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On the Partial Stochastic Realization Problem
Christopher I. Byrnes,Fellow, IEEE, and Anders Lindquist,Fellow, IEEE

Abstract— In this paper, we describe a complete parame-
terization of the solutions to the partial stochastic realization
problem in terms of a nonstandard matrix Riccati equation. Our
analysis of this covariance extension equation (CEE) is based on
a recent complete parameterization of all strictly positive real
solutions to the rational covariance extension problem, answering
a conjecture due to Georgiou in the affirmative. We also compute
the dimension of partial stochastic realizations in terms of the
rank of the unique positive semidefinite solution to the CEE,
yielding some insights into the structure of solutions to the
minimal partial stochastic realization problem. By combining
this parameterization with some of the classical approaches in
partial realization theory, we are able to derive new existence and
robustness results concerning the degrees of minimal stochastic
partial realizations. As a corollary to these results, we note that,
in sharp contrast with the deterministic case, there is no generic
value of the degree of a minimal stochastic realization of partial
covariance sequences of fixed length.

Index Terms—Covariance extension, parameterization, partial
stochastic realization, positive degree, positive real.

I. INTRODUCTION

I N SIGNAL processing and speech processing, a signal is
often modeled as a stationary random sequence which is the

output of a linear stochastic system obtained by passing white
noise through a filter with a stable transfer function and letting
the system come to a statistical steady state. For example,
artificial speech is synthesized by a combination of two kinds
of models. Voiced sounds can be produced by passing periodic
signals through a deterministic filter, while unvoiced sounds
are produced by passing white noise through a shaping filter
so that on a sufficiently small interval of time the unvoiced
speech pattern can be regarded as a realization of a stationary
random sequence. Of course, in practice only a finite string
of observed data is typically available for speech synthesis
(as well as for any application), in which case only a finite
covariance sequence can be produced.

The need to construct stochastic models from a finite
window of correlation coefficients has led to the study of
several problems involving the description of classes of sta-
tionary linear stochastic systems having outputs which match a
given partial covariance sequence. One of these is thepartial
stochastic realization problem, which consists of describing
all such stochastic systems having the smallest possible de-
gree, which we refer to as thepositive degreeof the partial
covariance sequence. Kalman motivated the study of the
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partial stochastic realization problem by describing minimal
realizations as being the simplest class of models capable of
describing the given data. Alternatively, themaximum entropy
filter may be interpreted as maximizing some measure of the
“entropy” of the covariance window and, in this way, assumes
as little as possible about the completion of the correlation
sequence. The maximum entropy filter may, or may not, be
minimal, but it always has degree equal to the length,, of
the covariance window.

More generally, the problem of characterizing all stationary
linear stochastic systems, of degree at most, having outputs
which match a given partial covariance sequence is known as
the rational covariance extension problem. For example, the
maximal entropy solution may be characterized as the unique
solution for which there are no finite zeros of the correspond-
ing spectral density. Since the spectral zeros have intrinsic
importance in speech synthesis, and since the additional mem-
ory is required by a nonminimal, anth-order filter is both
relatively cheap and available. The conjecture of Georgiou that
all solutions to the rational covariance extension problem can
be parameterized in terms of the partial covariance data and
a choice of spectral zeros provides an attractive complement
to the problem of minimal partial stochastic realization. Using
the recent verification of this conjecture [10] and an integration
of the various classical approaches to the partial realization
problem, in this paper we prove several new results about the
basic problem of parameterizing rational models for partial
covariance data.

In Section II, we describe the basic problems more explicitly
and introduce a Riccati-type equation, called thecovariance
extension equation(CEE), which is formulated in terms of
the partial covariance data and a choice of desired modeling-
filter zeros. This is a nonstandard Riccati equation, the positive
semidefinite solutions of which would parameterize the solu-
tion set of the rational covariance extension problem in terms
of the partial covariance sequence and the zeros of the desired
modeling filter. Our first main result, Theorem 2.1, asserts that
there always exists a unique positive semidefinite solution.
Moreover, the rank of this solution is precisely the degree of
the corresponding shaping filter, giving refined bounds for the
minimal partial realization problem.

The minimal partial stochastic realization problem has three
facets. It is of course related, but not equivalent, to the usual
classical minimal stochastic realization problem in which com-
plete covariance data is given. The minimal partial stochastic
realization problem is also related to the partial deterministic
realization problem, which consists of describing all mini-
mal, finite-dimensional deterministic systems having Hankel
parameters which match a given partial covariance sequence.
The minimal degree of an interpolating deterministic system
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is sometimes referred to as the algebraic degree of the partial
covariance sequence. Naturally, the deterministic problem
relaxes the constraint that the transfer function be positive
real. The positivity of interpolating functions has deep histor-
ical roots as well, going back to the classical Carathéodory
extension problem, which involves the parameterization of all
positive real meromorphic functions which match, or interpo-
late, a partial sequence of Laurent coefficients. Although each
of these three problems has been completely solved separately,
the interrelationship between them is quite complicated, a
fact which has caused some confusion in the literature and
in practice. For example (see [43]), under certain conditions
some popular identification procedures have been known to
fail because the existence of a generic value for the positive
degree of a partial covariance sequence has been implicitly
assumed, something which is true for the algebraic degree of
a sequence.

Nonetheless, by combining the theories underlying these
three problems with the parameterization of solutions to the
rational covariance extension problem, we are able to develop
related existence and robustness results about minimal sto-
chastic partial realizations which yield some rather interesting
insights into the properties of the positive degree of a partial
covariance sequence. As an example, Theorem 2.2 asserts that,
in sharp contrast to the algebraic degree of a sequence, for each
integer between and there is a nonempty open subset
of partial covariance sequences with positive degree.

As we have mentioned, the techniques used in this paper are
an integration of traditional, and some recent, approaches to
the related problems described above. In Section III, we briefly
review the status of partial realization theory beginning with
some historical observations about rationality due to Euler and
Kronecker, observations which play an important part in our
constructions later in the paper. In Appendix A, we give a
brief summary of the solution to the Carathéodory extension
problem in terms of the well-knownSchur parameters, de-
termined by the partial covariance sequence. In addition, we
describe a fast filtering algorithm which, in fact, can be viewed
as a nonlinear dynamical system which propagates the Schur
parameters corresponding to rational interpolants. This point
of view can provide estimates for the asymptotic behavior of
those Schur parameters which correspond to rational solutions
to the Carath́eodory extension problem (see, e.g., [10]) and is
also quite useful in our analysis of the properties of the positive
degree. In Appendix B, as another prerequisite to our analysis
of the positive degree, we briefly relate the construction of
the classical resultant to that given by Kronecker in terms of
determinants of Hankel matrices. When combined with some
fundamental work by Brockett on the geometry of the partial
deterministic realization problem, this is extremely useful in
analyzing when the algebraic, and sometimes the positive,
degree can be lower or higher than expected.

Section IV is devoted to the covariance extension equation
and the properties of its solutions. Our principal result regard-
ing the CEE concerns existence and uniqueness of the positive
semidefinite solution, similar in spirit to the classical existence
and uniqueness theorems for the Riccati equations arising in
filtering and control, and the connection of this solution to the

corresponding modeling filter (40). The existence of a positive
semidefinite solution is, of course, of considerable independent
interest in partial stochastic realization theory.

Finally, Section V is devoted to the question of minimality.
In particular we prove Theorem 2.2, which has several interest-
ing consequences. First, it implies that the positive degree of
a partial covariance sequence has no generic value. Moreover,
there is an open set of partial correlation sequences for which
the minimal, positive degree is, and the minimal stochastic
partial realization problem and the rational covariance exten-
sion problem are equivalent. For such sequences, then, the
minimal partial stochastic realizations are parameterized by
the set of Schur polynomials, i.e., by the desired zeros of
the corresponding minimum phase spectral factor. Finally, the
general result allows one to recast the general partial stochastic
realization problem into the problem of computing the positive
degree and the problem of characterizing the structure of the
set of spectral zeros which yield a minimal degree realization.

II. M AIN RESULTS

In signal processing and speech processing [14], [18], [23],
[33], [34], [45] a signal is often modeled as a stationary
random sequence which is the output of a linear
stochastic system

(1)

obtained by passing (normalized) white noise
through a filter

white noise

with a stable transfer function

(2)

and letting the system come to a statistical steady state. Here
stability amounts to the matrix having all its eigenvalues
strictly inside the unit circle.

Consequently, the stationary stochastic process is
given by the convolution

(3)

where and for , and
where

(4)

The process has a rational spectral density

(5)

which we assume to be positive on the unit circle. In other
words, is a stable spectral factor of which we shall take
to be minimum phase, i.e., the rational function has all
its poles and zeros in the open unit disc and .
In system-theoretical language we say thatis the output of a
shaping filterdriven by a white noise input, with the transfer
function .
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It is well known that the spectral density has the Fourier
representation

(6)

where

(7)

is the covariance sequence defined as

E (8)

Such a covariance sequence has the property that the infinite
Toeplitz matrix

...
...

...
...

(9)

is positive definite. Therefore, without loss of generality we
can assume that .

The corresponding stochastic realization problem is the
inverse problem of determining the stochastic system (1) given
the infinite covariance sequence (7). The condition that
be rational introduces a finiteness condition on the covariance
sequence (7). In fact, the positive real part

(10)

of

(11)

is rational and may be written

(12)

where

(13)

and

(14)

are monic polynomials. The property that be strictly
positive real is equivalent to and being Schur
polynomials, i.e., having all roots in the open unit disc and
satisfying

(15)

on the unit circle. Therefore, once and are known,
the unique stable minimum-phase spectral factor of, i.e.,
the solution

(16)

of (5) where and is a monic Schur polynomial

(17)

may be determined via the polynomial spectral factorization
problem

(18)

In fact, identifying coefficients of nonnegative powers in
in

we obtain

...
...

...
...

...
(19)

Likewise, identifying coefficients of negative powers in, we
have

(20)

so that satisfies the Hankel system

...
...

...
...

...
...

(21)

Now, Kronecker’s theorem implies that

rank
...

...
...

...

rank ...
...

...
...

(22)

Thus, taking , (21) has a unique solution which, in-
serted into (19), yields. Consequently, the spectral factor (16)
is completely determined by the partial covariance sequence

or, alternatively, by and
.
As an illustration from speech synthesis, recall that artificial

speech is produced by a combination of two kinds of models,
one kind for voiced sounds (such as vowels) and one kind
for unvoiced sounds (for consonants such as “s” or “t”), the
transfer functions of which vary on different small intervals
of time. Voiced speech can be produced by passing periodic
signals through a deterministic filter, while unvoiced signals
can be produced by passing white noise through a shaping
filter. On a sufficiently small interval of time, the unvoiced
speech pattern can be regarded as a realization of a stationary
random sequence with covariances

(23)
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where denotes mathematical expectation and with a
spectral density

(24)

Given a (infinite) string of observed data

(25)

satisfying a certain ergodicity property, the covariance se-
quence can be determined as

(26)

which defines a unique spectral density and hence a unique
shaping filter.

However, in practice only a finite string of observed data

(27)

is typically available for speech synthesis (as well as for most
applications). If is sufficient large, there is a such
that

(28)

is a good approximation of , but now only a finite covariance
sequence

(29)

where , can be produced.
The need to construct stochastic models from a finite

window of correlation coefficients has led to the study of
two fundamental, but related, problems: thepartial stochastic
realization problem and the rational covariance extension
problem. Both problems begin with a partial list of correlation
coefficients (29) with the property that the Toeplitz matrix

...
...

...
...

(30)

is positive definite.
The partial stochastic realization problem involves both

characterizing the minimal degree of a stochastic realization,
which generates the given window (29), and parameterizing all
such minimal realizations. Kalman motivated this problem by
describing a minimal realization as being the simplest model
for the given data.

Another interpretation of simplicity can be given in terms of
the maximum entropy filterdetermined by the data (29). (See
Section III for more details.) The maximum entropy filter may
be interpreted as maximizing some measure of the “entropy” of
the covariance window (29) and, in this way, assumes as little
as possible about the completion of the correlation sequence.

The maximum entropy filter has degreeand thus may not
be minimal. Nevertheless, its construction shows that there
always exist models for (29) having degree less than or equal
to . Moreover, with the increased availability and cheaper
cost of memory, since the time when the partial realization

problem was originally formulated, the related problem of
parameterizing all positive rational extensions having degree
less than or equal to becomes considerably more relevant.
This is the rational covariance extension problem.

Of course, at a purely set-theoretic level, there are many
ad hocways to parameterize a solution set, not all of which
are so useful. For this reason, we shall formulate these two
problems more precisely. Denote by the subset of ,
consisting of partial covariance sequences (29). First, recalling
that has been normalized to one, we will suppress
from the partial covariance sequenceand denote by the
point in . Next, let be any integer
satisfying . We define the subset, of
as the set of those partial covariance sequenceshaving a
minimal stochastic realization of degree. Finally, we define
the subset of as the set of those partial covariance
sequences having a minimal stochastic realization of degree
less than or equal to . For example, zero is contained in

, for every but is contained in only for .
In this notation, the partial stochastic realization problem

consists of two parts.

1) Describe as explicitly as possible as a subset of
.

2) For in parameterize those realizations of degree
in terms of familiar, or useful, system-theoretic

objects.

Similarly, the basic mathematical problem underlying the
rational covariance extension problem is the following.

3) Given a in , in terms of familiar, or useful, system-
theoretic objects, parameterize all infinite extensions

(31)

of (29) such that

(32)

defines a function which is

a) rational of degree at most;
b) strictly positive real, i.e., analytic for and

satisfying the positivity condition

for all (33)

To each such extension there is a uniquemodeling
filter, i.e., the minimum phase spectral factor (16) of
the spectral density (33).

We shall first illustrate what we mean by a parameterization
in terms of “familiar, or useful, system-theoretic objects.”
Problem 3) combines two requirements, positivity and rational-
ity. Such extension problems have a long history. Suppressing
rationality, we obtain theCarathéodory extension problem, i.e.,
the problem of finding all positive real functions, analytic
outside the unit disc, which satisfy (32). This was posed
by Carath́eodory and was solved by Schur in terms of an
associated sequence of parameters, equivalent to (29) and now
known as theSchur parameters; see Appendix A. However,
the basic question of which Schur sequences correspond to
rational solutions remains open.
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On the other hand, dropping the positivity Condition a),
one obtains another well-known problem, namely thepartial
realization problem, which is presented in more detail in
Section III. The partial realization problem without positivity
has been extensively studied, and there exist explicit param-
eterizations of the set of rational, but not necessarily positive
real, functions which satisfy (32). Thus, in contrast to the Schur
parameterization, such parameterizations guarantee thatwill
be rational of degree at most but leave open the rather
challenging problem of characterizing positivity in terms of
the remaining parameters.

In this setting, there was a long-standing conjecture of
Georgiou [23] that, for any desired choice of spectral density
zero structure, there is one and only one positive extension,
i.e., one and only one modeling filter. The existence question
had already been settled by Georgiou in [23]. In [10], we
not only proved injectivity, but also that the bijection is
actually a diffeomorphism and that the problem of determining
the appropriate modeling filter is well posed. This result
was obtained by viewing a certain fast filtering algorithm
as a nonlinear dynamical system defined on the space of
positive real rational functions of degree less than or equal
to . It is observed that filtering and interpolation induce
complementary, or “dual” decompositions (or foliations), of
this space. From this assertion about the geometry of positive
real functions follows a result [10] which itself answers
Georgiou’s conjecture in the affirmative and provides the first
complete parameterization of all positive rational extensions.

This solution to the rational covariance extension problem
expresses the choice of free parameters in familiar systems
theoretic terms, viz. the numerator of the resulting modeling
filter. While the numerator can be any Schur polynomial, the
resulting pole polynomial, which is determined by this choice
of zeros and by the interpolation conditions, must be obtained
by solving a system of nonlinear equations which gives littlea
priori information about the degree of the resulting realization.
As we shall demonstrate in this paper, it turns out that these
parameters can also be expressed in terms of a new Riccati-
type equation which we shall call the CEE [8], [9]. Thus,
in the partial stochastic realization problem, the algebraic
Riccati equation (87) of stochastic realization theory needs
to be replaced by a nonstandard, quadratic matrix equation of
another type, containing certain indefinite terms. Moreover, the
rank of the unique positive semidefinite solution of the CEE
is the degree of the associated partial stochastic realization.

In this problem the given covariance data may also be
represented in terms of the firstcoefficients obtained from
the expansion

(34)

about infinity, in terms of which we define

... ...
...

...
(35)

Next, for any Schur polynomial

(36)

we define

...

...
...

...
...

...

and

...
(37)

We can now formulate a nonstandard Riccati equation
which, as we shall see below, parameterizes solutions to the
rational covariance extension problem in terms of the partial
covariance sequence and the auxiliary Schur polynomial
corresponding to desired zeros. This CEE has the form

(38)

where denotes transposition and the function
is defined as

(39)

Our principal result concerning the CEE concerns the ex-
istence and uniqueness of the positive semidefinite solution,
similar in spirit to the classical existence and uniqueness
theorems for the Riccati equations arising in filtering and
control and the connection of this solution to the correspond-
ing modeling filter (40). This, of course, is of considerable
independent interest in partial stochastic realization theory.

Theorem 2.1:Let be a given positive par-
tial covariance sequence. For every Schur polynomial ,
there exists a unique positive semidefinite solutionof the
CEE satisfying , to which in turn there corresponds
a unique modeling filter

(40)

for which the denominator polynomial

(41)

is given by

(42)

and is a real number given by

(43)

All modeling filters are obtained in this way. Moreover, the
degree of , and hence that of , equals the rank of .

The results stated so far relate to the parameterization
aspects of our problems for a fixedin . While memory
constraints might not make the minimality of the degree as
essential, we will now turn to Problem 1) since it is also
the case that certain matrices which are ubiquitous in linear
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systems theory will become singular, or that certain numerical
algorithms may become ill-conditioned, when computed for
nonminimal realizations. As we shall show in Section V, there
is a sharp contrast between Problem 1) and the corresponding
problem for deterministic partial realization theory; e.g., for

there is no generic value of the minimal degree for
. In fact, even has a nonempty interior. Existence

results such as these follow from the general existence results
inherent in the solution of the rational covariance extension
problem and provide for the use of geometric approach to
describing properties of the level sets of the function .

Recall that a subset of is semialgebraic, provided it
can be defined by a finite number of polynomial equations,
inequations, and inequalities. For example, is a semialge-
braic subset of , being defined by polynomial inequalities.
A subset of is algebraic, provided it can be defined by a
finite number of polynomial equations. Finally, a property of
points in is said to begeneric if the set of points which
enjoy this property is nonempty, with its complement being
contained in an algebraic set.

Theorem 2.2:Let be any integer satisfying .
Then the subsets of , consisting of partial covariance
sequences having a minimal stochastic real-
ization of degree , are a nonempty semialgebraic set. The
subset of those partial covariance sequenceshaving
a minimal stochastic realization of degree less than or equal
to is also semialgebraic. Moreover, and have
nonempty interiors if and only if .

Further results concerning these sets and their proper-
ties can be found in Section V. However, we remark that
Theorem 2.2 has several interesting consequences. First, it im-
plies that thepositive degreeof a partial covariance sequence

, i.e., the minimal dimension of any partial
stochastic realization of , has no generic value.
Moreover, there is an open set of partial correlation sequences
for which the positive degree is and for which, therefore,
Problems 2) and 3) are equivalent. For such sequences, then,
the minimal partial stochastic realizations are parameterized
by the set of Schur polynomials. Alternatively, the minimal
partial stochastic realizations of such sequences are in one-
to-one correspondence with an arbitrary choice of zeros for
the associated minimum phase spectral factor. Finally, the
general result allows one to recast the general partial stochastic
realization problem into Problem 1) and the problem of
characterizing the structure of the set of spectral zeros which
yield a minimal degree realization.

III. A R EVIEW OF PARTIAL REALIZATION THEORY

One approach to the partial stochastic realization problem
is to suppress rationality and to first obtain the solutions to
the Carathéodory extension problem, the problem of finding
all meromorphic positive real functions which interpolate the
first Laurent coefficients. As described in Appendix A,
these functions can be parameterized in terms of an associated
sequence of Schur parameters , which are
equivalent to the correlation coefficients. Not surprisingly,

characterizing which Schur sequences correspond to rational
solutions is apparently quite difficult.

While the Schur parameters and an associated family of
orthogonal polynomials, the Szegö polynomials, are never-
theless very useful in constructing rational modeling filters,
rationality is so central to the circle of problems considered in
this paper that it is appropriate and useful to begin a review of
partial realization theory with the question: When is a proper
meromorphic function on C rational? By proper, we mean
that takes on a finite value at infinity. In particular, by
replacing by , where , we may assume
that the meromorphic function is strictly proper; i.e., that

vanishes at infinity. There are no doubt several classical
approaches to determining whether such anis rational. In this
section, we will rely on two: the method of continued fractions
pioneered by Euler and a technique involving quadratic forms
developed by Kronecker in his study of the elimination theory
of two or more polynomials [35].

In his first published work on continued fractions, Euler
[20] studied the very basic question as to whether the number

was rational, appreciating that rationality of a real number
would be equivalent to the finiteness of the continued fraction
expansion

(44)

In fact, Euler shows that for one has

(45)

Euler’s proof was actually based on expressing the proper
meromorphic function (on the punctured complex plane)

as a continued fraction, obtaining instead of the
constants a sequence of polynomial functions which
he proposes to evaluate at . In fact, Euler computes these
functions by first computing the numerators and denominators
of the partial sums of the continued fraction, for which he
finds a two-dimensional linear differential recurrence equation
which is solved (as we would today) in terms of an associated
Riccati equation [20]. This remarkable method also gives, of
course, a proof that is irrational.

Following Kronecker, we begin by fashioning the infinite
(Hankel) matrix

...
...

...
...

(46)

from the Laurent series of

(47)

There are two principal points we shall need to review
here about this construction. We shall later make use of
its relationship to the resultant of two polynomials, also
discovered by Kronecker, in Section V.
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Kronecker’s first, now widely appreciated, observation was
that if were in fact rational, say

(48)

then by multiplying each side of (47) by one obtains a
recurrence of length among the Laurent coefficients
of . Therefore, the th column of is linearly
dependent on the preceding columns.

Conversely, Kronecker’s theorem asserts thatis rational
if and only if rank is finite. We need to phrase this
observation more carefully for an analysis of the partial
realization theorem. More precisely, then, for any infinite
sequence

(49)

of real numbers, consider the family

...
...

...
...

(50)

of rectangular Hankel matrices. Define thedegree indexes
of (49) in the following way. Set ,

and, for , let be the smallest integer greater
than such that has full rank. According to
Kronecker’s theorem, the Laurent series (47) defines a rational
function of degree if and only if (49) has a finite number
of degree indexes, being the largest. In this case

rank

rank ...
...

...
...

(51)

and there are matrices of dimensions ,
, and , respectively, such that

for (52)

so that is the minimal realization of the rational
function defined by (47). We call the McMillan degree
or the algebraic degreeof (49).

Next, following Kalman [31], consider the problem of
finding an infinite extension of a finite sequence

(53)

having the smallest possible algebraic degree, i.e., such that
(47) is a rational function of smallest degree. This is thepartial
realization problem[26], [31], [32], [49], and the infinite
sequence, which may or may not be unique, is called aminimal
rational extensionof (53). The degree indexes of a finite
sequence (53) are constructed precisely as for an infinite one,
with the exception that the process stops when there are no
more data. Clearly (53) has the same degree indexes as any
of its minimal rational extensions.

In order to compute the minimal algebraic degree of the
partial sequence (53), and to parameterize those minimal
partial realizations, it is convenient to turn to the method of
continued fractions for determining whether a strictly proper
meromorphic function is rational. Just as in Euler’s treatise
on the irrationality of in the application of continued fractions
to the partial realization problem, the equivalence between
rationality and finiteness and the computation of the fractional
partial sums play an equally important role [26], [32]. In
fact, let be a sequence of strictly proper
rational functions defined recursively in the following way.
Given , apply the Euclidean division algorithm to obtain

(54)

where is a normalizing coefficient chosen so that is
a monic polynomial

(55)

and is the remainder in the form of a strictly proper
rational function. Now, taking , it can be shown that

for some finite if and only if is rational. Then
a simple calculation gives the following continued fraction
expansion:

(56)

with . This is theprincipal part continued fraction
of Magnus [44].

It was pointed out in [32] and further elaborated upon in [26]
that the family of minimal rational extensions can be parame-
terized via such a finite continued fraction expansion. Indeed,
the degree indexes of the sequence (49) or, equivalently, that
of (47), is then given by the recursion

(57)

and the algebraic degree of these sequences is .
This suggests [26] that the class of rational functions (48)

is parameterized by the sequence

(58)

of real numbers, where

(59)

is a subsequence of parameters, the first being all
zero. We shall call the th sectionof the parameter sequence

, and the corresponding subsequence ofis the th section of
. More exactly, has the form (58) in the case . If

, the last section, , will not be completely filled, so
one or several of the parameters will
be arbitrary and will not appear in the parameter sequence.
Whenever , there are zeros after the last
section , indicating that the last elements in the
sequence (53) are automatically matched. A “generic section”
has the form , consisting of only two parameters.
The following is a statement of [26, Th. 6].



1056 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 8, AUGUST 1997

Theorem 3.1 [26]: The function sending
the sequence (53) to the parameter sequence (58) is a bijection.
Moreover, if , , and , then

for if and only if
for .

The proof of this theorem relies on a particular form of the
converse of the continued fraction expansion (54), which will
also play an important role in some of the constructions needed
for our main results. Namely, as shown in [26], the rational
function (48) can be reconstructed from and

via the three-term recursion

(60)

where the polynomials are actually theLanczos poly-
nomials used in block tridiagonalization [37]. In fact, the
polynomials and are given by

and (61)

which are coprime polynomials [26].
Returning to the partial stochastic realization problem, recall

that in addition to the rationality requirement on the interpo-
lating filter which we have just discussed, it is also required
that the rational filter be positive real. The additional difficulty
imposed by positivity can be illustrated by comparing the
algebraic and positive degrees asvaries over the set
of positive sequences. Forin , it is perhaps tempting to
proceed as above by taking to be the algebraic degreeof
the partial covariance sequence (29), i.e., the maximum rank of
the Hankel matrices with , which, as pointed
out in [42] and [43], is common in applications to identification
[3], [51]. For this algebraic partial realization problem, it is
well known [5] that the algebraic degree has the generic value
of if , or if . However, this will in
general not lead to a positive real , or even a stable
for that matter; cf., [6]. Indeed, by Theorem 2.2, the smallest
degree that will preserve the positive realness of , the
positive degreeof (29), can be any integer between zero and

. Moreover, in contrast to the purely algebraic problem, for
each there is even
an open subset of the-dimensional set of covariance data for
which . In fact, as we shall show in Section V, examples
of interior points in are given by the maximum entropy
filter for partial covariance sequences satisfying , for

and .
In general, for any in the maximum entropy filter is

obtained by setting

for

This corresponds to taking and ,
where and are the Szeg̈o polynomials of the
first and second kind, respectively, as defined in Appendix A.
It can be shown that

(62)

and that

(63)

Consequently, since and are Schur polynomials

(64)

is strictly positive real and

(65)

yielding the modeling filter

(66)

This is themaximum entropy solution, which in general has
the property that the corresponding spectral density (65) lacks
finite zeros [28]. However, in many applications, such as the
speech processing example described above, zeros are desired,
and the question arises whether it is possible to assign zeros
arbitrarily and still satisfy (24). To this end Georgiou [23]
and Kimura [34] observed that the formula (62) could be
generalized to

(67)

(68)

thus expressing in terms of the parameters
, where and

. In fact, it was shown
in [23] and also later in [12] that the interpolation condition in
(67) holds for all , and consequently theKimura–Georgiou
parameterization (67) characterizes rationality but not
positivity. We denote by the subset of for which

is strictly positive real and let

fixed

be the positive real region for fixed covariance data.
Given the fact that there is an open set of partial correlation

sequences which have the maximum positive degree,,
possible, and that memory is both available and cheap, the
Kimura–Georgiou parameterization is an attractive parameter-
ization of those deterministic partial realizations of degree
which should also play an important role in the stochastic par-
tial realization theorem. Of course, given the partial covariance
data , the choice is the maximum entropy solution, but
in general it is very complicated to characterize those other
for which is positive real.

To illustrate our point let us give some low-dimensional
examples. For the representation (67) takes the form

The strictly positive real region is the diamond depicted in
Fig. 1, and fixing the partial covariance data, the admissible

are the ones on the open interval in the figure.
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Fig. 1. The positive regionP1; the marked interval isP1( 3
5
).

Fig. 2. The positive regionP2( 1
2
; 1
3
).

Next, let us consider the case . Fixing the covariance
data at and , we obtain

and the region of positive real is as depicted
in Fig. 2.

The higher-dimensional cases become much more compli-
cated. While it is true that is always diffeomorphic
to Euclidean space [7], any good solution to Problem 2)
or 3) would give a parameterization in terms of familiar
system theoretic objects. In this direction, the possibility
of parameterizing those filters which are positive real by
arbitrarily prescribing the zeros of a modeling filter was
suggested earlier by Georgiou [23]. Indeed, using a very
innovative application of topological degree theory Georgiou
proved that to each choice of zeros there corresponds some
modeling filter.

Recently we proved an amplification of a long-standing
conjecture of Georgiou that, for any desired choice of spectral
density zero structure, there is one and only one positive
extension, i.e., one and only one modeling filter. This result
was obtained by viewing a certain fast filtering algorithm
as a nonlinear dynamical system defined on the space of
positive real rational functions of degree less than or equal
to . It is then observed that filtering and interpolation induce
complementary, or “dual” decompositions (or foliations) of
this space. From this assertion about the geometry of positive
real functions follows a result [10] which itself answers
Georgiou’s conjecture in the affirmative and provides the first
complete parameterization of all positive rational extensions.

Theorem 3.2 [10]: Let be a given positive
partial covariance sequence. Then given any Schur polynomial

there exists a unique monic Schur polynomial of degree
and a unique such that

is a minimum phase spectral factor of a spectral density
satisfying

for

In particular, the solutions of the rational positive extension
problem are in one-to-one correspondence with self-conjugate
sets of points (counted with multiplicity) lying in the open
unit disc, i.e., with all possible zero structures of modeling
filters. Moreover, the modeling filter depends analytically
on the covariance data and the choice of zeros of the spectral
density.

As an example, Fig. 3 depicts the connected open subman-
ifolds and , consisting of the monic polynomials in

, for . These sets form the domain and codomain
of the diffeomorphism, described in Theorem 3.2, sending
to . Theorem 3.2 states that to any pointin , there is one
and only one such that . This defines a
modeling filter having the zeros of . Conversely, any

such that determines a Schur polynomial
. We remark that can also be computed via the

convergence of the dynamical system (155) with the initial
condition determined by ; see Appendix A.

IV. THE COVARIANCE EXTENSION EQUATION

Recall that the problem under consideration is as follows.
Given a partial covariance sequence and a
monic stable polynomial , representing the required zeros,
find monic Schur polynomials and such that:

1) the rational function

(69)

with Laurent expansion

(70)

about infinity satisfies the interpolation condition

for (71)

2)

(72)

for some positive real number.

We shall first relax the problem by temporarily dropping the
requirement that and both be Schur polynomials.
In fact, our first result parameterizes the set of all pairs

of monic, not necessarily Schur, polynomials in
terms of symmetric solutions of the CEE (38).
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(a) (b)

Fig. 3. The domain and codomain of the diffeomorphism of Theorem 3.2 in the casen = 2 and 
 = (
1

2
;
1

3
).

Theorem 4.1:There is a one-to-one correspondence be-
tween symmetric solutions of the CEE (38) such that

and pairs of monic polynomials

(73)

(74)

satisfying the interpolation condition (71) and the positivity
condition (72). Under this correspondence

(75)

(76)

(77)

and is the unique solution of the Lyapunov equation

(78)

where

...
...

...
...

... (79)

is the upward shift matrix. Moreover, the following conditions
are equivalent.

1) .
2) is a Schur polynomial.
3) is a Schur polynomial.

If they are fulfilled

rank (80)

The proof of this theorem, as well as the first of its
corollaries, will be deferred to the end of the section. The fol-
lowing example of polynomial spectral factorization illustrates
Theorem 4.1.

Example 4.2:Let us consider the case

Then, in view of (19), in (72) so we must have .
Consequently, (72) yields

(81)

Moreover, and so the covariance extension
equation (38) becomes

(82)

and and are given by

(83)

Now, by Theorem 4.1, there is a one-to-one correspondence
between symmetric solutions of (82) and polynomial spec-
tral factors of the pseudo-polynomial ,
and this correspondence is described by (83). The stable
solution to (81) corresponds to , the only positive
semidefinite solution to (82), and in this case (83) yields
and as expected.

As a corollary of Theorem 4.1 we have that is also a
solution to a certain algebraic Riccati equation related to the
rational function , defined by (69). In fact, it is elementary
to check that has a minimal realization

(84)

where is the companion matrix

(85)

and

(86)

to which representation there corresponds analgebraic Riccati
equation

(87)

We shall say that a symmetric solutionof (87) isstabilizing
if and

(88)

has all its eigenvalues in the closed unit disc. It can be shown
(see, for example, [48]) that (87) has a unique stabilizing
solution if and only if

for all (89)

which follows from (72).
Corollary 4.3: Let be a symmetric solution of the CEE

(38) such that , and let be the corresponding
rational function (69) defined via (75) and (76). Thenis the
unique stabilizing solution to the algebraic Riccati equation
(87) corresponding to .

Now, restricting our attention to positive semidefinite solu-
tions of the CEE (38), and become Schur polyno-
mials and is strictly positive real. Also
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is analytic for for some , and hence the
Laurent series (70) is valid there. Consequently

(90)

is defined in an annulus containing the unit circle and is
therefore a bona fide spectral density.

Corollary 4.4: There is a one-to-one correspondence be-
tween positive semidefinite solutions of the covariance ex-
tension equation (38) satisfying and monic Schur
polynomial of degree such that for some

(91)

satisfies

(92)

on the unit circle, where

for (93)

Under this correspondence and are given by (75) and
(79), respectively. The degree of equals the rank of .

Proof: It remains to show that there is a one-to-one
correspondence between and . The linear operator

, from the space of polynomials of degree less than or
equal to to the space of symmetric pseudo-polynomials,
defined by

is invertible if and only if has reciprocal roots, as
is the case if is a Schur polynomial. This follows
from [19], noting that the Jury matrix of is a matrix
representation of ; also see [13, Lemma 5.5]. Therefore
(72) can be uniquely solved for and hence is uniquely
determined by ; the reverse is trivial. Finally,
follows from .

One of our main results, namely Theorem 2.1, is now an
immediate consequence of Corollary 4.4 and Theorem 3.2. We
note that the minimum-phase spectral factor is precisely
the modeling filter corresponding to. Passing white noise
through this modeling filter and letting it come to statistical
steady state, we obtain a linear stochastic system (1). In view
of Corollary 4.3 and the classical stochastic realization theory
[2], [21], [41], is actually the state covariance matrix of this
system, i.e.,

E

Theorem 4.1 and Corollary 4.3 are a consequence of the
following chain of lemmas.

Lemma 4.5: The interpolation condition (71) holds if and
only if

(94)

where , , , and are defined by (35), (75), and (86).

Proof: To prove that (94) is equivalent to the interpola-
tion condition (71), first note that (19) can be written

(95)

where

... ...
...

...
...

Now, identifying coefficients in (34), we see that is the
unique solution of

(96)

This equation may also be written

and therefore a simple inspection shows that

(97)

Consequently, (95) takes the form

which is equivalent to satisfying (86).
Lemma 4.6:Let be the function, defined by (75) and (76),

sending symmetric solutions of the covariance extension
equation (38) to points . Then is injective
and maps onto the set of satisfying the interpolation
condition (72) and the positivity condition (73). Its inverse

is the unique solution of the Lyapunov equation
(78).

Proof: Let be a symmetric solution of the covariance
extension equation (38) such that . Then a
straightforward reformulation of (38) yields

(98)

where

(99)

and is given by (77). Now, if and are defined in terms
of by (75) and (76), we have

(100)

and

(101)

Therefore, since

(102)

must satisfy

(103)
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where when or is greater than one. Multiplying
(103) by and summing over all

, we obtain

(104)

the left member of which may be written

LM (105)

But, in view of (102) and (77), (100) is the same as

(106)

which may also be written

(107)

Therefore, since , the left member of (104)
becomes

LM

and consequently

(108)

This establishes (72). It remains to show that the interpolation
condition (71) also holds. To this end note that

(109)

which inserted into (99) yields (94), which in turn is equiv-
alent to (71) (Lemma 4.5). We have thus established that
the function maps into the set of satisfying the
interpolation condition (71) and the factorization condition
(72). To prove that actually maps onto, choose any pair

satisfying these conditions. Letbe the unique positive
number satisfying (108), obtained by identifying coefficients of
like powers in , and let be the unique symmetric solution of
the Lyapunov equation (78). Here uniqueness is a consequence
of the fact that the eigenvalues ofare all zero and hence in
the open unit disc. It remains to show that, , and satisfy
(75) and (76) and that satisfies the covariance extension
equation (38). To this end, write the Lyapunov equation (78)
in the form (105). Together with the factorization condition
(108) this yields

from which (107), or equivalently (106), and
are obtained by identifying coefficients of like powers in.
Consequently, (77) and (100) hold.

We now invoke the interpolation condition (71), which by
Lemma 4.5, is equivalent to satisfying (94) or,
equivalently

(110)

But, since , (100) is the same as (109), which
together with (110) yields (99), which in turn, together
with (100) and (101), yields (75) and (76). Now, inserting
(99)–(101) and (77) into (78), a simple calculation yields
(38), showing that is a symmetric solution of the covariance
extension equation. Hence we have proved thatmaps onto
the set of which satisfies (71) and (72).

To prove that is injective, let be any point in the
range of . Then is uniquely defined by (108). Any
such that must satisfy the Lyapunov equa-
tion (78) which has a unique solution. This establishes both
injectiveness and the last statement of Lemma 4.3.

Lemma 4.6 shows that there corresponds a unique rational
function , defined via (69), to any solution to the CEE.
Next we shall show that is also a solution to the algebraic
Riccati equation (87) corresponding to (84). Since
is reachable, the existence of a unique stabilizing solution
follows, for example, from [48, Th. 1]. If, in addition,
is reachable so that is a minimal realization of

, then it is well known [2], [21] and immediately seen
from the Kalman–Yakubovich–Popov Lemma that if
and only if is strictly positive real. In general, we have
the following result.

Lemma 4.7:The rational function , defined by (84)
and satisfying (89), is strictly positive real if and only if the
unique stabilizing solution of the algebraic Riccati equation
is positive semidefinite. In this case, the degree of equals
the rank of .

Proof: Setting , we may
write the algebraic Riccati equation (87) in the Lyapunov form

(111)

To proceed we shall need some properties of such equations,
namely the following.

1) If , then .
2) If , then .
3) If has no pair of eigenvalues which are

reciprocal, i.e., such that , then

rank rank

The continuous-time versions of these statements follow
from [24, Th. 3.3]: i) from (2), ii) from (7), and iii) from
(5) in that theorem. The discrete-time results are obtained by
applying the usual linear fractional transformations—see, for
example [24, Sec. 2.2] or in [21, Sec. 3.3]—keeping in mind
that the left half-plane is transformed into the unit disc as
concerns the spectrum of, while remains the same in the
two settings.
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The rational function satisfying (91)
is equivalent to the existence of a Schur polynomial and
a positive number such that (108) holds. Then is strictly
positive real if and only if is a Schur polynomial.

First suppose that is a Schur polynomial. Then, since
is the characteristic polynomial of , , so

it follows from ii) that . Conversely, suppose that
. Setting rank , there is a nonsingular linear

transformation and a positive definite symmetric matrix
such that

Transforming (111) accordingly yields

(112)

where

and

Since therefore

we must have and , and hence

(113)

Also a straightforward calculation shows that

where is the -vector , so must
be a common factor of and which is being canceled.
Since is a Schur polynomial, then so is .
Therefore, it only remains to prove that is a
Schur polynomial, i.e., that . To this end, note
that, in view of (112)

Then, since , ii) implies that . But
cannot have any zeros on the unit circle and hence, in view of
(113), we must have as claimed. In fact, if is
a zero of on the unit circle, then so is . Therefore, in
view of (108), either or is a zero of contradicting
the assumption that is a Schur polynomial.

To prove the last statement, observe that ifis stable, there
are no reciprocal eigenvalues, so iii) implies that

rank rank

which, in view of the fact that is observable, equals
the degree of

(114)

However, in view of (108) and the fact that , , and
are all Schur polynomials, any common polynomial

factor of and is a common factor also of and
and vice versa. Hence, and have the same

degree, namely rank.
It is well known that the rational function (69) is strictly

positive real if and only if (89) holds and either or
is a Schur polynomial, in which case both and

are Schur polynomials. Therefore, the last two statements of
Theorem 4.1 follow from Lemma 4.7 and Corollary 4.3, which
we prove next.

Proof of Corollary 4.3: Let be a symmetric solution
to the covariance extension equation (38) such that ,
and let be defined by (39). Then, as demonstrated above,
(109) holds, i.e.,

(115)

Inserting (115) into (38) yields

(116)

where and

(117)

which, in view of (102), is the matrix (85) defined in Lemma
4.5. Now, from (114) and (117) we have

(118)

which inserted into (116) yields the algebraic Riccati equation
(87). Hence is a symmetric solution of (87), which, by
Lemma 4.5, clearly is the algebraic Riccati equation corre-
sponding to . However, it remains to show that it is
the unique stabilizing solution of (87). To this end, observe
that (117) and (118) imply that , where is the
feedback matrix (88). Hence, it follows from the fact that the
characteristic polynomial of is a Schur polynomial and
the fact that that is the stabilizing solution
of (87).

V. MINIMAL PARTIAL STOCHASTIC REALIZATIONS

The question of minimality of the dimension of partial
stochastic realizations will now be studied in more detail.
In this direction, Theorem 2.1 gives some information about
the minimal partial stochastic realization problem. In fact, for
each choice of zero polynomial there is a unique solution
which we may denote . In this setting, the minimal partial
realization problem could also be phrased as finding the zero
polynomial minimizing the function

rank

over the region of Schur polynomials (36). The optimal
zero structure is in general not unique, and the structure of
the optimizing set of depends on . In harmony
with Example 4.2, all are optimizing and is identically
zero if and only if . It can be
further seen that all are optimizing if
with , in which case is identically . In this
section, we investigate how the positive degree of a partial
covariance sequence depends on the values of the covariance
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data . In general, according to Theorem 2.2, for
, the sets of such -tuples for which and

are both open sets in .
We shall first consider the “codimension one” case, i.e., the

situation where the minimal dimension of a partial stochastic
realization can be reduced to at least . This, of course,
occurs when there are “extensions” for which the
corresponding choice of polynomials has a common
root. Classically, this may be tested by computing whether the
resultant, of the pair , vanishes; see Appendix B.
Regarding the sequenceas being fixed, the resultant is then a
polynomial in which defines an affine hypersurface

in as its zero locus. A better understanding of the
real hypersurface yields a simple, but powerful, geometric
criterion for a codimension one reduction for partial stochastic
realizations. In particular, we shall prove the following result,
which is a special case of Theorem 2.2, but which already
illustrates the profound difference between deterministic and
stochastic partial realization theory.

Theorem 5.1:Let , , and be defined as in
Section II. Then

is a decomposition of into two semialgebraic subsets
with nonempty interiors. In fact, is an open,
semialgebraic subset of . That is

where is an open, semialgebraic subset of. If
, is nonempty.

Remark 5.2: In order to prove results guaranteeing the
structural stability, with respect to, of the intersection of

with , we shall need to prove a separation theorem,
a result which is not at all immediate from the definitions.
Indeed, not every algebraic set defined by a single equation
is a hypersurface in what is called the geometric sense. For
example, in the equation defines an algebraic
hypersurface, but the zero locus does not separateinto
two or more open sets, nor is it dimension one, in any sense
but the purely algebraic sense of counting equations. This
example, however, illustrates exactly what can go wrong for
real hypersurfaces. Very briefly, inC , the equation

defines a one-dimensional algebraic curve, with just one
singular point, (0, 0)—that is, a point at which the total
derivative (or gradient) of the defining equation vanishes. As it
turns out, the only real point on this complex curve is a singular
point, which is precisely why the real locus has “algebraic”
dimension one but “geometric” dimension zero in a sense we
shall now make precise.

Recall [47] that an algebraic subset of defined by a
single polynomial equation is called an algebraic hypersurface.
An algebraic hypersurface is a geometric hypersurface if and
only if it contains a regular point, i.e., a point at which
the gradient of the defining equation is nonzero. Geometric
hypersurfaces have dimension , in the sense that a
geometric hypersurface is always an -dimensional
manifold in a neighborhood of any regular point. Moreover,

the complement of a geometric hypersurface is a union of the
two disjoint open sets where the defining equation is positive
and negative.

According to a theorem of Whitney [47], the complement
of an algebraic subset of defined by a single polynomial
equation of degree has at most connected components.
In preparation for the proof of Theorem 5.1, we need the
following separation criterion, the essence of which is that

contains a real, regular point and therefore separates
itself into at least two disjoint open subsets. In this language,
we first wish to characterize for which covariance sequences
the hypersurface is a proper algebraic subset, when it is
nonempty, and when it is a geometric hypersurface.

Theorem 5.3:Consider a partial covariance sequence
in . There exists an such that

if and only if for some . A necessary
and sufficient condition for to admit a partial stochastic
realization of dimension less than or equal to is that the
hypersurface intersects nontrivially; i.e.,

(119)

In this case, separates into at least two open subsets.
Of course, for low-dimensional problems, the separation

criterion provides for a complete analysis of the minimal
partial realization problem. Before turning to the higher-
codimension cases, for the sake of completeness we describe
these lower-dimensional examples. If , then is
empty, since reduces instead to the constraint . In
particular, for we have and .

If , we still have , and, as pointed out by
Georgiou [23], it is easy to see that if and only if

(120)

For such a , , and, as depicted in Fig. 4, only points
in the intersection between the (shaded) positive real region

and the line will have . We note that in this
case, for fixed the resultant hypersurface is linear and
is defined by

(121)

These are precisely the points for which and have a
common factor. All other correspond to of degree two.
For example, if and , (120) is satisfied, and
the line (121) intersects the positive real region as depicted
to the left in Fig. 4. All corresponding to points on the
interval defined by this intersection have degree one. The set

consists of those for which and condition (120) is
violated. The situation corresponding to such a point,
and , is illustrated to the right in Fig. 4. Here the
intersection between and the hypersurface is empty.

For the situation is more complicated, but we have
a sufficient condition for the positive degree to be strictly
less than one, which is similar to (120).
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(a) (b)

Fig. 4. The hypersurfaceH
 (line) andP2(
) (shaded region) for two different choices of
.

Corollary 5.4: Suppose . Any partial covariance
sequence satisfying the condition

(122)

is contained in . In particular, (122) is a sufficient
condition for to be less than . If , the condition is
also necessary.

Corollary 5.4 gives an independent proof that has
a nonempty interior in . Of course, Theorem 2.2 also asserts
that the semialgebraic sets and have nonempty
interiors if and only if . In this direction, one
can very easily see that for even, the subset is open.
Indeed, to say lies in is to say that both
the Hankel matrix

...
...

...
...

is invertible and that the Toeplitz matrix

...
...

...
...

is positive definite. Since these conditions define open sets of
sequences, is open but, of course, not dense as it is for
the deterministic partial realization problem. Our proof is that
in the intermediate cases , still contains
interior points is constructive. Indeed, we shall show that the
maximum entropy filters corresponding to certain choices of
partial covariance sequences are interior points by using a
minimality criterion derived from the fast filtering algorithm
described in Appendix A. From this construction, and the
results stated above, Theorem 2.2 follows.

We now turn to the proofs. Our first result characterizes
when is a proper algebraic subset of . Recall that

if and only if and
therefore if and only if .

Proposition 5.5: Suppose that . Then there exists an
such that .

Proof: Given the partial covariance sequence, or equiv-
alently , as seen in Section III, another parameters are
needed to parameterize all partialstochasticrealizations of de-
gree at most . These could be , as in the Kimura–Georgiou
parameterization, or, or, equivalently, ,
as explained in Section II. Consequently, we consider a se-
quence

(123)

where is fixed, and
are free parameters to be selected. Now, if

(124)

are the degree indexes of (123), the condition that (123) has
McMillan degree at most is equivalent to , and in
this case the last section of (123) is completed. If ,
the parameter sequence will end with

zeros.
Therefore, the statement of the proposition is equivalent to

saying that for any fixed choice of there exists
an extension such that the square Hankel
matrix of (123) is nonsingular, and hence . Define to
be the integer with the property that
and . If , then there is only one section and .
If , then any section initiated in the first fixed part of

will end with , where , if the arbitrary are
chosen appropriately. If , can be
chosen so that there are, say, generic sections at the end,
then the highest degree index equals.

Our next result ensures that the hypersurfacein is
nonempty, except when with .

Proposition 5.6: The algebraic degree of a sequenceis
if, and only if, with .

Proof: By definition, the sequencehas degree indexes
, and hence the algebraic degree is. To

prove the converse, first note that if , the algebraic degree
is zero. Next suppose that, is the first nonzero
element in . Then the first section of has elements, so if

, the algebraic degree is. If , elements
remain for further sections, so the algebraic degree is at most

.
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Theorem 5.7:The hypersurface is the closure of the set
of all regular points on . In particular, is a geometric
hypersurface except when or when

with .
Proof: The first step is to characterize the regular points

on .
Proposition 5.8: Suppose that . The set of regular

points on consists of those for which the corresponding
polynomials and have a simple (real) common factor over

.
Proof: We shall begin our analysis on the space

of pairs of monic polynomials of degree . As we
have noted in the proof of Proposition 5.5, this space can
also be parameterized in terms of the partial sequence
(or equivalently ), together with the parameters in the
Kimura–Georgiou parameterization. Following Kronecker, as
described in Section III (see also Appendix B), the zero locus
of the resultant in can be identified with the zero
locus of the determinant of the Hankel matrix

...
...

...
...

Since

is fixed (125)

is the intersection of with an -dimensional manifold
with tangent space given by (see [10])

(126)

From the representation of as such an intersection, one
sees that every singular point of the hypersurfaceremains
a singular point of . In particular (Appendix B), every

corresponding to a pair having a greatest common
divisor with degree larger than one is a singular point of.

Conversely, from the representations

(127)

of the tangent space of (Proposition B.3) and (126) of the
tangent space of and , we conclude that all other pairs
are regular points on . That is, those corresponding to a
pair having a greatest common divisor with degree one
are precisely the regular points, as claimed in the Proposition.

To see this, it suffices to prove that for anyfor which
the corresponding polynomials and have a simple (real)
common factor over , there exists a tangent vector to

in which is not in . Alternatively,
it suffices to check that the subspace intersects

in a codimension-one subspace. To say that
lies in the intersection

(128)

is to say that

(129)

where and is an arbitrary polynomial satisfying
. However, for lying in (128) we have

(129) or, equivalently

(130)

so that is not arbitrary but rather is itself also divisible by
so that the corresponding set of polynomialis each divisible
by . In particular (see Remark B.2), the subspace (128) has
codimension one in , which concludes the proof of
the proposition.

Having characterized the regular points, we now show that
they exist, except in the two cases delineated above.

Lemma 5.9:Suppose that and that there exists an
such that . Then there exists an such that

, where , i.e., there exists a regular point.
Proof: This is equivalent to saying that for any

fixed choice of there exists an extension
such that the largest degree index

of equals , i.e., the last section should
end with , and . Let be defined as
in the proof of Lemma 5.5. Then we must have , so
any section initiated in the first (fixed) half ofwill end with

, where , if the arbitrary in that section is
chosen appropriately. We must have . If

, we fill the gap with generic sections.
Then , as claimed.

Lemma 5.10:The hypersurface coincides with the clo-
sure of all regular points on .

Proof: Let be the set

If we can show that

(131)

then as claimed. To this end, choose an arbitrary
point in . Then has a parameter sequencesuch that

and is the last element in a section. We want to
find a sequence in which converges to
. Clearly, such a sequence is obtained by taking to have

the parameter sequence , where

for

otherwise.
(132)

In fact, if is the number of sections in, then has
sections and

so that

as , where and correspond to . Conse-
quently, as , as claimed.
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This concludes the proof of Theorem 5.7.
Clearly, Theorem 5.7 implies Theorem 5.3. Theorem 5.1

then follows from these results and the following corollary.
Corollary 5.11: The subset is an open, semi-

algebraic subset of . That is

where is an open, semialgebraic subset of. If
, is nonempty.

Proof: We first prove that and hence
is a semialgebraic set. Since the change of coordinates

between and is birational
without poles on , it suffices to prove this claim in the
coordinates. To this end, consider the space

The subset of those sequences for which is strictly
positive real is, of course, a semialgebraic set, since it is
definable in terms of polynomial inequalities [13]. We also
consider the algebraic set , the zero set of the resultant

introduced in the proof of Proposition 5.8. In particular,
is semialgebraic. Finally, we define the projection

via

According to the Tarski–Seidenberg theorem [28],
is also semialgebraic.

To see that is open, we recall that is
a proper hypersurface (Proposition 5.5), i.e., a codimension
one, provided at least one differs from zero. Suppose then
that lies in . Denoting by the corresponding
partial Schur sequence, according to Theorem 5.3, the proper
hypersurface meets the open set at a regular point.
Then, there exist points and in such that

and

Since the set of strictly positive real, degree, transfer
functions is open, for sufficiently near , we must have

and . Moreover, we must
also have

and

Since is connected and is continuous, there is a
point such that . Therefore,

is open.
To see that is nonempty, we need only construct

corresponding to a modeling filter having degree
satisfying . One such choice

and

with , corresponds to a maximum entropy filter

of degree ; see Section III.

We have just seen that the separation criterion implies that
is open. We now prove Corollary 5.4, which

gives an explicit sufficient condition (122) for membership in
in terms of the Schur parameters.

Proof of Corollary 5.4: Given a sequence of Schur pa-
rameters satisfying (122), we want to find
a positive real function

(133)

of degree at most ; the first Schur parameters are
precisely . We shall demonstrate that there
is a real number such that

(134)

defines such a function, where , and
are the appropriate Szeg¨o polynomials defined as in Ap-

pendix A from . Consider the dynamical sys-
tem (155) with equations and initial condition

and
. Then, to match the remaining Schur parameter ,

we must choose so that

(135)

Now, in view of (122), . Consequently, it remains
to show that (134) with given by

(136)

defines a positive real function (133). To prove this we need
to show that is a Schur function and that (15) holds on
the unit circle.

Let us start with the last requirement. To this end, first note
that, in view of (136), (122) is equivalent to

(137)

From the recursions (149) and (150) it is not hard to see that

(138)

and that

(139)

and therefore, since

for . This is positive for all if and only if (137) holds.
Next we prove that is a Schur polynomial. In view of

(149), we have

(140)

Since, by (137), , the function

(141)
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has all its zeros inside the unit circle. We want to show
that the same is true for . To this end, observe that, in
view of (137)

for any on the unit circle. But, since
(see [4, p. 119]) and , this implies that

(142)

and hence by Rouche’s theorem, is a Schur polynomial
as required. If , all and have the form (134),
and therefore we have also necessity, as claimed.

In the course of determining properties (e.g., nonvacuous-
ness) of the sets and , we will find it useful
to apply not just the solution to the rational covariance
extension problem, but also certain of the tools which played
an important role in its resolution. One of these is a nonlinear
dynamical system (155), which is a reformulation of a fast
algorithm for Kalman filtering [38], [39] and is also related
to the Schur algorithm. We note that for initial conditions

it is known that the trajectory remains in
and converges to , where [13].
Of course to say is to say that to there
corresponds a positive real, rational function. It is important
to note that

(143)

where the covariance sequence has as its
corresponding sequence of Schur parameters the components
of the partial state propagated by this dynamical system.

This observation provides a useful alternative for an analysis
of the minimal partial stochastic realization problem. Indeed,
in this language, we note that to say that a modeling filter
corresponding to a pair has degree less than or equal
to is to say that , where is
defined by

...
(144)

More precisely, if the degree of (143) is less than or equal to
, there is a recursion

(145)

of type (158), where and
are generated by a reduced-order

dynamical system (155) of dimension . In order to also

match the remaining Schur parameters ,
the constraints are therefore required. We note
that, for fixed , is of course an alternative
expression for the resultant of the pair of polynomials
corresponding to . We are now in a position to complete
our proof of Theorem 2.2 with the following sequence of
lemmas.

Lemma 5.12:Let be any integer satisfying .
Then the subsets of consisting of partial covariance
sequences having a minimal stochastic real-
ization of degree are a nonempty semialgebraic set. The
subset of those partial covariance sequenceshaving
a minimal stochastic realization of degree less than or equal
to is also semialgebraic.

Proof: We begin by proving that and are
semialgebraic. As in the proof of Theorem 5.3 it suffices
to prove this claim in the coordinates. For codimension
greater than one, we consider the algebraic subset of

defined by , where is defined by (144).
Since is semialgebraic,
is also semialgebraic by the Tarski–Seidenberg theorem [29].
In this notation

Since the complement of a semialgebraic set is semialgebraic,
it follows from induction that is semialgebraic.

We next show that , and hence , is
nonempty. As before, consider the choice

corresponding to
a maximum entropy filter of degree

where is the th Szeg̈o polynomial . We shall further
assume that so that , and therefore
has minimal degree . We now note that, for all choices of

, whenever is replaced by , we must have

In particular, for no choice of will the modeling filter
corresponding to have degree less than . That is, if

is the partial covariance sequence corresponding to, then
.

Lemma 5.13:Let be any integer satisfying .
Then, there is an open neighborhood ofsuch that, for all
in this neighborhood, there does not exist an for
which the modeling filter corresponding to has degree
less than .

Proof: Suppose the contrary, so that there exists a se-
quence approaching such that for each there exists

for which the degree of the system determined by
is less than or equal to . In particular, we must have
that holds with replaced by . More
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explicitly, we must have

Since is relatively compact, the sequence has a
cluster point and, by choosing a subsequence if necessary, we
may assume that where .
This, however, leads to a contradiction since

Lemma 5.14:Let be any integer satisfying
. Then, has a nonempty interior which contains.

Proof: We shall show that there exists an open neigh-
borhood of in such that for all ,
there exists an for which the modeling filter
corresponding to has degree less than or equal to

. Existence of follows from an application of the
implicit function theorem to the equation . For
the parameter choice , recalling that the matrix in
the fast filtering algorithm is upper triangular and that ,
an interesting but routine calculation shows that

...
...

which, under our hypothesis, has rank . Therefore,
augmenting the equation by adding the slack
equations

...
(146)

we obtain a system of equations for which
the Jacobian matrix has full rank. Therefore,
for sufficiently near , there exists an analytic function
such that and is a solution to

. Since, for such , is a nonempty open set
and continuous, it follows that is a nonempty open
neighborhood of in .

These lemmas imply that has a nonempty interior,
for any integer satisfying . We now show
that if satisfies , then the interior of
is empty. To this end, consider that to each pointin we
assign the standard Hankel matrix

...
...

...

where either is even or is odd. We also
consider the algebraic set

rank

Then (see [5] or Appendix B), is an algebraic subset
of having geometric (and algebraic) dimension . In
particular, if satisfies , then has
empty interior. Since contains , if satisfies

, then the subset of has empty interior
as well. This concludes the proof of Theorem 2.2.

From Theorem 2.2 and from Corollary 5.11, we can deduce
the following properties of , differing substantially from
the deterministic case.

Corollary 5.15: The subset is a closed semialgebraic
subset of having a nonempty interior.

APPENDIX A
POSITIVITY OF MEROMORPHIC AND

RATIONAL COVARIANCE EXTENSIONS

There are three principal constraints in the partial sto-
chastic realization problem: rationality, positivity, and mini-
mality of the (positive) degree. In Section III, we discussed
classical and recent approaches to rationality, and the min-
imality of the algebraic degree. Positivity also has deep
historical roots, going back to the classical Carathéodory
extension problem [15], [16]. It is well known [27], [50]
that to any sequence one can bijectively
assign a sequence of Schur parameters
defined in terms of the Szegö polynomials of the first kind

, a sequence of monic Schur poly-
nomials

which are orthogonal on the unit circle [1], [27]. The Schur
parameters are then given by

(147)

where and the coefficients can be deter-
mined recursively [1] by

(148)

and the Szeg̈o–Levinson equations

(149)

with being the reversed polynomials

For the sake of completeness, we also define the Szegö
polynomials of the second kind, generated by the recursion

(150)

Clearly are obtained from , by merely switch-
ing the signs of the Schur parameters.

These recursive schemes show that if
are the Schur parameters of , then, for
any , are the Schur parameters of
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. It is a classical result of Schur [50] that
these parameters satisfy the condition

(151)

if and only if the Toeplitz matrices

...
...

...
...

(152)

are positive definite. Moreover, there is a bijection [50] be-
tween the class of strictly positive real (meromorphic) func-
tions and the class of sequences satis-
fying

for (153)

Now returning to the covariance extension problem, we note
that if the partial covariance sequence is
given, then the first Schur parameters
are determined, and they satisfy (151). Moreover, there is
a one-to-one correspondence between positive extensions

and extensions

(154)

Consequently, (154) is a complete parameterization of all
strictly positive real meromorphic functions interpolating

.
However, the basic question of which extensions (154)

are rational remains open. Partial results in this direction
are provided in [23] in terms of asymptotic properties of
the Schur parameter sequence. For example, it is noted that
for rational modeling filters the Schur sequence is square
summable and asymptotically rational. As it turns out, these
properties are a consequence of stable manifold theory for a
certain dynamical system. Indeed, in [10] we derived lower
and upper bounds on the decay rates of the Schur sequence
by using an interpretation of the fast filtering algorithm [38],
[39] as a nonlinear dynamical system in space [13]. In
fact, the vector sequence is

generated by the recursion

(155a)

(155b)

where the matrix functions are defined
as in (156) and (157), shown at the bottom of the page. In
particular, this means that the Schur parameters are updated
according to the recursion

(158)

It can be shown that if , i.e., if
corresponds to a strictly positive real , then so does

. Moreover, if and are the and
polynomials corresponding to , the pseudo-

polynomial

(159)

is invariant along the trajectory of (155).
Recall that as pointed out above, rationality requires that

as , and therefore and
, so that and tend to the same limit . But

then we must have

(160)

and consequently and . Therefore,
if corresponds to a positive real , the trajectory
of the dynamical system (155) tends to . In particular,
the maximum entropy solution, corresponding to , will
converge in steps to (0, 0) so that and ,
in harmony with the result reported above.

APPENDIX B
RESULTANTS AND RESULTANT VARIETIES

The third major ingredient of the partial stochastic real-
ization problem involves the notion of degree of a rational
function, i.e., understanding when there exists a solution to
the rational covariance extension problem having degree less
than . This occurs of course when the numeratorand

...
...

...
...

(156)

...
...

...
...

... (157)
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the denominator of the rational interpolant have roots in
common.

There are many classical approaches to determining whether
a pair of polynomials have a root in common. Each of
these gives rise to a particular polynomial test, typically that
of determining whether the resultant of and vanishes.
Indeed, it is because of the variety of possible constructions
of the resultant that the following result (see, e.g., [36]) is so
important.

Theorem B.1:The resultant of two polynomials, of a
single complex variable is, up to a nonzero multiplicative
constant, the unique irreducible polynomial in the coefficients
of and which vanishes if and only if the polynomials
and have a root in common.

We denote by the irreducible polynomial con-
structed as follows. Suppose the maximum of the degrees of

and is . Denote by the -dimensional vector space
of polynomials of degree less than or equal to . Consider
the linear map defined by

(161)

Then theresultantof and is given by

(162)

We observe that if belongs to the nullspace,
of , then

Since and are polynomials of degree at most , this
implies that and must have a nontrivial common factor

.
Remark B.2:More generally, the range space of

consists of all polynomials having as
a common factor, i.e.,

Im (163)

We also remark that the matrix representation of ,
with respect to the bases consisting of the standard monomials,
is the matrix arising in the classical determinant expressions
for the resultant (see, e.g., [36]). In particular, is an
irreducible polynomial. Alternatively, Kronecker constructed
the resultant as the determinant of the Hankel matrix. We first
note that this polynomial, which of course vanishes precisely
when and have a root in common, is irreducible. Indeed,
over the complex field, the zero locus, , consists of those
complex Hankel matrices having rank less than or equal to

and is well known to be an irreducible algebraic set. In
particular, the determinant of the Hankel matrix is a nonzero
real multiple of .

The hypersurface is of course singular; for example, the
determinant and all of its partial derivatives vanish at the zero
matrix. We are most interested in the set of regular points of

, especially over , although our analysis extendsmutatis
mutandisto C. Slightly modifying the notation in Brockett
[5], we introduce the notation Hank for the space

of sequences for which the corresponding
Hankel matrix has rank. In this notation

Hank (164)

Hank is of course an open, dense subset of with
as its complement. According to [5, Th. 1], for each the
subset Hank is a smooth manifold of dimension .
In particular, the set of regular points of coincides with
Hank , i.e., with the pairs having a simple
common root.

We shall now describe the tangent space, , to
at a pair in Hank . Tangent vectors to any
point in can be represented as pairs of arbitrary
polynomials , where and .

Proposition B.3: Suppose now that , where
, and that and . Then

(165)

We may of course take as the defining equation for
. It is then clear from calculating the Newton quotient for

that each vector in the right-hand side of (165) is
contained in . On the other hand, both sides of
(165) are vector spaces of dimension , so that equality
in (165) is obtained.
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