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Abstract. The moment problem matured from its various special forms in the late 19th and
early 20th Centuries to a general class of problems that continues to exert profound influence on the
development of analysis and its applications to a wide variety of fields. In particular, the theory of
systems and control is no exception, where the applications have historically been to circuit theory,
optimal control, robust control, signal processing, spectral estimation, stochastic realization theory
and the use of the moments of a probability density. Many of these applications are also still works
in progress. In this paper, we consider the generalized moment problem, expressed in terms of a basis
of a finite-dimensional subspace P of the Banach space C[a, b] and a “positive” sequences c, but with
a new wrinkle inspired by the applications to systems and control. We seek to parameterize solutions
which are positive “rational” measures, in a suitably generalized sense. Our parameterization is given
in terms of smooth objects. In particular, the desired solution space arises naturally as a manifold
which can be shown to be diffeomorphic to a Euclidean space and which is the domain of some
canonically defined functions. The analysis of these functions, and related maps, yields interesting
corollaries for the moment problems and its applications, which we compare to those in the recent
literature and which play a crucial role in part of our proof. Our techniques are a combination of
those drawn from the literature on the generalized moment problem, from the topology of smooth
manifolds and maps, and from convex optimization.
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1. Introduction. Given a sequence of complex numbers, (c0, c1, · · · , cn), and
a basis, (α0, α1, · · · , αn), of a (finite-dimensional) subspace P of the Banach space
C[a, b] of complex-valued continuous functions defined on the real interval [a, b], the
generalized moment problem [21] is to find a positive measure dµ such that∫ b

a

αk(t)dµ(t) = ck, k = 0, 1, · · · , n. (1.1)

This problem is a beautiful generalization of several important classical moment prob-
lems, including the power moment problem, the trigonometric moment problem and
the moment problem arising in Nevanlinna-Pick interpolation. There are, of course,
necessary conditions stemming from the positivity of dµ and whether a particular αk
is real-valued or not; these will be summarized in Section 2.

Among the pioneers in the use of power moments, where αk(t) = tk, we should
mention Chebyschev and his students, particularly Markov and Lyapunov, who used
them in connection with the classical Central Limit Theorem in the 19th Century.
On a finite interval this problem is usually called the Hausdorff moment problem and
was solved by Hausdorff for an infinite sequence of moments in 1921. The power
moment problem for an infinite sequence of moments on an infinite interval is known
as the Hamburger moment problem, while on the semi-infinite interval this is called
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the Stieltjes moment problem. We refer to [21], especially pages 166–171 and the
references therein, for a more detailed historical and technical treatment.

Remark 1.1. In classical treatments of the power moment problems [21] it is
typical to take P to be the real subspace spanR{α0, · · · , αn}. While in this case
the role of the functions αk are clear and familiar to any student of probability, it
is reasonable to ask why we need P. One of many good reasons for this is that P
is a natural space of “test functions” with which to develop necessary and sufficient
conditions on the candidate moments for the solvability of the moment equations. For
example, if p(t) = p0 + p1t + · · · + pnt

n > 0 for all t ∈ [a, b], then solvability of the
moment equations for a positive measure dµ implies that

n∑
i=0

pici =
∫ b

a

p(t)dµ > 0. (1.2)

This has been refined, in a neat way, to give necessary and sufficient conditions for
the solvability of the generalized moment problem (see [21] and the discussion in
Section 2).

In the trigonometric moment problem, where αk(t) = eikt defined on [−π, π],
the constants ck are, of course, the first n + 1 Fourier coefficients of dµ. The cor-
responding moment problem was classically considered by Carathéodory in potential
theory, where the moment conditions place a constraint on the boundary value data
for Laplace’s equation on the unit disc. Through subsequent classical work by Schur,
Toeplitz, Nevanlinna, Pick and many others, this has been influential in the develop-
ment of modern analysis (see e.g. [15]). Applications of the trigonometric moment
problem to systems and control also have a long and fruitful history, including the
rational covariance extension problem originally posed by Kalman [17] and later ob-
served to be related to the trigonometric moment problem in [11]. However, to be
applicable to problems in spectral estimation and stochastic realization theory there
are systems theoretic constraints that must be added to the trigonometric moment
problem, relating to rationality of, and the degree of, a solution. These challenges
were noticed early on [17, 18, 12] and the ultimate breakthroughs relied (and still do
rely) on the nontrivial use of topology, nonlinear convex optimization or a combination
thereof (see [12, 2], and the SIGEST paper [3] and references therein).

Remark 1.2. In this setting, the classical theory was developed for a complex
subspace P of “test functions” and follows, mutatis mutandis, the real case. Explicitly,
in order to develop the corresponding necessary conditions it is necessary to take those
p ∈ P for which the trigonometric polynomial P := Re(p) is positive on [−π, π]. The
comples-valued enhacement of condition (1.2) is then

Re

(
n∑
i=0

pici

)
=

1
2

n∑
i=0

(p̄ici + pic̄i) =
∫ π

−π
Pdµ > 0. (1.3)

One of the many gems in this classical literature is the use [21, p. 65] of the Riesz-
Fejér Theorem to evaluate the quadratic form on the right hand side of (1.3), where
P > 0, as

n∑
i,j=0

ci−jziz̄j = z̄TTnz > 0,
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where z = (z0, . . . , zn) ∈ Cn r 0 and Tn the standard Toeplitz form fashioned out of
the moment sequence c = (ci). For a general moment problem, the form on the left
hand side of (1.3) is classically denoted by 〈c, p〉.

Remark 1.3. In both the power and the trigonometric moment problems we
were led to consider the “polynomials,” P = Re(p), for p ∈ P. For this reason, the
functions P := Re(p), for p ∈ P in an arbitrary generalized moment problem are
referred to as “polynomials” for P. Following this precedent, we shall refer to the
ratio P/Q with p, q ∈ P as a “rational functions” for P.

In the Nevanlinna-Pick moment problem for distinct interpolation points z0, z1, . . . , zn,
the basis functions are given by

αk(t) =
1

2π
eikt + zk
eikt − zk

, k = 0, 1, · · · , n,

which coincide on [−π, π], modulo an additive constant, with Cauchy kernels. Higher
order kernels can of course be used for multiple points. As for the case of trigonometric
polynomials, it turns out that it is more helpful to identify the interval with the unit
circle and, in this case, to think of P in terms of Hardy spaces. This has also led
to profound developments in several complex variables and in operator theory as
well as in the applications of mathematics to circuit theory [10, 16] and to robust
control [24, 19, 13, 9, 20]. For this problem as well, the applications to systems
and control impose additional constraints to the classical moment problem whose
treatment still requires nonlinear methods drawn from geometry, topology and/or
optimization [16, 13, 5, 3].

Remark 1.4. For the classical Nevanlinna-Pick interpolation problem, using the
Riesz-Fejér Theorem, the quadratic form (1.3) can also be evaluated, with some work
[21, pp. 67-69] as the value of the celebrated Pick form. Moreover, it turns out that
P is a finite-dimensional coinvariant subspace of H2 so that the elements of P are
rational functions σ/τ , where τ is fixed, and the “polynomials” are the real parts of
elements in P. This of course implies that the “rational functions” are rational in the
usual sense.

The generalized moment problem is about measures and combining these two
concepts leads us to following definition.

Definition 1.5. Any measure of the form

dµ =
P (t)
Q(t)

dt, (1.4)

where P and Q are positive polynomials for P, is a (generalized) rational positive
measure.

Problem 1.6. Given a sequence of complex numbers c0, c1, · · · , cn and a sub-
space P, the generalized moment problem for rational measures is to parameterize all
positive rational measures P (t)

Q(t)dt such that∫ b

a

αk(t)
P (t)
Q(t)

dt = ck, k = 0, 1, · · · , n. (1.5)

The problem itself is motivated by classical applications and examples, in both
finite and infinite dimensions, and also reflects the importance of rational functions
in systems and control. In this paper we give a concise description of all solutions of
this generalized moment problem for a broad class of subspaces P.
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2. The Main result. In order to state our result, we first need to compute the
dimension of P as a real vector space, taking into account the cases where a basis
element is real, purely imaginary or neither. In order for the moment equations to
hold it is necessary that ck be real whenever αk is real. Moreover, a purely imaginary
moment condition can always be reduced to a real one, and henceforth we shall as-
sume that α0, . . . , αr−1 are real functions and αr, . . . , αn are complex-valued functions
whose real and imaginary parts, taking together with α0, . . . , αr−1, are linearly inde-
pendent over R. In particular, we may regard P as a real vector space of dimension
is 2n− r + 2. Since we have chosen a fixed basis, we may regard each

p :=
n∑
k=0

pkαk ∈ P (2.1)

also as (n + 1)-tuple of points (p0, p1, . . . , pn), where p0, p1, . . . , pr−1 are real and
pr, pr+1, . . . , pn are complex. Moreover, p is determined by its real part P := Re(p),
a notation we shall keep throughout. Next we define the subset P+ of those elements
p ∈ P such that P > 0. We shall assume that P+ is nonempty and is therefore an
open, convex set having dimension 2n− r + 2.

The rational measures we seek as solutions have the property that dµ(E) > 0 for
every Borel measurable subset E ⊂ [a, b] having nonzero measure. For this reason, we
will seek a necessary condition expressible in terms of the slightly larger space P+r{0}
of “test” functions. That is, we define C+ as the set of sequences c = (c0, c1, · · · , cn)
such that

〈c, p〉 := Re

{
n∑
k=0

pkck

}
=
∫ b

a

P dµ > 0 (2.2)

for all p ∈ P+ r {0}. We will call such a sequence positive. In particular, C+ is also
a nonempty, open convex subset of R2n−r+2 of dimension 2n− r + 2.

Remark 2.1. Since we are seeking a solution to the moment problem for a smaller
class of positive measure than in the classical treatment, our necessary conditions are,
not surprisingly, stronger than the classical conditions. In particular, a sequence c
which we call positive is referred to as strictly positive in [21]. A sequence c is positive
in the classical sense if it satisfies 〈c, p〉 ≥ 0 for all p ∈ P+, a condition that does not
quite capture the case of positive rational measures.

We shall now fix c ∈ C+ and consider the set Mc of all pairs of polynomials
(p, q) for which the rational measure P (t)/Q(t)dt solves Problem 1.6 for the positive
sequence c. There is a natural parameterization of Mc as a submanifold of the product
space P+ ×P+ and, as a subset of a product space, Mc comes with two mappings:

π1 : Mc → P+ and π2 : Mc → P+,

where π1 and π2 are the restrictions to Mc of the two mappings

proj1 : P+ ×P+ → P+ and proj2 : P+ ×P+ → P+,

defined by proj1(p, q) = p and proj2(p, q) = q.
Theorem 2.2. Suppose that P consists of Lipschitz continuous functions. Then,

for each c ∈ C+, Mc is a smooth submanifold of P+×P+, diffeomorphic to R2n−r+2.
Moreover, each of the maps π1, π2 is a diffeomorphism of Mc onto its image, which
is an open submanifold of P+. Finally, π1 : Mc → P+ is surjective.
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Remark 2.3. To the best of our knowledge, all instances of the generalized mo-
ment problem that arise in systems and control involve subspaces of C[a, b] consisting
of Lipschitz continuous functions. Moreover, this class of subspaces have been of
considerable classical interest. For example, an important class of spaces considered
in the classical literature on the generalized moment problem [21] consists of those
spaces P spanned by a Chebyshev system (or T-system), which are characterized by a
bound on the number of zeros for any nonzero polynomial in P. These spaces arise in
important applications of the generalized moment problem; e.g., the power moment
problem and the trigonometric moment problem of odd order and have remarkable
approximation properties in the Banach space C[a, b]. We remark that [21] contains
a neat application, generalizing Feldbaum’s Theorem on the number of switchings,
of Chebyschev systems to the time-optimal control of scalar-input linear control sys-
tems. For our present purposes, we recall the classical result that, if P is spanned by a
Chebyshev system and contains a constant function, then, after a reparameterization,
P consists of Lipschitz continuous functions [21, p. 37].

Remark 2.4. We have remarked that the finite-dimensional Nevanlinna-Pick
problem can be recast in a Hardy space setting, where the space P is a coinvariant
subspace (defined, in fact, by a finite Blaschke product) in H2(D). In a seminal
paper [22], Sarason developed a vast generalization of this problem to one involving
liftings of a partial isometry T , defined on an arbitrary coinvariant subspace, which
commute there with the restriction of the shift operator. Among many other results,
Sarason showed that, under general conditions, the lift of T has an H∞ symbol which
is rational with respect to the coinvariant subspace. The corresponding problem for
T being a strict contraction was studied in [8], where optimization methods were used
to show that the lifting of such a T always had such a generalized rational symbol.
Moreover, it was shown that this symbol is completely parameterized by its numerator
in parallel with the conclusion in Theorem 2.2 that π1 is a bijection. In this light, it
is interesting to enquire whether a general version of Problem 1.6 can be formulated,
and solved, in a meaningful infinite dimensional setting.

The formulations of Definition 1.5 and Problem 1.6 for generalized rational mea-
sures and of Theorem 2.2 are new and have some appeal both for the intrinsic sim-
plicity of the formulation and as a unification of a variety of specific applications and
more general results on the moment problem. There are of course antecedents in the
literature to some parts of the theorem and its corollaries. We shall review these
results as a conclusion to our outline of the proof in Section 3.

3. An outline of the proof. The proof of our main result can be reduced to
several steps. The first part involves establishing some smoothness results for Mc and
the maps π1 and π2. This, of course, depends upon the ambient spaces and their
properties, as investigated in Section 4. In Proposition 4.1, we establish the required
smoothness and prove that each of the maps π1 and π2 is a local diffeomorphism,
whenever Mc is nonempty.

The final steps in the proof are to demonstrate that Mc is nonempty for each
positive sequence c, that π1 is a bijection and that π2 is an injection. For, suppose
that Mc is nonempty. By the Inverse Function Theorem, the image of each πi is an
open subset Ui of P+. Therefore, to say that π1 is also a bijection, is to say that it
has an inverse defined on U1 = P+, which from the Inverse Function Theorem must
also be differentiable. That is, the map

π1 : Mc → P+
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is a diffeomorphism. Similarly, to say that π2 is an injection is to say that

π2 : Mc → U2

is a diffeomorphism. Taken together, these steps conclude the proof. The proofs of
the last three steps are, however, not just set-theoretic.

For example, the analysis of the map π2 boils down to the analysis of a linear
map between closed convex sets. If P contains the constant functions, we may, for
example, choose q = 1 which leads to a new constrained problem, the generalized
moment problem for positive polynomial measures. In Section 5, after proving in
Lemma 5.1 that π2 is injective, we analyze its image using the auxiliary problem for
polynomial measures. In particular, we deduce Proposition 5.3 which asserts that π2

fails to be surjective for general c in dimension greater than one.
In contrast, the analysis of π1 is nonlinear and the result is nicer. To say that for

every c and for each p, there exists a unique q is to say that for each fixed p and any
c, there exists a unique q so that the corresponding rational measure solves the mo-
ment problem for c. As for the map π2, this results in a related constrained moment
problem, but in this case there turns out to be a ”Dirichlet principle.” Briefly, such a
principle should assert (in analogy with the inverse problem of the calculus of varia-
tions) that these moment equations (in analogy with the Euler-Lagrange equations)
should represent the critical point equations for some variational criterion. Moreover,
in the best of all possible worlds, the corresponding critical points would turn out to
be minimizing and unique. In Section 6 we show that this, indeed, occurs for the mo-
ment problem for this class of rational measures. In particular, we note in Proposition
6.2 that the map π1 is injective.

Injectivity of π1 is equivalent to the uniqueness of solutions to the related gen-
eralized moment problem introduced in Section 6. The existence of solutions to this
moment problem follows from a priori bounds for the solutions in terms of bounds on
the moment data. In Section 7, the existence of these a priori bounds are established
in Lemma 7.6, which holds whenever P consists of Lipschitz continuous functions.
This has several important and interesting corollaries. It allows us to prove Theorem
7.1 asserting the smooth dependence of these solutions on initial data. This yields
Corollary 7.2 which asserts that Mc is nonempty, for each positive sequence c. Finally,
we deduce (see Proposition 7.3) that π1 is surjective and hence a bijection, thereby
concluding the proof of Theorem 2.2.

Remark 3.1. The proof of Theorem 2.2 both touches upon and gives new proofs
of certain results in the literature on generalized moment problems with a degree, or a
complexity, constraint. Some of these were developed in some specific applications to
problems arising in systems and control and, later, in a more general setting. For ex-
ample, in the SIGEST paper [3], we surveyed the trigonometric moment problem and
its manifestation in our work, and the work of Georgiou, on the covariance extension
problem. In [3], we also reviewed our joint work with Georgiou [5] on the Nevanlinna-
Pick moment problem. In both of these problems, a specialized version of Theorem
7.1 emerged. It is fair to say that, at the time, everybody interested in this circle
of problems recognized that this kind of result capped off the brilliant introduction
of topological methods into these problems by Georgiou [12, 13]. Motivated by the
similarities between these problems, between their corresponding solutions and their
common role as classical instances of the generalized moment problem, we concluded
[3] with a sketch of a unified approach to both applications in the form of a con-
strained generalized moment problem, as treated in Sections 6 and 7. The resulting
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formulation stated a version of Theorem 7.1 for arbitrary subspaces P and referred,
as did the more recent survey [6], to the unpublished report [4] for more details and
proofs. However, it is also fair to say that, at the time, both the formulation of
the general problem in terms of (generalized) rational measures and of Theorem 2.2
remained unanticipated.

The basic technical lemma in [4] has been generalized here as Lemma 7.6, and is
proved in the case when P consists of Lipschitz continuous functions. This is unlikely
to be the most general form of the technical lemma but, in the light of Remark
2.3, could be the most interesting form for finite dimensional subspaces P. A brief
overview of this result and the hypotheses under which versions of Theorem 7.1 have
been established can be described as follows.

• The proof of the corresponding results in [4] required that the subspace P
consists of functions of class C2.

• Georgiou [14] developed an innovative approach to the generalized moment
problem with complexity constraints based on a one-parameter embedding
argument, similar to the path-lifiting proof of the Banach-Mazur Theorem in
[1]. Using this method, Georgiou was able to prove an analogue of Theorem
7.1 for subspaces P consisting of functions of class C1.

• In [7], another alternate approach to this constrained moment problem was
developed from a detailed analysis of the underlying variational problem (see
Remark 7.5), proving in particular that all minimizers arise as interior points.
The proof holds under a condition concerning certain divergent integrals that
is valid whenever P consists of Lipschitz continuous functions.

In contrast, the approach followed here is to use only the existence of the underlying
variational criterion, without solving the variational problem, to give a streamlined
yet self-contained proof of existence and uniqueness results for a class of constrained
moment problems en route to our ultimate goal, Theorem 2.2.

4. Some basic results on smoothness. We now turn to the smoothness of
Mc and the maps π1 and π2. The map

M : P+ ×P+ → C+,

defined via

M(p, q) =
∫ b

a


α1(t)
α2(t)

...
αn(t)

 P (t)
Q(t)

dt

has Mc as its level set M−1(c).
For simplicity, we view P and C as real vector spaces, so that P is spanned by

the real basis (αi), where we have replaced a complex-valued (αk) by its real and
imaginary parts. The Jacobian, Jac(M)(p0,q0), of M at a point (p0, q0) takes the form

Jac(M) = (∂M/∂p, ∂M/∂q) = (Mp,Mq) (4.1)

where Mp is the square matrix whose (i, j)-th entry is

(Mp)(i,j) =
∫ b

a

αi(t)αj(t)
1

Q(t)
dt (4.2)
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and where Mq is defined by

(Mq)(i,j) = −
∫ b

a

αi(t)αj(t)
P (t)
Q2(t)

dt, (4.3)

each being evaluated at the point (p0, q0). Thus, Mp (or −Mq) is the gramian matrix
of the real basis (αi) with respect to the positive definite inner product defined by
P (t)dt (or P (t)/Q2(t)dt) on C[a, b]. Therefore, Jac(M) has rank 2n − r + 2 at each
point (p, q) so that, by the Implicit Function Theorem, we obtain the following result.

Proposition 4.1. For each c ∈ C+, Mc is either empty or a submanifold of
P+ ×P+ of real dimension 2n− r + 2.

As restrictions of a smooth map to a smooth submanifold of the product, both
π1 and π2 are smooth maps from Mc to P+. Suppose that M(p0, q0) = c so that, in
particular, Mc is nonempty. The tangent space T(p0,q0)(Mc) to Mc at (p0, q0) is given
by the kernel of Jac(M)(p0,q0). By inspection, we have

ker Jac(M)(p0,q0) =
{[

M−1
p x

−M−1
q x

]
: x ∈ R2n−r+2

}
. (4.4)

We wish to show that

rank Jac(π1)(p0,q0) = 2n− r + 2.

This will occur if, and only if,

dim ker Jac(π1)(p0,q0) = 0,

which, since π1 = proj1|Mc , is equivalent to the condition that the subspace

ker Jac(proj1)(p0,q0) ∩ ker Jac(M)(p0,q0) (4.5)

is trivial. Now, since

ker Jac(proj1)(p0, q0) =
{[

0
y

]
: y ∈ R2n−r+2

}
,

the intersection (4.5) is parametrized by solutions to the equation M−1
p (x) = 0. Since

this implies x = 0, it follows that the intersection (4.5) is the trivial subspace {0}.
In paticular, the Jacobian of π1 at (p0, q0) is nonsingular. A similar argument

shows that Jacobian of π2 at (p0, q0) is nonsingular and therefore, the final result in
this section then follows from the Inverse Function Theorem.

Proposition 4.2. Whenever Mc is nonempty, each of the maps π1 and π2 is a
local diffeomorphism.

5. Injectivity of π2 and the generalized moment problem for polynomial
measures. For each fixed q ∈ P+, the inverse image π−1

2 (q) in Mc is convex. If
π−1

2 (q) is nonempty, then Proposition 4.2 implies that it consists of a single point.
Lemma 5.1. The map π2 is an injection.
The question of whether π−1

2 is nonempty is more interesting. To this end, we
shall now keep q fixed and vary p. It follows from the above that the corresponding
map

L+ : P+ → C+
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from a positive polynomial p to a positive sequence c is a convex injection. To say
that L+(p) = c is to say that (p, q) ∈ Mc, so that we are interested in the image of
L+. This is also of independent interest. For example, if P contains the constant
functions, choosing q = 1 leads to a special case of Problem 1.6.

Problem 5.2. Given a sequence of complex numbers c0, c1, · · · , cn and a sub-
space P, the generalized moment problem for polynomial measures is to parameterize
all positive polynomial measures P (t)dt such that∫ b

a

αk(t)P (t)dt = ck, k = 0, 1, · · · , n. (5.1)

To say Problem 5.2 is solvable for all positive c is to say that L+ is surjective,
which is in turn equivalent to asserting L+ : ∂P+ → ∂C+. This is trivially true for
dim(P) = 1.

Proposition 5.3. The convex injection L+ fails to be surjective in dimension
greater than one.

Proof. Indeed, it is suffices to consider the real case and to suppose αk is a real,
orthonormal basis for P. In this case, L+ is the identity map and C+ can be shown
to be the positive orthant in R2n−r+2. If L+ were a bijection, then it would follow
that αk ∈ ∂P+ for each αk. Consequently, each αk would be non-negative on [a, b],
contradicting orthogonality in dimensions two or greater.

This shows that the generalized moment problem for polynomial measures is
unsolvable for a set of positive sequences having positive measure, whenever P has
dimension at least two. The same underlying argument used for the polynomial
measure problem works for arbitrary q, if we choose (αk) to be an orthonormal basis
with respect to the positive measure dµ = dt/Q.

6. A Dirichlet principle for the existence of certain rational measures.
We now turn to the map π1. As in the previous section, we shall begin with an
analysis of the “fiber” π−1

1 (p) of the map π1 over a fixed p in P+. As before, for
an arbitrary c ∈ C+, this leads to a related constrained moment problem, defined as
follows.

Consider the function F p : P+ → C+, defined componentwise via

F pk (q) =
∫ b

a

αk(t)
P (t)
Q(t)

dt,

and a given positive sequence c = (c0, ..., cn). In this notation, the generalized moment
problem takes the form

F pk (q)− ck = 0, k = 0, 1, . . . , n.

In this setting, our Dirichlet Principle amounts to the observation that these
equations are the critical point equations for some variational criterion Jc defined for
q =

∑n
k=0 qkαk in P+. To this end, we fashion the 1-form

ωc = Re

{
n∑
k=0

[ck − Fk(q)] dqk

}
= Re

n∑
k=0

ckdqk −
∫ b

a

P

Q
dQdt,

on P+. Computing the exterior derivative we obtain

dωc =
∫ b

a

P

Q2
dQ ∧ dQdt = 0,
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establishing that the 1-form ωc is closed.
Now, any convex region is star-shaped so that, since P+ is open in R2n−r−2, by

the Poincaré Lemma [23] there exist a smooth function Jc obtained by integrating
ωc on any path between any two endpoints. Since Jc is unique up to a constant of
integration, we can express Jc as a function of the upper limit Q of the integral, i.e.,

Jc(q) =
∫
ωc = 〈c, q〉 −

∫ b

a

P logQ dt.

We note that Jc is strictly convex and has an interior critical point precisely at a
solution of the generalized moment problem. This has several nontrivial consequences.

First, any such solution corresponds to a minimum of Jc and is therefore unique.
In other words, F p : P+ → C+ is injective. Second, the Jacobian, Jac(F p), must
satisfy

Jac(F p)T = Jac(F p) = D2(Jc) > 0.

Summarizing these two observations, we see that

F p : P+ → C+

is a diffeomorphism onto its image, which is an open subset of C+.
Remark 6.1. Given a fixed choice of p and c, this shows uniqueness of q. As

a corollary, we conclude the following basic result.
Proposition 6.2. The map π1 : Mc → P+ is injective.

7. Bijectivity of π1 and certain of its consequences. The key remaining
ingredient in the proof of Theorem 2.2 relies on showing that F p, and hence π1, is
surjective. We have already established that F p is a diffeomorphism onto its image.
If F p were surjective, it would have a global continuous (in fact smooth) inverse so
that the inverse image under F p of a compact set will be compact. In other words,
F p would necessarily be a proper map. Conversely, if F p is proper then the image of
F p, which we know to be open, is also closed. Since C+ is convex, it is connected and
therefore F p is onto.

Before establishing this fundamental property in Lemma 7.6, we develop some of
its consequences.

Theorem 7.1. [7] If P consists of Lipschitz continuous functions, the mapping

F p : P+ → C+

is a diffeomorphism.
Corollary 7.2. If P consists of Lipschitz continuous functions then, for each

c ∈ C+, the submanifold Mc is nonempty.
Proposition 7.3. If P consists of Lipschitz continuous functions, for each c ∈

C+ the restriction

π1 : Mc → P+

of the first projection is bijective. That is, for every positive sequence c and every
choice of p in P+, there is a unique q such that (p, q) lies in Mc.

The conclusion of Proposition 7.3 defines, for each fixed c ∈ C+, a map

gc : P+ → P+
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where gc(p) is the unique q such that (p, q) ∈ Mc. This map was studied in [7]. In
more explicit terms, q is the unique function in P+ such that Q is the denominator
in the rational measure with numerator P solving the moment equations∫ b

a

αk(t)
P (t)
Q(t)

dt = ck, k = 0, 1, · · · , n

for c. Moreover, in the language of Theorem 2.2, we see that

gc = π2 ◦ π−1
1 .

We summarize these observations in the following result.
Corollary 7.4. [7] The mapping

gc : P+ → P+

is a diffeomorphism onto its image.
Remark 7.5. Theorem 7.1 and Corollary 7.4 were derived in [7] from a detailed

analysis of the optimization problem defined by Jc, which showed in particular that F p

is surjective. Briefly, since 〈c, q〉 > 0, a comparison of logarithmic and linear growth in
the definition of Jc implies that Jc is bounded from below on P+ for a positive sequence
c0, c1, . . . , cn. However, to show that Jc achieves a (unique) minimum on P+ requires
a proof of properness of Jc, a proof that relies on an analysis of certain divergent
integrals associated to ∂P+ . A more refined analysis is required to ultimately prove
that Jc has an interior minimum. The importance of this for the moment problem
is clear: To say that Jc always has an interior minimum is of course to say that the
moment equations

F p(q) = c

always have a solution.
The next lemma approaches properness from a different perspective.
Lemma 7.6. Suppose P is a vector space consisting of Lipschitz continuous

functions. Then, F p : P+ → C+ is proper.
Proof. First note that whenever f :=

∑n
k=0 fkαk ∈ P+, the measure

dm = 〈c, f〉dt

is of course a positive measure, absolutely continuous with respect to the Lebesgue
measure dt. In particular,

Re
n∑
k=0

fkF
p
k (q) =

∫ b

a

P

Q
dm > 0. (7.1)

We claim that for any compact set K in C+, (F p)−1(K) is bounded. To see this,
suppose (cj) is a sequence in C+ converging to c ∈ C+ such that F p(qj) = cj for some
qj ∈ P+. We claim that the sequence Mj := ‖qj‖ is bounded in any norm on the
vector space P+. Setting rj := qj/Mj , we first observe

F pk (qj) = Mj

∫ b

a

αk
P

Rj
dt
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so that choosing f = (f0, f1, . . . , fn) as above, it follows that

Mj

∫ b

a

P

Rj
dm = 〈f, cj〉

is a convergent sequence with the limit 〈f, c〉 > 0. Since dm is a positive measure and
since the sequence (P/Rj) is bounded away from zero, it follows that the sequence
(Mj) is bounded. Therefore, the preimage of a convergent sequence in K has a cluster
point in the closure of P+. Such a cluster point q cannot lie on the boundary of P+,
for then Q would be a nonnegative function in P having a zero t0 ∈ [a, b] but for which
the integral in (7.1) is finite. Since Q is Lipschitz continuous at t0, by definition, there
exists an ε > 0 and an M > 0 such that Q(t) ≤ M |t − t0| whenever |t − t0| < ε and
t ∈ [a, b]. In particular, if t0 ∈ (a, b),∫ b

a

P

Q
dm ≥ 1

M

∫ t0+ε

t0−ε

P

|t− t0|
dm = +∞,

contrary to assumption. If t0 = a or t0 = b, a similar estimate holds. Hence, q ∈ P+,
establishing that F p is proper.

REFERENCES

[1] M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, New York, 1977.
[2] C. I. Byrnes, A. Lindquist, S.V. Gusev, and A. V. Matveev, A complete parameterization of

all positive rational extensions of a covariance sequence, IEEE Trans. Aut. Contr. AC-40
(1995) 1841-1857.

[3] C. I. Byrnes, S.V. Gusev, and A. Lindquist, From finite covariance windows to modeling filters:
A convex optimization approach, SIAM Review 43 (2001) 645–675.

[4] C. I. Byrnes and A. Lindquist. Interior point solutions of variational problems and global
inverse function theorems. Department of Mathematics, Royal Institute of Technology,
Stockholm, Sweden, Technical Report TRITA/MAT-01-OS13, 2001.

[5] C.I. Byrnes, T.T. Georgiou and A. Lindquist, A generalized entropy criterion for Nevanlinna-
Pick interpolation with degree constraint, IEEE Trans. Automatic Control AC-46 (2001)
822–839.

[6] C. I. Byrnes and A. Lindquist, A convex optimization approach to generalized moment
problems, Control and Modeling of Complex Systems: Cybernetics in the 21st Cen-
tury: Festschrift in Honor of Hidenori Kimura on the Occasion of his 60th Birthday,
K. Hashimoto, Y. Oishi and Y. Yamamoto, Editors, Birkhäuser, 2003, 3–21.
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