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Example 2. In the moment problem formulation of interpolation for
distinct interpolation points zg, 21, ..., 2z, with |zx| < 1, the basis func-

tions are

Every u € P has the form u(t) = p(t)/7(t) where p is a polynomial of
degree d < n and 7(t) = [[\_¢ (e — z)

Indeed, if f is analytic inside D (and continuous on the boundary of D),
then

T f(z)

dz = f(zx)
2z r 2 — Zk

/ £ () g (8)dt =
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Given ¢ € C™™!, the unconstrained generalized moment problem is to

find a measure du such that

b
/ ug(t)du(t) =c,, k=0,1,---,n.

The unconstrained moment problem is always solvable, by linear inde-

pendence of the u,.

Typical restrictions on the class of measures dyu include positivity, ratio-
nality, stability, minimum phase, and positive or bounded real and give

rise to whole classes of constrained generalized moment problems
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When is a real meromorphic function f with f(oco) = ¢y € R rational?

When is a real number r rational?

1. When r has an ulitmately repeating decimal expansion.

2. When r has a finite continued fraction expansion.

Example. 3.245 is rational. In fact, 3.245 = 3 -
4

Example. e is irrational.
In fact, e = 2
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When is a real meromorphic function f with f(oco) = ¢y € R rational?

1. When f has an ultimately recurrent Laurent expansion
f(s)=co+ci/s+---~+c,/s"+...

2. When f has a finite continued fraction expansion.

The second “convergent” f3(s) = cg - matches the

moment sequence (cy, ¢y, C3)

nk(s0) = [y t°h(t)e™*otdt = (—1)

For sy = 00, mi(oc0) are the Markov parameters and
the reduced order models are partial realizations.

Padé approximation is a reduced order model
obtained by matching n, for £k =0,...,n <n.
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that
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If f(s) = 0b(s)/a(s) with a,b having degree | with a monic, then by
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Partial Realization Problems

Given a sequence ¢ = (c,,C1,...,¢C,) find all rational functions f such

that f(s)=co+ci/s+-+4+cn/s" + +cni1/s" T+ ...

b(s)

=cotcr/s+ - Fcn/s" + Fenpr /s + ..
a(s)

) () (e

Ci+1

Ci+2

\c:z Cl:+1 02;—1) \az) \c:zz)

Denote by d(c) the smallest degree of an interpolating f and by s(c)

the smallest degree of a stable interpolating f.
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If n = 2[, the generic value of d(c) is d(c) = I in which case the partial

realization is unique.

If n = 2] — 1, the generic value of d(c) is d(c) = I and there is a one-

parameter family of such partial realizations.

As with Padé approximants, it follows that
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Given a sequence ¢ = (c,,C1,...,¢C,) find all rational functions f such

that f(s)=co+ci/s+-+4+cn/s" + +cni1/s" T+ ...

a \ ([ Zl\ [e11)

Ci+1

\C;l Cl:+1 621:—1) \G:Jl/ \C:zl)

Ci+2

If n = 2[, the generic value of d(c) is d(c) = I in which case the partial

realization is unique.

If n = 2] — 1, the generic value of d(c) is d(c) = I and there is a one-

parameter family of such partial realizations.
As with Padé approximants, it follows that
0<d(c)<s(c)<n

Remark. For d = 2r or d = 2r + 1, there are open sets U; C R,
for 1 = 1,2 such that s(n) = r for n € U; and s(n) > r for n € U,
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P(z) = co + Z ci(z' + z7%)

1=1

Toeplitz (1911): Set T} =

Cj C1
then ®(e*) is positive if, and only if, 7; > 0, for all j

min ®(e”) = inf .
j,)\EO’(TJ)

e Perform spectral factorization ®(z) = w(z)w(1/2)
Since ®(z) > 0 for |z| =1 (since 7}, > 0)

e w(z) is the transfer function of the shaping filter.
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u
Excitation signal 1 w@) —— Speech

w(z) stationary on each (30 ms) subinterval
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Spectral estimation from data

A 30 ms frame of speech for the
voiced nasal phoneme [ng]

Estimate of spectral density:

Periodogram (FFT) of
voiced nasal phoneme [ng]
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Covariance estimates

Observed data: Yo, Y1,--., YN

Ergodic estimate of
covariance lags:

We therefore estimate ¢, ¢y, ...,C where n << N

n




Linear Predictive (LPC)
Filtering




Linear Predictive (LPC)
Filtering

) Cn—1 Pnn

' Cn—2 Pn,n—1




Linear Predictive (LPC)
Filtering

Cn—2 Pn,n—1

Cn—1 Cn—2 "t

yields Szego polynomial

on(2) = 2" + 12" 4




Linear Predictive (LPC)
Filtering

Cn—2 Pn,n—1

Cn—1 Cn—2 "t

yields Szego polynomial

on(2) = 2" + 12" 4

and modeling filter

_ V/PnZ" i
w(z) = o (2) P
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LPC spectral envelope

Spectral envelope
of LPC filter has
no Zeros

D(e') = |
() = 1o e

10th order LPC filter
e yields flat spectrum,

which does not model notches in spectrum well

Are there other, and better, solutions?
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Caratheodory: The
trigonometric moment problem

Given real numbers cg,cq,- -, ¢, find all positive functions ®(z) on the unit
circle, harmonic in a neighborhood of the circle, with Fourier expansion
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MOMENT PROBLEM: Find @ of (degree at most 2n) such that




1. The power moment problem

. Interpolation problems

Deterministic and Stochastic Partial Realizations

The generalized moment problem of Krein et al.

Markov’'s moment problem and time optimal control
The (generalized) moment problem for rational measures

A Dirichlet principle for the moment problem with
rational measures

The Covariance Extension Problem

. Nevanlinna-Pick Interpolation for Rational Functions

Hadamard’s Inverse Function Theorem
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for all p € B ,. In fact, (c,p) > 0 for p € P, — {0}. c is called
positive, and the space of positive sequences is €, .

€, is a closed, convex cone, with €} = .
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