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Lectures on Moment Problems

Lecture 2

There is a common formulation of power moment problems and inter-

polation problems in the context of the “generalized moment problem”:

Consider a subspace P of the space C(I) of

complex-valued continuous functions on an interval

I ⊂ R and a choice of basis (u0, u1, · · · , un) of P

Given c ∈ Cn+1, the unconstrained generalized moment problem is to

find a measure dµ such that
∫ b

a
uk(t)dµ(t) = ck, k = 0, 1, · · · , n.

Example 1. In a power moment problem,

uk(t) = tk, k = 0, 1, · · · , n,

and every u ∈ P is a polynomial of degree d ≤ n.
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Example 2. In the moment problem formulation of interpolation for

distinct interpolation points z0, z1, . . . , zn with |zk| < 1, the basis func-

tions are

uk(t) =
1

4π

eit + zk

eit − zk
, k = 0, 1, · · · , n,

Every u ∈ P has the form u(t) = p(t)/τ (t) where p is a polynomial of

degree d ≤ n and τ (t) =
∏i=n

k=0(e
it − zk)

Indeed, if f is analytic inside D (and continuous on the boundary of D,),

then ∫ π

−π
f(t)uk(t)dt =

1

2πi

∫ π

−π

f(z)

z − zk
dz = f(zk)

2
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The unconstrained moment problem is always solvable, by linear inde-

pendence of the uk.

Typical restrictions on the class of measures dµ include positivity, ratio-

nality, stability, minimum phase, and positive or bounded real and give

rise to whole classes of constrained generalized moment problems

2



Lectures on Moment Problems

Lecture 2

There is a common formulation of power moment problems and inter-

polation problems in the context of the “generalized moment problem”:

Consider a subspace P of the space C(I) of

complex-valued continuous functions on an interval

I ⊂ R and a choice of basis (u0, u1, · · · , un) of P

Given c ∈ Cn+1, the unconstrained generalized moment problem is to

find a measure dµ such that
∫ b

a
uk(t)dµ(t) = ck, k = 0, 1, · · · , n.

Example 1. In a power moment problem,

uk(t) = tk, k = 0, 1, · · · , n,

and every u ∈ P is a polynomial of degree d ≤ n.

1

Lectures on Moment Problems

Lecture 2

There is a common formulation of power moment problems and inter-

polation problems in the context of the “generalized moment problem”:

Consider a subspace P of the space C(I) of complex-valued continuous

functions on an interval I ⊂ R and a choice of basis (u0, u1, · · · , un)

of P

Given c ∈ Cn+1, the unconstrained generalized moment problem is to

find a measure dµ such that
∫ b

a
uk(t)dµ(t) = ck, k = 0, 1, · · · , n.

Example 1. In a power moment problem,

uk(t) = tk, k = 0, 1, · · · , n,

and every u ∈ P is a polynomial of degree d ≤ n.

1

Lectures on Moment Problems

Lecture 2

There is a common formulation of power moment problems and inter-

polation problems in the context of the “generalized moment problem”:

Consider a subspace P of the space C(I) of complex-valued continuous

functions on an interval I ⊂ R and a choice of basis (u0, u1, · · · , un)

of P

Given c ∈ Cn+1, the unconstrained generalized moment problem is to

find a measure dµ such that
∫ b

a
uk(t)dµ(t) = ck, k = 0, 1, · · · , n.

Example 1. In a power moment problem,

uk(t) = tk, k = 0, 1, · · · , n,

and every u ∈ P is a polynomial of degree d ≤ n.

1

The unconstrained moment problem is always solvable, by linear inde-

pendence of the uk.

Typical restrictions on the class of measures dµ include positivity, ratio-

nality, stability, minimum phase, and positive or bounded real and give

rise to whole classes of constrained generalized moment problems

2

The unconstrained moment problem is always solvable, by linear inde-

pendence of the uk.

Typical restrictions on the class of measures dµ include positivity, ratio-

nality, stability, minimum phase, and positive or bounded real and give

rise to whole classes of constrained generalized moment problems

2



Partial Realization Problems



When is a real meromorphic function f with f(∞) = c0 ∈ R rational?

When is a real number r rational?

1. When r has an ulitmately repeating decimal expansion.

2. When r has a finite continued fraction expansion.

Example. 3.245 is rational.

In fact, 3.249 = 3 +
1

4 +
1

12 +
1

4

Example. e is irrational.

In fact, e = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 + 1/(6 + . . . )

The analogues for f are:

1̃ When f has an ultimately recurrent Laurent expansion.

2̃ When f has a finite continued fraction expansion.

9
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The analogues for f are:

1. When f has an ultimately recurrent Laurent expansion.

f(s) = c0 + c1/s + · · · + cn/sn + . . .

Hank(f) =





c1 c2 . . . cN . . .
c2 c3 . . . cN+1 . . .
c3 c4 . . . cN+2 . . .
...

...
...

...
...





has rank n < ∞.

2. When f has a finite continued fraction expansion.

Example. f(s) =
3s

s2 − 2
=

1

s/3 − 2/3s
=

1

s/3 +
1

−3s/2

is rational.

Example. (Euler 1774) e1/z is not rational (using a Riccati equation!!)

XXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX
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matches the

moment sequence (c0, c1, c2)
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Partial Realization Problems

Given a sequence c = (co, c1, . . . , cn) find all rational functions f such

that

f(s) = c0 + c1/s + · · · + cn/sn + +cn+1/sn+1 + . . .

Denote by d(c) the smallest degree of an interpolating f and by s(c)

the smallest degree of a stable interpolating f .

If f(s) = b(s)/a(s) with a, b having degree l with a monic, then by

equating coefficients in

b(s)

a(s)
= c0 + c1/s + · · · + cn/sn + +cn+1/sn+1 + . . .

we find 



c1 c2 . . . cl . . .
c2 c3 . . . cl+1 . . .
...

...
...

...
...

cl cl+1 . . . c2l−1 . . .









a1

a2
...
al




=





cl+1

cl+2
...

c2l




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If n = 2l, the generic value of d(c) is d(c) = l in which case the partial

realization is unique.

If n = 2l − 1, the generic value of d(c) is d(c) = l and there is a one-

parameter family of such partial realizations.
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Remark. For d = 2r or d = 2r + 1, there are open sets Ui ⊂ Rd+1,

for 1 = 1, 2 such that s(η) = r for η ∈ U1 and s(η) > r for η ∈ U2

Model Reduction for Linear Systems (c. 1980: Fortman and Hitz,

Kailath, Mahmoud and Singh; Antoulas (c. 2005), . . . )
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u y

Excitation signal Speech

w(z) stationary on each (30 ms) subinterval
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Spectral estimation from data

A 30 ms frame of speech for the 
voiced nasal phoneme [ng]

Periodogram (FFT) of 
voiced  nasal phoneme [ng]

Estimate of spectral density:
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Covariance estimates

We therefore estimate     c0, c1, …,cn        where n << N

Observed  data:

Ergodic estimate of 
covariance lags:
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• yields flat spectrum,
  which does not model notches in spectrum well
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LPC spectral envelope

• yields flat spectrum,
  which does not model notches in spectrum well

10th order LPC filter

Are there other, and better, solutions?  

Spectral envelope 
of LPC filter has 
no zeros
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Caratheodory: The 
trigonometric moment problem 

MOMENT PROBLEM: Find Φ of (degree at most 2n) such that



1. The power moment problem

2. Interpolation problems

3.   Deterministic and Stochastic Partial Realizations
 
4.   The generalized moment problem of Krein et al.

5.   Markov’s moment problem and time optimal control

6.   The (generalized) moment problem for rational measures 

7.   A Dirichlet principle for the moment problem with 
 rational measures

8.   The Covariance Extension Problem 

3. Nevanlinna-Pick Interpolation for Rational Functions

• Hadamard’s Inverse Function Theorem



There is a common formulation of power moment problems and inter-

polation problems in the context of the “generalized moment problem”:

Consider a subspace P of the space C(I) of complex-valued continuous

functions on an interval I ⊂ R and a choice of basis (u0, u1, · · · , un)

of P

Given c ∈ Cn+1, the generalized moment problem is to find a positive

measure dµ such that
∫ b

a
uk(t)dµ(t) = ck, k = 0, 1, · · · , n.

Example 1. In a power moment problem,

uk(t) = tk, k = 0, 1, · · · , n,

and every u ∈ P is a polynomial of degree d ≤ n.
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Given c ∈ Cn+1, the generalized moment problem is

to find a positive measure dµ such that
∫ b

a
uk(t)dµ(t) = ck, k = 0, 1, · · · , n.

If p ∈ P we denote by P its real part P := Re(p).

Set P+ = {p ∈ P : P ≥ 0.}

A necessary condition on c is:
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As with Padé approximants, it follows that

0 ≤ d(c) ≤ s(c) ≤ n

for p ∈ P+
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M(δt) = U(t) =





u0(t)
u1(t)

...
un(t)




, a ≤ t ≤ b.

∴ M(M+) ⊃ K(U)

K(U)T = P+ = CT
+

∴ M(M+) ⊃ K(U) = C+.

for all p ∈ P+. In fact, 〈c, p〉 > 0 for p ∈ P+ − {0}. c is called

positive, and the space of positive sequences is C+.

M+ = {dµ > 0 on I}

Let M : M+ → C+ denote the moment map.

Theorem (Krein et al). M(M+) = C+.
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C+ is a closed, convex cone, with CT
+ = P+. Proof. M(M+) ⊂ C+.

We show C+ ⊂ M(M+).
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