Homework Problems Lectures on Moments and their Applications to Systems, Signals and Control Due Thursday in class.

1. a. Prove the Abel-Jacobi-Liouville Formula

$$\det e^A = e^{\operatorname{tr}(A)}$$

using a general position argument.

(Hint: View the two sides of the identity as two continuous functions, F_1, F_2 on the vector space $\mathcal{M}_n(\mathbb{C})$ of complex *n* by *n* matrices. Prove $F_1(D) = F_2(D)$ for any diagonal matrix $D \in \mathcal{M}_n(\mathbb{C})$ and complete the proof by using this to prove $F_1(M) = F_2(M)$ for a dense subset of matrices.)

b. Assume $A \in \mathcal{M}_n(\mathbb{R})$. Show that $\operatorname{tr}(A) = 0$ if, and only if, the flow of $\dot{x} = Ax$ preserves volume.

c. Show that a necessary condition for stability of the origin for $\dot{x} = Ax$ is that the flow decreases volume.

2. Let \mathcal{S}_n denote the open set of degree *n* real polynomials

$$a(z) = a_0 + a_1 z + \dots + a_n z^n$$

with n roots in the open unit disk $\{z \in \mathbb{C} : |z| < 1\}$. A tangent vector to S_n at a can be thought of as a real polynomial b of degree $d \leq n$ in terms of the small perturbation vector $a + \epsilon b$ based at A. If d(z) is a pseudo-polynomial of degree n that is positive on the unit circle then it admits a spectral factorization there of the form

$$d(z) = a(z)a(1/z)$$

where $a \in S_n$. Let's view spectral factorization as a function.

$$T(a) = a(z)a(1/z)$$

2a. Show that the directional derivative of T in the direction b at $a \in S_n$ is given by

$$a(z)b(1/z) + a(1/z)b(z)$$

2b. Show that the Jacobian matirx of T is invertible at every $a \in S_n$.

3. Consider the Riccati equation

$$A^T P + PA - PBB^T P + C^T C = 0$$

where (A, B, C) is a minimal triple. As you know, there always exists a unique positive definite solution $P_*(A, B, C)$. A tangent vector to P_* in the space of positive definite matrices can be thought of as a symmetric matrix Q leading to the small perturbation vector $P_* + \epsilon Q$ based at P_* .

3a. Compute the derivative of the function $F(A, B, C, P) = A^T P + PA - PBB^T P + C^T C$ at the point (A, B, C, P_*) in the direction Q and set it equal to 0. What kind of famous equation is this?

3b. Show that this directional derivative is 0 if and only if Q = 0

3c. Apply the Implicit Function Theorem to the equation F(A, B, C, P) = 0 at the point (A, B, C, P_*) to show that $P_*(A, B, C)$ is an analytic function of (A, B, C).