Washington University in St.Louis

SCHOOL OF ENGINEERING & APPLIED SCIENCE

Lectures on Moment Problems iIn
Signals, Systems and Control

Christopher |. Byrnes
Washington University, St.Louis, MO

Royal Institute of Technology
Stockhom, August 2008



8.

9.

The power moment problem

Interpolation problems

Deterministic and Stochastic Partial Realizations

The generalized moment problem of Krein et al.
Markov’'s moment problem and time optimal control

The (generalized) moment problem for rational measures

A Dirichlet Principle for the moment problem with
rational measures

The Covariance Extension Problem

Nevanlinna-Pick Interpolation for Rational Functions

10. Hadamard’s Inverse Function Theorem



8.

9.

The power moment problem

Interpolation problems

Deterministic and Stochastic Partial Realizations

The generalized moment problem of Krein et al.
Markov’'s moment problem and time optimal control

The (generalized) moment problem for rational measures

A Dirichlet Principle for the moment problem with
rational measures

The Covariance Extension Problem

Nevanlinna-Pick Interpolation for Rational Functions

10. Hadamard’s Inverse Function Theorem



e Central Limit Theorem - Chebychev 1887

If X; are identically distributed random variables
with £(X;) =0, o% =1, then

Y, = X1+\'/';_1+Xn »p Y where Y is N (0,1)

Fourier methods in probability: the characteristic function

Px (&) = |- e*p(x)dz = p(§)

l.p=q¢§ < p(x)dx = qg(x)dx

2. X,, o p X <= ox (&) — ox(&)



Expanding the characteristic function in a Taylor series

Ox (&) = p(&) = E(e®X) = ¢x(0) 4+ ¢ (0)€ + 2x0¢g2 4

x (0) = i*B(X*)

where E(X*) = [*7

x¥p(x)dx is the k-th moment of X

Proof of CLT. 1. ¢x, (&) =1 — £%/2 + o(&?)

2. 9y, (&) = ox,(&/v/n) - - - Px,(€/+/N)

3. log(¢y, (£)) = -1 (—€%/2n + o(£?/n))
— —&°/2 = log(¢y (§))



THE POWER MOMENTS OF A LINEAR SYSTEM

Similarly, if H(s) = C(sI — A)"'B + D is the transfer function of a
linear systems (A, B, C, D), then the moments of H may be defined as
d*H
dsk

e = (—1)" (0)
If c(A) C C,

d*H
dsk

me = (—1)" (0) = /OOO t*h(t)dt for k > 0

where h(t) = Ce™B, If k =0, ny = D, the DC gain.

The Final Value Theorem implies that for any other stable linear system

whose transfer function K (s) satisfies

dF K
dsk

(0) = (—1)*my, 0<k<d

the difference between the responses to a fixed polynomial input w(t) = ag + - - - + a4t

will decay as t — oo



If n = (no,...,mq) is power moment sequence we say that 7 has length
A(n) =d+ 1.

Theorem If 17 is a power moment sequence of length d + 1 , there
for each Hurwitz polynomial a(s) = ag + - -+ + ag_15%"1 + s? there is
a stable rational function K (s) = b(s)/a(s) of degree I < d such that

d*K

ds¥
In particular, if s(n7) denotes the minimal degree of a stable K (s) which
matches 77, then s(n) < A(n) — 1.

(0) = (=¥, 0<k < d.

Proof. If a(s) is any Hurwitz polynomial and b(s) = by + - -+ + bg_15%71 + bys?
is defined by

() a0 o 0) ()

ai Ao o o 0 Uil

\;J (1 aus .. o) \;J

b(s)
a(s)

then K (s) = has the moment sequence 7, ..., 174



If n = (no,...,mq) is power moment sequence we say that 7 has length

A(n) =d+ 1.

Theorem If 17 is a power moment sequence of length d + 1 , there
for each Hurwitz polynomial a(s) = ag + - -+ + ag_15%"1 + s? there is
a stable rational function K (s) = b(s)/a(s) of degree I < d such that

d*K
ds*
In particular, if s(n7) denotes the minimal degree of a stable K (s) which

matches 77, then s(n) < A(n) — 1.

(0) = (=¥, 0<k < d.

Remark. For d = 2, there are open sets U; = { (19,11, 12)} C R3, for
1 =1,2 such that s(n) =1t for n € U;. In fact, (1,—1,1) € U; and

(17 _17 _3) S U2

Remark. For d = 2r or d = 2r + 1, there are open sets U; C R4,
for 1 = 1,2 such that s(n) = r for n € U; and s(n) > r for n € U,



Model Reduction for Linear Systems (c. 1980: Fortman and Hitz,
Kailath, Mahmoud and Singh; Antoulas (c. 2005), ... )

me = [3° t*h(t)dt = (—1)* 4 H (0)

One approach to model reduction for H (s) might be to find K (s), with
deg(K) << deg(H), matching he first d + 1 power moments of H (s).

Padé approximation is a reduced order model
obtained by matching n, for £k =0,...,n <n.

A Padé approximant will reproduce the system response
to polynomials, provided the Padé approxrimant is stable.

More generally, consider matching the " generalized” moments:

k(s0) = [o° toh(t)e~*otdt = (—1)* 2 (s0)

For sp = jwo, mo(so) is the frequency response.

In general, ng, for k =0,... , N determines
the response to p(t)e’*° where deg(p) < N.
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® General Interpolation Problem: Given (n + 1) points {Zk}::o C R,

. m,J .
a region of C, and a sequence {wki } k:joki:O of desired values, find all

meromorphic functions f in a given class € which satisfy

f(Z)(Zk):wkza ]{::Oalaama ZZO?’]k?

™m

D ik =(n+1)
k=0

e If R = C and C is the class of polynomials, this is Lagrange inter-
polation.

e If R = C and C is the class of rational functions, this is the rational

interpolation problem.

e If R = Ct and C is the class of rational functions, this is the stable
rational interpolation problem.
e (Carathéodory, Nevanlinna, Pick, Toeplitz, Schur) Find all positive

real interpolants. Here R = {z : |z| > 1} and C is the class of all
functions satisfying Re f(z) > 0 for |z| > 1.



o If R = C+ and C is the class of rational functions, this is the stable

rational interpolation problem.

We now consider interpolation data n = {(z;, w;)}'=""" of length A\(n) = n + 1,
with w; # w; for 7 # j

Theorem If 1 is a self-conjugate interpolation string of length n + 1,

then for each real Hurwitz polynomial a(s) = ag + -+ + a,,_1s" ' + s"
there is a stable, real rational function K (s) = b(s)/a(s) of degree
[ < n such that

K
S

In particular, if s(n) denotes the minimal degree of a stable K (s) which

interpolates 77, then s(n) < n.

Proof. If a(s) is any Hurwitz polynomial and b(s) = by + - -+ + bg_15%" ! + bys?

is the Lagrange interpolation polynomial solving b(z;) = w;/a(z;), then

K(s) = b(s)

interpolates the data string 71



Reduced order controllers for causal or noncausal compensators

Yr Yr

K 8 H

Example. Consider the system (Curtain and Zwart)

2s(x,t) = 2ge(a, t)

2(0,t) =0,
22(1,t) = u
2(z,0) = p(z).
y(t) - Z(l,t),
sinh(+/s
H(s) = 2 cosnids)

For yr(t) = Asin(wt + ¢), why not solve the rational
interpolation problem K (jw) = H™!(jw)?

TN TN TN TN TN
Ct W W N
S o N N NN



__ sinh(4/s)
H(s) = Jscosh(vs)

H~1(s) is the transfer function of

2t (a:, t) — Zxx ((13, t)

z(1,t) = w(t)
2(1,t) =0
2(x,0) = 0.

with input w(¢) and output v(t) = 2,(1,1).

This is the zero dynamics of the control system.

Yr Yr

Consider ygr(t) = sin(2t).



Consider yr(t) = sin(2t).

Yr Yr

For the cascade compensator we can choose either H*:

2t(x,t) = 22 (2, t)

2(1,t) = w(t)

2(1,t) =0

2(z,0) = 0. with input w(t) = sin(2t) and output v(t) = 2,(1,1).

or

K(s)=K gi@ , where 3 and K are chosen

to tune the phase and magnitude of K(27).




Since the reference trajectory is yr(t) = Asin(2t), we have interpola-

tion data of length 2
K(2i) = H '(2i) = 1.0856 + 0.65041,

and
K(—2i) = H '(—2i) = 1.0856 — 0.65044,

rounding to four decimals.

There exists a stable degree 1 interpolating compensator, for example

s — .1525
s+ 1

K(s) = 1.4108

Indeed, driving K with y,.(t) produces the steady-state control law

ug(t) = 1.2655 sin(2t 4+ 0.5397)

In the following simulations, we have taken initial condition p(z) = —4(1 — 2x).

The steady state behavior of the state trajectory is illustrated in the next

figure.






The next figure depicts the controlled output trajectory and the trajec-

tory to be tracked.

4




Finally, we know that the desired control can also be obtained by solving

the regulator equations of output regulation theory for DPS.

In contrast to our classical design methods, the output regulator equa-

tions “boil down” to a linear parabolic PDE in two spatial dimensions.

In this case we know that the control can be written as

ure(t) = Re (g(iw)™') M sin(wt) 4+ Im (g(iw) ™) M cos(wt)

In the next figure, we compare ui(t) with the control uzz (%) obtained

from solving the regulator equations.
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Theorem If 1 is a self-conjugate interpolation string of length n + 1,
then for each real Hurwitz polynomial a(s) = ag + -+ + a,_18" ! + s

there is a stable, real rational function K (s) = b(s)/a(s) of degree
[ < n such that

K
E(zk):wk’ 0<Ek<n+1

In particular, if s(n7) denotes the minimal degree of a stable K (s) which

interpolates 7, then s(n) < n.

Remark. For n = 2, there are open sets U; C R?, for 1 = 1, 2 of inter-

polation strings 7 such that s(n) =1 for n € U,.

Example 2. Consider the critically damped harmonic oscillator
1

s2+2s+4+1

and the induced one-parameter family of interpolation problems

K . (2t+€) = H(2t+€), K.(—2i4+¢€¢) = H(—2i+¢€) K. (o0) = H(oc0) =0

H(s) =

for a first order, stable interpolant K..



K. (2i+€) = H(2t+€), K (—2t+€) = H(—2t4+¢€) K. (o0) = H(oco) =0
Note Bene. 1. — /2 < /K (iw) < O for any stable, strictly proper K
with a positive high-frequency gain,

2. m/2 < /K (iw) < 7 for any stable, strictly proper K with a negative
high-frequency gain,

Bode Diagram

3. — < /H(w) < —7/2 forw >1

Phase

-1351

-180 & 1 1 -
107 107 10° 10' 10°
Frequency (rad/sec)




Example 3. Consider the stable, minimum phase system

s+ 1+ €
s24+2s+4+1

and the induced one-parameter family of interpolation problems

H.(s) =

KE(Z) — HE(i -+ E)a Ke(_i) — HE(_i + E)a Ke(oo) — He(oo) = 0,

for a first order, stable interpolant K..

Note Bene 1. ¢ = 0, K((s) =

s+ 1

2. If -1 < e< 1, then —7/2 < /H.(iw) < 0

3. There exists a stable first order interpolant K..



® General Interpolation Problem: Given (n + 1) points {zk}zzo C R,

. m,7J .
a region of C, and a sequence {wkz. } k:JOkizo of desired values, find all

meromorphic functions f in a given class € which satisfy

f(Z)(Zk):wkza k:O,l,,m, Z:O,,jk,

m

D ik =(n+1)
k=0

e If R = C and C is the class of polynomials, this is Lagrange inter-
polation.

e If R = C and C is the class of rational functions, this is the rational

interpolation problem.

e If R = Ct and C is the class of rational functions, this is the stable
rational interpolation problem.
e (Carathéodory, Nevanlinna, Pick, Toeplitz, Schur) Find all positive

real interpolants. Here R = {z : |z| > 1} and C is the class of all
functions satisfying Re f(z) > 0 for |z| > 1.



Sensitivity to Disturbances

e Suppose g(s) has right half-plane - g vd
poles at p1,- -+, p,. > 9 -
e Right half-plane zeros at z1,--- , 2y {
Ur(s) = S(s)d(s), ;
where S(s) = (1 — g(s)k(s)) ™" d a disturbance

e Internal Stability of Feedback System <
(i) S analytic in Re(s) > 0

(i) S(ps) =0
(iii) S(zx) = 1



Conformal Equivalents of the Function Class ©
for Nevanlinna-Pick Interpolation

e Bounded Real (Discrete-time) g(z) rational, deg (g) < n , analytic
in [z| > 1 and, for D¢ = {z : |z| > 1}

g:D°—D

e Bounded Real (Continuous-time) g(s) rational, deg (¢g) < n ana-
lytic for Re(s) > 0 and

g: Ct =D



e Bounded Real (Continuous-time) g(s) rational, deg (g) < n ana-
lytic for Re(s) > 0 and

g: Ct =D
* This is useful for robust control since for g(s) = ¢(sI — A)~'b

r = Ax + bu
Y = cx
[yll2 < [[glloo - [lullz2 where sup|g(jw)| = [|g]lcc <1
Jw
e Internal Stability of Feedback System <
(i) S analytic in Re(s) > 0
(ii) S(ps) =0
(iii) S(zx) =1

e Nevanlinna-Pick Interpolation for S bounded real, rational.



Degree 1 sensitivity functions for G(z) =1/(z — 2)

28r

3.5
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