
1. QFT FOR BASIC SISO SYSTEMS: A QUICK REVIEW

When using the Horowitz design method, or QFT, one assumes in general a canonic two
degree-of-freedom structure (Figure 1.1). The robust control problem is defined as the
problem to find a feedback compensator G s( ) and, where appropriate, a prefilter F s( ) , such
that the closed loop specifications are satisfied for all plant cases. In QFT, G s( ) is used to
reduce the closed loop uncertainty and reject disturbances, and F s( )  is used to shape the
closed loop transfer functions from reference to output. Instead of solving the control  design
problem simultaneously for all plant cases, in QFT the problem is transformed  to a
conventional  feedback design problem for one nominal plant only, with frequency dependent
constraints, so called Horowitz bounds, in the complex plane on G j( )ω , or equivalently on
the nominal open loop. The QFT design then proceeds in six steps:

1. Determine the set of plant transfer functions P si � �� � for which the control system is to be

designed. Assign one arbitrary transfer function, P snom( ), as the nominal plant. For each

of a wisely selected set of frequencies ωk� � [rad/s], compute the plant templates, or

value sets, P ji kω� �� � .

2. Determine the closed loop specifications in the time and frequency domains. The
specifications given in the time domain are translated to the frequency domain.

3. From the plant templates, and the frequency domain specifications, compute the
Horowitz bounds for ωk� �.

4. Display the nominal open loop, P j G jnom( ) ( )ω ω , in a Nichols chart, while designing G j( )ω
by classical loop shaping such that the nominal open loop satisfies the Horowitz bounds
at each frequency  ωk� �. Using the Nyquist criterion, ascertain that the closed loop is
asymptotically stable for all plant cases.

5. Close the loop, G s P s G s P si i( ) ( ) ( ) ( )1+� �� � , and loop shape F s( ) , with the aid of a closed

loop Bode diagram,  such that closed loop transfer function from the reference to the
output, F s G s P s G s P s( ) ( ) ( ) ( ) ( )1+� �, falls within its specifications.

6. Simulate the closed loop transfer function for a number of plant cases, and ascertain that
the time domain specifications are satisfied.

This chapter covers the design steps in somewhat greater detail. A detailed Qsyn design
example is found in Chapter 2. You may want to refer to both these chapters simultaneously.

Figure 1.1. Canonic two degree-of-freedom SISO system.
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1.1 Two degree-of-freedom system

When using the Horowitz design method, or QFT, in the SISO case, one may assume,
without loss of generality,  that a canonical two degree-of-freedom system is to be designed,
see Figure 1.1. In Figure 1.1, P s( )  denotes the transfer function for the uncertain plant or
controlled object, which may include actuator and sensor dynamics, G s( ) is the feedback
compensator, and  F s( )  is the prefilter. The reference signal is called r t( ), the loop error e t( ),
the control signal u t( ), the disturbance at the plant input d t1( ), the disturbance at the plant
output d t2( ) , the system output y t( ), and the measurement noise n t( ). The Laplace
transforms of these signals are denoted R s( ), E s( ), U s( ), D s1( ) , D s2( ), Y s( ) , and N s( ),
respecively. The disturbances and measurement noise may themselves be filtered signals,
and thus any linear feedback system with the reference and output independently
measurable may be transformed to the configuration of Figure 1.1.

In those cases when the reference and output are not independently measurable, but only
the loop error e t( ), like in many tracking problems, we have a one degree-of-freedom system
in which only G s( ) may be designed.

1.2 Plant uncertainty

An uncertain plant transfer function is defined as a member of a set of transfer functions

P s P si( ) ∈ � �� �           (1.1)

where the set may contain finitely or (countably or uncountably) infinitely many plant cases.
For each frequency, the set in the complex plane,  P ji ω� �� � is called the template or value

set for ω .

Sometimes it is possible to specialize the definition. A plant  having parametric uncertainty is
defined as

P s P s q q Q p( ) , ,∈ ∈ ⊂ ℜ� �� �           (1.2)

where q is the vector of uncertain parameters. Another specialized form of plant uncertainty
is the multiplicative unstructured uncertainty,

P s P s M s M s m s M s C m si( ) ( ) ( ) , ( ) ( ) , ( ) , ( )= + ≤ ≤ ∈ ∈ℜ1 1� �          (1.3)

where M s( ) is an asymptotically stable transfer function, and P si ( )  is a single transfer
function, or one of the uncertain plant cases defined in (1.1) or (1.2).

In QFT, one arbitrary plant which is not necessarily one of the plant cases in (1.1) - (1.3), is
selected as the nominal  plant, P snom( ). Figure 1.2 illustrates (1.3) with P s P si ( ) ( )= nom  in the
Nyquist diagram, whereby the frequency function P jnom( )ω  is surrounded in each point by a

circular template with radius = P j m jnom( ) ( )ω ω .
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Figure 1.2. The Nyquist plot of an uncertain plant P s( ) with unstructured multiplicative
uncertainty (1.3) where P s P si ( ) ( )= nom  . The nominal  plant  P jnom( )ω  is marked by a solid

line. The radius of the circular uncertainty template has the length P j m jnom( ) ( )ω ω .

1.3 Specifications

Specifications may of course be given in many different forms depending on the nature of
the problem at hand. Often an envelope for the reference step response is specified, see
Figure 1.3 for an example, or an envelope for a disturbance step response, see Figure 1.4.
One may specify the measurement noise response envelope, either in the time or frequency
domain. Let R s( ), E s( ), U s( ), D s1( ), D s2( ) , Y s( ) , and N s( ) be the Laplace transforms of the
signals r, e, u, d1, d2 , y, and n in Figure 1.1, respectively. It is common to assign
specifications to the error transfer function or sensitivity function,

S s( ) =  
E s

R s

Y s

D s P s G s

( )

( )

( )

( ) ( ) ( )
= =

+2

1

1
 (1.4)

in e.g. the form

S j x( )ω ω≤ � � (1.5)

where x ω� � ∈ℜ may be constant, and in any case taking note that at least for some

frequencies x ω� � > 1, see e.g. Bode (1943) or Horowitz (1963). There are many other types
of specifications, such as minimum phase and gain margins, minimum delay margin,
minimum modulus margin, maximum error and stiffness coefficients, etc, etc.

In QFT all specifications must be finally formulated in the frequency domain, and those that
are originally given in the time domain must be translated to the frequency domain.
Unfortunately there is no one-to-one mapping between specifications in the time and
frequency domains. In general one proceeds with the help of the classical dominant pole
assumption, i.e. the closed loop, e.g. F s G s P s G s P s( ) ( ) ( ) ( ) ( )1+� �  or 1 1+G s P s( ) ( )� �, is
approximated by a low order dynamic system, e.g. of order 2 or 3, from which the
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correspondence between the time and frequency domains is found. The procedure is
illustrated in the following example.

Figure 1.3. Reference step response specification envelope. M is the maximally allowed
overshoot (% of step size), td  is called the delay time, t r  is called the rise time, and ts  is
called the settling time.

Figure 1.4. Negative disturbance step response specification envelope. ymin is the maximally
allowed overshoot (% of disturbance step size),  M is the maximally allowed undershoot (% of
disturbance step size), td  is called the delay time, t r  is called the rise time, and ts  is  the
settling time.
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Example 1.1

Consider the reference step response specification in Figure 1.3, and let the upper limit be
u t� �  and the lower limit l t� �. Find the set of all second order systems, C s� �,  whose step
responses satisfy the limits:

C s
s s

Q� � � �=
+ +

�
	

�
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�
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and L−1 denoting the inverse Laplace transform. The specification translated to the frequency
domain would e.g. be

a
F j G j P j

G j P j
bω

ω ω ω

ω ω
ω� � � �≤

+
≤

( ) ( ) ( )

( ) ( )1
(1.8)

with

a C j b C j
Q Q

ω ω ω ω� � � � � � � �= =min , max  . (1.9)

High frequency roll off

The lower border a ω� �  is in general modified for high frequencies to allow a faster roll-off
than -20 dB/dec, since the true closed loop system is of an order (much) larger than two.  In
Qsyn, reference step response specifications are created and translated to a frequency main
specification with the command rsrs. The roll-off modification is done with the command
spcupd. A frequency domain specification generated by rsrs  that roughly corresponds to
the time domain specification in Figure 1.3 is found  in Figure 1.5.

Figure 1.5. Frequency domain specification of type (1.8) generated by the Qsyn command
rsrs and displayed with the command showspc, see Chapters 2, Chapter 3, and the Qsyn
Reference Guide.
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1.4 The robust control problem

The robust control problem is defined as the problem to find a feedback compensator G s( )
and where appropriate a prefilter F s( ) , such that the closed loop specifications are satisfied
for all plant cases.

Anyone who has tried to design, e.g. with the help of a Bode or Nichols diagram, one G s( )
simultaneously for (1.1) knows that the task is very hard or impossible, even when the
number of plant cases is very small. The great contribution of Horowitz and Sidi (1972) is
that they transformed the simultaneous design problem, to a conventional  feedback design
problem for one plant only, the nominal plant P snom( ), with frequency dependent constraints
in the complex plane on G j( )ω , or equivalently on the nominal open loop
L j P j G jnom nom( ) ( ) ( )ω ω ω= . The constraints are called Horowitz bounds or bounds, and
reflect the "interaction" between the size of the plant uncertainty and the "tightness" of the
closed loop specifications in a way explained below in Section 1.5.

When the plant is uncertain, it is clear that that the closed loop with a linear feedback
compensator G s( ) will also remain uncertain, but hopefully less uncertain, at least in the
relevant frequency range. The prefilter F s( )  is assumed perfectly known and does not
contribute to the closed loop uncertainty.

Therefore, a QFT feedback compensator G s( ) is designed such that the remaining closed
loop uncertainty falls within specifications, and that the closed loop disturbance and noise
rejections satisfy their specifications. With G s( ) determined, the prefilter F s( )  is found such
that the closed loop transfer function Y s R s( ) ( )  be shaped according to specifications.

1.5 The Horowitz bounds

Since F s( )  carries no uncertainty, the specification (1.8) for the frequency ωk  implies that
the complex number G j k( )ω  must be chosen such that

max
( ) ( )

( ) ( )
min

( ) ( )

( ) ( )i

k i k

k i k
i

k i k

k i k
k k

G j P j

G j P j

G j P j

G j P j
b a

ω ω

ω ω

ω ω

ω ω
ω ω

1 1+ +
≤ � � � � (1.10)

with P ji k( )ω ∈ P ji k( )ω� � , the plant template at ωk . (1.10) is often called the tolerance

specification  at ωk . The tolerance is often given in dB, as 20 10log b ak kω ω� � � �� � =

20 10log b kω� �� � − 20 10log a kω� �� � . Clearly if G j k( )ω  is large enough, then (1.10) is satisfied.

If, on the other hand, G j P jk i k( ) ( )ω ω= −1  for some i, then (1.10) will not be satisfied. Hence
there exists a border, BG k( )ω , in the complex  G j k( )ω -plane between satisfactory G j k( )ω
values, and forbidden G j k( )ω  values. BTG k( )ω  is called the Horowitz bound  for G j k( )ω  with
respect to specification (1.8) or (1.10), where the index T stands for tolerance.

Multiplying BTG k( )ω  by P j knom( )ω  yields BTL k( )ω , the Horowitz bound  for the nominal open
loop L j P j G jk k knom nom( ) ( ) ( )ω ω ω=  with respect to specification (1.8) or (1.10). The latter
bound is most commonly used, since in general it is easier to interactively design by loop
shaping the nominal open loop frequency function rather than the feedback compensator
transfer function.

In a similar way one finds the Horowitz bounds with respect to the other specifications, e.g.
the sensitivity bound BSL k( )ω  for L j knom( )ω  with respect to the sensitivity specification (1.5).
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It is important to note that if

max ( ) min ( )
i

i k
i

i k k k kP j P j b aω ω ω ω ω≤ ∀� 	 � 	 (1.11)

there is no need for a feeback compensator G s� �  with respect to the servo specification

(1.8). For that specification it suffices to design a prefilter F s� � such that

a F j P j bω ω ω ω� � � �≤ ≤( ) ( ) (1.12)

Example 1.2. Tolerance bound

An example of a tolerance bound BTL( . )0 5  emanating from the specification given in Figure
1.5 and (1.10), and  the uncertain plant of Example 2.1 in Chapter 2  is found in Figure 1.6.

Figure 1.6: A Horowitz bound, BTL( . )0 5 , for the nominal open loop, L jnom( . )0 5 ,  emanating
from  Example 2.1 in Chapter 2. G s( ) must be designed such that L jnom( . )0 5  will lie above
BTL( . )0 5  in order to have the specification satisfied. The bound was generated by the Qsyn
command: cbnd('ex2_1a','rsrs');

The bound specifies that the nominal open loop L jnom( . )0 5  must be shaped, by an
appropriate choice of G s( ), such that the point L jnom( . )0 5  falls above BTL( . )0 5  in the Nichols
chart in Figure 1.6. It is implicitly clear that the part of the complex plane below BTL( . )0 5  is
forbidden, since the the instability point -1 lies there.

1.6 Feedback compensator design and nominal loop shaping

When all Horowitz bounds for L j knom( )ω  have been computed, for all desired frequencies

ωk� �, and for all specifications, and collected in one or more bounds files, the stage is set for
the shaping of the nominal open loop L jnom( )ω = P j G jnom( ) ( )ω ω , such that for each ωk ,
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L j knom( )ω  falls on the permitted side of all of its Horowitz bounds. Loop shaping is done by
selecting appropriate first and second order factors to be included in G j( )ω .

Conventional loop shaping is done in a Bode diagram. Every control engineer should be
familiar with the gain and phase effect in a Bode diagram of a pure gain, k, a lead,
1 1+ +s b s bN� � � �� 	 , a lag, M s a s a M1 1+ +� � � �� 	 , a PI,  a s a s1+� � , first and second

order low pass filters 1 1+ s a� �  and 1 2 12
0
2

0s sω ς ω� � � �� �+ + , respectively, and a notch

filter, s s s sn d
2

0
2

0
2

0
2

02 1 2 1ω ς ω ω ς ω� � � �� � � � � �� �+ + + + ,  ς n <ς d . In addition to these filters,

it is useful in QFT to use the "inverse" notch filter,

s s s sn d
2

0
2

0
2

0
2

02 1 2 1ω ς ω ω ς ω� � � �� � � � � �� �+ + + + , ς n >ς d , the second order lead/lag

s s s sn n n d d d
2 2 2 22 1 2 1ω ς ω ω ς ω� � � �� � � � � �� �+ + + + , and sometimes filters including Right

Half Plane (unstable) zeros.

A more fundamental difference between conventional loop shaping and QFT is the fact that
in QFT, the nominal open loop cannot be shaped in a Bode diagram, since, for each
frequency,  the constraining Horowitz bounds are curves in the complex plane. Hence one
should use the Nichols diagram, in which to display L jnom( )ω  and its Horowitz bounds. To
become a successful QFT designer, one has to become proficient in Nichols diagram loop
shaping, and have the "feeling" how the different filters, and the size of their parameters
affect the L jnom( )ω -curve.

Loop shaping is ofter perceived as difficult and strenous. In order to acquaint the user with
loop shaping in standard Matlab, and to make her appreciate the ease with which loop
shaping is done in Qsyn (see Section 2.5), we present the beginning of a suggested loop
shaping exercise in form of a script m-file. To make the graphics nice, the Qsyn commands
hngrid and mgrid are used for the display. Beginning from an integrator plant, the gain and
phase effect of a lead network is appreciated in a Nichols chart, see Figure 1.7. We notice
how much the phase is increased in the active frequency range of the lead, and how much,
and for which frequencies, the gain is increased. The lead is used to increase the phase in a
desired frequency interval, but the price is unfortunately that the gain increases for the same
and higher  frequencies.

The user is invited to change the parameter values of the lead filter, and study the effect,
and to exchange the lead for one or more of the compensation networks mentioned above.
The work with this m-file is somewhat tedious. The user will certainly appreciate the
convenience in using Qsyn for loop shaping!

Exercise 1.1. Loop shaping

% A fresh Nichols chart. Do not forget the zoom option
clg, hold off, hngrid,mgrid(12,10),hold, hzoom

% The frequency vector [rad/s]
w=logspace(-2,3,150);s=j*w;

% The integrator plant
P=1./s;
plot((180/pi)*angle(P), 20*log10(abs(P)),'r')

% Indicate a number of frequencies on the frequency function
wt=[0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 200 500 1000];
st = j*wt;
Pt =1./st;
plot((180/pi)*angle(Pt), 20*log10(abs(Pt)),'r*')
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for i=1:16,
  text((180/pi)*angle(Pt(i)),20*log10(abs(Pt(i))),num2str(wt(i))),
end

% A lead network
b=1; a=10; Glead=(1+s/b)./(1+s/a); Gleadt=(1+st/b)./(1+st/a);

% The open loop
L = P.*Glead; Lt = Pt.*Gleadt;
plot((180/pi)*angle(L), 20*log10(abs(L)),'b')
plot((180/pi)*angle(Lt), 20*log10(abs(Lt)),'*b')
for i=1:16, text((180/pi)*angle(Lt(i)), ...

20*log10(abs(Lt(i))),num2str(wt(i))),end

%Press the zoom button, and zoom in. See figure 1.7

%Change the lead parameters, and study the effect.
%Study the effect of other compensator networks.

Figure 1.7. The open loops 1 s  and 1 1 1 10s s s� � � � � �� 	⋅ + +  in a Nichols diagram. The curves

are parametrized by the frequency [rad/s].

When G s� �  has been designed to meet the Horowitz bounds constraints, the design is in
general completed by including a first or second order low pass filter with a sufficiently high
break off frequency, such that the bounds constraints are still satisfied. The low pass filter
makes G s� �  strictly proper, and attenuates high frequency measurement noise.

1.7 Closed loop stability

Loop shaping L jnom( )ω  such that all Horowitz bounds constraints are satisfied does not

guarantee stability. In principle one has to check that each open loop case, L si � �, satisfies

the Nyquist criterion, ∆arg 1+ = −L s pi i� �� 	 , when s ∈γ , a curve encircling the Right Half

Plane in the positive direction, and pi  equals the number of open loop Right Half Plane poles
of L si � �. However, the following theorem covers an important class of plants:
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Theorem 1.1. Closed loop stability for plants with simply connected templates

Consider the class of plants described by rational transfer functions, with or without a pure
delay. Assume that all plant cases have equal high frequency gain sign,
sign lims iP s→∞ � �� 	=sign lims kP s→∞ � �� 	 , for all i, k, noting that a pure time delay does not

influence the high frequency gain sign. Assume that all plant templates P ji ω� �� � for all ω  are

simply connected sets in the expanded Nichols chart, i.e. the Nichols chart that spans over
multiple Riemann surfaces. Assume that the nominal plant for each frequency belongs to the
template, P jnom( )ω ∈ P ji ω� �� �. Assume further that the feedback compensator G s( ) has been

designed such that the nominal open loop  L jnom( )ω = P j G jnom( ) ( )ω ω  resides, for each ω , on
the permitted side of its Horowitz bound that emanates from a specification that excludes
that an open loop template point equals -1. Then, each open loop case L ji( )ω  satisfies the
Nyquist criterion, if and only if L jnom( )ω  satisfies the Nyquist criterion.

Proof

An outline of the proof is given in the Appendix of Chapter 1.

Remarks

1. The sensitivity specification (1.5)  satisfies the assumption of the theorem. 
2. The theorem holds also  when there are plant cases with a different number of Right

Hand Side poles.
•

The implication for the user of QFT is that she should be very careful when she chooses
P snom( ) outside the plant uncertainty set or when the plant templates are not simply
connected. The latter may happen when there are plant cases with a different number of free
integrators (Gutman  et al 1994), or when the plant uncertainty set is defined by a finite
number of discrete plant cases (Gutman and Nordin, 1995).

1.8 Prefilter design

After the design of the feedback compensater, one closes the loop to get the closed loop
uncertainty set, G s P s G s P si i( ) ( ) ( ) ( )1+� �� �. Computationally, the loop closure is, for each

frequency ωk ,  an operation on each member of the template P ji kω� �� � . In Qsyn,  the

command tplfop is used.

Now G j P j G j P jk i k k i k( ) ( ) ( ) ( )ω ω ω ω1+� �� � is displayed in Bode's gain diagram, and

compared with the specification (1.8). Since the feedback compensator design step ensured
that (1.10) is satisfied, there exists a rational, asymptotically stable prefilter F s� � such that
(1.8) is satisfied.

It is very easy to loop shape F s� � in a Bode gain diagram. The user who wants to train such
loop shaping in the standard Matlab environment may complement Exercise 1.1 by the
following lines, and study the gain effect of various filters in another figure window. In Qsyn,
loop shaping in the Bode diagram is easily done with the command fdesign, see Section
2.7.

%Bode gain diagram
figure
semilogx(w,20*log10(abs(P)),'r',w,20*log10(abs(L)),'b'),grid
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1.9 Simulations of the closed loop

For a sufficiently large number of plant cases, the closed loop is simulated in the frequency
domain with respect to the specifications originally given in that domain, e.g. (1.5). The
simulation is done also for frequencies not in ω k� � , in order to ascertain that the
specifications are satisfied for "all" frequencies. If a specification is not satisfied for a
frequency not belonging to ω k� � , it is advisable to include it in a revised set ω k� � , and redo
the feedback design.

The closed loop is finally simulated to check that the original time domain specifications are
satisfied. Any simulation program can be used.

If all the frequency domain specifications were satisfied during the feedback compensator,
and prefilter design stages, and some time domain specification is found to be unsatisfied, It
is an indication that the translation of the time domain specifications to the frequency domain
was not appropriate. One of the following actions may provide a remedy:

1. Check if changing the prefilter will solve the problem.
2. You could try to "tighten" the current frequency domain specifications, e.g. decrease the

tolerance specification (1.10) or decrease the sensitivity specification (1.5), and then
redo the design. As a result, the feedback compensator will have higher gain, and the
complementary sensitivity function G s P s G s P si i( ) ( ) ( ) ( )1+� �� �  will have higher

bandwidth.
3. Translate the time domain specifications into frequency domain specifications anew,

using a more realistic class of transfer functions to approximate the closed loop system.
E.g., if it is known that the closed loop will include a resonance, model it. Then redo the
design.

It should on the other hand be clear that a (slight) violation of those Horowitz bounds that
emanate from translated time domain specifications often yields a closed loop system that
satisfies the time domain specifications.

1.10 When your design attempt fails ...

The critical design stage is usually to select the feedback compensator such that the
Horowitz bound constraints are satisfied.

If your attempt to design G s� �  fails to satisfy one or more Horowitz bounds emanating from
translated time domain specifications, you should, in particular if the violation is minor, still
go ahead and close the loop, design the prefilter F s� �, and simulate the closed loop. You
might be lucky ...

If, however, after repeated attempts, including retranslations of the time domain
specifications and redesigns of G s� � , you fail to satisfy one or more specifications, the
reason might be that either you are a cludsy designer (ask one of your more experienced
collegues for help), or there is no solution to the design problem.

Unfortunately, it is in general impossible to know a priori if the design problem has a solution,
except in trivial situations. The following theorem is known in the QFT literature for  a long
time (see e.g. Horowitz 1992, or Astrom et al 1988):
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Theorem 1.2. Arbitrary small tolerance and sensitivity

Assume that the plant uncertainty structure is such that all plants have the same high
frequency gain sign, and that

P s k s k k k d d d d di i
d

i i
i� � → ∈ ∈ + −, , , , , , ,1 1� for all i (1.13)

Then any tolerance specification (1.10), or sensitivity specification (1.5) with
x ω ε ε� � = + >1 0, , for ω ω≥ H , where ωH  is arbitrary, is achievable with a strictly proper

feedback compensator G s� � .

Proof

An outline of the proof is given in the Appendix of Chapter 1.

Remarks

1. For real systems, the theorem is useless, since it presupposes the possibility of arbitrary
high bandwidth. In reality, bandwidth is always limited by actuator saturation, or by the
inevitable fact that every real plant includes very large continuous phase uncertainty at
high frequency, e.g. modelled with the help of  delays,

P s k e s k k k d d d d di i
s d

i i i
i i� � → ∈ ∈ ∈ + −−τ τ τ τ, , , , , , , , ,1 1�  for all i

      (1.14)

 or with the help of unstructured uncertainty (1.3)

P s k M s s k k k d d d d di i
d

i i
i� � � �� �→ + ∈ ∈ + −1 1 1, , , , , , ,�       (1.15)

with 1− M jω� �  being a sufficiently small positive number for high frequencies. It is

recommended that the QFT user either states a bandwidth limitation explicitly, or
includes delay or unstructured undertainty in his high frequency uncertainty description.

2. Although the theorem is useless, it gives an indication to the user, that the loop might be
closed at a complementary sensitivity function bandwidth where the phase uncertainty is
sufficiently small. It then remains to check if this bandwidth is sufficient to satisfy the
specifications.

•
So, if your friend's design also fails to meet the specifications, one or both of the following
actions are recommended, before attempting a redesign:

3. Relax the difficult specifications in those frequency bands where it was impossible to
satisfy the corresponding bounds.

4. Get to know your plant better so that the uncertainty is decreased. In particular, try to
diminish the templates at those frequencies where the Horowitz bound violations
occured.

The last point includes a connection to adaptive control. If it is impossible to gain enough
plant knowledge  off line to decrease the template sizes, it might be possible to combine
robust and adaptive control in such a way that on line identification provides current template
estimates to an adaptive QFT controller. Attempts in this direction are reported in Gutman et
al (1988), and Yaniv, Gutman, and Neumann (1990).
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Appendix to Chapter 1

Proof (outline) for Theorem 1.1

It is well known that for simultaneous stabilizability, the sign of the high frequency  gain must
be equal for all plant cases. Moreover, for the class of considered plant, closed loop stability
implies that the Nyquist curve passes on the same side of -1 for all plant cases. Since the
Horowitz bound is computed such that L ji( )ω ≠ -1 for every i and ω , and the templates are
simply connected, L jnom( )ω  satisfying its Horowitz bounds implies that all plant cases pass on

the same side of -1. The details of the proof are left to the user. •

Proof (outline) of Theorem 1.2

The idea behind the proof is that the gain of G s� �  is made so large such that the
specifications are satisfied. The remaining problem is then to achieve simultaneous
stabilization of the multiple integrator plants of the right hand side of (1.13). Such
stabilization is always possible by sufficiently many lead networks that add phase around the
bandwidth frequency. To make G s� �  strictly proper, a low pass filter with a sufficiently high
break off frequency is included. It is left to the user to synthesize such a compensater in
detail for (1.11). •
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