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If Xi are identically distributed random variables

with E(Xi) = 0, σ2
Xi

= 1, then

Yn = X1+···+Xn√
n

→D Y where Y is N(0, 1)
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Proof of CLT. 1. φX1(ξ) = 1 − ξ2/2 + o(ξ2)

2. φYn(ξ) = φX1(ξ/
√

n) · · · φXn(ξ/
√

n)

3. log(φYn(ξ)) =
∑i=n

i−1(−ξ2/2n + o(ξ2/n))

→ −ξ2/2 = log(φY (ξ))

φX(ξ) =
∫ ∞

−∞ eiξxp(x)dx = p̂(ξ)

19

•  Central Limit Theorem - Chebychev 1887

Fourier methods in probability: the characteristic function
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Expanding the characteristic function in a Taylor series



THE POWER MOMENTS OF A LINEAR SYSTEM

Similarly, if H(s) = C(sI − A)−1B + D is the transfer function of a

linear systems (A, B, C, D), then the moments of H may be defined as

ηk = (−1)kdkH

dsk
(0)

If σ(A) ⊂ C−,

ηk = (−1)kdkH

dsk
(0) =

∫ ∞

0
tkh(t)dt for k > 0

where h(t) = CeAtB,

If k = 0, η0 = D, the DC gain. The Final Value Theorem implies that

for any other stable linear system whose transfer function K(s) satisfies

dkK

dsk
(0) = (−1)kηk, 0 ≤ k ≤ d

the difference between the responses to a fixed polynomial input u(t) = a0 + · · · + adtd

will decay as t → ∞
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If η = (η0, . . . , ηd) is power moment sequence we say that η has length

λ(η) = d + 1.

Theorem If η is a power moment sequence of length d + 1 , there

for each Hurwitz polynomial a(s) = a0 + · · · + ad−1sd−1 + sd there is

a stable rational function K(s) = b(s)/a(s) of degree l ≤ d such that

dkK

dsk
(0) = (−1)kηk, 0 ≤ k ≤ d.

In particular, if s(η) denotes the minimal degree of a stable K(s) which

matches η, then s(η) ≤ λ(η) − 1.

Proof. If a(s) is any Hurwitz polynomial and b(s) = b0 + · · · + bd−1sd−1 + bdsd

is defined by





b0

b1
...

bd




=





a0 0 . . . 0
a1 a0 . . . 0
...
1 ad−1 . . . a0









η0

η1
...

ηd





then K(s) =
b(s)

a(s)
has the moment sequence η0, . . . , ηd

Remark. For d = 2, there are open sets Ui = {(η0, η1, η2)} ⊂ R3, for

1 = 1, 2 such that s(η) = i for η ∈ Ui. In fact, (1, −1, 1) ∈ U1 and

(1, −1, −3) ∈ U2
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Remark. For d = 2r or d = 2r + 1, there are open sets Ui ⊂ Rd+1,

for 1 = 1, 2 such that s(η) = r for η ∈ U1 and s(η) > r for η ∈ U2

Model Reduction for Linear Systems (c. 1980: Fortman and Hitz,

Kailath, Mahmoud and Singh; Antoulas (c. 2005), . . . )

8
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One approach to model reduction for H(s) might be to find K(s), with

deg(K) << deg(H), matching he first d + 1 power moments of H(s).

More generally, consider matching the ”generalized” moments:
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• If R = C and C is the class of rational functions, this is the rational

interpolation problem.

• If R = C+ and C is the class of rational functions, this is the rational

interpolation problem.
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• If R = C and C is the class of rational functions, this is the rational

interpolation problem.

• If R = C+ and C is the class of rational functions, this is the stable

rational interpolation problem.
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rational interpolation problem.
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We now consider interpolation data η = {(zi, wi)}i=n+1
i=1 of length λ(η) = n + 1,

with wi != wj for i != j

Theorem If η is a self-conjugate interpolation string of length n + 1,

then for each real Hurwitz polynomial a(s) = a0 + · · · + an−1sn−1 + sn

there is a stable, real rational function K(s) = b(s)/a(s) of degree

l ≤ n such that

K

ds
(zk) = wk, 0 ≤ k ≤ n + 1

In particular, if s(η) denotes the minimal degree of a stable K(s) which

interpolates η, then s(η) ≤ n.
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Proof. If a(s) is any Hurwitz polynomial and b(s) = b0 + · · · + bd−1sd−1 + bdsd

is the Lagrange interpolation polynomial solving b(zj) = wj/a(zj), then

K(s) =
b(s)

a(s)
interpolates the data string η

13



Reduced order controllers for causal or noncausal compensators







Since the reference trajectory is yR(t) = A sin(2t), we have interpola-

tion data of length 2

K(2i) = H−1(2i) = 1.0856 + 0.6504i,

and

K(−2i) = H−1(−2i) = 1.0856 − 0.6504i,

rounding to four decimals.

There exists a stable degree 1 compensator, for example

K(s) = 1.4108
s − .1525

s + 1
(0.1)

Indeed, driving K with yr(t) produces the steady-state control law

uR(t) = 1.2655 sin(2t + 0.5397)

In the following simulations, we have taken initial condition ϕ(x) = −4(1 − 2x).

The steady state behavior of the state trajectory is illustrated in the next

figure.
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know that the control can be written as
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We now consider interpolation data η = {(zi, wi)}i=n+1
i=1 of length λ(η) = n + 1,

with wi != wj for i != j

Theorem If η is a self-conjugate interpolation string of length n + 1,

then for each real Hurwitz polynomial a(s) = a0 + · · · + an−1sn−1 + sn

there is a stable, real rational function K(s) = b(s)/a(s) of degree

l ≤ n such that

K

ds
(zk) = wk, 0 ≤ k ≤ n + 1

In particular, if s(η) denotes the minimal degree of a stable K(s) which

interpolates η, then s(η) ≤ n.

12

Remark. For n = 2, there are open sets Ui ⊂ R3, for 1 = 1, 2 of inter-

polation strings η such that s(η) = i for η ∈ Ui.

14

Example 2. Consider the critically damped harmonic oscillator

H(s) =
1

s2 + 2s + 1

and the induced one-parameter family of interpolation problems

Kε(2i+ε) = H(2i+ε), Kε(−2i+ε) = H(−2i+ε) Kε(∞) = H(∞) = 0,

(0.1)

where for any fixed ε ∈ R we seek a first order, stable interpolant Kε.

First note that −π/2 < ∠K(iω) < 0 for any stable, strictly proper K

with a positive high-frequency gain, while π/2 < ∠K(iω) < π for any

stable, strictly proper K with a negative high-frequency gain. On the

other hand, −π < ∠H(iω) < −π/2 for ω > 1, as is illustrated in the

following Bode plot .

Example 1. Consider the stable, minimum phase system

Hε(s) =
s + 1 + ε

s2 + 2s + 1

and the induced one-parameter family of interpolation problems

Kε(i) = Hε(i + ε), Kε(−i) = Hε(−i + ε), Kε(∞) = Hε(∞) = 0,

where for any fixed ε ∈ R we seek a first order, stable interpolant Kε.
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Note Bene 1. ε = 0, K0(s) =
1

s + 1
2. If −1 < ε < 1, then −π/2 < ∠Hε(iω) < 0

3. There exists a stable first order interpolant Kε.
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• If R = C and C is the class of rational functions, this is the rational

interpolation problem.

• If R = C+ and C is the class of rational functions, this is the rational

interpolation problem.

11

• If R = C and C is the class of rational functions, this is the rational

interpolation problem.

• If R = C+ and C is the class of rational functions, this is the stable

rational interpolation problem.

11











1.   The power moment problem

2.   Interpolation problems

3.   Deterministic and Stochastic Partial Realizations
 
4.   The generalized moment problem of Krein et al.

5.   Markov’s moment problem and time optimal control

6.   The (generalized) moment problem for rational measures 

7.   A Dirichlet Principle for the moment problem with 
 rational measures

8.   The Covariance Extension Problem 

9.   Nevanlinna-Pick Interpolation for Rational Functions

10. Hadamard’s Inverse Function Theorem




