have some

less desirable properties due to ill-conditioning. The methods were

revived in 1984 for linear programming.

� Primal-dual interior methods are methods of the 90s. They have

“better” behavior.

We will consider the special case of linear programming, for simplicity.
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Interior methods for linear programming

We want to solve the linear programs

(PLP )

min cTx

subject to Ax = b,

x ≥ 0,

(DLP )

max bTy

subject to ATy + s = c,

s ≥ 0.
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The primal-dual nonlinear equations

If the complementarity condition xjsj = 0 is perturbed to xjsj = µ for a

positive barrier parameter µ, we obtain a nonlinear equation on the form

Ax = b,

ATy + s = c,

xjsj = µ, j = 1, . . . , n.

The inequalities x ≥ 0, s ≥ 0 are kept “implicitly”.

Proposition. The primal-dual nonlinear equations are well defined and

have a unique solution with x > 0 and s > 0 for all µ > 0 if

{x : Ax = b, x > 0} 6= ∅ and {(y, s) : ATy + s = c, s > 0} 6= ∅.

We refer to this solution as x(µ), y(µ) and s(µ).
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The primal-dual nonlinear equations, cont.

The primal-dual nonlinear equations may be written in vector form:

Ax = b,

ATy + s = c,

XSe = µe,

where X = diag(x), S = diag(s) and e = (1, 1, . . . , 1)T .

Proposition. A solution (x(µ), y(µ), s(µ)) is such that x(µ) is feasible

to (PLP ) and y(µ), s(µ) is feasible to (DLP ) with duality gap nµ.
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Primal point of view

Primal point of view: x(µ) solves

(Pµ)
minimize cTx− µ

n∑
j=1

ln xj

subject to Ax = b, x > 0,

with y(µ) as Lagrange multiplier vector of Ax = b.

Optimality conditions for (Pµ):

cj −
µ

xj

= AT
jy, j = 1, . . . , n,

Ax = b,

x > 0.
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Dual point of view

Dual point of view: y(µ) and s(µ) solve

(Dµ)
maximize bTy + µ

n∑
j=1

ln sj

subject to ATy + s = c, s > 0,

with x(µ) as Lagrange multiplier vector of ATy + s = c.

Optimality conditions for (Dµ):

b = Ax,
µ

sj

= xj, j = 1, . . . , n,

ATy + s = c,

s > 0.
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Primal barrier function for example linear program

µ = 5 µ = 1

µ = 0.3 µ = 10−16
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The barrier trajectory

The barrier trajectory is defined as the set {(x(µ), y(µ), s(µ)) : µ > 0}.

The primal-dual system of nonlinear equations is to prefer. Pure primal

and pure dual point of view gives high nonlinearity.

Example of primal part of barrier trajectory:
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Properties of the barrier trajectory

Theorem. If the barrier trajectory is well defined, then

limµ→0 x(µ) = x∗, limµ→0 y(µ) = y∗, limµ→0 s(µ) = s∗, where x∗ is an

optimal solution to (PLP ), and y∗, s∗ are optimal solutions to (DLP ).

Hence, the barrier trajectory converges to an optimal solution.

Theorem. If the barrier trajectory is well defined, then limµ→0 x(µ) is

the optimal solution to the problem

min −∑
i∈B ln xi

subject to
∑

i∈B Aixi = b, xi > 0, i ∈ B,

where B = {i : x̃i > 0 for some optimal solution x̃ of (PLP )}.

Thus, the barrier trajectory converges to an extreme point only if

(PLP ) has unique optimal solution.
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Primal-dual interior method

A primal-dual interior method is based on Newton-iterations on the

perturbed optimality conditions.

For a given point x, y, s, with x > 0 and s > 0 a suitable value of µ is

chosen. The Newton-iteration then becomes
A 0 0

0 AT I

S 0 X




∆x

∆y

∆s

 = −


Ax− b

ATy + s− c

XSe− µe

 .

Common choice µ = σ
xTs

n
for some σ ∈ [0, 1].

Note that Ax = b and ATy + s = c need not be satisfied at the initial

point. It will be satisfied at x + ∆x, y + ∆y, s + ∆s.
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An iteration in a primal-dual interior method

� Choose µ.

� Compute ∆x, ∆y and ∆s from
A 0 0

0 AT I

S 0 X




∆x

∆y

∆s

 = −


Ax− b

ATy + s− c

XSe− µe

 .

� Find maximum steplength αmax from x + α∆x ≥ 0, s + α∆s ≥ 0.

� Let α = min{1, 0.999 · αmax}.

� Let x = x + α∆x, y = y + α∆y, s = s + α∆s.

(This steplength rule is simplified, and is not guaranteed to ensure

convergence.)
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Strategies for choosing σ

Proposition. Assume that x satisfies Ax = b, x > 0, and assume that

y, s satisfies ATy + s = c, s > 0, and let µ = σxTs/n. Then

(x + α∆x)T(s + α∆s) = (1− α(1− σ))xTs.

It is desirable to have σ small and α large. These goals are in general

contradictory.

Three main strategies:

� Short-step method, σ close to 1.

� Long-step method, σ significantly smaller than 1.

� Predictor-corrector method, σ = 0 each even iteration and σ = 1

each odd iteration.
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Short-step method

We may choose σk = 1− δ/
√

n, αk = 1.

The iterates remain close to the trajectory.

Polynomial complexity. In general not efficient enough.
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Long-step method

We may choose σk = 0.1, αk given by proximity to the trajectory.

Polynomial complexity.
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Predictor-corrector method

σk = 0, αk given by proximity to the trajectory for k even.

σk = 1, αk = 1 for k odd.

Polynomial complexity.
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Behavior of interior method for linear programming

Normally few iterations, in the order or 20. Typically does not grow with

problem size.

Sparse systems of linear equations. Example A:

The iterates become more computationally expensive as problem size

increases.

Not clear how to “warm start” the method efficiently.
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On the solution of the linear systems of equation that arise

The aim is to compute ∆x, ∆y and ∆s from
A 0 0

0 AT I

S 0 X




∆x

∆y

∆s

 = −


Ax− b

ATy + s− c

XSe− µe

 .

One may for example solve X−1S AT

A 0


 ∆x

−∆y

 = −

 c− µX−1e− ATy

Ax− b

 ,

or, alternatively

AXS−1AT ∆y = AXS−1(c− µX−1e− ATy) + b− Ax.
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Suggested reading

Suggested reading in the textbook:

� Chapter 10.

� Chapter 11.

Be selective in your reading.
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Interior methods for convex programs

A primal-dual interior method approximately solves

∇f(x)−
∑
i∈I
∇gi(x)λi −

∑
i∈E

aiλi = 0,

aT
i x− bi = 0, i ∈ E ,

gi(x)λi − µ = 0, i ∈ I,

with the implicit requirement gi(x) > 0, λi > 0, i ∈ I.

Newton iteration takes the form
∇2

xxl(x, λ) AT
E AI(x)T

AE 0 0

ΛIAI(x) 0 −GI(x)




∆x

−∆λE

−∆λI

 = −


∇xl(x, λ)

AEx− bE

GI(x)λI − µe

 ,

where GI(x) = diag(gI(x)) and ΛI = diag(λI).
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Slater’s constraint qualification

The barrier trajectory defined by the primal-dual nonlinear equations is

well defined if some constraint quailification holds.

For example, Slater’s constraint qualification, which holds if there exists

an x ∈ IRn such that AEx− bE = 0 and gI(x) > 0.

Another constraint qualification is gI affine.

Constraint qualification satisfied means that strong duality holds.
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An iteration in a primal-dual interior method

An iteration in a primal-dual interior method takes the following form,

given µ > 0, x such that gI(x) > 0 and λ such that λI > 0.

� Compute ∆x and ∆λ from the Newton equation.

� Choose “suitable” steplength α such that gI(x + α∆x) > 0,

λI + α∆λI > 0.

� x← x + α∆x, λ← λ + α∆λ.

� If (x, λ) “sufficiently close to” (x(µ), λ(µ)), reduce µ.

In general, suitable choices give overall method with polynomial

complexity. (Convexity is not quite enough.)
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Adding slack variables

Requiring gI(x) > 0 may be beneficial or complicating.

Alternative is to add slack variables sI and write the primal-dual

nonlinear equations as

∇f(x)− AI(x)T λI − AT
E λE = 0

AEx− bE = 0,

gI(x)− sI = 0,

sIλI − µe = 0.

with the implicit requirement sI > 0, λI > 0.
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Adding slack variables, cont.

Newton iteration may be written
∇2

xxl(x, λ) AT
E AI(x)T

AE 0 0

ΛIAI(x) 0 −SI




∆x

−∆λE

−∆λI

 = −


∇xl(x, λ)

AEx− bE

ΛIgI(x)− µe

 ,

where SI = diag(sI) and ΛI = diag(λI).

Then, ∆sI = −sI + gI(x) + AI(x)∆x.

Ensure that sI > 0 and λI > 0 in the linesearch. We obtain gI(x) ≥ 0

asymptotically.
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Primal and dual semidefinite programs

Primal and dual semidefinite programs may be written as

(PSDP )

minimize
X∈Sn

trace(CX)

subject to trace(AiX) = bi, i = 1, . . . ,m,

X = XT � 0.

and

(DSDP )

maximize
y∈IRm,S∈Sn

bTy

subject to
∑m

i=1 Aiyi + S = C,

S = ST � 0,

where Sn = {X ∈ IRn×n : X = XT}.

Without loss of generality: C ∈ Sn, Ai ∈ Sn, i = 1, . . . , n.
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The relative interiors

Let F (PSDP ) denote the feasible set of (PSDP ), i,e,.

F (PSDP ) = {X ∈ Sn : trace(AiX) = bi, i = 1, . . . ,m, X � 0}.

The relative interior of (PSDP ) is defined as

F 0(PSDP ) = {X ∈ F (PSDP ) : X � 0}.

Analogously, with

F (DSDP ) = {(y, S) ∈ IRm × Sn :
m∑

i=1

Aiyi + S = C, S � 0},

the relative interior of (DSDP ) is defined as

F 0(DSDP ) = {(y, S) ∈ F (DSDP ) : S � 0}.
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Nonempty strict relative interior gives strong duality

Theorem. If F 0(PSDP ) 6= ∅, then the duality gap is zero and

(DSDP ) has an optimal solution.

The proof can be given by the separating hyperplane theorem (in a

slightly different form from what what was presented earlier).

Corollary. If F 0(DSDP ) 6= ∅, then the duality gap is zero and

(PSDP ) has an optimal solution.

Corollary. If F 0(PSDP ) 6= ∅ and F 0(DSDP ) 6= ∅, then the duality

gap is zero, and both (PSDP ) and (DSDP ) have optimal solutions.
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Alternative formulation of a semidefinite program

A semidefinite program on standard form may be rewritten as

minimize trace(CX)

subject to trace(AiX) = bi, i = 1, . . . ,m,

X = XT ,

uTXu ≥ 0 ∀ u ∈ IRn : ‖u‖2 = 1.

We obtain an infinite number of linear inequality constraints. Hence,

more complex than a linear program. (A semi-infinite program.)

How do we solve (PSDP )? The generalization of the simplex method is

not obvious. Interior methods may be generalized in a rather

straightforward way.
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Alternative formulation of a semidefinite program

(PSDP )

minimize trace(CX)

subject to trace(AiX) = bi, i = 1, . . . ,m,

X = XT � 0.

We may equivalently formulate (PSDP ) as

(PSDP ′)

minimize trace(CX)

subject to trace(AiX) = bi, i = 1, . . . ,m,

X = XT ,

ηj(X) ≥ 0, j = 1, . . . , n,

where ηj(X) denotes the jth eigenvalue of X.

A drawback is that (PSDP ′) is nondifferentiable.
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A barrier transformation for semidefinite programming

(PSDPµ)

minimize trace(CX)− µ
∑n

j=1 ln(ηj(X))

subject to trace(AiX) = bi, i = 1, . . . ,m,

X = XT � 0.

Note that
∑n

j=1 ln(ηj(X)) = ln
∏n

j=1 ηj(X) = ln det(X), which gives

(PSDPµ)

minimize trace(CX)− µ ln det(X)

subject to trace(AiX) = bi, i = 1, . . . ,m,

X = XT � 0.

This is a differentiable problem.
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The derivative of the barrier term

We may write X =
n∑

k=1

n∑
l=k

xklEkl,

where Ekk = eke
T
k och Ekl = eke

T
l + ele

T
k , k < l.

Proposition. If X ∈ Sn, X � 0, then
∂ ln det(X)

∂xkl

= trace(X−1Ekl).

Proof. We obtain ln det(X + tEkl) = ln det(X) + ln det(I + tX−1Ekl).

Let ηj, j = 1, . . . , n, denote the eigenvalues of X−1Ekl. Then,

ln det(I + tX−1Ekl) = ln
n∏

j=1

(1 + t ηj) =
n∑

j=1

ln(1 + t ηj)

= t
n∑

j=1

ηj + o(t) = t trace(X−1Ekl) + o(t).

The result follows by letting t→ 0.
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The second derivative of the barrier term

Proposition. If X ∈ Sn, X � 0, then
∂2 ln det(X)

∂xij∂xkl

= trace(X−1EijX
−1Ekl).

Proof. The identity XX−1 ≡ I gives
∂X−1

∂xij

= −X−1EijX
−1.

Hence,
∂ trace(X−1Ekl)

∂xij

= − trace(X−1EijX
−1Ekl).

Corollary. The function − ln det(X) is convex on {X ∈ Sn : X � 0}.

Proof. For P ∈ Sn, we have

−
n∑

i=1

n∑
j=i

n∑
k=1

n∑
l=k

pij
∂2 ln det(X)

∂xij∂xkl

pkl = trace(X−1PX−1P )

= trace(X−1/2PX−1PX−1/2) ≥ 0.
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Optimality conditions for the semidefinite barrier problem

The optimality conditions for (PSDPµ) are given by

trace(CEkl)− µ trace(X−1Ekl)−
n∑

i=1

trace(AiEkl)yi = 0, 1 ≤ k ≤ l ≤ n,

trace(AiX) = bi, i = 1, . . . ,m,

X = XT .

Equivalently,

n∑
i=1

Aiyi + µX−1 = C,

trace(AiX) = bi, i = 1, . . . ,m,

X = XT .
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Primal-dual form of optimality conditions

Let S = µX−1, which gives

n∑
i=1

Aiyi + S = C,

trace(AiX) = bi, i = 1, . . . ,m,

XS = µI.

This is the primal-dual system of equations which defines the barrier

trajectory, where we in addition implicitly require X � 0 and S � 0.

Note that the solution gives X ∈ Sn and S ∈ Sn since Ai ∈ Sn,

i = 1, . . . ,m, and C ∈ Sn.

The solution is primal and dual feasible, respectively, with difference in

objective function value given by nµ.
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Nonempty relative interior ensures existence of barrier trajectory

The primal-dual form of the barrier trajectory is

n∑
i=1

Aiyi + S = C,

trace(AiX) = bi, i = 1, . . . ,m,

XS = µI, X � 0, S � 0.

Theorem. If F 0(PSDP ) 6= ∅, F 0(DSDP ) 6= ∅ and {Ai}mi=1 are

linearly independent, then the barrier trajectory is well defined for µ > 0.

The proof can be given by showing that for a positive µ, a solution to

the above system is equivalent to optimality conditions to the problem

minimize
X∈F 0(PSDP )

trace(CX)− µ ln det X.
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The barrier trajectory

Given suitable conditions, the barrier trajectory leads to the optimal

solution.

F

Interior methods follow the trajectory approximately.
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Primal-dual interior method

Assume that X is feasible to (PSDP ) with X � 0, and assume that y,

S are feasible to (DSDP ) with S � 0.

Let µ =
trace(XS)

n
be the estimate of the barrier parameter.

Let σ ∈ [0, 1] denote the desired reduction of duality gap.

This means that we aim at solving

m∑
i=1

Aiyi + S = C,

trace(AiX) = bi, i = 1, . . . ,m,

XS = σµI.
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An iteration in a primal-dual interior method

� Given Xk, yk and Sk such that Xk � 0 and Sk � 0;

� µk ← trace(XkSk)

n
, σk ∈ [0, 1];

� Compute ∆Xk, ∆yk and ∆Sk;

� Compute steplength αk;

� Xk+1 ← Xk + αk∆Xk, yk+1 ← yk + αk∆yk, Sk+1 ← Sk+αk∆Sk;

We require Xk+1 � 0 and Sk+1 � 0.

Methods differ in the choice of σk, choice of step and choice of

steplength.
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Straightforward Newton iterations

The last block of equations may be written as XS − σµI = 0, which

gives the Newton iterations∑m
i=1 Ai∆yi + ∆S = C −∑m

i=1 Aiyi − S,

trace(Ai∆X) = bi − trace(AiX), i = 1, . . . ,m,

X∆S + ∆XS = σµI −XS,

or as SX − σµI = 0, which gives∑m
i=1 Ai∆yi + ∆S = C −∑m

i=1 Aiyi − S,

trace(Ai∆X) = bi − trace(AiX), i = 1, . . . ,m,

S∆X + ∆SX = σµI − SX.

In general, the solutions differ, and they are nonsymmetric.
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Reduction of duality gap

Assume that ∆X, ∆y, ∆S satisfy∑m
i=1 Ai∆yi + ∆S = 0,

trace(Ai∆X) = 0, i = 1, . . . ,m,

X∆S + ∆XS = σµI −XS.

Then trace(∆X∆S) = −∑m
i=1 trace(Ai∆X)∆yi = 0.

Hence,

trace((X + α∆X)(S + α∆S)) = trace(XS) + α trace(X∆S + ∆XS)

= (1− α(1− σ)) trace(XS).

Same result for both linearizations.
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Strategies for choosing σ

The relation

trace((X + α∆X)(S + α∆S)) = (1− α(1− σ)) trace(XS)

implies that it is desirable to have σ small and α large. These goals are

in general contradictory.

Three main strategies:

� Short-step method, σ close to 1.

� Long-step method, σ significantly smaller than 1.

� Predictor-corrector method, σ = 0 each even iteration and σ = 1

each odd iteration.
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Short-step method

We may choose σk = 1− δ/
√

n, αk = 1.

The iterates remain close to the trajectory.

F

Polynomial complexity for a given accuracy. In general not efficient

enough.
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Long-step method

We may choose σk = 0.1, αk given by proximity to the trajectory.

F

Polynomial complexity for a given accuracy.
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Predictor-corrector method

σk = 0, αk given by proximity to the trajectory for k even.

σk = 1, αk = 1 for k odd.

F

Polynomial complexity for a given accuracy.
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Symmetrization of Newton equations

There are different ways of symmetrizing the last block of equations.

One example is the Alizadeh-Haeberly-Overton direction (AHO

direction), where
1

2
XS +

1

2
SX − σµI = 0.

The corresponding block of Newton equations become

1

2
X∆S +

1

2
∆XS +

1

2
S∆X +

1

2
∆SX = σµI − 1

2
XS +

1

2
SX.

The solution ∆X, ∆S is symmetric.

More generally we may introduce SP (U) = 1
2

(
PUP−1 + (PUP−1)T

)
for a nonsingular n× n matrix P and consider SP (XS) = σµI.
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Comments

� Polynomial complexity can be proved under the general framework

of self-concordance, considering − ln det(X). Define a distance

measure to the trajectory.

� Note that the dimension may become a problem. If X ∈ Sn, then

the number of variables is n(n + 1)/2. The polynomial complexity

may be with a rather high exponent.

� Many interesting applications in areas such as systems and control,

signal processing and combinatorial optimization.
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