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On the Partial Stochastic Realization Problem

Christopher I. ByrnesFellow, IEEE and Anders Lindquistiellow, IEEE

Abstract—In this paper, we describe a complete parame- partial stochastic realization problem by describing minimal
terization of the solutions to the partial stochastic realization realizations as being the simplest class of models capable of
problem in terms of a nonstandard matrix Riccati equation. Our describing the given data. Alternatively, theaximum entropy

analysis of this covariance extension equation (CEE) is based Onf'l be i d S f1h
a recent complete parameterization of all strictly positive real 1l€r may be interpreted as maximizing some measure of the

solutions to the rational covariance extension problem, answering “entropy” of the covariance window and, in this way, assumes
a conjecture due to Georgiou in the affirmative. We also compute as little as possible about the completion of the correlation
the dimension of partial stochastic realizations in terms of the sequence. The maximum entropy filter may, or may not, be

rank of the unique positive semidefinite solution to the CEE, . .
yielding some insights into the structure of solutions to the minimal, but it always has degree equal to the lengthof

minimal partial stochastic realization problem. By combining the covariance window.

this parameterization with some of the classical approaches in  More generally, the problem of characterizing all stationary
partial realization theory, we are able to derive new existence and |inear stochastic systems, of degree at mgstaving outputs
robu_stness_ results concerning the degrees of minimal stochastlcwhich match a given partial covariance sequence is known as
partial realizations. As a corollary to these results, we note that, . . .
in sharp contrast with the deterministic case, there is no generic tNe rational covariance extension problerfior example, the

value of the degree of a minimal stochastic realization of partial maximal entropy solution may be characterized as the unique

covariance sequences of fixed length. solution for which there are no finite zeros of the correspond-
Index Terms—Covariance extension, parameterization, partial INg spectral density. Since the spectral zeros have intrinsic
stochastic realization, positive degree, positive real. importance in speech synthesis, and since the additional mem-

ory is required by a nonminimal, amth-order filter is both
relatively cheap and available. The conjecture of Georgiou that
all solutions to the rational covariance extension problem can
I N SIGNAL processing and speech processing, a signalja parameterized in terms of the partial covariance data and
often modeled as a stationary random sequence which is thenoice of spectral zeros provides an attractive complement
output of a linear stochastic system obtained by passing Whigeihe problem of minimal partial stochastic realization. Using
noise through a filter with a stable transfer function and lettinge recent verification of this conjecture [10] and an integration
the system come to a statistical steady state. For exampiethe various classical approaches to the partial realization
artificial speef:h is synthesized by a combination of. two k'r‘(ﬁoblem, in this paper we prove several new results about the
of models. Voiced sounds can be produced by passing perioflisjc nroblem of parameterizing rational models for partial
signals through a deterministic filter, while unvoiced Soun%variance data.
are produced by passing white noise through a shaping fiIterln Section 11, we describe the basic problems more explicitly

so that on a sufficiently small interval of time the unvoicegnd introduce a Riccati-type equation, called twariance

speech pattern can be regarded as a realization of a Statio_%%énsion equatiofCEE), which is formulated in terms of

random sequence. Of course, in practice only a finite Str"ﬁge partial covariance data and a choice of desired modeling-

of observed data is typl'callly ava'ulable' for speech Sym.h??fﬁer zeros. This is a nonstandard Riccati equation, the positive
(as well as for any application), in which case only a flnltg

: emidefinite solutions of which would parameterize the solu-
covariance sequence can be produced. . . . . .
) ' .Pon set of the rational covariance extension problem in terms
The need to construct stochastic models from a fini

window of correlation coefficients has led to the study o?ef the partial covariance sequence and the zeros of the desired

several problems involving the description of classes of S‘Jﬁgdelmg filter. Our first main result, Theorem 2.1, asserts that

tionary linear stochastic systems having outputs which math re alwayr? eX'SE ? rl:_mquT posmve se_mlcljeﬂrr:ned solut|onf.
given partial covariance sequence. One of these ipangal VOreover, the rank of this solution Is precisely the degree o

stochastic realization problemwhich consists of describing (€ corresponding shaping filter, giving refined bounds for the

all such stochastic systems having the smallest possible génimal partial realization problem.

gree, which we refer to as theositive degreef the partial The mlrjlmal partial stochastic reallzatlon problem has three

covariance sequence. Kalman motivated the study of ti¢etS. Itis of course related, but not equivalent, to the usual

classical minimal stochastic realization problem in which com-
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is sometimes referred to as the algebraic degree of the partiatresponding modeling filter (40). The existence of a positive
covariance sequence. Naturally, the deterministic problesamidefinite solution is, of course, of considerable independent
relaxes the constraint that the transfer function be positiugerest in partial stochastic realization theory.
real. The positivity of interpolating functions has deep histor- Finally, Section V is devoted to the question of minimality.
ical roots as well, going back to the classical Cagatfory In particular we prove Theorem 2.2, which has several interest-
extension problem, which involves the parameterization of aifig consequences. First, it implies that the positive degree of
positive real meromorphic functions which match, or interpa partial covariance sequence has no generic value. Moreover,
late, a partial sequence of Laurent coefficients. Although eatttere is an open set of partial correlation sequences for which
of these three problems has been completely solved separatélg, minimal, positive degree is, and the minimal stochastic
the interrelationship between them is quite complicated, partial realization problem and the rational covariance exten-
fact which has caused some confusion in the literature asidn problem are equivalent. For such sequences, then, the
in practice. For example (see [43]), under certain conditionsinimal partial stochastic realizations are parameterized by
some popular identification procedures have been knowntte set of Schur polynomials, i.e., by the desired zeros of
fail because the existence of a generic value for the positittee corresponding minimum phase spectral factor. Finally, the
degree of a partial covariance sequence has been implicggneral result allows one to recast the general partial stochastic
assumed, something which is true for the algebraic degreereélization problem into the problem of computing the positive
a sequence. degree and the problem of characterizing the structure of the
Nonetheless, by combining the theories underlying theset of spectral zeros which yield a minimal degree realization.
three problems with the parameterization of solutions to the
rational covariance extension problem, we are able to develop
related existence and robustness results about minimal sto-
chastic partial realizations which yield some rather interestingIn signal processing and speech processing [14], [18], [23],
insights into the properties of the positive degree of a parti@3], [34], [45] a signal is often modeled as a stationary
covariance sequence. As an example, Theorem 2.2 asserts thagjom sequencéy(t)}.cz which is the output of a linear
in sharp contrast to the algebraic degree of a sequence, for egfdighastic system
integerln* betwgen%n andn there is_ a non(_ernpty open subset {a:(t +1) = Az(t) + Bu(t)
of partial covariance sequences with positive degréee
As we have mentioned, the techniques used in this paper are y(t) = Ca(t) + Dut)
an integration of traditional, and some recent, approachesofotained by passing (normalized) white noige(t)}:cz
the related problems described above. In Section Ill, we brieflyrough a filter
review the status of partial realization theory beginning with
some historical observations about rationality due to Euler and
Kronecker, observations which play an important part in our
constructions later in the paper. In Appendix A, we give a
brief summary of the solution to the Caratidory extension With a stable transfer function
problem in terms of the well-knowischur parametersde- w(z) = C(zI — A"'B+ D 2)

termined by the partial covariance sequence. In addition, we

. L ! o . d letting the system come to a statistical steady state. Here
describe a fast filtering algorithm which, in fact, can be Vlewe?fability a?nountsy to the matrixd having all its eigﬁnvalues

as a nonlinear dynamical system which propagates the Scﬁfﬁctly inside the unit circle.

para_tmeters corrgspond!ng to rational mterpolants. Thls_ poin Consequently, the stationary stochastic prode€#) bz is
of view can provide estimates for the asymptotic behavior gof .

. ; . given by the convolution
those Schur parameters which correspond to rational solutiohs

Il. MAIN RESULTS

1)

white noise—s | w(2) | -2,

to the CaratBodory extension problem (see, e.g., [10]) and is

also quite useful in our analysis of the propertiegof[thg)positive u(t) = Z wepuk),  t=0,1,2, - 3)
degree. In Appendix B, as another prerequisite to our analysis h=meo

of the positive degree, we briefly relate the construction ¥fheréwo = D andwy, = CA¥'Bfork=1,2,3, - and
the classical resultant to that given by Kronecker in terms ¥here

determinants of Hankel matrices. When combined with some w(z) = wo + w2t Fwer E b wsz P4, 4

fundamental work by Brockett on the geometry of the partia}lhe processy(t)}.cz has a rational spectral density
deterministic realization problem, this is extremely useful in

analyzing when the algebraic, and sometimes the positive, ®(2) = w(z)w(z"") ®)
degree can be lower or higher than expected. which we assume to be positive on the unit circle. In other
Section IV is devoted to the covariance extension equatiaords,w(z) is a stable spectral factor & which we shall take
and the properties of its solutions. Our principal result regartb be minimum phasei.e., the rational functionus(z) has all
ing the CEE concerns existence and uniqueness of the posiitggooles and zeros in the open unit disc ang= w(cc) # 0.
semidefinite solution, similar in spirit to the classical existenda system-theoretical language we say thé the output of a
and unigueness theorems for the Riccati equations arisingshmaping filterdriven by a white noise input, with the transfer
filtering and control, and the connection of this solution to theinction w.
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It is well known that the spectral densify has the Fourier may be determined via the polynomial spectral factorization

representation problem
Q(z) =co+ Z ci(z' + 279 (6) Ha()b(z™) + a(z"1)b(2)] = p*o(2)o(z7). (18)
i=1
where In fact, identifying coefficients of nonnegative powerszin
in
Co, C1, C2, C3, - (7)
2a(z)v(z) = b(z)
is the covariance sequence defined as
Ck = E{y(t + k)y(t)}v k= 0,1,23, . (8) we obtain
Such a covariance sequence has the property that the infinifé1 C1 1 ay
i i b c 2c 1 a
Toeplitz matrix 2 _ 9 .2 n .1 R . (19)
o €1 C2 : : :
c1 € €1 - bn Cn 2¢n—-1 2cp—2 -+ 1 an,
Too = co - (9)

Likewise, identifying coefficients of negative powerszinwe
have

is positive definite. Therefore, without loss of generality we

can assume thaty = 1.

The corresponding stochastic realization problem is the
inverse problem of determining the stochastic system (1) given

the infinite covariance sequence (7). The condition tfét)

be rational introduces a finiteness condition on the covariance

sequence (7). In fact, the positive real part

v(z) = %0 + 2 ciz™ (10)
of
(2) = v(z) +v(z™h) (11)
is rational and may be written
o(z) = %zg ; (12)
where
a(z) =2"+a2" 4+ ta, (13)
and
b(z) =2" +b12" "t + by (14)

are monic polynomials. The property thatz) be strictly
positive real is equivalent ta(z) and b(z) being Schur

n
Cn4s = — Z Cjti—14y, = 1, 2, 3, tee (20)
j=1
so thata := (a1, ag, - -+, a,)’ satisfies the Hankel system
Cc1 C2 cee Cn a1 Cn+41
C2 C3 Cn.+1 a'2 __ Cn:+2 ' 21)
Cn  Cp41 Con—1 een C2In
Now, Kronecker’'s theorem implies that
Cc1 C2 C3
n* := deg v(z) = rank Z zi zi
C1 Co Cp*
=rank ° ° fnit (22)
Cnv Cnrtl Con*—1

Thus, takingn = n*, (21) has a unique solutiom which, in-

serted into (19), yields. Consequently, the spectral factor (16)

is completely determined by the partial covariance sequence
€1, Gz, *++, Cap-} OF, alternatively, by{ey, ¢z, - -+, ¢, } @nd

polynomials i.e., having all roots in the open unit disc and

satisfying

a(2)b(z7) + a(z"H)b(z) > 0 (15)

on the unit circle. Therefore, onegz) and b(z) are known,
the unique stable minimum-phase spectral factorpofi.e.,
the solution

o(z)
" a(z)

w(z) = (16)

As an illustration from speech synthesis, recall that artificial
speech is produced by a combination of two kinds of models,
one kind for voiced sounds (such as vowels) and one kind
for unvoiced sounds (for consonants such as “s” or “t"), the
transfer functions of which vary on different small intervals
of time. Voiced speech can be produced by passing periodic
signals through a deterministic filter, while unvoiced signals
can be produced by passing white noise through a shaping
filter. On a sufficiently small interval of time, the unvoiced
speech pattern can be regarded as a realization of a stationary

of (5) wherep € IR, anda(z) is a monic Schur polynomial random sequencg with covariances

o(z)=2"+o 2"+, (17)

a. = E{y(t + k)y(t)} (23)



1052 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 8, AUGUST 1997

where E{-} denotes mathematical expectation and with problem was originally formulated, the related problem of

spectral density parameterizing all positive rational extensions having degree
0 less than or equal te. becomes considerably more relevant.
O(z) =co+ Z e (2 + 27, (24) This is the rational covariance extension problem.
k=1 Of course, at a purely set-theoretic level, there are many
Given a (infinite) string of observed data ad hocways to parameterize a solution set, not all of which
are so useful. For this reason, we shall formulate these two
Yo, Y1, Y2, Y3, (25

roblems more precisely. Denote loy, the subset ofR"”,
onsisting of partial covariance sequences (29). First, recalling
that ¢o has been normalized to one, we will suppregs

satisfying a certain ergodicity property, the covariance sg
quence(co, ¢1, ¢z, c3, --+) can be determined as

] 1 & from the partial covariance sequeneeand denote by the
cp = lim T Z YetrYe (26)  pointc = (c1, 2, -+, €,) in Cp. Next, letn* be any integer
=0 satisfying0 < n* < n. We define the subsef(n*) of R"

which defines a unique spectral density and hence a UniQu€ the set of those partial covariance sequerchaving a

shaping filter. . . . minimal stochastic realization of degre&. Finally, we define
However, in practice only a finite string of observed data,q subseBi(n*) of R™ as the set of those partial covariance
Yos Yis Y2y * s YN (27) sequences having a minimal stochastic realization of degree

is typically available for speech synthesis (as well as for md§SS than or equal te*. For example, zero is contained in

applications). IfN is sufficient large, there is # < N such %(n"), for everyn* butis contained it (n*) only for n* = 0.
that In this notation, the partial stochastic realization problem

. consists of two parts.
% Z Yok e (28) 1) I%iscribeS(n*) as explicitly as possible as a subset of
t=0

_ o - . 2) Forcin S(n*) parameterize those realizations of degree
is a good approximation af,, but now only a finite covariance n* in terms of familiar, or useful, system-theoretic
sequence objects.

Similarly, the basic mathematical problem underlying the
rational covariance extension problem is the following.
wheren <« N, can be produced. 3) Given acin C,, in terms of familiar, or useful, system-

The need to construct stochastic models from a finite  theoretic objects, parameterize all infinite extensions
window of correlation coefficients has led to the study of
two fundamental, but related, problems: thertial stochastic Cn+1) Cnt2y) Cnt3, " (31)
realization problem and the rational covariance extension f (29 h that
problem. Both problems begin with a partial list of correlation of (29) suc a

Co, C1, C2y """, Cn (29)

coefficients (29) with the property that the Toeplitz matrix v(z)=co+err ez ez 4 (32)
CO 61 o cn . . . .
.« Cre1 defines a function which is

Tn = : : - : (30) a) rational of degree at most,
' ' ' ' b) strictly positive real, i.e., analytic foz| > 1 and

Cn  Cpn—1 Co . . ..

is positive definite. satisfying the positivity condition

The partial stochastic realization problem involves both v(e?) +v(e®) >0, foraldelo, 2r). (33)
characterizing the minimal degree of a stochastic realization,
which generates the given window (29), and parameterizing all To each such extension there is a unigquedeling
such minimal realizations. Kalman motivated this problem by filter, i.e., the minimum phase spectral factor (16) of
describing a minimal realization as being the simplest model the spectral density (33).
for the given data. We shall first illustrate what we mean by a parameterization

Another interpretation of simplicity can be given in terms oin terms of “familiar, or useful, system-theoretic objects.”
the maximum entropy filtedetermined by the data (29). (Sed”roblem 3) combines two requirements, positivity and rational-
Section 1l for more details.) The maximum entropy filter mayty. Such extension problems have a long history. Suppressing
be interpreted as maximizing some measure of the “entropy” @tionality, we obtain th€arathéodory extension problere.,
the covariance window (29) and, in this way, assumes as littlee problem of finding all positive real functions analytic
as possible about the completion of the correlation sequenceitside the unit disc, which satisfy (32). This was posed

The maximum entropy filter has degreeand thus may not by Carat®odory and was solved by Schur in terms of an
be minimal. Nevertheless, its construction shows that themssociated sequence of parameters, equivalent to (29) and now
always exist models for (29) having degree less than or eqlkalbwn as theSchur parameterssee Appendix A. However,
to n. Moreover, with the increased availability and cheapéhe basic question of which Schur sequences correspond to
cost of memory, since the time when the partial realizatiomational solutions remains open.
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On the other hand, dropping the positivity Condition a)\ext, for any Schur polynomial
one obFains another ngl—known problem,. namely metiql . o(2) = 2"+ 012" b ko, (36)
realization problem which is presented in more detail in )
Section Ill. The partial realization problem without positivityVe define

has been extensively studied, and there exist explicit param- Moy —op 10 0
eterizations of the set of rational, but not necessarily positive o9 —o2 01 0
real, functions which satisfy (32). Thus, in contrastto the Schur o= | . |, I'= : :
parameterization, such parameterizations guarantee; thvak ' —0n—1 0 0 1
be rational of degree at most but leave open the rather -On -0, 0 0 0
challenging problem of characterizing positivity in terms ofnd
the remaining parameters. 1

In this setting, there was a long-standing conjecture of 0
Georgiou [23] that, for any desired choice of spectral density h = : @37)
zero structure, there is one and only one positive extension, 0

i.e., one and only one modeling filter. The existence question

had already been settled by Georgiou in [23]. In [10], we,

not only pTO"ed |njec_:t|V|ty, but also that the buecuoq Srational covariance extension problem in terms of the partial

actuallyad|ffeomorph|sm anq thaj[ the problem ofdet'erm|n| variance sequence and the auxiliary Schur polynomial

the appropriate mo_del_mg filter IS well pqsec_i. This resu torresponding to desired zeros. This CEE has the form

was obtained by viewing a certain fast filtering algorithm

as a nonlinear dynamical system defined on the space of P =T(P — Phh'P)I" + g(P)g(P) (38)

positive real rational functions of degree less than or equal

to n. It is observed that filtering and interpolation induc&vhere’ denotes transposition and the functipiR"™*" — R"

complementary, or “dual” decompositions (or foliations), of6 defined as

this space. From this assertion about the _geo_metry of positive g(P) = u+Ug + UL'Ph. (39)

real functions follows a result [10] which itself answers

Georgiou’s conjecture in the affirmative and provides the first Our principal result concerning the CEE concerns the ex-

complete parameterization of all positive rational extensiongstence and uniqueness of the positive semidefinite solution,
This solution to the rational covariance extension problegimilar in spirit to the classical existence and uniqueness

expresses the choice of free parameters in familiar systetheorems for the Riccati equations arising in filtering and

theoretic terms, viz. the numerator of the resulting modelingntrol and the connection of this solution to the correspond-

filter. While the numerator can be any Schur polynomial, thag modeling filter (40). This, of course, is of considerable

resulting pole polynomial, which is determined by this choicidependent interest in partial stochastic realization theory.

of zeros and by the interpolation conditions, must be obtainedTheorem 2.1:Let (1, ¢y, ---, ¢,,) be a given positive par-

by solving a system of nonlinear equations which gives litletial covariance sequence. For every Schur polynomial),

priori information about the degree of the resulting realizatiothere exists a unique positive semidefinite solutidrof the

As we shall demonstrate in this paper, it turns out that the@EE satisfyingh/ Ph < 1, to which in turn there corresponds

parameters can also be expressed in terms of a new Riccatunique modeling filter

type equation which we shall call the CEE [8], [9]. Thus,

- - © relizat - o(2)

in the partial stochastic realization problem, the algebraic w(z) =p (40)

Riccati equation (87) of stochastic realization theory needs a(z)

to be replaced by a nonstandard, quadratic matrix equationfgf which the denominator polynomial

another type, containing certain indefinite terms. Moreover, the

rank of the unique positive semidefinite solution of the CEE alz)=2"+a 2" 4 ta, (41)

is the degree of the associated partial stochastic realization, .

. . . I5 given by

In this problem the given covariance data may also be

represented in terms of the firstcoefficients obtained from a=({I-U)TPh+o)—u (42)

the expansion

z

We can now formulate a nonstandard Riccati equation
hich, as we shall see below, parameterizes solutions to the

n andp € (0, 1] is a real number given by

=1- ulz_l - qu_Q

el 4+ tey, p= (1—h’Ph)1/2. (43)
—ugz 3 — . (34)

All modeling filters are obtained in this way. Moreover, the

about infinity, in terms of which we define degree ofw(z), and hence that af(z), equals the rank oP.
Uy 0 The results stated so far relate to the parameterization
o U1 0 aspects of our problems for a fixedin C,,. While memory
u= 1. |, U= | W U1 . (35) constraints might not make the minimality of the degree as
' : : . essential, we will now turn to Problem 1) since it is also
tn Up—1 Up—z - u 0O the case that certain matrices which are ubiquitous in linear
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systems theory will become singular, or that certain numeriagtiaracterizing which Schur sequences correspond to rational
algorithms may become ill-conditioned, when computed faolutions is apparently quite difficult.
nonminimal realizations. As we shall show in Section V, there While the Schur parameters and an associated family of
is a sharp contrast between Problem 1) and the correspondintdpogonal polynomials, the Sz&goolynomials, are never-
problem for deterministic partial realization theory; e.g., fatheless very useful in constructing rational modeling filters,
n > 2there is no generic value of the minimal degrééc) for rationality is so central to the circle of problems considered in
¢ € C,. In fact, evenS(n) has a nonempty interior. Existencethis paper that it is appropriate and useful to begin a review of
results such as these follow from the general existence resyigstial realization theory with the question: When is a proper
inherent in the solution of the rational covariance extensigneromorphic functiory on C rational? By proper, we mean
problem and provide for the use of geometric approach tibat v takes on a finite value at infinity. In particular, by
describing properties of the level sets of the functidiic). replacingv by f, wheref(z) = v(z) —v(o0), we may assume
Recall that a subset dR"™ is semialgebraic, provided it that the meromorphic functiotf is strictly proper; i.e., that
can be defined by a finite number of polynomial equationg, vanishes at infinity. There are no doubt several classical
inequations, and inequalities. For examplg,is a semialge- approaches to determining whether suctfasrational. In this
braic subset ofR", being defined by polynomial inequalities.section, we will rely on two: the method of continued fractions
A subset ofIR" is algebraic, provided it can be defined by @ioneered by Euler and a technigue involving quadratic forms
finite number of polynomial equations. Finally, a property afieveloped by Kronecker in his study of the elimination theory
points inIR"™ is said to begenericif the set of points which of two or more polynomials [35].
enjoy this property is nonempty, with its complement being In his first published work on continued fractions, Euler
contained in an algebraic set. [20] studied the very basic question as to whether the number
Theorem 2.2:Let n* be any integer satisfying < n* < n. e was rational, appreciating that rationality of a real number
Then the subsetS(n*) of R"™, consisting of partial covariancewould be equivalent to the finiteness of the continued fraction

sequencesc;, ¢z, - -+, ¢,) having a minimal stochastic real-expansion
ization of degreen*, are a nonempty semialgebraic set. The 1
subsetX(n*) of those partial covariance sequeneekaving a=n-+ i (44)
a minimal stochastic realization of degree less than or equal o + T
to n* is also semialgebraic. Moreove¥(n*) andX(n*) have g+ ——.
nonempty interiors if and only i%n <n* <n. ag+ .-
Further results concerning these sets and their propg{-fact, Euler shows that forx = ¢ one has
ties can be found in Section V. However, we remark that
Theorem 2.2 has several interesting consequences. First, itim- (ay, oo, ag, ---)=(1,2,1,1,4,1, 1,6, ---). (45)
plies that thepositive degreef a partial covariance sequence
(1, ¢1, -+, ¢n), i.€., the minimal dimension of any partialEuler's proof was actually based on expressing the proper
stochastic realization dff, ¢, - - -, ¢,), has no generic value. meromorphic function (on the punctured complex plane)

Moreover, there is an open set of partial correlation sequeneésg) = ¢!/ as a continued fraction, obtaining instead of the
for which the positive degree is and for which, therefore, constantsy; a sequence of polynomial functions(z) which
Problems 2) and 3) are equivalent. For such sequences, tH#nproposes to evaluateat= 1. In fact, Euler computes these
the minimal partial stochastic realizations are parameteriz&thctions by first computing the numerators and denominators
by the set of Schur polynomials. Alternatively, the minima®f the partial sums of the continued fraction, for which he
partial stochastic realizations of such sequences are in ofigds a two-dimensional linear differential recurrence equation
to-one correspondence with an arbitrary choice of zeros f@hich is solved (as we would today) in terms of an associated
the associated minimum phase spectral factor. Finally, tRéccati equation [20]. This remarkable method also gives, of
general result allows one to recast the general partial stochasggrse, a proof that(z) is irrational.

realization problem into Problem 1) and the problem of Following Kronecker, we begin by fashioning the infinite
characterizing the structure of the set of spectral zeros whigtiankel) matrix

yield a minimal degree realization.
Cc1 C2 C3

C2 €3 C4

Hf = C3 C4 Cj (46)

I1l. A REVIEW OF PARTIAL REALIZATION THEORY

_ One approach t_o theT partial sto.chastic realization problq%m the Laurent series of

is to suppress rationality and to first obtain the solutions to

the Carathéodory extension problenthe problem of finding f()=crz7t +ear P ez 4. (47)

all meromorphic positive real functions which interpolate the

first n Laurent coefficients. As described in Appendix AThere are two principal points we shall need to review
these functions can be parameterized in terms of an associdtete about this construction. We shall later make use of
sequence of Schur parameters, 1, v2, ---), which are its relationship to the resultant of two polynomials, also
equivalent to the correlation coefficients. Not surprisinghdiscovered by Kronecker, in Section V.
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Kronecker’s first, now widely appreciated, observation was In order to compute the minimal algebraic degree of the

that if f were in fact rational, say partial sequence (53), and to parameterize those minimal
partial realizations, it is convenient to turn to the method of
f(z) = 9(2) (48) continued fractions for determining whether a strictly proper

a(z) meromorphic functionf is rational. Just as in Euler’s treatise

then by multiplying each side of (47) hy(z) one obtains a ON the irrationality ok in the application of continued fractions
recurrence of lengtieg a(z) among the Laurent coefficientsto the partial realization problem, the equivalence between
of f. Therefore, thédeg a(z)+j)th column ofH is linearly rationality and finiteness and the computation of the fractional
dependent on the precedidgg a columns. partial sums play an equally important role [2_6], [32]. In
Conversely, Kronecker's theorem asserts tfias rational fact. 1et fo, fi, fo, ---, f, be a sequence of strictly proper
if and only if rankH, is finite. We need to phrase thisrational functions defined recursively in the following way.
observation more carefully for an analysis of the parti&Ven fx—1, apply the Euclidean division algorithm to obtain

realization theorem. More precisely, then, for any infinite s,
sequence P g d fkik(z) = mi(2) + fu(2) (54)
€1, Ca, Cg, -+ (49) wheref;, is a normalizing coefficient chosen so that(z) is
a monic polynomial
of real numbers, consider the family " do—1
m(2) = 2 = mpa 2T = = Mgy (55)
2 Z cjcil anq frer1(2) ig the remaind_er in the fo_rm of a strictly proper
Hj;=|. . ) . (50) rational function. Now, takingfo = f, it can be shown that
: : - : fv+1 = 0 for some finiter if and only if f is rational. Then
G G4l -t Cigj-1 a simple calculation gives the following continued fraction
of rectangular Hankel matrices. Define tdegree indexes €XPansion:
no, N1, N2, -+ 0f (49) in the following way. Sety = 0, 51
and, fork =1, 2, 3, - -, letn be the smallest integer greater () = o (56)
thann,_; such thatd,,_, 41, -, has full rank. According to mz) = B3
Kronecker’s theorem, the Laurent series (47) defines a rational m2(2) = m3(z) — - -+

function of degreen* if and only if (49) has a finite number

of degree indexes;* being the largest. In this case with f,411 = 0. This is theprincipal part continued fraction

of Magnus [44].
n* =rankH; It was pointed out in [32] and further elaborated upon in [26]
c Cs Cnr that the family of minimal rational extensions can be parame-
Co cs cr gt terized via such a finite continued fraction expansion. Indeed,
=rank| . ) L (51) the degree indexes of the sequence (49) or, equivalently, that
5 : e of (47), is then given by the recursion

Cp» Cpr 41 e Conx—1
. _ . ng = ng—1 + dx, no =0 (57)
and there are matriced, B, C) of dimensionsn* x n*, ] ]
n* x 1, and1 x n*, respectively, such that and the algebraic degree of these sequences is n,,.
This suggests [26] that the class of rational functions (48)
CA 1B = ¢, fork=1,23,--- (52) is parameterized by the sequence
so thatC(zI— A)~1 B is the minimal realization of the rational  # = (P1, P2, "+ 5 pm) = (51, 52, *+, 5, 0, .-+, 0)  (58)

function f defined by (47). We calk* the McMillan degree
or the algebraic degreeof (49).

Next, following Kalman [31], consider the problem of sk =10, -+, 0, B, Tk1, *++, Tha,) (59)
finding an infinite extension of a finite sequence

of m real numbers, where

is a subsequence @fl;, parameters, the firg;, — 1 being all

Cly Cay €3y s Cm (53) zero. We shall cal;, thekth sectionof the parameter sequence

p, and the corresponding subsequenceisfthekth section of

having the smallest possible algebraic degree, i.e., such thaMore exactly,p has the form (58) in the cag, < m. If
(47) is arational function of smallest degree. This isghetial  2n, > m, the last sections,,, will not be completely filled, so
realization problem[26], [31], [32], [49], and the infinite one or several of the parameters, 1, 7y, 2, -+ -, Tpn,q, Wil
sequence, which may or may not be unique, is calledramal be arbitrary and will not appear in the parameter sequence
rational extensionof (53). The degree indexes of a finiteWhenever2n, < m, there arem — 2n, zeros after the last
sequence (53) are constructed precisely as for an infinite osections,,, indicating that the lastn — 2n, elements in the
with the exception that the process stops when there are semuence (53) are automatically matched. A “generic section”
more data. Clearly (53) has the same degree indexes as hay the form(/3, ¢x1), consisting of only two parameters.
of its minimal rational extensions. The following is a statement of [26, Th. 6].
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Theorem 3.1 [26]: The function f: R™ — IR™ sending and that
the sequence (53) to the parameter sequence (58) is a bijection. . .
Moreover, if¢, ¢ € R™, p = f(c¢), and p = f(¢&), then on(2)n(277) + (27 Mn(2) =m > 0. (63)
¢ =¢&fore =12 ---, k <mifand only if p, = p;
fori =1,2,--- k.

The proof of this theorem relies on a particular form of the

Consequently, since,,(z) and,(z) are Schur polynomials

_ 1 Pn(2)

converse of the continued fraction expansion (54), which will v(z) = 2 0n(2) (64)
also play an important role in some of the constructions needed N
for our main results. Namely, as shown in [26], the rationd} Strictly positive real and
function (48) can be reconstructed frofa, o, ---, /5, and 1y Tn
m1(z), ma(z), - -+, m,(2) via the three-term recursion v(z) +o(z77) = on(2)on(z—1) (65)

Prt1(2) = iy1(2) Pre(2) = Brr1 Peo1(2), yielding the modeling filter

Py=0, P.; =-1, n
(60) RV
Qu+1(2) = M 1(2) Qi (%) — Pr1Qr—1(2), w(z) = (66)

‘Pn(z) '

@1=1,0Q-1=0 " . o

) This is themaximum entropy solutigrvhich in general has
where the polynomialg, @ are actually the.anczos poly- the property that the corresponding spectral density (65) lacks
nomials used in block tridiagonalization [37]. In fact, thefinite zeros [28]. However, in many applications, such as the

polynomialsg(z) and a(z) are given by speech processing example described above, zeros are desired,
g(z)=P,(z) and a(z) = Q.(2) (61) and the question arises whether it is possible to assign zeros
) i ) arbitrarily and still satisfy (24). To this end Georgiou [23]
which are coprime polynomials [26]. and Kimura [34] observed that the formula (62) could be

Returning to the partial stochastic realization problem, rec@bneralized to
that in addition to the rationality requirement on the interpo-
lating filter which we have just discussed, it is also required () = 1pn(2) + a19n—1(2) + - - + anpo(z) (67)
that the rational filter be positive real. The additional difficulty 2¢n(2) + 01on_1(2) + - + anpo(z)
imposed by positivity can be illustrated by comparing the = % Yoz ez 24 ez M4 (68)
algebraic and positive degrees asvaries over the sef,
of positive sequences. Ferin C,, it is perhaps tempting to thus expressinguv(z) in terms of the 2n parameters
proceed as above by taking to be the algebraic degreeof (a, ), where o« = (ai, a2, -+, ) € IR" and
the partial covariance sequence (29), i.e., the maximum rankof=(v0, 71, -+, 7a—1)’ € R". In fact, it was shown
the Hankel matriceg{;; with i+ j = n+ 1, which, as pointed in [23] and also later in [12] that the interpolation condition in
out in [42] and [43], is common in applications to identificatiorf67) holds for allo, and consequently thikimura-Georgiou
[3], [51]. For this algebraic partial realization problem, it igparameterization (67) characterizes rationality but not
well known [5] that the algebraic degree has the generic valpesitivity. We denote byP, the subset ofR** for which
of » if n = 2r, or if n = 2r — 1. However, this will in w(z) is strictly positive real and let
general not lead to a positive re&lz), or even a stable(z i "
for that matter; cf., [6]. Indeed,el;a)a/ %heorem 2.2, the s(mllllest Pa(r) = (e, 7) € Py | 7 fixed} C IR
degreep that will preserve the positive realness «ffz), the be the positive real region for fixed covariance data.

positive degreef (29), can be any integer between zero and Given the fact that there is an open set of partial correlation

n. Moreover, in contrast to the purely algebraic problem, f%requencesa: which have the maximum positive degree,
eachry = [(n+1)/2], [(n + 1)/2] + 1, - - -, n there is even

b { thedi ional ¢ ) data f ﬁossible, and that memory is both available and cheap, the
an open subset of the-dimensional set of covariance data fOk;, ra_Georgiou parameterization is an attractive parameter-

whichp = v. Infact, as we shall show in Section V, exampleg, 1o of those deterministic partial realizations of degree
of interior points in5(n) are given by the maximum entropy,, hich should also play an important role in the stochastic par-
f|lter for partial covariance sequences satisfying= 0, for ;o) yeajization theorem. Of course, given the partial covariance
¢=1--n-1andec, #0. _ . datay, the choicex = 0 is the maximum entropy solution, but
In general, for any in C, the maximum entropy filter is ;, qeneral it is very complicated to characterize those ather
obtained by setting for which v(z) is positive real.
v =0, fori=n,n+1,n+2 ---. To illustrate our point let us give some low-dimensional
examples. Fon = 1 the representation (67) takes the form

This corresponds to taking(z) = ¢,(z) andb(z) = ¥,(2),
where{y:(2)} and{¢:(z)} are the Szef polynomials of the w(z) = lzt+y+a
first and second kind, respectively, as defined in Appendix A. i 22—y +o

It can be shown that The strictly positive real region is the diamond depicted in

1 () _ 1 tez bepr 24 ez 4. (62) Fig. 1, and fixing the partial cqvariancg data the admissible
2 pn(z) 2 « are the ones on the open interval in the figure.
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Theorem 3.2 [10]: Let (1, ¢y, - - -, ¢, ) be a given positive
partial covariance sequence. Then given any Schur polynomial

o(z)=2"+o "+ + o,

there exists a unique monic Schur polynomiét) of degree
n and a uniquep € (0, 1] such that

_ o(®
w(z) =p CL(Z)
is a minimum phase spectral factor of a spectral density)
satisfying
o>
Fig. 1. The positive regior; ; the marked interval isi’l(%). q;(z) — 1+Z éi(zi—i-z_i), G =c¢fori=1,2, .-, n.
=1

Ao, In particular, the solutions of the rational positive extension
1 problem are in one-to-one correspondence with self-conjugate
T sets ofn points (counted with multiplicity) lying in the open
unit disc, i.e., with all possible zero structures of modeling
filters. Moreover, the modeling filter(z) depends analytically
on the covariance data and the choice of zeros of the spectral
density.
As an example, Fig. 3 depicts the connected open subman-
ifolds P»(v) andS,, consisting of the monic polynomials in
Fig. 2. The positive regiorPs(}, %). Sy, fory = (3, £). These sets form the domain and codomain
of the diffeomorphism, described in Theorem 3.2, sending
to ¢. Theorem 3.2 states that to any painin S., there is one
and only onea such that(c«, v) € P2(v). This « defines a
modeling filterw(z) having the zeros of (z). Conversely, any
2 2 1 1 « such that(w«, v) € P2(y) determines a Schur polynomial
v(z) = 22 _ ?Z + 3 ton(z ?) a2 o(z). We remark thats(z) can also be computed via the
Ztzrtztalz-3)+a convergence of the dynamical system (155) with the initial
condition determined by«, v); see Appendix A.
and the region of positive real = (o, o) is as depicted
in Fig. 2. IV. THE COVARIANCE EXTENSION EQUATION
The higher-dimensional cases become much more compli- . o
cated. While it is true tha®,(+) is always diffeomorphic _Recall that_ the problem under consideration is as follows.
to Euclidean space [7], any good solution to Problem 2§'V€N & partial covariance sequen{:_l: €Lt c".} and a
or 3) would give a parameterization in terms of familiat, onic Stf'ible polynomlab,_representlng the required zeros,
system theoretic objects. In this direction, the possibility d monic Schur polynomiala(z) andb(z) such that:
of parameterizing those filters which are positive real by 1) the rational function
arbitrarily prescribing the zeros of a modeling filter was
suggested earlier by Georgiou [23]. Indeed, using a very v(z)
innovative application of topological degree theory Georgiou
proved that to each choice of zeros there corresponds some
modeling filter. v(z) = % +ez ezl 4otz "+ (70)
Recently we proved an amplification of a long-standing
conjecture of Georgiou that, for any desired choice of spectral
density zero structure, there is one and only one positive & =ci, fori=1,2 -, n; (71)
extension, i.e., one and only one modeling filter. This result
was obtained by viewing a certain fast filtering algorithm 2
as a nonlinear dynamical system defined on the space of La(2)b(z™) + alz"1)b(2)] = pPo(2)a(z7Y).  (72)
positive real rational functions of degree less than or equal
to n. It is then observed that filtering and interpolation induce ~ for some positive real number.
complementary, or “dual” decompositions (or foliations) of We shall first relax the problem by temporarily dropping the
this space. From this assertion about the geometry of positieguirement thau(z) and b(z) both be Schur polynomials.
real functions follows a result [10] which itself answerdn fact, our first result parameterizes the set of all pairs
Georgiou’s conjecture in the affirmative and provides the firét(z), b(z)) of monic, not necessarily Schur, polynomials in
complete parameterization of all positive rational extensionserms of symmetric solutions of the CEE (38).

Next, let us consider the case= 2. Fixing the covariance
data aty, = 1 and~; = , we obtain

(69)

with Laurent expansion

about infinity satisfies the interpolation condition
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(@) (b)

Fig. 3. The domain and codomain of the diffeomorphism of Theorem 3.2 in thercase2 andy = (%,, %).

Theorem 4.1:There is a one-to-one correspondence banda and p are given by
tween symmetric solutiong® of the CEE (38) such that

— _ 1/2
K Ph < 1 and pairs of monic polynomials a=0+IPh,  p=(1-hPh) (83)
a(z) =2" +a12" - Fa, (73) Now, by Theorem 4.1, there is a one-to-one correspondence
b(z) =" + bzt b, (74) between symmetric solution8 of (82) and polynomial spec-

tral factors p=ta(z) of the pseudo-polynomiak(z)o(z71),
satisfying the interpolation condition (71) and the positivityand this correspondence is described by (83). The stable

condition (72). Under this correspondence solution to (81) corresponds t& = 0, the only positive
o =(I—U)TPh+0)—u (75) semidefinite solution to (82), and in this case (83) yields o
and p = 1 as expected.
b=+ U)TPh+o)+u (76)  As a corollary of Theorem 4.1 we have th&tis also a
p=(1- h’Ph)l/2 (77) solution to a certain algebraic Riccati equation related to the

rational functionv(z), defined by (69). In fact, it is elementary

and P is the unique solution of the Lyapunov equation to check that(z) has a minimal realization

P=JPJ — L(ab +ba") + poo’ (78)

v(z) =1/2+ W (2l = F)"lg (84)
where
01 0 - 0 where F' is the companion matrix
o0l F=J-al (85)
000 --- 0 g=30b-a) (86)
is the upward shift matrix. Moreover, the following condition40 Which representation there correspondsigebraic Riccati
are equivalent. equation
Hr=o. . P = FPF +(g— FPh)(1 - }K'Ph)~ (g — FPhY. (87)
2) a(z) is a Schur polynomial.
3) b(z) is a Schur polynomial. We shall say that a symmetric solutighof (87) is stabilizing
If they are fulfilled if #’Ph < 1 and
deg v(z) = rankP. (80) F.=F—(1=HKPh)g—FPh)N (88)

The proof of this theorem, as well as the first of itfas all its eigenvalues in the closed unit disc. It can be shown
corollaries, will be deferred to the end of the section. The f0{3ee, for example, [48]) that (87) has a unique stabilizing

lowing example of polynomial spectral factorization illustrategq|ytion if and only if
Theorem 4.1. ‘ ‘
Example 4.2:Let us consider the case v(e?) +v(e™®) >0,  forall § (89)

a=c=--=c¢ =0 which follows from (72).
Lo o 1 Corollary 4.3: Let P be a symmetric solution of the CEE
Egig;algu\gi\t,;lym(glz?iL/i;é)sm (72) so we must have(z) = 5. (38) such that’ Ph < 1, and letwv(z) be the corresponding
' rational function (69) defined via (75) and (76). Theris the
p2a(2)a(z7) = o(2)a(z71). (81) unique stabilizing solution to the algebraic Riccati equation
(87) corresponding ta(z).
Now, restricting our attention to positive semidefinite solu-
tions of the CEE (38)a(z) and b(z) become Schur polyno-
P=T(P-PhP)I (82) mials andu(z) := 3(b(z)/a(z)) is strictly positive real. Also

Moreover,uw = 0 and U = 0 so the covariance extension
equation (38) becomes
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v(z) is analytic for|z| > R for someR < 1, and hence the Proof: To prove that (94) is equivalent to the interpola-
Laurent series (70) is valid there. Consequently tion condition (71), first note that (19) can be written
= . b=2c+(2C, —Da 95
(z)=1+ Z Gz 4+ 27" (90) ( ) (%5)
i=1 where
is defined in an annulus containing the unit circle and is 1
therefore a bona fide spectral density. €1 c1 1
Corollary 4.4: There is a one-to-one correspondence be- . _ ©2 7 c,=| & ¢l 1
tween positive semidefinite solutions of the covariance ex- : : ‘
tension equation (38) satisfyingf Ph < 1 and monic Schur Cn c c c 1
n—1 n—2 n—3 "

polynomial a(z) of degreen such that for some < (0, 1]
Now, identifying coefficients in (34), we see thatis the
w(z)=p o(2) (91) unique solution of

e U= C. 96
satisfies Cnu = (96)

This equation may also be written

][

and therefore a simple inspection shows that

w(z)w(l/z) =1+ i &zt + 27 (92)
i=1

on the unit circle, where

& = ¢, fori:l, 2, -, m. (93)
C,(I-U)=1. (97)
Under this correspondencgz) and p are given by (75) and
(79), respectively. The degree of(z) equals the rank oP.  Consequently, (95) takes the form
Proof: It remains to show that there is a one-to-one _ -1 -1
correspondence between(z) andv(z). The linear operator b=20l-U)y"ut2Al-U)"a—qa

S(a), from the space of polynomials of degree less than @pich is equivalent tay = %(b — a) satisfying (86). O
equal ton to the space of symmetric pseudo-polynomials, | emma 4.6: Let f be the function, defined by (75) and (76),
defined by sending symmetric solution® of tf;e covariance extension
o -1 -1 equation (38) to pointga, b)) € R"". Then f is injective
Sa)p = al(z)p("") + alz"")p() and maps onto the set @fi, b) satisfying the interpolation
is invertible if and only if a(z) has reciprocal roots, ascondition (72) and the positivity condition (73). Its inverse
is the case ifa(z) is a Schur polynomial. This follows /~*(a, b) is the unique solution of the Lyapunov equation
from [19], noting that the Jury matrix ofi(z) is a matrix (78).
representation OS(CL); also see [13, Lemma 5.5]. Therefore Proof. Let P be a symmetric solution of the covariance
(72) can be uniquely solved fotz) and hencer(z) is uniquely €xtension equation (38) such that— »'Ph < 1. Then a
determined byw(z); the reverse is trivial. Finallyp < 1 straightforward reformulation of (38) yields

follows from P > 0. O . p N
One of our main results, namely Theorem 2.1, is nhow an pP=({+oh )P(lj + O;h )/_ (Ff)h +0o)
immediate consequence of Corollary 4.4 and Theorem 3.2. We “(LPh+0) 4+ p o0’ + g9 (98)

note that the minimum-phase spectral facigr) is precisely
the modeling filter corresponding tB. Passing white noise
through this modeling filter and letting it come to statistical g=u+UTPh+o) (99)
steady state, we obtain a linear stochastic system (1). In view

of Corollary 4.3 and the classical stochastic realization theoapd p is given by (77). Now, ifa andb are defined in terms
[2], [21], [41], P is actually the state covariance matrix of thi®f P by (75) and (76), we have

system, i.e.,

where

Ha+b)=IPh+o (100)
P =E{z(t)z(t)'}. and
1 —
Theorem 4.1 and Corollary 4.3 are a consequence of the 3(b—a)=g (101)
following chain of lemmas. Therefore. since
Lemma 4.5: The interpolation condition (71) holds if and '
only if =J—-ohk (102)

g={I-U)"lu+(I-U) " Ua (94) P must satisfy

wherelU, u, a, andg are defined by (35), (75), and (86). Pij — Pit1, j+1 = —5(aib; + ba;) + ploi0; (103)
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wherep;; = 0 wheni or j is greater than one. Multiplying from which (107), or equivalently (106), anel; = 1 — p?

(103) by z/—% = z"~z"=J and summing over ali, ; = are obtained by identifying coefficients of like powerszn
1,2, ..., n, we obtain Consequently, (77) and (100) hold.
" n " n We now invoke the interpolation condition (71), which by
Z pi 7 — Z Z pi 2 Lemma 4.5, is equivalent tg := %(b — a) satisfying (94) or,
=1 j=1 im2 j=2 equivalently
= —3{la(z) = 2"|b(z7") = 27"] g=u+U(a+g). (110)
+[a(=") —27"I[b(e) ~ ") | | |
+ p2o(z) = 2[o(z7Y) = 27 (104) But, sinceb = a + 2g, (100) is the same as (109), which
together with (110) yields (99), which in turn, together
the left member of which may be written with (100) and (101), yields (75) and (76). Now, inserting
n (99)—(101) and (77) into (78), a simple calculation yields
LM = Z Pit1, (2427 +p1y. (105) (38), showing thaf” is a symmetric solution of the covariance
im1 extension equation. Hence we have proved thataps onto

the set of(a, b) which satisfies (71) and (72).

But, in view of (102) and (77), (100) is the same as To prove thatf is injective, let(a, b) be any point in the

JPh = %(a+b) - plo (106) range of f. Then p? is uniquely defined by (108). Any’
_ _ such thatf(P) = (a, b) must satisfy the Lyapunov equa-
which may also be written tion (78) which has a unique solution. This establishes both

‘ = Las + by) — po (107) injectiveness and the last statement of Lemma 4.3. O
Pit1,1 =3\ T 0i) = P9 Lemma 4.6 shows that there corresponds a unique rational

Therefore, sincep;; = 1 — p?, the left member of (104) functionw(z), defined via (69), to any solutioft to the CEE.

becomes Next we shall show thaP is also a solution to the algebraic
Riccati equation (87) corresponding to (84). Sinde€, h)
LM = 3{z"[a(z"") = 27" + b(z"") = 27" is reachable, the existence of a unique stabilizing solution
+ 27 "a(z) — 2" +b(z) = 2"} follows, for example, from [48, Th. 1]. If, in additior{,F", g)
— P ozt = 27 is reachable so thatl, g, h, %) is a minimal realization of
n " 9 v(z), then it is well known [2], [21] and immediately seen
+2 M o(z) = 2"} +1-p

from the Kalman-Yakubovich—Popov Lemma that> 0 if
and consequently and only ifv(z) is strictly positive real. In general, we have
the following result.
Ha()b(z™1) + a(z7H)b(2)] = p*o(2)o(z7").  (108)  Lemma 4.7:The rational functionu(z), defined by (84)

) , ) , .and satisfying (89), is strictly positive real if and only if the
This establishes (72). It remains to show that the interpolatiggq e stabilizing solutior of the algebraic Riccati equation
condition (71) also holds. To this end note that is positive semidefinite. In this case, the degree(ef equals

IPh+o=a+g (109) the rank of P.

Proof: Settingk := (g — F.Ph)(1 —h'Ph)~1/2, we may
which inserted into (99) yields (94), which in turn is equivwrite the algebraic Riccati equation (87) in the Lyapunov form
alent to (71) (Lemma 4.5). We have thus established that
the function f maps into the set ofa, b) satisfying the P =FPF + kK. (111)
interpolation condition (71) and the factorization condition . )
(72). To prove thatf actually maps onto, choose any paifro proceed we sh_all need some properties of such equations,
(a, b) satisfying these conditions. Lgtbe the unique positive "@mely the following.
number satisfying (108), obtained by identifying coefficients of 1) If P > 0, then |A(F)| < 1.
like powers inz, and letP be the unique symmetric solution of 2) If |A(F)| < 1, thenP > 0.
the Lyapunov equation (78). Here uniqueness is a consequencd) If F has no pair of eigenvalues;, Ao which are
of the fact that the eigenvalues dfare all zero and hence in reciprocal, i.e., such that; = 1/),, then
the open unit disc. It remains to show thath, and P satisfy
(75) and (76) and thaP satisfies the covariance extension
equation (38). To this end, write the Lyapunov equation (78)
in the form (105). Together with the factorization conditio
(108) this yields

rankP = rank(k, Fk, ---, F" k).

The continuous-time versions of these statements follow
r?rom [24, Th. 3.3]: i) from (2), ii) from (7), and iii) from
(5) in that theorem. The discrete-time results are obtained by

1 ; i applying the usual linear fractional transformations—see, for
Zp“rl:l(z +27) example [24, Sec. 2.2] or in [21, Sec. 3.3]—keeping in mind
=1 L . . _ that the left half-plane is transformed into the unit disc as

= 3{z"a(z7") +b(z7 )] + 27 "[alz) + 0(2)]} concerns the spectrum &, while P remains the same in the

— 2oz + 27 e(2)] = 14 p? two settings.
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The rational functioru(z) := (b(z)/a(z)) satisfying (91) factor of a(z) andb(z) is a common factor also of(z) and
is equivalent to the existence of a Schur polynomi&t) and o(z) and vice versa. Hencey(z) and v(z) have the same
a positive numbep such that (108) holds. Ther{z) is strictly degree, namely rank. O
positive real if and only ifa(z) is a Schur polynomial. It is well known that the rational function (69) is strictly
First suppose that(z) is a Schur polynomial. Then, sincepositive real if and only if (89) holds and eithex(z) or
a(z) is the characteristic polynomial of, |A\(£)] < 1, so b(z) is a Schur polynomial, in which case baif) andb(z)
it follows from ii) that P > 0. Conversely, suppose thatare Schur polynomials. Therefore, the last two statements of

P > 0. Settingr := rankP, there is a nonsingular linearTheorem 4.1 follow from Lemma 4.7 and Corollary 4.3, which
transformatiori’” and a positive definite symmetric<» matrix we prove next.
P, such that Proof of Corollary 4.3: Let P be a symmetric solution
P 0 to the covariance extension equation (38) such dhath < 1,
TPT = {01 0}. and letg be defined by (39). Then, as demonstrated above,

(209) holds, i.e.,
Transforming (111) accordingly yields

g=IPh+o—a. (115)
P 0| |(F11 Fio||PL O||F, Fj
0 0] [Fo Fel||0 0||F, Fi Inserting (115) into (38) yields
+ |y Riks (112) P =FPF + p*o —a)(c —a) (116)
kaok]  kokh
where p> = 1 — K’ Ph and
where
F=T+(c—-a)l/ (117)
Ll::ll 11::12} =TFT! and {]Zl} =Tk. ( )
2L S22 2 which, in view of (102), is the matrix (85) defined in Lemma
Since therefore 4.5. Now, from (114) and (117) we have
Py PiF)y 4+ kokhy =0 o—a=p%g-FPh) (118)
we must havelF,; = 0 andks = 0, and hence which inserted into (116) yields the algebraic Riccati equation

(87). HenceP is a symmetric solution of (87), which, by

a(z) = det (zI — IF) = det (2] — Fiy)det (2] = Fp). (113) | oya a5 clearly is the algebraic Riccati equation corre-

Also a straightforward calculation shows that sponding touv(z). However, it remains to show that it is
the unique stabilizing solution of (87). To this end, observe
w() = p 2 h el = F) Yy + p that (117) and (118) imply thaf — F.,, where F, is the
a(z) feedback matrix (88). Hence, it follows from the fact that the
whereh, is ther-vector(1, 0, -- -, 0), sodet (I — Fy,) must Characteristic polynomiat(z) of I’ is a Schur polynomial and
be a common factor af(~) ando(z) which is being canceled. the fact thatl — »'Ph > 0 that P is the stabilizing solution
Sincea(z) is a Schur polynomial, then so @t (2] — Fy,). ©f (87)- .
Therefore, it only remains to prove thdet (21 — 1) is a
Schur polynomial, i.e., thafA(F11)| < 1. To this end, note V. MINIMAL PARTIAL STOCHASTIC REALIZATIONS
that, in view of (112) The question of minimality of the dimension of partial
P, = F P F, + ki, stochastic realizations will now be studied in more detail.

In this direction, Theorem 2.1 gives some information about

Then, sinceP, > 0, ii) implies that |A\(F1:| < 1. But a(z) the minimal partial stochastic realization problem. In fact, for
cannot have any zeros on the unit circle and hence, in viewgdch choice of zero polynomial there is a unique solution
(113), we must have\(F1;)| < 1 as claimed. In fact, ifig is  which we may denot@(s). In this setting, the minimal partial
a zero ofa(z) on the unit circle, then so i/ \o. Therefore, in realization problem could also be phrased as finding the zero
view of (108), either\y or 1/ is a zero ofs(z) contradicting polynomial & minimizing the function
the assumption that(z) is a Schur polynomial.

To prove the last statement, observe thdt is stable, there r(o) = rankP(o)

are no reciprocal eigenvalues, so iii) implies that over the regions,, of Schur polynomials (36). The optimal

rankP = rank(k, Fk, ---, F"—lk) zero structures is in general not unique, and the structure of
S _ the optimizing set ofs depends orfcy, - - -, ¢,). In harmony
which, in view of the fact thath, F') is observable, equals with Example 4.2, alb are optimizing and-(c) is identically
the degree of zero if and only ifc = (¢1, ¢, -+, ¢,) = 0. It can be
w(z) = W (2] = F)~k + p. (114) further seen that all are optimizing ifc = (0, -+, 0, ¢,)

with ¢, # 0, in which caser(c) is identically n. In this
However, in view of (108) and the fact thafz), b(z), and section, we investigate how the positive degree of a partial
o(z) are all Schur polynomials, any common polynomiatovariance sequence depends on the values of the covariance
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datacy, c1, - -+, c,. In general, according to Theorem 2.2, fothe complement of a geometric hypersurface is a union of the
n > 1, the sets of suctu-tuples for whichr(5) = n and two disjoint open sets where the defining equation is positive
r(6) < n are both open sets ifR". and negative.

We shall first consider the “codimension one” case, i.e., theAccording to a theorem of Whitney [47], the complement
situation where the minimal dimension of a partial stochastaf an algebraic subset @™ defined by a single polynomial
realization can be reduced to at least 1. This, of course, equation of degred has at most/+ 1 connected components.
occurs when there are “extensiongk, v) for which the In preparation for the proof of Theorem 5.1, we need the
corresponding choice of polynomial, ) has a common following separation criterion, the essence of which is that
root. Classically, this may be tested by computing whether tii¢, contains a real, regular point and therefore separf&fés
resultant,2(a, b) of the pair(a, b), vanishes; see Appendix B.itself into at least two disjoint open subsets. In this language,
Regarding the sequeneeaas being fixed, the resultant is then ave first wish to characterize for which covariance sequences
polynomial R, («) in « which defines an affine hypersurfaceghe hypersurfaced, is a proper algebraic subset, when it is
H, in R™ as its zero locus. A better understanding of theonempty, and when it is a geometric hypersurface.
real hypersurface yields a simple, but powerful, geometric Theorem 5.3:Consider a partial covariance sequermrce
criterion for a codimension one reduction for partial stochastie;, cs, -- -, ¢,) in R". There exists aa such thatR., («) #
realizations. In particular, we shall prove the following resulf) if and only if ¢; # 0 for somei = 1, ---, n. A necessary
which is a special case of Theorem 2.2, but which alrea@yd sufficient condition for. # 0 to admit a partial stochastic
illustrates the profound difference between deterministic améalization of dimension less than or equalte- 1 is that the

stochastic partial realization theory. hypersurfacef., intersectsP,, () nontrivially; i.e.,
Theorem 5.1:Let ¥(n — 1), S(n), andC,, be defined as in
Section II. Then H, NPu(y) #0. (119)

Cn=2(n—1)US5(n) In this caseH, separate®,,(y) into at least two open subsets.

is a decomposition ofC, into two semialgebraic subsets Of course, for low-dimensional problems, the separation
with nonempty interiors nln factt(n — 1) \ {0} is an open criterion provides for a complete analysis of the minimal

semialgebraic subset @, \ {0}. That is partial realization problem. Before turning to the higher-
' codimension cases, for the sake of completeness we describe

S(n—1)=0(m-1)u{o} these lower-dimensional examplesnlt= 1, thenO(n — 1) is
empty, sinceH., reduces instead to the constraiat= 0. In
where O(n — 1) is an open, semialgebraic subset@®f. If particular, forn = 1 we haveS(0) = {0} andS(1) = C;\{0}.
n > 2, O(n — 1) is nonempty. If n =2, we still haveS(0) = {0}, and, as pointed out by
Remark 5.2:In order to prove results guaranteeing th&eorgiou [23], it is easy to see that S(1) if and only if
structural stability, with respect tg, of the intersection of
H., with P, (), we shall need to prove a separation theorem,
a result which is not at all immediate from the definitions.
Indeed, not every algebraic set defined by a single equation
is a hypersurface in what is called the geometric sense. Far such ay, vo # 0, and, as depicted in Fig. 4, only points
example, inR? the equation:2 + 32 = 0 defines an algebraic « in the intersection between the (shaded) positive real region
hypersurface, but the zero locus does not sepdRtteinto and the line will havedeg v(z) = 1. We note that in this
two or more open sets, nor is it dimension one, in any sensase, fory fixed the resultant hypersurfadg, is linear and
but the purely algebraic sense of counting equations. Thésdefined by
example, however, illustrates exactly what can go wrong for
real hypersurfaces. Very briefly, i@?, the equation:? 472 = _
0 defines a one-dimensional algebraic curve, with just one “2=m
singular point (0, 0)—that is, a point at which the total
derivative (or gradient) of the defining equation vanishes. AsThese are precisely the points for whietr) andb(z) have a
turns out, the only real point on this complex curve is a singulaommon factor. All other: correspond ta:(z) of degree two.
point, which is precisely why the real locus has “algebraid®or example, ify = 0.5 and+y; = 0.2, (120) is satisfied, and
dimension one but “geometric” dimension zero in a sense e line (121) intersects the positive real region as depicted
shall now make precise. to the left in Fig. 4. Allu(z) corresponding to points on the
Recall [47] that an algebraic subset X" defined by a interval defined by this intersection have degree one. The set
single polynomial equation is called an algebraic hypersurfacg(2) consists of those for which~ # 0 and condition (120) is
An algebraic hypersurface is a geometric hypersurface if amblated. The situation corresponding to such a pejpt= 0.5
only if it contains aregular point i.e., a point at which and~; = 0.4, is illustrated to the right in Fig. 4. Here the
the gradient of the defining equation is nonzero. Geometiigtersection betweef?, and the hypersurfac#., is empty.
hypersurfaces have dimension— 1, in the sense that a Forn > 2 the situation is more complicated, but we have
geometric hypersurface is always d&n — 1)-dimensional a sufficient condition for the positive degreé to be strictly
manifold in a neighborhood of any regular point. Moreovetess than one, which is similar to (120).

70l
—_— . 120
|r71| < 1+ |’70| ( )

1
1- —2> (voor + 1) (121)
Y0
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o2 o

@) (b)
Fig. 4. The hypersurfacéZ, (line) and P () (shaded region) for two different choices of

Corollary 5.4: Supposen > 2. Any partial covariance Proof: Given the partial covariance sequenrger equiv-
sequence satisfying the condition alently v, as seen in Section Ill, another parameters are
needed to parameterize all partsabchastiaealizations of de-
In_1] < M (122) gree at mosh. These could be, as in the Kimura—Georgiou
1+ [yn-2] parameterization, of, or, equivalentlyc,, 11, ch12, -+, Con,
as explained in Section Il. Consequently, we consider a se-

is contained inO(n — 1). In particular, (122) is a sufficient
guence

condition forn* to be less tham. If n = 2, the condition is
also necessary.

Corollary 5.4 gives an independent proof thin — 1) has (1, c2, o, can) (123)
a nonempty interior ir€,,. Of course, Theorem 2.2 also asserts
that the semialgebraic sef§»*) and (n*) have nonempty wherec = (¢, ¢z, -+, ¢p) is fixed, ande,, 41, chyz2, -+, C2n
interiors if and only if%n < n* < n. In this direction, one are free parameters to be selected. Now, if
can very easily see that fer even, the subsé(%n) is open.
Indeed, to sayy, - -, ¢, lies in S(3n) is to say that both O=ng<ng <ng < <ny (124)
the Hankel matrix

c1 Co e C1y2)m are the degree indexes of (123), the condition that (123) has
Co c3 T G124l McMillan degree at mosh is equivalent ton, < n, and in
. this case the last section of (123) is completedn Jf < n,
’ ’ ’ the parameter sequenge= (p1, p2, -+, pa2n) Will end with
C(1/2)n  C(1/2)n+1 """ Cn—1 2(n — n,) zeros.
is invertible and that the Toeplitz matrix Therefore, the statement of the proposition is equivalent to
saying that for any fixed choice @f, ¢, - - -, ¢, there exists
o € Gy an extensior, 11, ¢y+2, * -+, 2, SUch that the square Hankel
€L € 't Cp—l matrix of (123) is nonsingular, and henag = n. Define/ to
: : : be the integer with the property that=c, =--- =¢—; =0

andc, # 0. If £ = n, then there is only one section and= n;.
If £ < n, then any section initiated in the first fixed part of
is positive definite. Since these conditions define open setscofvill end with ¢z, wherek < n — 1, if the arbitraryc; are
sequencess‘(%n) is open but, of course, not dense as it is fothosen appropriately. 8% > n, ¢,41, ¢nye, -+, c2, CaN be
the deterministic partial realization problem. Our proof is thathosen so that there are, say k& generic sections at the end,
in the intermediate cas%sz < n* <n-1, S(n*) still contains then the highest degree index equals O
interior points is constructive. Indeed, we shall show that the Our next result ensures that the hypersurfatein IR™ is
maximum entropy filters corresponding to certain choices abnempty, except whea= (0, ---, 0, ¢,) with ¢,, # 0.
partial covariance sequences are interior points by using &roposition 5.6: The algebraic degree of a sequemrds n
minimality criterion derived from the fast filtering algorithmif, and only if, ¢ = (0, ---, 0, ¢,,) with ¢,, # 0.
described in Appendix A. From this construction, and the Proof: By definition, the sequencehas degree indexes
results stated above, Theorem 2.2 follows. (ng, n1) = (0, n), and hence the algebraic degreenisTo
We now turn to the proofs. Our first result characterizgwove the converse, first note thatif 0, the algebraic degree
when H, is a proper algebraic subset @". Recall that is zero. Next suppose that, 1 < ¢ < n is the first nonzero
¢ = (e, c2, -+, ¢cn) = 0if and only if a(z) = b(z) and element inc. Then the first section of has2/ elements, so if
therefore if and only ifn* = 0. £ > n/2, the algebraic degree &1f ¢ < n/2, n—2¢ elements
Proposition 5.5: Suppose that # 0. Then there exists an remain for further sections, so the algebraic degree is at most
« such thatR (a) # 0. b+ (n=20)=n—L<n. O

Cn Cp—1 - o
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Theorem 5.7:The hypersurfacéi., is the closure of the set wherer = 76 andr, is an arbitrary polynomial satisfying
of all regular points orH.,. In particular,H, is a geometric deg o < n — 1. However, for(p, ¢) lying in (128) we have

hypersurface except when= (¢, ¢z, -+, ¢,) = 0 or when (129) or, equivalently

¢=(0,---,0,c,) with ¢, # 0. (aovo — b0u0)92 —r (130)
Proof: The first step is to characterize the regular points ] } o o

on H.,. so thatrg is not arbitrary but rather is itself also divisible By

Proposition 5.8: Suppose thaty # 0. The set of regular S° that the cqrresponding set of polynomias each divisible
points onH., consists of those: for which the corresponding PY 6%+ In particular (see Remark B.2), the subspace (128) has
polynomialsa andb have a simple (real) common factor ovefodimension one iff{,, ;) (M- ), which concludes the proof of
R. the proposition. O

Proof: We shall begin our analysis on the spaB8” Havir!g characte_rized the regular poi_nts, we now show that
of pairs (a, b) of monic polynomials of degree. As we they exist, except in the two cases delineated abovc_e.
have noted in the proof of Proposition 5.5, this space canLeémma 5.9:Suppose thaty 7# 0 and that there exists an
also be parameterized in terms of the partial sequence® Such thatR,(a) = 0. Then there exists an such that
(or equivalently~), together with the parameters in the (a; b) =0, wheredeg 6 = 1, i.e., there exists a regular point.
Kimura—Georgiou parameterization. Following Kronecker, as  Proof: This is equivalent to saying that for any

described in Section IIl (see also Appendix B), the zero locii¥ed choice of ¢, ¢y, -+, ¢, there exists an extension
of the resultanf(a, b) in IR*" can be identified with the zero ¢n+1; ¢nt2; =+ C2n SUCh that the largest degree index
locus Z,, of the determinant of the Hankel matrix of c1, ¢z, -+, 2 €QUAlSR — 1, i.€., the last sectior, should

end with ps,,—2, and pap,—1 = p2, = 0. Let £ be defined as

. & o G in the proof of Lemma 5.5. Then we must hage< n, so
2 G G any section initiated in the first (fixed) half efwill end with
: S cor, Wherek < n — 1, if the arbitrary¢; in that section is
Cn  Cn+l  “°°  Cop—1 chosen appropriately. We must haye,_; = p2, = 0. If
Since k < n — 1, we fill the gap withn — 1 — k& generic sections.
Thenn, =n — 1, as claimed. O
H, ={(a, b) € Z,| v is fixed} (125) Lemma 5.10:The hypersurfacéi., coincides with the clo-
) ] ) ] ) ) . sure of all regular points ot .
H., is the intersection of,, with ann-dimensional manifold Proof: Let C;, C R" be the set

M., with tangent space given by (see [10]) Ci = {(cv, ¢ e (. B) = 6. deg 6 = k}
k — 1, €2, "y C2n ’ — it .

Ta,py(My) ={(p, @l ag—bp=r,degr <n—1}. (126) 1t o can show that

From the representation df, as such an intersection, one Ciy1 C Ch, k=1,2---,n (131)
sees that every singular point of the hypersurfageremains

a singular point ofH,. In particular (Appendix B), every
« corresponding to a paifa, b) having a greatest common

then H, = C; as claimed. To this end, choose an arbitrary
pointé in C41. Thené has a parameter sequengsuch that

divisor with degree larger than one is a singular poinif. P2n—2k—2 = Pon—2k—1 =+ = P2n =0
Conversely, from the representations and pa,_or_1 IS the last element in a section. We want to
find a sequenceé®, &2 &3 ... in C; which converges to
— . < _ ’ ’ ? ) o
Tta,0)(Zn) = {0, vo6) + plao, bo)| deguo < n =2, ¢. Clearly, such a sequence is obtained by takifig to have
deguo <n -2, p e R} (127)  the parameter sequeng&), where
of the tangent space df,, (Proposition B.3) and (126) of tr_le ) 17 fori — 2n — 2k — 2
tangent space aif, and 4., we conclude that all other pairs P =917 (132)
are regular points of.,. That is, thosex corresponding to a Dis otherwise.

pair (a, b) having a greatest common divisor with degree ong act, if .~ is the number of sections it thené@) hasy + 1
are precisely the regular points, as claimed in the PropositiQ¢ctions and

To see this, it suffices to prove that for aayfor which 1

the corresponding polynomials and b have a simple (real) §9(2) = Pyya(2) = 2P (2) — j v—1(%)

common factor ovelR, there exists a tangent vectgs, ¢) to ' 1

(@, b) in Tiq, 4y (M,) which is not inT(, ,)(Z,). Alternatively, a9 (z) = Quy1(2) = 2Qu(2) — = Qu_1(2)

it suffices to check that the subspatg, ;)(Z,) intersects h J

I'T(M')(Jl/r[:) inta codj[_mension-one subspace. To say fhaty) so that 1

ies in the intersection T 2G(2) — = Pu_1(z .

g(J)(z) _ 2g(z) ; 1(%) B 9(2)

T((L b)(Zn) N T(a7 b)(M'y) (128) &(j)(z) a(z)

2(z) — }Q()

asj — oo, where g(z) and a(z) correspond toé. Conse-
aof(vol + pbo) — bob(uel + pag) = r (129) quently,é¥) — ¢ asj — oo, as claimed. O

is to say that
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This concludes the proof of Theorem 5.7. | We have just seen that the separation criterion implies that
Clearly, Theorem 5.7 implies Theorem 5.3. Theorem 53(n — 1)\{0} is open. We now prove Corollary 5.4, which
then follows from these results and the following corollary. gives an explicit sufficient condition (122) for membership in
Corollary 5.11: The subseE(n —1)\{0} is an open, semi- X(n — 1)\{0} in terms of the Schur parameters.
algebraic subset of,,\{0}. That is Proof of Corollary 5.4: Given a sequence of Schur pa-
rametersyp, v1, - -+, Yn—1 Satisfying (122), we want to find
X(n—1)=0O(n -1)U{0} a positive real function
where O(n — 1) is an open, semialgebraic subset®f. If 1 b(2)
n > 2, O(n — 1) is nonempty. v(z) =5 o(2) (133)
Proof: We first prove that(n — 1) and henceX(n — )
1)\{0} is a semialgebraic set. Since the change of coordinatgfsdegree at most. — 1; the first n Schur parameters are
between(c;, ¢, - -+, ¢,,) and (y1, ¥o, - -+, v,) is birational precisely~yo, ¥1, - -+, yn—1. We shall demonstrate that there
without poles onC,, it suffices to prove this claim in the is a real numbek; such that
coordinates. To this end, consider the space
{ a(z) = pn—1(2) + a1pn—2(2) (134)

R = {((a1, a2, -, an), (71, Y2, -+ W)} b(z) = p—1(2) + a1tpn—2(2)

The subsetP,, of those sequences for which is strictly defines such a function, where,,_1, ¢,—2, ¥,—1(2), and
positive real is, of course, a semialgebraic set, since it 4s,_, are the appropriate Szegolynomials defined as in Ap-
definable in terms of polynomial inequalities [13]. We alspendix A from~g, 1, - -+, v.—2. Consider the dynamical sys-
consider the algebraic séf,,, the zero set of the resultanttem (155) with2(n—1) equations and initial condition(0) =
R, introduced in the proof of Proposition 5.8. In particular(ay, 0, ---, 0) € R™™* andv(0) = (0, 71, *-+, Yn_2)' €
Z, NP, is semialgebraic. Finally, we define the projectiofR™*. Then, to match the remaining Schur parameter;,
pn: R — R" via we must choosey; so that

pn((alv 2, ~ ", an)v (’717 Y2, ,Vn)) Y1 = ’Yn—Q(]-) = _]_jnf_; 1. (135)
= (,717 Y2, 0, ’Yn) n—2

According to the Tarski-Seidenberg theorem [28]p —1) = NOW, in view of (122),v,_, # 0. Consequently, it remains
pu(M,_1 N'P,) is also semialgebraic. to show that (134) withx, given by

To see thats(n — 1)\{0} is open, we recall thaf{, is _ —%_1(1 B )
a proper hypersurface (Proposition 5.5), i.e., a codimension a= V2 Tn—2
one, provided at least ong differs from zero. Suppose then

thaté lies in £(n — 1)\{0}. Denoting by# the corresponding defines a positive real function (1.33). To prove this we need
partial Schur sequence, according to Theorem 5.3, the prot%rShOW thata(z) is a Schur function and that (15) holds on

hypersurfaceH, meets the open s@,(4) at a regular point. he unit C'rde _ _ _
Then, there exist pointgy;, 4) and(aw, 4) in P,,(4) such that Let us start with the last requirement. To this end, first note
’ ’ " that, in view of (136), (122) is equivalent to

(136)

R:,(Oél) >0 and R:/(OQ) < 0.
log| < 1= |v—2]. (137)
Since the set of strictly positive real, degree transfer _ o
functions is open, fory sufficiently neary, we must have From the recursions (149) and (150) it is not hard to see that

a1, ¥) € Pu(y) and (aeo, 4) € Pn(y). Moreover, we must B B
z(';llslo h)ave ) (2:%) ) rn—1(2)Pn-1(z7") + hn_1(z)on-1(z"") = rn_1 (138)

R,(a1)>0 and R,(a2)<0. and that

Since P, (v) is connected andf; is continuous, there is a  Pn—1(2)¥n_2(z7") + Yn_1(2)pn_2(z71) = 12z (139)

point (a, v) € Pn(vy) such thatf;(«s, v) = 0. Therefore, .
(n —(1)\{)0} is ofoe)n. o) and therefore, since, 1 = r,_2(1 — v _5)

To see thatd(n — 1) is nonempty, we need only constructl[ (2)b(
(&, 4) corresponding to a modeling filter having degree 27"

satisfyingl < n* < n — 1. One such choice for z = ¢, This is positive for alb if and only if (137) holds.
A A . Next we prove that(z) is a Schur polynomial. In view of
=(0,0,---,0) and 4=(0,---,0, %u_2, 0
&4 ( ) ) ) v ( y Uy Tn—2 ) (149), we have

a(z) = (2 + a1)pn—2(2) = Yn-2)_2(2). (140)

Cn_1(2) Since, by (137))a1| < 1, the function

2 N +alzh)b(2)] = (1 =2y +2a1 cos O +a3)

with 4,,_2 # 0, corresponds to a maximum entropy filter

w(z) = p

of degreen — 1; see Section I O f(z) = (24 a1)pn—2(2) (141)
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has all itsn — 1 zeros inside the unit circle. We want to showmatch the remaining —»n* Schur parameterg, -, - - -, vp_1,

that the same is true fat(z). To this end, observe that, inthe constraintsf(«, v) = 0 are therefore required. We note

view of (137) that, for fixed~, fi(«,v) = 0 is of course an alternative

. expression for the resultant of the péir, b) of polynomials

|a(z0) = f(z0)| < (1= lon])ler—a(20)] corresponding tdc, ). We are now in a position to complete

for any z on the unit circle. But, sincgyn_s(z0)| = ;)ur proof of Theorem 2.2 with the following sequence of

* _ JR emmas.
|0—2(70)| (see [4, p. 119]) andko| = 1, this implies that Lemma 5.12:Let n* be any integer satisfying < n* < n.
la(z0) = f(z0)] < |f(20)] (142) Then the subset§(n*) of IR consisting of partial covariance

, . . sequencesécy, ¢z, - -+, ¢,) having a minimal stochastic real-

and hef?ce by Rouche’s theoreaz) is a Schur polynomial ization of $degreem* are )a nonempty semialgebraic set. The

as required. Ifn = 2, all a(z) and b(;) have th? form (134), subset(n*) of those partial covariance sequeneelaving

and therefore we have als_o _necessny, as claimed. O a minimal stochastic realization of degree less than or equal

In the course of determining properties (e.g., NONVacuoys- . « is also semialgebraic.

ness) of the set$(n*) and X(n*), we will find it useful Proof: We begin by proving thas(n*) and (n*) are

to apply not just the solution to the rational covariancg mialgebraic. As in the proof of Theorem 5.3 it suffices

extension problem, but also certain of the tools which play(? prove this claim in they coordinates. For codimension

an important role in its resolution. One of these is a nonline feater than one. we consider the algebraic subget of

dynamical system (155), which is a reformulation of a fagt2n defined byM, . = f~1(0), where is defined by (144).

algorithm for Kalman filtering [38], [39] and is also relate ince M. NP, ig semialgek;raicz(n*) = pu(M,. N P)

to the Schur. a_Igorlthm. We note th{;\t for initial ponQ|t|on.T.s also semialgebraic by the Tarski-Seidenberg theorem [29].
(o, ¥) € P, it is known that the trajectory remains iR, In this notation

and converges tda.., 0), wherea,, € S, = P,(0) [13].

Of course to say«, v) € P, is to say that to(«, ) there S(0) = %(0)
corresponds a positive real, rational functiant is important . . .

to note that S(n") =X(n"\E(n" - 1).

v(z) =%+ i et (143) Since the complement of a semialgebraic set is semialgebraic,
N it follows from induction thatS(n*) is semialgebraic.

We next show that S(n*), and hence X(n*), is
where the covariance sequen¢e, ci, cz,---) has as its nonempty. As before, consider the choidg, §) =
corresponding sequence of Schur parameters the componeso, ---, 0), (0, -+, 4n-_1, ---, 0)) corresponding to
of the partial statey(¢) propagated by this dynamical systema maximum entropy filter of degree*

This observation provides a useful alternative for an analysis
of the minimal partial stochastic realization problem. Indeed,
in this language, we note that to say that a modeling filter w(z) = p a(z)
corresponding to a paffe, v) has degree less than or equal
to n* is to say thatf(a, v) = 0, where f: R* — R" is wherea(z) is then*th Sze@ polynomialy,,- . We shall further
defined by assume thaty,-_; # 0 so thaty,,-(0) # 0, and thereforep
has minimal degree*. We now note that, for all choices of
«, whenevem* is replaced byn* — 1, we must have

filen, 7) =y +ar(Dyne -1 + @2(1)yns —2

— -+ ap (Do
fole, 7) =y g1 + a1(2)vn + @2(2)Yne -1 Jila, %) =1+ (V) pne—2 + @2(1) e -3
+ ot (2)m =+ an—1(1)v = Jnr—1 # 0.
(144)

: In particular, for no choice ofx will the modeling filter
Frcne (@, 7) =net + a1 (n — n*)n_s corresponding td«, 4) have degree less thart. That is, if
. ¢ is the partial covariance sequence corresponding, tihen
+ 042(71 - n )’Yn—?) é c S(TL*) O
{ +o e (n =0 )Y Lemma 5.13:Let n* be any integer satisfying < n* < n.

'II'&en, there is an open neighborhoodjo$uch that, for alk
In this neighborhood, there does not existare P, (v) for
which the modeling filter corresponding fex, v) has degree

More precisely, if the degree of (143) is less than or equal
n*, there is a recursion

Yegnt = — al(t + 1)’7t+n*—1 — a2(t + 1)’7t+n*—2 less thann*.
e — e (t+ Dy, (145 Proof: Suppose the contrary, so that there exists a se-
quence{~'} approachingy such that for eact there exists
of type (158), wherex(t) = (a1 (t), -~ -, an-(t)) andy(t) = «' for which the degree of the system determined &y, +*)
(Y, Ye41, 5 Ttan-—1)" are generated by a reduced-ordes less than or equal te* — 1. In particular, we must have

dynamical system (155) of dimensi@n*. In order to also that f;(«, v) = 0 holds with »* replaced byn* — 1. More
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explicitly, we must have Then (see [5] or Appendix B)M,.- is an algebraic subset
N ; ; i ; of IR™ having geometric (and algebraic) dimensi2n*. In
fileds ) = et ai(l)%*—i +a5(1) v -3 particular, if n* satisfies0 < n* < in, then M,. has
— o F a1 (v =0. empty interior. SinceM,,- contains S(n*), if n* satisfies

; ; ; P 0 < n* < in, then the subse$(n*) of P, has empty interior
Since P, is relatively compact, the sequen¢e’, +*) has a = — 2" "
P y ’ quente’, 7') well. This concludes the proof of Theorem 2.2.

cluster point and, by choosing a subsequence if necegary,%'grom Theorem 2.2 and from Corollary 5.11, we can deduce

may assume thata?, v') — (o, 4) where (a°, 4) € P,. , . e .
This, however, leads to a contradiction since the followm_g.pr'opertles of5(n), differing substantially from
o the deterministic case.
0= fila',7") — fi(a®, %) = An-_1 #0. Corollary 5.15: The subsefS(n) is a closed semialgebraic
subset ofC,,\{0} having a nonempty interior.

Lemma 5.14:Let n* be any integer satisfyinén <n* <

n. Then,X(n*) has a nonempty interior which contaifis
Proof: We shall show that there exists an open neigh-

borhood Q2(n*) of 4 in IR™ such that for ally € Q(n*),
there exists am € P,(y) for which the modeling filter ~ There are three principal constraints in the partial sto-
corresponding to(c, v) has degree less than or equal tghastic realization problem: rationality, positivity, and mini-
n*. Existence ofQ2(n*) follows from an application of the mality of the (positive) degree. In Section Ill, we discussed
implicit function theorem to the equatiofi(«, v) = 0. For classical and recent approaches to rationality, and the min-
the parameter choicg, 4), recalling that the matrixi(y) in imality of the algebraic degree. Positivity also has deep
the fast filtering algorithm is upper triangular and tidat= 0, historical roots, going back to the classical Cagaithory

APPENDIX A
PosITIVITY OF MEROMORPHIC AND
RATIONAL COVARIANCE EXTENSIONS

an interesting but routine calculation shows that extension problem [15], [16]. It is well known [27], [50]
. that to any sequencl, ¢, ¢z, -+ -, ¢,) one can bijectively
Anr—1 * cee * .

0 o ) assign a sequencgyo, vi, -+, Ya—1) Of Schur parameters
of (&, ) = _ Tnr-1 defined in terms of the Szégpolynomials of the first kind
da : {¢0(2), ©1(2), p2(z), - - -}, a sequence of monic Schur poly-

0 - 0 Apeoy oo nomials

which, under our hypothesis, has ramk— n*. Therefore, or(2) =2t + oz o o
augmenting the equatiofi(er, v) = 0 by adding the slack
equations which are orthogonal on the unit circle [1], [27]. The Schur

parameters are then given by

t

Op—pr41 = 0

M —n* 42 =0 = i
(146) T

Pt, t—kCk+1 (147)
0

o =0 wherery, r1, r2, - - and the coefficientgy,; } can be deter-
mined recursively [1] by

we obtain a system of. equationsg(c, v) = 0 for which )

the Jacobian matrixdg/da)(&, 4) has full rank. Therefore, repr = (1= 3)re, ro =1 (148)

for ~ sufficiently neary, there exists an analytic functiol

such thaté = F(¥) and(«, v) = (F(v), v) is a solution to

fi(e, v) = 0. Since, for suchy, P, is a nonempty open set {(pH_l(z) =zp(2) — i (2), ©o

and the Sze@-Levinson equations

)=

Oin(2) =i (2) = mze(z),  @5(z)

N

1
and F' continuous, it follows thaf}(n*) is a nonempty open 1 (149)

neighborhood ofy in X(n*). O
These lemmas imply tha®(n*) has a nonempty interior, with ¢7(z) being the reversed polynomials

for any integern* satisfying in < n* < n. We now show

that if n* satisfies0 < n* < 5n, then the interior ofS(n*)

is empty. To this end, consider that to each peiimt R" we For the sake of completeness, we also define the zeg

i) =2t 12T L

assign the standard Hankel matrix polynomials of the second kind, generated by the recursion
C1 Co v Cm, _ * —
Co c3 N C'rn+1 z/}i+l(z) - szt(z) + rytz/}t (2)7 wi(z) - 1 (150)
C= Pip1(2) =97 (2) T mab(z),  P5lz) =1
Cm  Cm41l " Com—1 Clearly {¢+(z)} are obtained fror{¢,,(z)}, by merely switch-
ing the signs of the Schur parameters.

where eithem = 2m is even o = 2m + 1 is odd. We also

consider the algebraic set These recursive schemes show thatyf, v1, -+, Ym—1)

are the Schur parameters 6f, ¢, c2, -+, ¢n), then, for
M, ={(c1, c2, -+, cp)| rankC < n*}. any k < m, (y0, 71, -+, Tk—1, are the Schur parameters of
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(1, 1, 2, -+, cx). It is a classical result of Schur [50] thatgenerated by the recursion
th t ti th diti
ese parameters satisfy the condition alt+1) = A(v(E))alt), a(0)=a (1553)
il <1, i=0,1, -0, n -1 (151) YE+1) =Glalt+ D)),  ¥(0)=7 (155b)
if and only if the Toeplitz matrices where the matrix functionsi, G: R" — R™ " are defined
1 e N as in (156) and (157), shown at the bottom of the page. In
c 11 e ' particular, this means that the Schur parameters are updated
=" . Y, i=1,2...,n (152) according to the recursion
6 et e 1 Vean = — a1t + DYegn—1 — @2t + Dytgn—2

g - . I — = ap(t+ Dy (158)
are positive definite. Moreover, there is a bijection [50] be-

tween the class of strictly positive real (meromorphic) func- It can be shown that if(a, v) € P,, i.e., if (a, )
tions v(z) and the class of sequencés, v, vz, ---) satis- corresponds to a strictly positive realz), then so does

fying (a(t), ¥(t)). Moreover, if a,(z) and b,(z) are thea(z) and
‘ b(z) polynomials corresponding tbx(¢), v(¢)), the pseudo-
|l <1,  fori=0,1,2,--. (153)  polynomial
Now returning to the covariance extension problem, we note  d(z, z=1) = r[a:(2)b:(271) + a:(z71)be(2)] (159)
that if the partial covariance sequen€e ¢i, ¢z, --+, ¢,) IS ) )
given, then the first, Schur parameteryo, 71, ««+, Yn_1) S invariant along the trajectory of (155).

are determined, and they satisfy (151). Moreover, there isRecall that as pointed out above, rationality requires that

a one-to-one correspondence between positive extensidns™ 0 ast — oo, and thereforepy(z) — 2" andyy(z) —
Crt1s Cng2, Cags, -+ - and extensions 2", so thata,(z) andb,(z) tend to the same limit...(z). But

then we must have

n n y ‘Tn y Ty 7 . 154 — — —
Yo Vok1, Ttz il <1 D) ™) + ar(zbi(2) = 2P (z"Y) (160)

Consequently, (154) is a complete parameterization of %d consequentlyr..(z) = o(z) andr.. = p?. Therefore,

strictly positive real meromorphic functions interpolatian (a, v) corresponds to a positive realz), the trajectory

1 C1, Coy ** ", Cp.. fth7 . ' .

Vo e . . . . e dynamical system (155) tends (@, 0). In particular,
However, the basic question of which extensions (15 e maximum entropy solution, correspondingate= 0, will

are ratlo_nal remains open. Partial results in this dl_rect|o nverge ina steps to (0, 0) so that(z) = 2" andp = \/r,
are provided in [23] in terms of asymptotic properties o harmony with the result reported above
! .

the Schur parameter sequence. For example, it is noted tha
for rational modeling filters the Schur sequence is square
summable and asymptotically rational. As it turns out, these APPENDIX B

properties are a consequence of stable manifold theory for a RESULTANTS AND RESULTANT VARIETIES

certain dynamical system. Indeed, in [10] we derived lower The third major ingredient of the partial stochastic real-
and upper bounds on the decay rates of the Schur sequeimation problem involves the notion of degree of a rational
by using an interpretation of the fast filtering algorithm [38Jfunction, i.e., understanding when there exists a solution to
[39] as a nonlinear dynamical system(im, ) space [13]. In the rational covariance extension problem having degree less

fact, the vector sequencgt) = (v, %41, -+, Tt+n—1) IS than n. This occurs of course when the numeratorand
P Tn—LVn—2 . Yn—170 !
=iy (=70 =7s) 1-72_))---1-73
0 # Tn—270
A(y) = -7, Q=o)L =) (156)
1
N : %
0 1 0 0
0 0 1 .. 0
Gla)=| : : : RPN (157)
0 0 0 .. 1
l— & —Op—1 —Qp—9o rr —Q
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the denominatorz of the rational interpolant have roots inof sequencegcy, cz, -

common.

a pair of polynomials have a root in common. Each of
these gives rise to a particular polynomial test, typically that
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-, ¢apn) for which the corresponding

Hankel matrix has rank. In this notation
There are many classical approaches to determining whether

Ly = U Hank(n, 7).

r<n—1

(164)

of determining whether the resultant ef and & vanishes. Hank(n, n) is of course an open, dense subsdR3F with Z,,
Indeed, it is because of the variety of possible constructioas its complement. According to [5, Th. 1], for eack: n the
of the resultant that the following result (see, e.g., [36]) is subset Hankn, r) is a smooth manifold of dimensiom+ .

important.

In particular, the set of regular points ¢&f, coincides with

Theorem B.1:The resultant of two polynomiala, b of a Hank(n, n — 1), i.e., with the pairs(a, b) having a simple
single complex variable is, up to a nonzero multiplicative common root.
constant, the unique irreducible polynomial in the coefficients We shall now describe the tangent spafig, ;)(Z,.), to Z,
of ¢ and b which vanishes if and only if the polynomiats at a pair(a, b) in Hank(n, n — 1). Tangent vectors to any

and b have a root in common.

point (a, b) in IR*™ can be represented as pairs of arbitrary

We denote byR(a, b) the irreducible polynomial con- polynomials(u, v), wheredeg v < n—1 anddeg v < n — 1.
structed as follows. Suppose the maximum of the degrees oProposition B.3: Suppose now thata, b)) = 6, where
a andb is n. Denote byV,,_; the n-dimensional vector spacedeg 6 = 1, and thata = aofl andb = byf. Then

of polynomials of degree less than or equahte 1. Consider
the linear mapM, 4): V-1 X Va1 — V2,1 defined by

Tia,0)(Zn) = {(uob, vob) + p(ao, bo)| deg uo

<n-—2degug<n—2 peR} (165)

may of course takdéi(a, b) as the defining equation for
It is then clear from calculating the Newton quotient for

R(a, b) that each vector in the right-hand side of (165) is

Mq,)(u, v) = au + bv. (161) We
Then theresultantof ¢ andb is given by Zn.
R(a,b) =det M(,L b)- (162)

contained in7, ) (Z,). On the other hand, both sides of

(165) are vector spaces of dimensi?i — 1, so that equality

We observe that ifu, v) belongs to the nullspacker M, ;)
of M(a7 b)) then

(1]
Sincew andwv are polynomials of degree at mast— 1, this (21
implies thata and b must have a nontrivial common factor [3]
6 = (a,b). ]
Remark B.2:More generally, the range space 81, ;)

consists of all polynomialg € V5,—; havingé = (a, b) as [
a common factor, i.e.,

6]

(71

We also remark that the matrix representationMf, ), (8]
with respect to the bases consisting of the standard monomials,
is the matrix arising in the classical determinant expressions$]
for the resultant (see, e.g., [36]). In particuldi{a, b) is an
irreducible polynomial. Alternatively, Kronecker constructegho]
the resultant as the determinant of the Hankel matrix. We first
note that this polynomial, which of course vanishes preciseﬂyl]
whena and b have a root in common, is irreducible. Indeed,
over the complex field, the zero locus,,, consists of those 12]
complex Hankel matrices having rank less than or equal [(o
n — 1 and is well known to be an irreducible algebraic set. In
particular, the determinant of the Hankel matrix is a nonzeﬁ)s]
real multiple of R(a, b).

The hypersurface,, is of course singular; for example, thel14]
determinant and all of its partial derivatives vanish at the ze o
matrix. We are most interested in the set of regular points of
Z,, especially ovelR, although our analysis extendsutatis [16]
mutandisto C. Slightly modifying the notation in Brockett
[5], we introduce the notation Hark, ») for the space

v a

Im M(m by = {p S Vgn_1| p= (]9}. (163)

in (165) is obtained.
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