
8. MIMO DESIGN

This chapter covers the 2-input 2-output MIMO design for the basically non-interacting servo
case, i.e. it is required that the closed loop design be such that reference signal number 1,
r t1� � , commands output number 1, y t1� �, with minimal cross-coupling on output signal

number 2, y t2 � � , and correspondingly for r t2 � �. A block diagram for a 2x2 MIMO servo
system in closed loop is shown in Figure 8.1.

Figure 8.1: Block diagram of 2-input, 2-output MIMO servo system in closed loop.

The QFT design method in Qsyn for the basically non-interacting 2x2 MIMO servo system
will be briefly presented, and a detailed example is given. The method is based on Horowitz
(1992). The user should note that there exist other QFT approaches to this problem. Other
MIMO control problems, e.g. the one degree-of-freedom disturbance rejection problem,
requires some different analysis and formulation, see e.g. Horowitz (1992), Horowitz and
Oldak (1992), Yaniv (1992), Yaniv (1995), and references given therein. Based on the
present Qsyn functions, the user may write her own functions to implement other design
approaches.

8.1 Design procedure

8.1.1 Equivalent SISO systems

Referring to Figure 8.1, let the transfer function matrices of the prefilter F s� �, the feedback

controller G s� � , and the uncertain plant P s� � be, with the Laplace arguments s suppressed,
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The Laplace transforms of the reference signal vector r t r t r t
T� � � � � �� �= 1 2 , and the output

vector y t y t y t
T� � � � � �� �= 1 2 , are denoted, respectively,

R
r

r
Y

y

y
=

�
��

�
��

=
�
��

�
��

1

2

1

2

, . (8.2)

The closed loop transfer function matrix from R s� �  to Y s� �  is called T s� � , i.e. with the
Laplace arguments s suppressed and I denoting the unity matrix,

Y TR= (8.3)
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Our design method allows for a full matrix feedback compensator G s� �  which is given as

G P L= −
0

1
0 (8.5)

where P s0 � �  is a user chosen, fixed transfer function matrix, called the pre-compensator,
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and L s0 � � is a diagonal, fixed transfer function matrix which is synthesized by the user during
the design process,
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The representation (8.5) of the feedback compesator requires that P s0 � �  be invertible for
almost all s, and is thus not completely general. This draw-back seems to be of minor
importance in practice, since one would generally not design a rank-deficient G s� � .

The choice of  P s0 � �  must be done a priori before the start of the feedback design process,
such that the uncertain plant "seen" by the "diagonal feedback compensator to be designed,
L s0 � �" is

V s P s P s� � � � � �= −
0

1 . (8.8)

Ideas how to select P s0 � �  can be found in Yaniv (1995). There do not exist, however, general
rules how to do this. One could e.g. try to find a pre-compensator that decouples the plant as
much as possible, i.e. minimizes cross-coupling between the loops, at least for a critical
frequency range. Or one could try to "shift uncertainty" between the loops such that the
design task becomes roughly equally difficult with respect to the given specifications.
Another idea is to pick the pre-compensator such that the effect of sensor noise is lessened,
or that limited actuator power or amplitude is taken into account.

In the example below, P s0 � �  is chosen as one "typical" plant case, implying that the apparent

plant V s P s P s� � � � � �= −
0

1  equals I for one plant case. This might, or might not, facilitate the
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design, and the user is encouraged to redo the design with another choice of P s0 � � .

Moreover, the arbitrary plant nominal P snom � � is, indeed arbitrarily, chosen equal to P s0 � � .
Such a choice is neither necesarry nor recommended.

If P s0 � �=I is chosen, then one gets a diagonal feedback compensator, and a decentralized
closed loop control system. Often a diagonal feedback compensator achieves the design
objectives, and such a controller is often more practical to implement if the the sensor and
actuator of each loop are co-located, while the sensor-actuator pairs of the two loops are
distant from each other.

Considering (8.8), define
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and let W be decomposed into one diagonal and one off-diagonal term,
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Note that W is an uncertain transfer function matrix, derived from the uncertain plant and the
fixed pre-compensator. Then, from (8.4)-(8.10),

T I W L W L F W Td d b= + −− − −1
0

1 1
0� � � � (8.11)

or, equivalently,
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The scalar transfer transfer functions, T sij � �, i=1,2,  j=1,2, in (8.12)-(8.15) can each be

represented by the SISO block diagram in Figure 8.2, assuming that its reference signal is an
impulse (whose Laplace transform equals 1) and that its plant input disturbance has a
Laplace transform equalling −W Tik kj , k=1,2, k i≠ .
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Figure 8.2. Block diagram representation of (8.12)-(8.15), whereby for (8.12), i=1, j=1, and
k=2;  for (8.13), i=1, j=2, and k=2;  for (8.14), i=2, j=1, and k=1; and  for (8.15), i=2, j=2, and
k=1.

Clearly, in (8.12) and (8.13), the "uncertain plant" is  1 11W  (which is a function of P s� �  and

P s0 � � as mentioned above), and the feedback compensator to be designed is L s10 � � in a
standard SISO problem. Likewise, in (8.14) and (8.15), the "uncertain plant" is  1 22W , and
the feedback compensator  is L s20 � � in another standard SISO problem. The only difficulty
seems to be that the plant input disturbance −W Tik kj  depends on not-yet-designed elements

of the closed loop transfer function.

Horowitz suggested a clever way to circumvent the above problem by assuming that Tkj

would satisfy its maximal gain specification when the design would be completed, i.e.

T bkj kj≤ ω� � , (8.16)

where bkj ω� �  is the upper closed loop gain specification as a function of the frequency ω .

Then the plant input disturbance −W Tik kj  is replaced by a worst case disturbance

D W b eij ik kj
j= max
ϕ

(8.17)

where the phase ϕ ω� � is implicitly chosen in a worst case sense in each of (8.12)-(8.15) as to

attempt to violate as much as possible the specifications for Tij , as shown in Section 8.1.4

below. (In (8.17) the argument j in the exponent obviously denotes −1.) With these
assumptions we have achieved two standard SISO feedback design problems for L s10 � � and

L s20 � �. How the prefilter design is simplified is shown in Section 8.1.3.

8.1.2 Specifications

Basically non-interacting specifications are of the following type:

a T j b i jij ij ijω ω ω� � � � � �≤ ≤ =, (8.18)

and
T j b i jij ijω ω� � � �≤ ≠,  (8.19)
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where (8.18) is a usual servo specification in the frequency domain (1.8) pertaining to the
transmission between a reference signal and its assigned plant output, while (8.19) is a cross
coupling specification in the  frequency domain with bij ω� �  in general chosen small. We will

demonstrate in the example that for different Horowitz bound computations, it is convenient
to let bij ω� �  have different high frequency roll-offs, which is a design aid that will not

influence actual system performance.

8.1.3 Diagonal prefilter

The design of the prefilter F is in principle an open loop problem, after the complementary
sensitivity function

S I PG PG= + −� 	 1
(8.20)

has been designed, see (8.4). For the servo specifications (8.18), it is mandatory that  F11

and F22 are essentially non-zero and in general approximatively one for low frequencies, just
like the in a standard servo design in the SISO case, see e.g. (2.5). In general one would
design the off-diagonal elements of S  small so that the cross-coupling transmission satisfies
(8.19). The question naturally arises if the off-diagonal elements F12  and F21 could be
designed such that the cross-coupling is reduced, while the specified servo properties are
retained.

The answer seems to depend on how much uncertainty remains in S  after the feedback
design of G, since for a certain, full-rank S , F is simply chosen as S

−1
 times a high

bandwidth low-pass filter, to ensure that F becomes (strictly) proper. But in a robust QFT
design, G is in general designed such that at least one of the specifications is just satisfied.
One might surmise that often off-diagonal elements in F would yield no  significant benefit.

Therefore we postulate that for the basically non-interactive servo problem, we a priori select
F to be diagonal, i.e.

F12  = F21 = 0. (8.21)

This said, we urge the user to carefully study her closed loop solution. If she finds that the
servo specifications (8.18) are well satisfied, while one or both cross coupling specifications
(8.19) are only marginally satisfied, then she may test if beneficial non-zero  F12  and F21

could be found. If this is the case, she may further contemplate to relax the cross coupling
specification(s) in a second feedback design attempt (then the gain and bandwidth of G
would be lowerd), and then, after having found S , try to find a pre-filter with non-zero  F12

and F21  that gets the cross coupling back within specifications.

8.1.4 The first design step

It would be possible to solve simultaneously (8.18), (8.19), (8.21) with (8.12), (8.13), and with
(8.14), (8.15) to find L s10 � �, F s11� � and L s20 � �, F s22 � � , respectively. It is however smarter to
select one of the problems,  (8.12), (8.13)   or   (8.14), (8.15), in a first design step, since
then, in the second design step, no worst case approximation (8.17) for the cross coupling
(plant input disturbance in Figure 8.2) will be needed.

One would typically choose to solve the easiest of the two problems first, since then the more
difficult second step problem would have become easier after the worst case cross coupling
approximation (8.17)  is eliminated.
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Assume that  the design for (8.18), (8.19), (8.21), (8.12), (8.13) is chosen in the first step.
Then we have
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The worst case cross coupling effect (8.17) in (8.22), with the approximation (8.16) is found
by using the triangle and the inverse triangle inequalitites,
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To find Horowitz bounds for the nominal open loop L W10 11nom  (see Figure 8.2) from (8.24)
and (8.25) is not easy, since they depend on the not-yet-designed F11. With the reasonable
assumption (at least for low frequencies) that the left term of the right member of (8.25) has
larger modulus than the right term of the right member of (8.25), (8.24)  and (8.25) may be
reformulated  in the following way  without further approximations,
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where bd11 ω,⋅� 	 satisfying 0 211 11 11≤ ⋅ ≤ −b b ad ω ω ω,� 	 � � � �
 �  is chosen such that the tolerance

bound (1.10) for L j W j10 11ω ω� 	 � 	nom  emanating from (8.26) equals the disturbance rejection
bound from (8.27). In such a way, there will be no over-design with respect to any of (8.26) or
(8.27). The second argument in bd11 ω,⋅� 	 reflects that bd11 ω,⋅� 	 is chosen in this way.
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Equation (8.23) with the worst case approximation (8.16) gives the specification
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from which a third set of bounds for L j W j10 11ω ω� 	 � 	nom  are easily found.

Notice that to get a high frequency roll-off for the bounds emanating from (8.27), it is in
general required that b21 ω� �  rolls off faster than bd11 ω,⋅� 	, which is achieved if b21 ω� �  rolls

off faster than b11 ω� �. On the other hand, to get  a high frequency roll-off for the bounds

emanating from (8.28), it is in general required that b22 ω� �  rolls off faster than b12 ω� �. If one

has symmetrical specifications (8.18), (8.19), i.e. b12 ω� �=b21 ω� � , and b11 ω� �= b22 ω� � , then
this roll-off condition is impossible to achieve. Computationally the conflict may be solved
either by ignoring the high frequency bounds from (8.27) and (8.28) , or better, by artificially
giving b12 ω� � and b21 ω� �  the required roll-off when computing bounds from (8.27) and

(8.28). If b11 ω� �= b22 ω� �  roll off with -40 dB/dec, then let b21 ω� �  roll off with e.g. -80 dB/dec,

and let b12 ω� � have no high frequency roll off (0 dB/dec). This "trick" to get reasonable
bounds will have no influence on the closed loop system behaviour, since
L j W j10 11ω ω� 	 � 	nom  has to be designed with a reasonable high frequency roll-off, whether the
bounds impose it or not.

With the three sets of Horowitz bounds, from (8.26), (8.27), and (8.28), where the bounds
from (8.26) and (8.27) should be equal, L s10 � �  is synthesized by loop shaping, see Sections
1.6 and 2.5.

Notice that after  L j10 ω� 	 has been designed, L j L j10 10ω ω� 	 � 	= ∗ , (8.27) gives the designed
bd11-value, i.e.
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where max  is taken over all plant cases. When designing F11, one must then use the
specification (8.26) with the designed bd11-value inserted,
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Note that the notation L j L j10 10ω ω� 	 � 	= ∗  for the chosen feedback design is used, for clarity,
only in (8.29), (8.30).

The first design step is concluded by synthesizing F11(s) to satisfy (8.30), exactly like in
standard SISO design (Section 1 and 2).
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8.1.5 The second design step

With L s10 � �  and F11(s) given from the first design step in the preceding section, (8.14) and
(8.15) become, respectively,
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With F12  = F21 = 0 from (8.21), (8.31) and (8.32) together with the specifications (8.18),
(8.19) yield the specification equations
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Clearly, (8.35) and (8.36) represent a standard SISO design problem for designing L s20 � �
and F s22 � � , with  (8.35) giving disturbance rejection bounds, and (8.36) tolerance bound (see

Section 1.5), respectively,  for L j W je
20 22nomω ω� 	 � 	 .

With L s10 � � and   L s20 � � given, the feedback compensator G(s) is computed from (8.5).
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8.1.6 The third optional design step

The design is actually concluded with the second design step. Since, inevitable, the first
design step included a certain over-design due to the worst case approximations (8.17),
(8.24), (8.25) of the then unknown closed loop transfer function elements, it could however
be clever to re-design L s10 � � and  F s11� � with L s20 � � and F s22 � �  now known.

The equations for this re-design are exactly those of Section 8.1.5 with the indices 1 and 2
exchanged for one another.

8.1.7 Closed loop stability

The last design step is a regular SISO design problem, and  closed loop asymptotic stability
should be ascertained by e.g. the Nyquist theorom for each plant case, as in Section 1.7.
Then the closed loop  MIMO system will be asymptotically stable, provided that it contains no
unstable and uncontrollable or unstable and unobservable subsystems, that it is fully
connected (i.e. all inputs influence all outputs), and that there are no internal  unstable pole-
zero cancellations, according to a theorem due to Bode (Horowitz, 1992).

For uncertain plants, it is uncommon that generic pole-zero cancellations occur. In general a
sensitivity specification (1.5)  is included in the last design step.

8.1.8 Simulations of the closed loop

As always, the closed loop should be simulated in the frequency and time domains for
sufficiently many plant cases, see Section 1.9.

8.2 A 2x2 MIMO servo design example

8.2.1 Plant definition and templates

Let the plant be given by

P
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k k k k=
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11 12 21 222 6 0 5 15 0 5 15 2 6, , , . , . , . , . , ,

(8.37)
with all uncertainties mutually independent, and with the nominal being

P
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2 1

1 2
(8.38)

Each plant element is defined in its own plant definition file, called  p11.m,  p12.m,  p21.m,
and  p22.m, for P s11� �, P s12 � �, P s21� � , and P s22 � � , respectively. See Figures 8.3 - 8.6.

Then compute the four template files, p11.tpl,  p12.tpl,  p21.tpl, and  p22.tpl, for
P s11� �, P s12 � �, P s21� � , and P s22 � � , respectively.

ctpl('p11',[],'grid');
ctpl('p12',[],'grid');
ctpl('p21',[],'grid');
ctpl('p22',[],'grid');
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The grid method is used, and we will see that this method leaves "holes" in the templates.
The user is therefore encouraged to recompute this example with another method.

function   [Par,w_tpl,w_nom,method,P_num,P_den, ...
            n_dif,Uns_Par] = p11

% MIMO Plant:  p11.m

% Definition of the parameters
% =====================
   Par = ['k11=[2,6,2,4]'];
   Uns_Par=[];

% Definition of the frequency vectors [rad/sec]
% ======================================
  w_tpl = [0.1 0.2 0.5 1 2 5 10 20 50 70 100];
  w_nom = logspace(-2,3,200);

% Definition of the template computation method
% =============================================
  method = 'rff_[1,1]';

% Plant definition
% ================
  P_num='(gain,k11)';
  P_den='[1  0]';

Figure 8.3. The plant definition file p11.m for the plant element P s11� �.

function   [Par,w_tpl,w_nom,method,P_num,P_den, ...
            n_dif,Uns_Par] = p12

% MIMO Plant:  p12.m

% Definition of the parameters
% =====================
   Par = ['k12=[0.5,1.5,1,4]'];
   Uns_Par=[];

% Definition of the frequency vectors [rad/sec]
% ======================================
  w_tpl = [0.1 0.2 0.5 1 2 5 10 20 50 70 100];
  w_nom = logspace(-2,3,200);

% Definition of the template computation method
% =============================================
  method = 'rff_[1,1]';

% Plant definition
% ================
  P_num='(gain,k12)';
  P_den='[1  0]';

Figure 8.4. The plant definition file p12.m for the plant element P s12 � �.
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function   [Par,w_tpl,w_nom,method,P_num,P_den, ...
            n_dif,Uns_Par] = p21

% MIMO Plant:  p21.m

% Definition of the parameters
% =====================
   Par = ['k21=[0.5,1.5,1,4]'];
   Uns_Par=[];

% Definition of the frequency vectors [rad/sec]
% ======================================
  w_tpl = [0.1 0.2 0.5 1 2 5 10 20 50 70 100];
  w_nom = logspace(-2,3,200);

% Definition of the template computation method
% =============================================
  method = 'rff_[1,1]';

% Plant definition
% ================
  P_num='(gain,k21)';
  P_den='[1  0]';

Figure 8.5. The plant definition file p21.m for the plant element P s21� � .

function   [Par,w_tpl,w_nom,method,P_num,P_den, ...
            n_dif,Uns_Par] = p22

% MIMO Plant:  p22.m

% Definition of the parameters
% =====================
   Par = ['k22=[2,6,2,4]'];
   Uns_Par=[];

% Definition of the frequency vectors [rad/sec]
% ======================================
  w_tpl = [0.1 0.2 0.5 1 2 5 10 20 50 70 100];
  w_nom = logspace(-2,3,200);

% Definition of the template computation method
% =============================================
  method = 'rff_[1,1]';

% Plant definition
% ================
  P_num='(gain,k22)';
  P_den='[1  0]';

Figure 8.6. The plant definition file p22.m for the plant element P s22 � � .

The templates of P s11� � in p11.tpl are displayed with the command

showtpl('p11');

shown in Figure 8.7. Quite unsurprisingly, the templates are shown lying along straight line
segments with gain but no phase extent, hidden behind the nominal. The other plant element
templates look similar.
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Figure 8.7. The templates of P s11� � in p11.tpl  displayed with the command
showtpl('p11');

8.2.2 The pre-compensator

Next the pre-compensator P s0 � �  (8.6) is defined as a fixed transfer function in the controller

function m-file p0.m, see Figure 8.8. In this example,  P s0 � �  was set equal to P snom � � in

(8.38). The user is encouraged to try other choices of P s0 � � , as discussed in Section 8.1.1.

function [P0] = p0(s)
% p0.m  precompensator transfer function for 2x2 MIMO

P0 = [2./s 1./s
      1./s 2./s];

Figure 8.8. Controller function file p0.m  defining the pre-compensator P s0 � � .

8.2.3 Specifications

We choose basically non-interactive specifications, (8.18), (8.19), that are symmetric,
implying furthermore that

a a

b b

b b

11 22

11 22

12 21

ω ω

ω ω

ω ω

� � � �
� � � �
� � � �

=

=

=

�
�
��

�
��

  . (8.39)

The servo specification (8.18), (8.39) is defined as usual with the rsrs-command, and
displayed with  showspc  in Figure 8.9, where the time domain choices can be clearly seen,
as well as the resulting frequency domain specification. A cut-off frequency where a11 ω� � fell

off sharply was not included, implying that the final design would be allowed to violate a11 ω� �
for high frequencies. Notice however that both second and third order closed loop models
were included in the rsrs-commands, implying that the tolerance b a11 11ω ω� � � � increases
for increasing high frequencies. The specifation matrix is saved in the file ex8.spc.
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Figure 8.9. Servo specifications in the time domain and resulting frequency domain
specification for the closed loop  frequency function elements T j11 ω� 	  and T j22 ω� 	 .

rsrs('ex8','tiispec',[3 0.8],10,3.5,[],logspace(-1,2),[],3);
showspc('ex8','tiispec'); % Figure 8.9

In view of the discussion following equation (8.28) two  specification vectors, b b12 21ω ω� � � �=
in (8.19), (8.39) for the off-diagonal, cross coupling,  closed loop transfer function elements
T j12 ω� 	  and T j21 ω� 	  are defined and shown in Figure 8.10: one,  tijspeca, with no high

frequency roll-off, and another, tijspec, with -40 dB/dec high frequency roll-off.

add2spc('ex8','tijspeca',logspace(-1,2),-20);  % b12 with roll-off=0
add2spc('ex8','tijspec',logspace(-1,2),[.1],[.01 .14 1]);% -40 dB/dec
showspc('ex8','tijspec');showspc('ex8','tijspeca',[],[],gcf));

% Figure 8.10

Figure 8.10: Cross coupling closed loop specifications.
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Note that tijspec has the same roll-off as the upper servo specification b b11 22ω ω� � � �=  in
tiispec. It might have been a little more suitable to choose the tijspec roll-off to be -60
dB/dec or -80 dB/dec, in view of the ensuing bound computation. The user may try this out.

Finally a 6 dB sensitivity specification is included into ex8.spc:

add2spc('ex8','sens',logspace(-1,2),6);                 % sensitivity

Such a specification has no direct significance for the first design step, since there is no
requirement that the first loop be independently stable. Sometimes it might even be
necessary to design the first loop unstable, to avoid a non-minimum phase, or unstable non-
minimum phase problem in the second design step, see (8.33), (8.34). However,  if possible,
one would design the first loop stable. Therefore the sensitivity specification is included as a
design aid.

8.2.4 The first design step

Template computation

We create the template files for necessary for the bound computations of the first design
step,  (8.12)-(8.15) or (8.26)-(8.28), whether the first step will be a design for the "plant"
1 11W jω� 	  with the "disturbance filter"  W j W j12 11ω ω� 	 � 	  in (8.27)-(8.28),  or a design for

1 22W jω� 	 , with the filter W j W j21 22ω ω� 	 � 	. In the latter case the user might want to
exchange the indices 1 and 2, in all equations from (8.22) on. The four template files are
created with the command mtpl1, where the following intuitive template file names are
chosen: iw11.tpl for 1 11W jω� 	 , iw22.tpl for 1 22W jω� 	 , w12_w11.tpl for

W j W j12 11ω ω� 	 � 	 , and w21_w22.tpl for W j W j21 22ω ω� 	 � 	. The nominals of the output
template files emanate from the plant element nominals.

mtpl1('iw11','iw22','w12_w11','w21_w22','p11','p12','p21','p22','p0');
showtpl('iw11'); showtpl('w12_w11'); % Figure 8.11
showtpl('w21_w22'); showtpl('iw22'); % Figure 8.11

Figure 8.11 reveals that the set of templates and nominals are equal for all frequencies, for
each of the four template files. The templates of  1 11W jω� 	  equal those of  1 22W jω� 	 , being

a line segment along the real positivie axis. The templates of  W j W j12 11ω ω� 	 � 	  equal those

of  W j W j21 22ω ω� 	 � 	, being a line segment on the real axis, crossing the origin. The grid
method for the template computation caused the templates to be represented
discontinuously, with "holes", the consequence of which will be Horowiths bound "islands"
(hidden in Figure 8.12, but apperent in Figure 8.20) that are easily discernable and
neglectable by the observant user. Since the templates for the two loops,  (8.12), (8.13)
versus  (8.14), (8.15) are identical, we choose to start designing L W10 11nom .
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Figure 8.11. Templates for 1 11W jω� 	  from iw11.tpl,  W j W j12 11ω ω� 	 � 	  from

w12_w11.tpl,  W j W j21 22ω ω� 	 � 	 from  w21_w22.tpl, and for 1 22W jω� 	  from iw22.tpl.

The nominals of 1 11W jω� 	  and 1 22W jω� 	  have all the value 1. The nominals of

W j W j12 11ω ω� 	 � 	  and W j W j21 22ω ω� 	 � 	 have all the value 0, which is represented in Nichols
form by -320 dB,  outside the scale of the figures.

Bound computation

The common Horowitz bounds for L W10 11nom  from (8.26) and (8.27) are computed with the

command mcbnd11, in which also is stored, for each frequency,  a matrix giving bd11 ω,⋅� 	 as

a function from C [deg, dB] to R. The criterion function used is fbd11.m (default name)
which computes the values of the middle member of (8.26) and the left member of (8.27).
The bound file is called ex8.bnd, and by default, the name of the resulting bounds is
servo1:

mcbnd11('ex8','tiispec','tijspec',[],[],'ex8','iw11',' w12_w11');
% Default bound name: servo1

Notice the order of the two specification vector arguments, tiispec  with 3 columns, and
tijspec with 2 columns which signals  that the common bounds  from (8.26) and (8.27) are
to be computed. Notice also that tijspec with its -40 dB/dec high frequency roll-off (Figure
8.10) is used here for b21 ω� � .

The first step cross coupling bounds from (8.28) are also computed with the command
mcbnd11, using the criterion function  fcouple1.m (default name), and placed in ex8.bnd
under the default name couple1:
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mcbnd11('ex8','tijspeca','tiispec',[],[],'ex8','iw11',' w12_w11');
% Default bound name: couple1

Notice the order of the two specification vector arguments, tijspec with 2 columns, and
tiispec  with 3 columns which signals  that the Horowitz bounds  from (8.28) are to be
computed, using the criterion function fcouple1.m (if no other criterion function name is
given as an argument). Notice also that tijspeca without high frequency roll-off (Figure
8.10) is used here for b12 ω� �.

As mentioned above, a voluntary  6 db sensitivity bound with respect to L W10 11nom , from

1 1 210 11+ ≤L j W jω ω� 	 � 	
 ��  , is computed with the standard SISO bound computation

function cbnd with the usual criterion function fodsrs.m. The sensitivity bounds are equal
for all frequencies since the templates 1 11W jω� 	  are all equal (Figure 8.10), and the
specification is equal (6 dB). The sensitivity bounds are placed under the name sens in
ex8.bnd:

cbnd('ex8','sens',[],[],'ex8','iw11','sens','fodsrs');

The user may study all computed bounds with the command showbnd. We select the
dominant bounds, and display them in Figure 8.12.

showbnd('ex8',[],[.1 .2],'servo1',[], ...
                  [.5 1 2 5 10 20 ],'couple1',[],[50 70 100],'sens');
axis([-360 0 -20 50 ]),mgrid(12,7) % Figure 8.12

It turns out that the servo bounds are dominant for 0.1 and 0.2 rad/s, the cross coupling
bounds are dominant for 0.5 - 20 rad/s, and the single sensitivity bound is dominant for still
higher frequencies. We point out again, that the sensitivity bounds are not mandatory. The
cross coupling bounds for 50, 70, and 100 rad/s are mandatory. They are found inside the
sensitivity bound. The user may display them, and she will then find that they have "islands"
due to the "holes" in the computed templates.

Figure 8.12. Dominant Horowitz bounds for L W10 11nom  in the first design step, displayed with
the command  showbnd('ex8',[],[.1 .2],'servo1',[],[.5 1 2 5 10 20], ...
'couple1',[],[50 70 100],'sens');

8 : 16



Feedback compensator design

Figure 8.11 shows that the nominal 1 11W nom  in iw11.tpl is recorded at -360 deg. In order

to have a more convenient design of L j W j10 11ω ω� 	 � 	nom , we shift the  nominal in iw11.tpl

by +360 deg:

[w_nom,nom]=gettpl('iw11','nom');
nom=nom+360;
insert('iw11.tpl',nom,'nom','r');

Next display the Horowitz bounds of Figure 8.12. Edit the controller function m-file for L s10 � � ,
L10.m, whose final form is shown in Figure 8.13. With the command cdesign, show the
designed nominal open loop L j W j10 11ω ω� 	 � 	nom  together with the bounds in Figure 8.14.
One  possible command sequence is:

h2=cdesign('iw11.tpl','L10');
axis([-180 -80 -30 50 ])
showbnd('ex8',gcf,[.1 .2],'servo1',[], ...

[.5 1 2 5 10 20],'couple1',[],[50],'sens');
hngrid,mgrid(10,8) % Figure 8.14

function [L]=L10(s)
% L10.m, first step feedback compensator transfer function

L = 15*(s/80 + 1)./( s.*(s/100 + 1).*(s/30 + 1) );

Figure 8.13. Controller function file L10.m  for the feedback controller of the first MIMO
design step, realizing the transfer function

L s
s

s s s
10

15 80 1

30 1 100 1
� � � �

� �� �
=

+

+ +
(8.40)

Figure 8.14. The final nominal open loop of the first MIMO design step, L j W j10 11ω ω� 	 � 	nom ,
parametrized in rad/s, in a NIchols diagram with the dominant Horowitz bounds from Figure
8.12. L s10 � �  is given in (8.40), and W s11nom� �=1 from Figure 8.11.
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Modified servo specification

In contrast to a regular SISO design where one proceeds directly with the prefilter design, we
have here to compute here the open loop templates, L j W j10 11ω ω� 	 � 	, which we place in the
template file L10_w11.tpl,

tplfop('L10_w11','*',[],'iw11',1,'L10');

in order to find the true values of bd11
∗ ω� � in (8.29), and modify the servo specification to get

a b b bd d11 11 11 11ω ω ω ω� � � � � � � �+ −∗ ∗
,  for the prefilter design, cf. (8.26). This is done with the

command bd11spc, whose arguments include the original servo specification, tiispec

from ex8.spc; the bd11-matrix, called servo1bd11 in ex8.bnd; and the template file,

L10_w11.tpl, for the designed open loop, L j W j10 11ω ω� 	 � 	 which includes the nominal

L j W j10 11ω ω� 	 � 	nom  for which bd11
∗ ω� � is found. The new specification

a b b bd d11 11 11 11ω ω ω ω� � � � � � � �+ −∗ ∗
, , whose default name becomes tiispecm, is placed by

default in ex8.spc. The original and modified servo specifications are shown in Figure 8.15.

bd11spc('ex8','tiispec','servo1bd11',[],'L10_w11');
% default name for new servo spec: tiispecm in ex8.spc

showspc('ex8','tiispec','freq')
showspc('ex8','tiispecm','freq','cx',gcf) % Figure 8.15

Notice that a b b bd d11 11 11 11ω ω ω ω� � � � � � � �+ −∗ ∗
,  is computed only for those (low) template

frequencies for which bd11
∗ ω� � satisfies 0 211 11 11≤ ≤ −∗b b ad ω ω ω� � � � � �� � . If the roll-off of

tijspec had been  -60 dB/dec or -80 dB/dec, as mentioned in the discussion after Figure
8.10, then acceptable bd11

∗ ω� �-values would have been obtained for all template frequencies.

The lower modified servo specification, a bd11 11ω ω� � � �+ ∗ , has however no significance
beyond the frequency where normally the lower specification would have had a cut-off, cf
Figure 2.10. In our example, the cut-off frequency would be 3 rad/s.

Figure 8.15. The original servo specification a b11 11ω ω� � � �,  from Figure 8.9 called tiispec

in the specification file ex8.spc (solid line), together with the modified specification

a b b bd d11 11 11 11ω ω ω ω� � � � � � � �+ −∗ ∗
, , called tiispecm in ex8.spc (x). The modified

specification was computed from (8.29) and the designed nominal open loop with the
command bd11spc('ex8','tiispec','servo1bd11',[],'L10_w11');
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Prefilter design

From now on the design proceeds just like in the standard SISO case. The first loop
complementary sensitivity function templates

S j
L j W j

L j W j
1

10 11

10 111
ω

ω ω

ω ω
� � � � � �

� � � �� �
=

+
(8.41)

are computed, and placed into the template file cosens1.tpl by

tplfop('cosens1','idsrs',[],'L10_w11');

or by

tplfop('cosens1','iosrs',[],'iw11',1,'L10');

The nominal, and gain extents of the complementary sensitivity function templates are
shown in a Bode diagram, together with the original and modified servo specifications, in
Figure 8.16.

h0=fdesign('cosens1.tpl',[],'new'); % Figure 8.16
showspc('ex8','tiispecm','freq','cx',gcf);      % modified spec (x)
showspc('ex8','tiispec','freq',[],gcf); %  orig spec (-)

Figur 8.16. The gain extent (o), and the nominal (solid line) of the complementary sensitivity
function (8.41) together with the original servo specifications (solid lines) and the bd11

∗ ω� �-
modified  servo specifications (x).

function [F]=F11(s)
% F11.m  is the prefilter file for the first step

F = (1)./( (s/2 + 1).*(s/10 + 1) );

Figure 8.17. Controller function file F11.m  for the prefilter  of the first MIMO design step,
realizing the transfer function

F s
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� �
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=

+ +
(8.42)
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Next the controller function m-file, F11.m, defining the prefilter is edited, and tested with the
command fdesign. The finally chosen prefilter is found in Figure 8.17. The nominal and the
gain extent of

T j F j
L j W j

L j W j
1 11

10 11

10 111
ω ω

ω ω

ω ω
� � � � � � � �

� � � �� �
=

+
(8.43)

is displayed in Figure 8.18 which is the same diagram as Figure 8.16 from which (8.41) is
replaced by (8.43) with the prefilter given in (8.42).

h1=fdesign('cosens1.tpl','F11.m', h0); % Figure 8.18

Figure 8.18. The gain extent (o), and the nominal (solid line) of the final first step closed loop
(8.42),  (8.43) together with the original servo specifications (solid lines) and the bd11

∗ ω� �-
modified  servo specifications (x).

8.2.5 The second design step

Template computations

After the successful design of the first loop feedback compensator and prefilter in Section
8.2.4, we turn to the second design step, see Section 8.1.5. In addition to the template files
computed with the command mtpl1 in the beginning of Section 8.2.4, one needs the
templates of the first step closed loop frequency function T j1 ω� 	 in (8.43) and the first
sensitivity function

S j
L j W j

1
10 11

1

1
ω

ω ω
� �

� � � �� �
=

+
(8.44)

in order to compute the templates appearing in (8.33), (8.35), and (8.36). The template files
closed1.tpl for T j1 ω� 	 in (8.43), and sens1.tpl for S j1 ω� 	  in (8.44) are created with the
commands

tplfop('closed1','rsrs',[],'iw11',1,'L10','F11'); % T1 in (8.43)
tplfop('sens1','odsrs',[],'iw11',1,'L10'); % S1 in (8.44)
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Then the templates for the  "equivalent plant", 1 22W je ω� 	 in (8.33), and the "filtered" first step
closed loop from (8.35),

T
W j

W j

L j

L j W j
F j

f
e1
21

22

10

10 11
11

1
= ⋅

+
⋅

ω

ω

ω

ω ω
ω� �

� �
� �

� � � �� �
� � (8.45)

are computed and placed into the template files iw22e.tpl, and wwc1.tpl, respectively,
with the command

mtpl2('iw22e','wwc1','iw22','w12_w11','w21_w22','sens1','closed1');

The nominal 1 22W je
nom ω� 	  in iw22e.tpl is shifted by +360 degrees,

[w_nom,nom]=gettpl('iw22e','nom');
nom=nom+360;
insert('iw22e.tpl',nom,'nom','r');

and then the templates of 1 22W je ω� 	 are displayed in Figure 8.19a. It is clear that all
nominals equal 1, and that all templates are very similar to each other, lying along the the
positive real axis. An appreciation of the phase extent is gained in Figure 8.19b which
presents a zoomed picture of the template for 5 rad/s. We note that the gain extent is about
20 degrees which could be compared with the templates of  1 22W jω� 	  in Figure 8.11 which
all have no phase extent at all. Moreover, the templates are not connected, due to the
original grid computation method in Section 8.2.1.

Figure 8.19. a) Left picture: The templates of 1 22W je ω� 	, and nominal 1 22W je
nom ω� 	

generated with the command showtpl('iw22e'); b) Right picture: Zoomed and wrapped
plot of 1 522W je � 	  generated with  plot(wrap(gettpl('iw22e',50),180),'.');

Bound computation

The  Horowitz bounds for L W e
20 22nom  from (8.35) which are true second step cross coupling

bounds,  are computed with the command cbnd, with the flag mimo2 as the last argument,
and the criterion function fcouple2.m. To get a fast high frequency roll-off for the bounds,
we choose the specification tijspeca for b21 ω� �  in (8.35), since tijspeca is constant = -
20 dB, rather than tijspec which includes a high frequency roll off. The bounds are
collected in the bound file  ex8_2.bnd under the name  couple2a, and shown in Figure
8.20.
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cbnd('ex8_2','tijspeca',[],[],'ex8','iw22e','couple2a',...    
'fcouple2',[],[],[],'wwc1','mimo2');

showbnd('ex8_2',[],[],'couple2a','r');  % Figure 8.20

Figure 8.20. The cross coupling bounds from (8.35) generated by the command
cbnd('ex8_2','tijspeca',[],[],'ex8','iw22e','couple2a','fcouple2',...
[],[],[],'wwc1','mimo2'); Notice that the bounds for 20 rad/s and 50 rad/s have
"islands" due to the discontinuous representation of the templates, compare e.g Figure 8.19.

Next comes the computation of the tolerance bounds for L W e
20 22nom  from the servo

specification (8.36). which is a completely standard SISO rsrs specification. The name given
to the new set of bounds is servo2, shown in Figure 8.21.

cbnd('ex8_2','tiispec',[],[],'ex8','iw22e','servo2','frsrs');
showbnd('ex8_2',[],[],'servo2'); % Figure 8.21

Figure 8.21. The tolerance bounds emanating from the second step servo specification
(8.36), computed with the command
cbnd('ex8_2','tiispec',[],[],'ex8','iw22e','servo2','frsrs');
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And finally, 6 dB sensitivity bounds, named sens2 are computed from

1

1
2

20 22+
≤

L j W jeω ω� � � �� �
(8.46)

with a standard SISO cbnd command. With reference to Section 8.17, the stability of this
second loop correctly reflects the closed loop stability. Therefore the sensitivity bounds have
to be adhered to. The sensitivity bounds are shown in Figure 8.22.

cbnd('ex8_2','sens',[],[],'ex8','iw22e','sens2','fodsrs');
showbnd('ex8_2',[],[],'sens2') % Figure 8.22

Figure 8.22. The sensitivity bounds, emanating from (8.46), computed with the command
cbnd('ex8_2','sens',[],[],'ex8','iw22e','sens2','fodsrs');

From Figures 8.20-8.22, the dominant bounds are selected,

showbnd('ex8_2',[],[.2 .5 1 2 5 10],'couple2a',[], ...
[.1 .2 ],'servo2',[],[10 20 50 70 100],'sens2',[]);

and shown in Figure 8.23. We note that the servo bounds are dominant for the lowest
frequencies, the cross coupling bounds are dominant between 0.2 and 10 rad/s, and the
sensitivity bounds dominate for frequencies higher than 10 rad/s.
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Figure 8.23. Dominant Horowitz bounds from Figures 8.20-8.22.

Feedback compensator design

The controller function m-file, L20.m, representing the second loop feedback compensator
L s20 � � is edited. The final version of  L20.m is found in Figure 8.24. The nominal open loop

L W e
20 22nom  is tested against the Horowitz bounds of Figure 8.23, with the command

h2=cdesign('iw22e.tpl','L20');   % show  L20*(1/W22enom) in Fig 8.25

We notice that L W e
20 22nom  sits right on the bounds for 2, 5, 10 rad/s.

function [L]=L20(s)
% L20.m.  Second step feedback compensator

L = (7)*./( s.*(s/30 + 1) );

Figure 8.24.  Controller function file L20.m  for the feedback compensator  of the second
MIMO design step, realizing the transfer function

L s
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=

+
(8.47)

8 : 24



Figure 8.25. The final nominal open loop of the first MIMO design step, L j W je
20 22ω ω� 	 � 	nom ,

parametrized in rad/s, in a NIchols diagram with the dominant Horowitz bounds from Figure
8.23. L s20 � � is given in (8.47), and W se

22nom � �=1 from Figure 8.19.

Prefilter design

The second loop is closed, and the complemantary sensitivity function templates

S j
L j W j

L j W j

e

e2
20 22

20 221
ω

ω ω

ω ω
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=

+
(8.48)

are computed with the command

tplfop('cosens2','iosrs',[],'iw22e',1,'L20');

The adherence of S j2 ω� 	  to the servo specifications pertaining to T j22 ω� 	 , (8.18) and Figure

8.9, are checked before the design of the prefilter F s22 � � . A suitable prefilter is found in

Figure 8.26. The final closed loop design, S j F j2 22ω ω� 	 � 	, is displayed in Figure 8.27.

h0=fdesign('cosens2.tpl');
showspc('ex8','tiispec','freq',[],gcf);
h1=fdesign('cosens2.tpl','F22.m');

function [F]=F22(s)
% F22.m is the prefilter for the second step

F = (1)./( (s/2 + 1).*(s/5 + 1).*(s.*s/100 +1.4*s/10 +1) );

Figure 8.26. Controller function file F22.m  for the prefilter  of the second MIMO design step,
realizing the transfer function

F s
s s s s
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+ + + +.
(8.49)
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Figure 8.27. The gain extent (o), and the nominal (solid lines) of the second step
complementary sensitivity function S j2 ω� 	  in (8.48), and the final second step closed loop

S j2 ω� 	F s22 � � , where F s22 � �  is defined in (8.49),  together with the original servo
specifications tiispec from Figure 8.9.

We notice in Figure 8.27 that the servo specifications are well satisfied, which is not
surprising since the cross coupling specifications were the dominant in the mid frequency
range. The closed loop seems to violate the lower specification for high frequencies, but we
remind ourselves that we should have cut off the lower specification at about 3 rad/s, and
hence no violation occurs.

8.2.6 The feedback compensator and prefilter in matrix form

With L s10 � �  defined in (8.40), L s20 � � in (8.47),   F s11� � in (8.42), F s22 � �  in (8.49), and P s0 � �
given in Figure 8.8 and (8.38), we use (8.5) to compute G(s).
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(8.50)
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8.2.7 Simulations

There are various ways to compute the closed loop transfer functions for a large number of
cases and simulate them in the frequency and time domains. We chose to use the symbolic
mathematics program Maple, and translate the result back into Matlab. The frequency
domain simulation, for 625 cases, are done with the m-file simfreq.m which is reproduced
in Figure 8.28. The time domain simulations are done with the m-file simtime.m (Figure
8.29) that uses the Matlab Control Systems Toolbox function step, for the step response
simulations. The graphs are found in Figures 8.30-8.xx.

w = logspace(-1,2); s = sqrt(-1)*w;

T11f = zeros(625,50); T12f = zeros(625,50);
T21f = zeros(625,50); T22f = zeros(625,50);

n = 0; %counter

for a = 2:1:6,      % k11 in [2,6]
  for b = 0.5:0.25:1.5,    % k12 in [.5,1.5]
    for c = 0.5:0.25:1.5;    % k21 in [.5, 1.5]
      for d = 2:1:6;      % k22 in [2,6]

n = n+1;

e = (13800*s.^3+180000*s.^2+ ...
78750*a*s*d-78750*b*s*c+2*s.^5+320*s.^4+1800000*a*s-900000* ...
b*s-140*s.^3*c+280*s.^3*d-18200*s.^2*c+36400*s.^2*d-420000*s* ...
c+840000*s*d+750*a*s.^3+82500*a*s.^2+6300000*a*d-375*b*s.^3- ...
41250*b*s.^2-6300000*b*c);

T11 = 7500*(s+80).*(2*a*s.^2-b* ...
s.^2+60*a*s-30*b*s-210*b*c+210*a*d)./e./(s+2)./(s+10);

T12 = -1400*(s+100).*(s+30).*s.*(a-2*b)./ ...
(0.01*s.^2+0.14*s+1)./(s+5)./(s+2)./e;

T21 = 7500*(2*c-d)*(s+80).*s.*(s+30)./e./(s+2)./(s+10);

T22 = -700*(-1125*a*s*d-90000*a*d+1125*b*s*c+90000*b*c+ ...
2*s.^3*c-4*s.^3*d+260*s.^2*c-520*s.^2*d+6000*s*c-12000*s*d)./ ...
(0.01*s.^2+0.14*s+1)./(s+5)./(s+2)./e;

T11f(n,:) = T11; T12f(n,:) = T12;
T21f(n,:) = T21; T22f(n,:) = T22;

     end
    end
  end
end

figure,showspc('ex8','tiispec','freq',[],gcf),hold on,
semilogx(w,20*log10(abs(T11f)));

figure,  showspc('ex8','tijspeca','freq',[],gcf); hold on,
semilogx(w,20*log10(abs(T12f)));

figure,  showspc('ex8','tiispec','freq',[],gcf), hold on,
 semilogx(w,20*log10(abs(T21f)));
figure,  showspc('ex8','tijspeca','freq',[],gcf); hold on,
 semilogx(w,20*log10(abs(T22f)));

Figure 8.28. The m-file simfreq.m for the frequency domain simulation of 625 cases of the
final closed loop transfer function T(s) in (8.4).
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t = 0:0.1:5;

T11f = zeros(625,51); T12f = zeros(625,51);
T21f = zeros(625,51); T22f = zeros(625,51);

n = 0; %counter

for a = 2:1:6,      % k11 in [2,6]
  for b = 0.5:0.25:1.5,    % k12 in [.5,1.5]
    for c = 0.5:0.25:1.5;    % k21 in [.5, 1.5]
      for d = 2:1:6;      % k22 in [2,6]

n = n+1;

%e = (13800*s.^3+180000*s.^2+ ...
%78750*a*s*d-78750*b*s*c+2*s.^5+320*s.^4+1800000*a*s-900000* ...
%b*s-140*s.^3*c+280*s.^3*d-18200*s.^2*c+36400*s.^2*d-420000*s* ...
%c+840000*s*d+750*a*s.^3+82500*a*s.^2+6300000*a*d-375*b*s.^3- ...
%41250*b*s.^2-6300000*b*c);

e = [ ...
+2 ... %*s.^5
+320 ... %*s.^4
(+13800-140*c+280*d+750*a-375*b) ... %*s.^3
(+180000-18200*c+36400*d+82500*a-41250*b) ... %*s.^2
(+78750*a*d-78750*b*c+1800000*a-900000*b-420000*c+840000*d) ... %*s
(+6300000*a*d-6300000*b*c) ...
];

T11num = 7500*conv([1 80],[(2*a-b) (+60*a-30*b) (-210*b*c+210*a*d)]);
T11den = conv( conv(e,[1 2]),[1 10] );

T12num = -1400*conv([1 130 3000],[(a-2*b) 0]);
T12den = conv( conv([0.01 0.14 1],[1 5]), conv([1 2],e) );

T21num = 7500*(2*c-d)*[1 110 2400 0];
T21den = conv(e,[1 12 20]);

T22num = -700*[(+2*c-4*d)  (+260*c-520*d) ...
(-1125*a*d+1125*b*c+6000*c-12000*d) (-90000*a*d+90000*b*c)];

T22den = conv( conv([0.01 0.14 1],[1 5]), conv([1 2],e) );

T11 = step(T11num,T11den,t)'; T12 = step(T12num,T12den,t)';
T21 = step(T21num,T21den,t)'; T22 = step(T22num,T22den,t)';

T11f(n,:) = T11; T12f(n,:) = T12; T21f(n,:) = T21; T22f(n,:) = T22;

     end
    end
  end
end

figure, plot(t,T11f);title('T11'); figure, plot(t,T12f);title('T12');
figure, plot(t,T21f);title('T21'); figure, plot(t,T22f);title('T22');

Figure 8.29. The m-file simtime.m for the time domain simulation of 625 cases of the final
closed loop transfer function T(s) in (8.4).
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Figure 8.30. Simulation of 625 cases of the final transfer function T s11� �  in the frequency
domain, together with the servo specification from Figure 8.9.

Figure 8.31. Simulation of 625 cases of the final transfer function T s12 � �  in the frequency
domain, together with the cross coupling specification from Figure 8.10.

Figure 8.32. Simulation of 625 cases of the final transfer function T s21� � in the frequency
domain, together with the cross coupling specification from Figure 8.10.
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Figure 8.33. Simulation of 625 cases of the final transfer function T s22 � � in the frequency
domain, together with the servo specification from Figure 8.9.

Figure 8.34. Simulation of 625 step response cases for the final transfer function T s11� �  in the
time domain, together with the servo specification from Figure 8.9.

Figure 8.35. Simulation of 625 step response cases for the final transfer function T s12 � �  in the
time domain.
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Figure 8.36. Simulation of 625 step response cases for the final transfer function T s21� � in the
time domain.

Figure 8.37. Simulation of 625 step response cases for the final transfer function T s22 � � in the
time domain, together with the servo specification from Figure 8.9.

The figures show that the servo specification are well satisfied in the time and frequency
domains. If, presumably, the time domain specification for the cross coupling is that the
maximal response be less than 10% of the step amplitude, then the cross coupling responses
are also very satisfactory.

One could proceed with a third design step to redesign the first loop in view of the fact that
the second is now designed. It might be possible to lower the bandwidth. This is, however,
left for the user to do!
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