
3. QSYN FLOW CHART, COMMAND OVERVIEW, AND
DATA STRUCTURES

In Section 2.10 a summary of the commands for a SISO design was given. The basic design
procedure, for a SISO system (see Figure 1.1), can be compactly condensed in the flow
chart in Figure 3.1.

First user input: Plant description

If the user has an analytic transfer function expression for her uncertain plant, she may
formalize it, together with various computational options in a Plant description file, a
commented model of which is present in the Qsyn library under the name plant.m. How to
do it is well explained in Section 2.1. With the help of the command ctpl, the plant
description is transformed to a template file, a Matlab mat-file with extension tpl, that
contains templates for user selected frequencies.

Template computations are discussed in Sections 2.1.4 and Section 2.2, with further
examples in Chapter 4. If the uncertain plant is described with the help of a set of measured,
or otherwise collected (e.g. simulated) transfer functions, the commands mffd (make
template from frequency function description) or mat2tpl (matrix-to-template) facilitate the
creation of the corresponding template file; see the example in Section 4.5. Several plant
descriptions may contribute to the same template file, and even to the same template, see
the example in Section 4.7. The template file structure, and a list of the commands that
operate on template files are given below in Section 3.2, including the command tplfop,
that is used to generate the template file of the complementary sensitivity function,
PG/(1+PG).

Second user input: Loop specifications

The second user input is the closed loop specifications. Qsyn includes commands, such as
rsrs, iosrs, odsrs, etc, that help the user to approximately translate, to the frequency
domain, step response specifications for members of a set of predefined closed loop transfer
functions. The time and frequency domain specifications are collected as variables in a
specification file, a Matlab mat-file with extension spc. Of course the user may insert a
frequency domain specification directly into the specification file. Examples are given in
Section 2.3.

If the the user includes a specification that does not refer to one of the predefined transfer
functions, then she must also write an m-file executing the computation of the actual criterion
function to serve in the computation of the Horowitz bounds. See fuser.m in the Qsyn
library. Examples of criteria functions for non-predefined specifications are found in Section
x.x. Below, in Section 3.3, the commands to generate specifications of the predefined type,
and their criteria functions are listed, together with an explanation of the specification file
structure and the commands that operate on them.

Resulting bounds

Based on a plant template file, a specification file and its corresponding criterion function m-
file (which may be predefined such as frsrs.m, or user written such as fuser.m (to be
copied by the user into his working directory, edited and given another name, into e.g.
fuser1.m), the command cbnd computes the Horowitz bounds for the template
frequencies, and collects them into a Matlab mat-file with extension bnd, called a bound file.
Two examples are given in Section 2.4. The bound file structure, and a list of the commands
that operate on bound files are given below in Section 3.4, including the command

3 : 1

Measured
Frequency
Functions

User's
Uncertain Plant Transfer

Function Description

User's
Closed Loop

Specifications

Specification file
filename.spc

Plant description file
plant.m

ctpl

Plant template file
filename.tpl

mffd

cbnd

Horowitz bound file
filename.bnd

cdesign

Feedback compensator file
fbcomp.m

tplfop

filename.tpl
Complementary sensitivity function template file

fdesign

prefil.m
Prefilter file

fuser.m
Criterion function

showbnd

showspc

rsrs iosrs ...

Figure 3.1. Basic Qsyn Flowchart. Qsyn commands are placed in boxes with rounded
vertices, with inputs entering from above and outputs marked with arrows. Qsyn files are
placed in square boxes. Standard file names in the Qsyn library, e.g. prefil.m, are given;
other filenames are marked by the generic filename. The file name extension xxx denotes
the filetype. The user is expected to use his own filenames with the appropriate extension.
The dashed lines from the Plant description file and Plant template file denote alternative
plant nominal inputs to the cdesign command. After completing the design, the user is
expected to simulate the closed loop in the frequency and time domains. The work flows for
Cascaded and MIMO designs contain iterations of this flowchart, see the example of
Cascaded design in Chapter 7.

3 : 2

showbnd, that is used to display the bounds in a Nichols chart as a preparation for the
feedback compensator design.

Design functions

The result of the design process, the feedback compensator and the prefilter, are user written
m-files called Controller functions that have to adhere to a defined input-output convention.
Two examples of compensator functions, fbcomp.m for the feedback compensator, and
prefil.m for the prefilter, are found in the Qsyn library. These model files are used for
Example 2.1 in Section 2.5 and 2.7, respectively. The controller function structure is briefly
recapitulated in Section 3.5, together with auxiliary design commands such as showbnd,
cdesign, showspc, and fdesign. More examples of controller functions, including their
use for digital control, are found in Chapter 6

Cascaded and MIMO designs.

The design procedure for Cascaded and MIMO systems is more complicated than that of
Figure 3.1. An example of Cascaded SISO design is given in Chapter 7. The user has to
write his own application functions for MIMO design.

3.1 Plant description files and related commands

Qsyn plant description files enable a convenient description of parametrically uncertain,
continuous time, rational (or irrational) transfer functions, with optional delay and/or
multiplicative unstructured uncertainty. Their structure, and file head are explained in Section
2.1, and in the comments of the model file plant.m in the Qsyn library, see Figure 2.1.
More examples of various plant definition options are given in Chapter 4.

Here follows a list of commands that operate on plant description files or have a plant
description file as an input. The commands are divided into two groups. Primary commands
would be used in the normal course of design. Auxiliary commands are either secondary
commands that serve as subroutines to the primary commands, or are suitable for special or
tailormade applications.

Primary commands for Plant description files
CASES plant frequency domain simulation for user selected cases
CCASES closed loop frequency function simulation for user selected cases
CDESIGN enables interactive feedback compensator design
EDIT editing the plant description file with the default editor (Matlab command)
FDESIGN enables interactive prefilter design
PLANT model of plant description file to be copied and edited by the user
PLNT invokes a default editor to edit a plant description file
PMODEL interactive plant modelling function for measured frequency function data

Auxiliary commands for Plant description files
BUILDF extracts transfer fcn factors from the rff string format in a plant file
MULT unstructured uncertainty fcn for all template comp methods except rff
PLANT_ID compiles a plant description file and creates an auxiliary m-file
PNOMINAL computes freq function values of the nominal in a plant description file

Figure 3.2. Commands connected with plant description files.

3 : 3

Remarks

1. The commands cdesign and fdesign can be used to design compensators and filters
for a plant with no uncertainty that is represented as the nominal in a plant description
file.

2. The m-file plant.m can also be called, and then gives output variables.
3. The command plant-id(plant) produces an auxiliary file in the current directory

called ~plant.m. It contains some of the information in plant.m in a form more
convenient for subsequent commands. Some Qsyn functions, such as ctpl use plant-
id as a subroutine.

3.2 Template files and their commands

Template files are mat-files, with extention .tpl that contain the variables listed in Figure
3.3. The commands having template files as inputs or outputs are listed in Figure 3.4.

Template file variables
horcad_comment string information how the template file was

generated the first time
filename string filename, not including '.tpl'
info string information if the file was changed
w_nom row vector [rad/s] nominal frequencies
nom row vector [deg+j*dB] nominal frequency function, with

length(nom)=length(w_nom)
par_nom col vector parameters of the nominal plant
w_tpl matrix [rad/s, index] 1st col: sorted template frequencies

2nd col: index in template name
t_w1, t_w2, t_w3, ... col vectors [deg+j*dB] templates whose indices 1, 2, 3 ... are

frequency pointers w r t w_tpl
par_1, par_2, ... matrices column k in par_1 holds the par-

ameters that gave rise to t_w1(k), ...
Figure 3.3. Template file variables

Remarks

1. Since a template file is a mat-file, all its variables may be loaded into the workspace by
the Matlab command load filename.tpl -mat.

2. Sometimes spurious variables, e.g. ans, enter a template file when it is created or
changed. This is a known but benevolent bug that does not influence any computation.

3. The indices of w_tpl(:,2) work as follows: Let

w_tpl = [0.2 2; 0.5 1; 0.7 3];

Then t_w1 is the template for 0.5 rad/s, t_w2 the template for 0.2 rad/s, and t_w3 the
template for 0.7 rad/s. Corresponding parameter matrices are par_1, par_2, and
par_3.

4. The parameters in par_nom and the columns of par_1, par_2, etc are ordered in order
of appearance of the uncertain parameters in the vector Par of the plant description file
from which the template file was computed.

5. The parameter variables par_nom and par_1, par_2, etc are not created when the
template file is computed with the rff-method or by the command mffd or mat2tpl.

3 : 4

6. Be careful when changing or adding templates in a template file. Insert e.g. your own
comments as a string variable to log the change, since the variable info is not always
created. In particular, if a template with a parameter matrix is exchanged for a template
without (e.g. created by rff) then the old parameter vector is not automatically removed.
In particular, make sure that w_tpl correctly reflects the templates (user the commands
tplinf or gettpl), and if necessary change it by the commands gettpl and insert.

Primary commands for Template files
ADD2TPL adds/replaces/combines a new template into a template file
CTPL calculates a template file from data in a plant definition file
GETFROM lists and/or copies variables from a mat-file
GETTPL copy a a template or other data variable from a template file
INSERT inserts/replaces variable in mat-file
LOOK lists the names of the variables stored in a mat-file
MAT2TPL converts a matrix to a template file
MFFD creates template file from a freq vector, nominal, and template matrix
PRUNE removes interior points from a connected template
REMOVE removes a variable from a mat-file
SHOWTPL displays templates from a template file in a Nichols diagram
TPL2MAT converts a template file from tpl-format to a matrix
TPLFOP template file operation routines, such as +, *
TPLINF displays information about the templates in a template file
TPLOP single template operation routines, such as +, *
TPLPRUNE prunes templates in a template file
TPLREDUC reduces/interpolates points in a sorted and ordered template
TPLUNION computes the union of two template files
TPLUPD interactive, graphical template updating

Auxiliary commands for Template files
ADEDGE calculates templates with the recursive edge grid method
ADGRID calculates templates with the recursive grid method
CLTMP interpolates points in a sorted and pruned template
FVALUE get template from tpl-file or freq fcn value from controller file

(subroutine)
ISIN checks if a variable exists in a mat-file
LOAD loads the variables into the work space from a mat-file
MULT unstructured uncertainty fcn for all template comp methods except rff
PRUNE1 test version of PRUNE that displays each step of the iteration
RECEDGE subroutine used by the template computation functions ADEDGE
RECGRID subroutine for the template computation function ADGRID
RFFCPZ computes a complex pole/zero pair template in real factored form
RFFEL pure gain, delay, unstructured uncertainty, or integrators rff template
RFFMUL multiples two templates in real factored form
RFFPZ produces a real pole or real zero template in real factored form
RFFUTIL1 utility function for RFFCPZ to compute template edge points
RFFUTIL3 utility function for RFFCPZ to sort, clean, and complement edges
TPLCASC creates equivalent template for 2nd step in cascaded design
UPDTPL subroutine for interactive template updating in TPLUPD
UPDTPL1 subroutine, script m-file, only for use by UPDTPL

Figure 3.4. Commands connected with templates and template files.

3 : 5

3.3 Specification files and criteria functions, and their
commands

3.3.1 Specification files

Specification files are mat-files, with extention .spc that contain time domain and/or
frequency domain envelopes into which some closed loop frequency response must fit. A
separate m-file, a so called criterion function, with a given structure defines how the closed
loop frequency response is to be computed. The variables of a specification file are
presented in Figure 3.5, and a criteria functions are displayed in Figure 3.6.

Specification file variables with default names
comment string information how the specification

file was generated the first time
filename string filename, including '.spc'
specname_tab matrix [sec, max, min] Original time domain specification

for relevant specification variables
1st col: time
2nd/3rd col: upper/lower spec

idsrs_t

idsrs_w

matrix

matrix

[sec, value]

[rad/s,dB]

 Input Disturbance Step Response
Spec P/(1+L)
1st col: time/frequency
2nd col: upper envelope
 Created by command idsrs

odsrs_t

odsrs_w

matrix

matrix

[sec, value]

[rad/s,dB]

Sensitivity 1/(1+L)
Output Disturbance Step Response
Specification
1st col: time/frequency
2nd col: upper envelope
 Created by command odsrs

rsrs_t

rsrs_w

matrix

matrix

[sec, max, min]

[rad/s,dBmax,dBmin]

Tolerance Specification FL/(1+L)
Reference Step Response Spec
1st col: time/frequency
2nd col: upper envelope
3rd col: lower envelope
 Created by command rsrs

Specification file variables with other names
iosrs_t

iosrs_w

matrix

matrix

[s, max, min]

[rad/s,dBmax,dBmin]

Complementary Sensitivity L/(1+L)
Input Output Step Response Spec
for one degree-of-freedom systems
1st col: time/frequency
2nd col: upper envelope
3rd col: lower envelope
 May be created by cmnd rsrs

odsrsc_t

odsrsc_w

matrix

matrix

[s, value]

[rad/s,dB]

Output Disturbance Step Response
Spec at Controller Output G/(1+L)
1st col: time/frequency
2nd col: upper envelope
May be created by commands
 idsrs/odsrs

userspec1_t
userspec1_w

matrix
matrix

[sec, val1, val2, ...]
[rad/s, val1, val2, ...]

User defined specification # 1

... matrix
matrix

[sec, val1, val2, ...]
[rad/s, val1, val2, ...]

User defined spec # 2, 3, ...

Figure 3.5. Specification file variables

3 : 6

Remarks

1. Since a specification file is a mat-file, all its variables may be loaded into the workspace
by the Matlab command load filename.spc -mat.

2. Not all variables have to be present in one or any specification file: the user decides
which variables are relevant, and in which specification file they belong.

3. Variables ending with _t are time domain specifications. Variables ending with _w, are
frequency domain specifications. Only frequency domain specifications are used in the
bounds computations, see Chapters 1 and 2. The time domain specifications are optional
for the design, and used for comparison with the (simulated) closed loop responses.

4. The specifications idsrs, odsrs, and rsrs are predifined in the sense that Qsyn
includes commands with the very same names that aid the user to describe the time
domain specifications and approximately translate them to the corresponding frequency
domain specifications. The corresponding criteria functions, with the names fidsrs,
fodsrs, and frsrs are also included in Qsyn, see below in Section 3.3.3.

5. The specifications iosrs, and odsrsc are predefined in the sense that their respective
criteria functions, fiosrs, and fodsrsc are included in Qsyn. There are however no
dedicated commands to create these time and frequency domain specification variables.
As indicated in Figure 3.5, other existing commands may be utilized.

6. The user has to make sure that the specification frequency range spans the template
frequencies, so that the bound computation routine may find a specification for each
template frequency, if necessary by interpolation.

7. User frequency specifications may have arbitrary many columns, with the convention
that the first column denotes rad/s. The units may be arbitrary, e.g. phase units. The
specification variable names are chosen by the user. An existing criterion function may
be used for the ensuing bound computation, if appropriate, else the user could write a
new criterion function, see below.

8. When using the commands idsrs, odsrs, and rsrs to create or update a
specification file, the computed specification variables will get the default name (= the
name of the commmand) if not assigned otherwise in the command line.

9. The user may create her own frequency domain specification variable in several ways:
the following way: i) by the command makespc whereby specifications are entered
graphically; ii) computing a specification variable with one of the commands idsrs,
odsrs, or rsrs, and then updating it graphically with the command spcupd; iii) with the
command add2spc that enables the insertion (or replacement) of a constant
specification, or a specification given as a filter amplitude function, or an arbitrary
specification in matrix form.

10. Note that unless otherwise demanded in the command cbnd, the names of the bounds in
a bound file computed with the use of a specification variable called name will be called
name_1, name_2, name_3, ..., where the indices 1, 2, 3, ..., are pointers to the bound
frequency vector name_w in the bound file, see Section 3.4.

11. "specname" in specname_tab can be any relevant specification variable name, such as
rsrs.

3 : 7

3.3.2 Criteria functions

A criterion function (or specification function) is realized in an m-file, and computes the
feedback controller dependent quantity to be compared with a specification variable during
the bounds computation.

Some criteria functions are predifined, such as fiosrs.m, fodsrsc.m, fidsrs.m,
fodsrs.m, and frsrs.m. These criteria functions are meant to operate on the frequency
specification variables iosrs_w, odsrsc_w, idsrs_w, odsrs_w, rsrs_w, respectively, as
defined in Figure 3.5. They may of course operate on any other frequency specification
variable that has the correct number of columns.

For the 2nd step of cascaded design there are two special predefined criteria functions:
fcasc_r.m, and fcasc_s.m. They operate on specifications of the type rsrs_w and
odsrs_w, respectively. See Chapter 7

The user may let an existing specification variable, say rsrs_w, be evaluated by a user-
written critererion function, say fuser.m, during the bound computation. She may also
introduce a new specification variable, say lirt_w, into an existing or new specificaiton file,
and let it be evaluated by an predefined criterion function, say fodsrs.m during the bound
computation. Of course she may introduce her new specification variable, itta_w, and let it
be evaluated by her new criterion function. She is then advised (but not obliged) to follow the
the name convention to call her criterion function flirt.m. The bound variable names will
in any case be named after the specification variable: lirt_1, lirt_2, lirt_3, etc.

One of the predefined criteria functions in the Qsyn library, frsrs.m, is reproduced in
Figure 3.6a. A "user written" criterion function, fuser.m, is included in the Qsyn library. It is
printed in Figure 3.6b and explained below. The user may study the other predefined criteria
functions. Note the compulsory structure of the criterion function file head and and its input
and output variables.

The existing criteria functions are listed among the commands connected to specification
files in Figure 3.7, and among commands connected to bound files in Figure 3.9.

function[Tmax]=frsrs(tpl_nom,tpl,GP,spec,par_nom,par)

%FRSRS Reference step response specification criterion fcn
% function[Tmax]=frsrs(tpl_nom,tpl,GP,spec,par_nom,par)
%
%Criterion fcn for max|GP/(1+GP)|/max|GP/(1+GP)| < spec(1)/spec(2)
%
% Output and input variables are explained in fuser.m
% Note that GP = Lnom

L=n2c(GP+tpl-tpl_nom);
Tmax=20*log10(max(abs(L)./abs(1+L)));
Tmin=20*log10(min(abs(L)./abs(1+L)));
Tmax=Tmax-Tmin-spec(1)+spec(2);

Figure 3.6a. Predefined criterion function frsrs.m from the Qsyn library. Other predefined
criteria functions include fiosrs.m, fidsrs.m, fodsrsc.m, fodsrs.m, and fcasc_r.m
and fcasc_s.m for cascaded design.

3 : 8

function[Tmax]=fuser(tpl_nom,tpl,Lnom,spec,par_nom,par)

% FUSER Model file to create user defined specification criteria
% [Tmax]=fuser(tpl_nom,tpl,Lnom,spec,par_nom,par)
%
% create your own specifications by copying/editing this file.
%
% Tmax = value of the criterion function for the n instances of
% the nominal open loop candidates to be tested that are
% contained in Lnom. Tmax is a row vector of length n with
% real elements. The Horowitz bound is the locus of
% those Lnom-candidates, for which Tmax = 0.
%
% ALL INPUT VARIABLES ARE GIVEN BY THE CALLING BOUND COMPUTATION FCN
%
% tpl_nom = the nominal template point, a scalar i [deg + j*dB]
% .
% tpl = a m*n matrix where each of the n columns contains the
% same template, i.e. n identical columns (of length m) are
% stacked side by side. Each element is in Nichols form
% [deg + j*dB]. (This means, each of the m rows have equal
% elements.This is done to simplify matrix computation: the
% input variables tpl and Lnom have the same dimension.)
%
% Lnom = A m*n matrix where each column is constant, and each row
% contains the n different nominal open loop candidates
% [deg + j*dB].
%
% spec = the specification vector (or scalar), e.g. in [dB].
% It equals the elements 2, 3, ... in one row of the
% specification variable specname that the user used as an
% input in her CBND or BNDUPD command. (The row belongs
% to the frequency for which bounds are now computed).
%
% par_nom = the nominal parameters of the plant (if existing)
%
% par = parameter matrix that produced the template (if existing)
%
% EXAMPLE 1: Due to the matrix form of tpl and Lnom it is now easy to
% form for instance the sensitivity criterion by
%
% L=n2c(Lnom+tpl-tpl_nom);
%% the open loop in Nyquist format. Each column contains the template
%% multiplied by one of the feedback compensator candidates
% S=1./(1+L); % The sensitivity in Nyquist format
% Tmax=20*log10(max(abs((S)));
%% The maximum of the sensitivity in Nichols form
%% Note that max operates column wise.
% Tmax=Tmax-spec(1);
%% It is assumed that spec(1) contains the sensitivity spec in dB.
%% This is the case if it was generated by the command odsrs. Now the
%% specification holds for the k:th value of Lnom, iff Tmax(k) <= 0
%
% EXAMPLE 2: Stiffness coefficient c0=0, c1<=c1spec. Assume that the
% user defined the second column of specname as the low frequency
% asymptote [dB] above which G must lie
%
% G = min(imag(Lnom - tpl_nom)); % n feedback compensator candidates,
% % row vector [deg+j*dB]
%
% Tmax = G - spec(1);
%
% OTHER EXAMPLES: The user is advised to study the predefined
% criteria functions FRSRS, FIDRS, FODRS, FODSRSC, FIOSRS

if nargin==0;
disp('Tmax)=fuser(tpl_nom,tpl,Lnom,spec,par_nom,par)');
break;

end;

%%% WRITE YOUR OWN SPECIFICATION BELOW....

Figure 3.6b. Predefined criterion function fuser.m from the Qsyn library. Other predefined
criteria functions include fiosrs.m, fidsrs.m, fodsrsc.m, fodsrs.m, and fcasc_r.m
and fcasc_s.m for cascaded design.

3 : 9

3.3.3 Commands connected to specification files

Qsyn includes commands that aids the user to define some commonly used specifications.
They are iosrs, idsrs, odsrsc, odsrs, and rsrs, listed among the primary commands
for specificaiton files in Figure 3.7. The resulting specification variables get standard names
as listed in Figure 3.5. Connected with these are predefined criteria functions that have the
same name as the commands, with a preceding "f". The criteria functions are described in
Section 3.3.2, and listed among the auxiliary commands in Figure 3.7.

Primary commands for Specification files
ADD2SPC adds/replaces specification in a specification file
FUSER user written criterion function for user defined specification
GETFROM lists and/or copies variables from a mat-file
IDSRS computes input disturbance step response specifications
INSERT inserts/replaces variable in mat-file
LOOK lists the names of the variables stored in a mat-file
MAKESPC graphical definition of a specification variable
ODSRS computation of output disturbance step response specification
REMOVE removes a variable from a mat-file
RSRS calculation of reference step response specification
SHOWSPC displays a specification from a specification file
SPCUPD graphical updating of a freq domain specification in a specification file

Auxiliary commands for Specification files
FCASC_R criterion fcn for rsrs for the 2nd step of cascaded design
FCASC_S criterion fcn for odsrs or sensitivity of the 2nd step of cascaded design
FIDSRS criterion fcn for plant input dist step response specification
FIOSRS criterion fcn for input step response spec/complementary sensitivity
FODSRSC criterion fcn for output dist step response specification at the plant input
FODSRS criterion function for output dist step response specification or sensitivity
FRSRS criterion function for reference step response specification or tolerance
FUSER criterion function file to be copied and edit for user defined criterion fcn
ISIN checks if a variable exists in a mat-file
LOAD loads the variables into the work space from a mat-file
MSPC auxiliary function to MAKESPC
SPC_ID2 Subroutine used by IDSRS
SPC_OD2 specification calculation for 2:nd order output disturbance step
SPC_OD3 specification calculation for 3:rd order output disturbance step
SPC_OD31 specification calc for 3:rd order output disturbance step (alternative grid)
SPC_RS2 specification calculation for 2:nd order reference step
SPC_RS3 specification calculation for 3:rd order reference step
SPC_RS31 specification calculation for 3:rd order reference step (alternative grid)
UPDSPC subroutine for interactive specification updating in SPCUPD
UPDSPC1 subroutine, script m-file, only for use by UPDSPC

Figure 3.7. Commands connected with specifications and specification files.

3.4 Bound files and their commands

Bound files are mat-files, with extention .bnd that contain the variables listed in Figure 3.8.
The commands having bound files as inputs or outputs are listed in Figure 3.9.

3 : 10

Bound file variables
comment string information how the template file was

generated the first time
filename string filename, including '.bnd'
info string information if the file was changed
name1_w matrix [rad/s, index] 1st col: frequencies for bound # 1

2nd col: index in bound name
name1_1,
name1_2,
name1_3, ...

row
vectors

[deg+j*dB]
or NaN

bounds of type # 1 whose indices 1,
2, 3 ... are frequency pointers w r t
name1_w

name2_w matrix [rad/s, index] 1st col: frequencies for bound # 2
2nd col: index in bound name

name2_1,
name2_2,
name2_3, ...

row
vectors

[deg+j*dB]
or NaN

bounds of type # 2 whose indices 1,
2, 3 ... are frequency pointers w r t
name2_w

...
Figure 3.8. Bound file variables

Remarks

1. Since a bound file is a mat-file, all its variables may be loaded into the workspace by the
Matlab command load filename.bnd -mat.

2. Sometimes spurious variables, e.g. ans, enter a template file when it is created or
changed. This is a known but benevolent bug that does not influence any computation.

3. The variables comment and info are not always present.
4. The indices of name1_w(:,2), name2_w(:,2), name2_w(:,2), ... work as follows:

Let

name1_w = [0.2 2; 0.5 1; 0.7 3];

Then name1_1 is the bound for 0.5 rad/s, name1_2 the bound for 0.2 rad/s, and
name1_3 the bound for 0.7 rad/s. Compare with w_tpl in Figure 3.3.

5. When the command cbnd is called, one type of bounds is computed. Its name becomes
the same name as the name of the specification variable used for the bound
computation, e .g. odsrs, unless otherwise stated in the command line. A second call of
cbnd may be used to replace the bounds of an existing bound type in an existing bound
file, include another bound type into the existing bound file, or to create a new bound file
with the freshly computed bounds.

6. Be careful when changing bounds in a bounds file, e.g. manually with the command
insert. Insert e.g. your own comments as a string variable to log the change, since the
variables comment and info may not be updated.

7. How to combine two bounds, i.e. to replace them by a dominant bound defined by the
dominant segments from each, is shown in Chapter 5.

Primary commands for Bound files
ADD2BND adds/replaces bound in a bound file
BNDINF displays information about a bound file
BNDUPD interactive recalculation of bounds with higher accuracy
CBND calculates bounds from given template file, specification file and criterion
FUSER user written criterion function for user defined specification
GETBND copies a bound from a bound file
GETFROM lists and/or copies variables from a mat-file
LOOK lists the names of the variables stored in a mat-file
REMOVE removes a variable from a mat-file
SHOWBND plots bounds from a bound file for selected frequencies, in a Nichols char

3 : 11

Auxiliary commands for Bound files
EXTRACT extracts bounds from a contour given by the command CONTOURC
FCASC_R criterion fcn for rsrs for the 2nd step of cascaded design
FCASC_S criterion fcn for odsrs or sensitivity of the 2nd step of cascaded design
FIDSRS criterion fcn for plant input dist step response specification
FIOSRS criterion fcn for input step response spec/complementary sensitivity
FODSRSC criterion fcn for output dist step response specification at the plant input
FODSRS criterion function for output dist step response specification or sensitivity
FRSRS criterion function for reference step response specification or tolerance
ISIN checks if a variable exists in a mat-file
LOAD loads the variables into the work space from a mat-file (Matlab cmd)
MAKEBND calculates bounds on a grid in the Nichols chart, subroutine to BNDUPD
UDBND recalculates a previosly calculated bound, subroutine to BNDUPD
UPDBND refining of a previously calculated bound, subroutine to BNDUPD
UPDBND1 subroutine, script m-file, only for use by UPDBND

Figure 3.9. Commands connected with bound files.

3.5 Controller functions and their commands

Controller functions are m-files, in which the user designs the feedback compensators and
prefilters, and which are used to compute their frequency functions. The Qsyn library holds a
model of a feedback compensator function in real factored form, called fbcomp.m, see
Figure 2.15. Edited versions of fbcomp.m are shown in Figures 2.16 and 2.18. The user is
advised to study the full help text of fbcomp (help fbcomp), where it is also stated how the
file should be edited to represent a digital controller. An example of a digital controller is
given in Chapter 6.

 A model of a prefilter function in real factored form, prefil.m, is also present in the Qsyn
library. An edited version of it, for Example 2.1, is shown in Figure 2.20.

We show here, in Figure 3.10, a controller function in polynomial form. The structure of a
controller function file head is emphasized in a remark.

The commands connected to controller functions and control design are listed in Figure 3.11.

function [F] = control(s)

% control.m Controller function example in polynomial form for
% feedback compensator and prefilter design
%%%
%

 b1 = 0; b2 = 0; b3 = 0; b4 = 0; b5 = 2; b6 = 2;
 a1 = 0; a2 = 0; a3 = 0; a4 = 0; a5 = 1; a6 = 0;

 Fnum = b1*s.^5 + b2*s.^4 + b3*s.^3 + b4*s.^2 + b5*s + b6;
 Fden = a0*s.^6 + a1*s.^5 + a2*s.^4 + a3*s.^3 + a4*s.^2 + a5*s + a6;

 F = Fnum./Fden;

Figure 3.10. A controller function example realizing the transfer function F(s)=2(s+1)/s.

3 : 12

Remarks

1. A controller function file head must always be

function [F] = filename(s)

where filename is a user chosen file name. s=jw is the imaginary frequency vector
for which the frequency function F is computed. Since s is a vector, elementwise
operations must be used, i.e. a point (.) precedes an operator acting on a vector.

2. A controller function may be used to represent a plant transfer function without
uncertainty. The command cdesign and fdesign can be used to design controllers for
such a plant representation. However, the user must himself write the code to close the
loop, that will be similar to the some of the Matlab commands in the third paragraph in
Section 2.8. An example of a design for a certain system is found in Chapter 6.

Primary commands for Controller files and Control Design
CDESIGN enables interactive feedback compensator design
FDESIGN enables interactive prefilter design
PLANT model of plant description file to be copied and edited by the user
SHOWBND plots bounds from bound file for selected frequencies, in a Nichols chart
SHOWSPC displays a specification from a specification file

Auxiliary commands for Controller files and Control Design
FVALUE get template from tpl-file/freq fcn value from controller file (subroutine)
HNGRID draws L/(1+L) or 1/(1+L) loci in a Nichols diagram
HZOOM puts a zoom menu in the current figure
MGRID draws user defined grid lines in the current figure window

Figure 3.11. Commands connected with controller functions and controller design.

3.6 Commands for simulation

As mentioned in Section 2.8, Qsyn does not include commands for time domain simulations.
The user should resort to other simulation tools or programs, such as those present in the
Matlab Control System Toolbox, or Matlab Simulink, or other simulation programs such as
Simnon or Visisim. Some auxiliary Qsyn functions do exist, however, and they are listed
below in Figure 3.12.

Frequency domain simulations of selected closed loop cases are easily performed with Qsyn
commands and regular Matlab algebra. An example is given in Section 2.8. Relevent
commands are listed in Figure 3.12.

Primary commands for Simulation
CASES plant frequency domain simulation for user selected cases
CCASES closed loop frequency function simulation for user selected cases
FBCOMP feedback function model file, to be copied and edited by the user
PREFIL prefilter function model file, to be copied and edited by the user
SHOWSPC displays a specification from a specification file

3 : 13

Auxiliary commands for Simulation
FVALUE get template from tpl-file or freq fcn value from controller file

(subroutine)
HNGRID draws L/(1+L) or 1/(1+L) loci in a Nichols diagram
HZOOM puts a zoom menu in the current figure
MGRID draws user defined grid lines in the current figure window
PZ2S computes freq function values/SIMULINK block for factored transfer fcn
SPECIF SIMULINK block diagram for user's simulations

Figure 3.11. Commands connected with simulation.

3.7 Commands for cascaded design

Cascaded design for a two section SISO system is treated by a detailed example in Section
x.x. To facilitate cascaded design, Qsyn includes a number of special commands in addition
to those listed above: see Figure 3.12.

Commands for cascaded design
FCASC_R criterion fcn for rsrs for the 2nd step of cascaded design
FCASC_S criterion fcn for odsrs or sensitivity of the 2nd step of cascaded design
TPLCASC creates equivalent template for 2nd step in cascaded design

Figure 3.12. Commands connected with cascaded design

3 : 14

3.8 Utility commands

Qsyn includes a number of commands useful for matrix manipulation, conversion between
Nichols and complex representation, etc. Notice that transfer functions without uncertainty
can be displayed in Nichols and Bode charts with the commands fdesign and cdesign.
The utility commands are listed in Figure 3.13.

Qsyn utility commands
ADD2MAT combines two matrices
C2N converts a matrix from complex to Nichols form
CDESIGN enables interactive feedback compensator design
CMPVEC compares two vectors of different sizes, gives indices of equal elements
DEFILE identifies file type (controller, plant, tpl-file, bnd-file)
E_TABLE error table
FDESIGN enables interactive prefilter design
GETFROM lists and/or copies variables from a mat-file
HNGRID draws L/(1+L) or 1/(1+L) loci in a Nichols diagram
HZOOM puts a zoom menu in the current figure
INSERT inserts/replaces variable in mat-file
ISIN checks if a variable exists in a mat-file
LOAD loads all variables into the work space from a mat-file (Matlab command)
LOOK lists the names of the variables stored in a mat-file
MGRID draws user defined grid lines in the current figure window
N2C converts a matrix from Nichols form to complex form
PARGRID creates vectors with all combinations of the elements of the input vectors
PGRID grids a parameter vector elementwise and produces all combinations
PUTP put a point before '^' , '/' , '*' in a string
QUNWRAP unwraps templates in Nichols form over several Riemann surfaces
QGRID makes a grid out of two vectors
READP reads one variable from a mat-file (subroutine)
REMOVE removes a variable from a mat-file
RMDBLP removes doublets from a sorted vector
RNDSPACE generates a row vector with randomly spaced elements
STDFON change the fonts used in standard plots
WRAP wraps angles of a matrix in Nichols form into desired Riemann surface
ZBOX graphic utility for figure window

Figure 3.14. Qsyn utility commands

3 : 15

Appendix: Qsyn commands alphabetically

ADD2BND adds/replaces bound in a bound file
ADD2MAT combines two matrices
ADD2SPC adds/replaces specification in a specification file
ADD2TPL adds/replaces/combines a new template into a template file
ADEDGE calculates templates with the recursive edge grid method
ADGRID calculates templates with the recursive grid method
BNDINF displays information about a bound file
BNDUPD interactive recalculation of bounds with higher accuracy
BUILDF extracts transfer fcn factors from the rff string format in a plant file
C2N converts a matrix from complex to Nichols form
CASES plant frequency domain simulation for user selected cases
CCASES closed loop frequency function simulation for user selected cases
CBND calculates bounds from given template file, specification file and criterion
CDESIGN enables interactive feedback compensator design
CLTMP interpolates points in a sorted and pruned template (for rff)
CMPVEC compares two vectors of different sizes, returns indices of equal elements
CTPL calculates a template file from data in a plant definition file
DEFILE identifies file type (controller, plant, tpl-file, bnd-file)
E_TABLE error table
EXTRACT extracts bounds from a contour given by the Matlab command CONTOURC
FBCOMP feedback function model file, to be copied and edited by the user
FCASC_R criterion fcn for rsrs for the 2nd step of cascaded design
FCASC_S criterion fcn for odsrs or sensitivity of the 2nd step of cascaded design
FDESIGN enables interactive prefilter design
FIDSRS criterion fcn for plant input dist step response specification
FIOSRS criterion fcn for input step response specification/ complementary sensitivity
FODSRSC criterion function for output dist step response specification at the plant input
FODSRS criterion function for output dist step response specification or sensitivity
FRSRS criterion function for reference step response specification or tolerance
FUSER criterion function file to be copied and edit for user defined criterion fcn
FVALUE get template from tpl-file or freq fcn value from controller file (subroutine)
GETBND copies a bound from a bound file
GETFROM lists and/or copies variables from a mat-file
GETTPL copy a a template or other data variable from a template file
HNGRID draws L/(1+L) or 1/(1+L) loci in a Nichols diagram
HZOOM puts a zoom menu in the current figure
IDSRS computes input disturbance step response specifications ??
INSERT inserts/replaces variable in mat-file
ISIN checks if a variable exists in a mat-file
LOAD loads the variables into the work space from a mat-file (Matlab command)
LOOK lists the names of the variables stored in a mat-file
MAKEBND calculates bounds on a grid in the Nichols chart, subroutine to BNDUPD
MAKESPC graphical definition of a specification variable
MAT2TPL converts a matrix to a template file
MFFD creates template file from a frequency vector, nominal, and template matrix
MGRID draws user defined grid lines in the current figure window
MSPC auxiliary function to MAKESPC
MULT unstructured uncertainty function for all template comp methods except rff
N2C converts a matrix from Nichols form to complex form
ODSRS computation of output disturbance step response specification
PARGRID creates vectors with all combinations of the elements of the input vectors
PGRID grids a parameter vector elementwise and produces all combinations
PLANT model of plant description file to be copied and edited by the user
PLANT_ID compiles a plant description file and creates an auxiliary m-file
PLNT invokes a default editor to edit a plant description file
PMODEL interactive plant modelling function for measured freq function data
PNOMINAL computes the freq function values of the nominal in a plant description file

3 : 16

PREFIL prefilter function model file, to be copied and edited by the user
PRUNE removes interior points from a connected template
PRUNE1 test version of PRUNE that displays each step of the iteration
PUTP put a point before '^' , '/' , '*' in a string
PZ2S computes freq function values/SIMULINK block for factored transfer fcn
QGRID makes a grid out of two vectors
QUNWRAP unwraps templates in Nichols form over several Riemann surfaces
READP reads one variable from a mat-file (subroutine)
RECEDGE subroutine used by the template computation functions ADEDGE
RECGRID subroutine for the template computation function ADGRID
REMOVE removes a variable from a mat-file
RFFCPZ computes a complex pole/zero pair template in real factored form
RFFEL pure gain, delay, unstructured uncertainty, or integrators rff template
RFFMUL multiples two templates in real factored form
RFFPZ produces a real pole or real zero template in real factored form
RFFUTIL1 utility function for RFFCPZ to compute template edge points
RFFUTIL3 utility function for RFFCPZ to sort, clean, and complement edges
RMDBLP removes doublets from a sorted vector
RNDSPACE generates a row vector with randomly spaced elements
RSRS calculation of reference step response specification
SHOWBND plots bounds from a bound file for selected frequencies, in a Nichols chart
SHOWSPC displays a specification from a specification file
SHOWTPL displays templates from a template file in a Nichols diagram
SPC_ID2 Subroutine used by IDSRS
SPC_OD2 specification calculation for 2:nd order output disturbance step
SPC_OD3 specification calculation for 3:rd order output disturbance step
SPC_OD31 specification calc for 3:rd order output disturbance step (alternative grid)
SPC_RS2 specification calculation for 2:nd order reference step
SPC_RS3 specification calculation for 3:rd order reference step
SPC_RS31 specification calculation for 3:rd order reference step (alternative grid)
SPCUPD graphical updating of a frequency domain specification in a specification file
SPECIF SIMULINK block diagram for user's simulations
STDFON change the fonts used in standard plots
TPL2MAT converts a template file from tpl-format to a matrix
TPLCASC creates equivalent template for 2nd step in cascaded design
TPLFOP template file operation routines, such as +, *
TPLINF displays information about templates in a template file
TPLOP single template operation routines, such as +, *
TPLPRUNE prunes templates in a template file
TPLREDUC reduces/interpolates points in a sorted and ordered template
TPLUNION computes the union of two template files
TPLUPD interactive, graphical template updating
UDBND recalculates a previosly calculated bound, subroutine to BNDUPD
UPDBND refining of a previously calculated bound, subroutine to BNDUPD
UPDBND1 subroutine, script m-file, only for use by UPDBND
UPDSPC subroutine for interactive specification updating in SPCUPD
UPDSPC1 subroutine, script m-file, only for use by UPDSPC
UPDTPL subroutine for interactive template updating in TPLUPD
UPDTPL1 subroutine, script m-file, only for use by UPDTPL
WRAP wraps angles of a matrix in Nichols form into desired Riemann surface
ZBOX graphic utility for figure window

3 : 17

Appendix 2: Commands for MIMO design

Design for a 2-input-2-output MIMO system, with basically non-interacting reference
response specifications is treated in a detailed example in Chapter 8. To facilitate MIMO
design, Qsyn includes a number of special commands in addition to those listed above: see
Figure 3.13.

Commands for MIMO design
BD11 computation of bd11 bound for 2x2 MIMO design
BDB subroutine to BDBOUND
BDBOUND computation of bd bounds for 2x2 MIMO design
BP11 computes bp11 bound for 2x2 MIMO design
CR_W11 computes w11 for 2x2 MIMO design
CR_W22E computes w22e for 2x2 MIMO design
FT12 subroutine to MIMOBND1
FT12 subroutine to MIMOBND2
FT22 subroutine to MIMOBND2
MIMOBND1 computes bounds for the first step in a 2x2 MIMO design
MIMOBND2 computes bounds for the second step in a 2x2 MIMO design
MIMOINF computation of 2x2 MIMO plant inverse and equivalent plant
SHOWBD display bd11 bounds for the first step prefilter design (MIMO 2x2)

Figure 3.13. Commands connected with MIMO design

3 : 18

