Solution to the exam for SF1811/SF1831/SF1841

March 20, 2010

(1) The problem is in standard form

$$(LP): \begin{cases} \text{minimize} \quad c^{\top}x\\ \text{subject to} \quad Ax = b,\\ x \ge 0, \end{cases}$$

where

$$A = \begin{bmatrix} 3 & -3 & 1 & 0 \\ 6 & -2 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad c = \begin{bmatrix} 4 \\ 1 \\ -1 \\ 2 \end{bmatrix}.$$

We start with x_3 and x_4 as basic variables. Thus $\beta = (3, 4)$ and $\nu = (1, 2)$. Then

$$A_{\beta} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } A_{\nu} = \begin{bmatrix} 3 & -3 \\ 6 & -2 \end{bmatrix}.$$

The initial basic solution is $x_{\beta} = \overline{b}$, where $A_{\beta}\overline{b} = b$, that is,

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \overline{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \text{ and so } \overline{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.$$

The simplex multipliers vector y is obtained by solving $A_{\beta}^{\top}y = c_{\beta}$, that is,

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} y = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \text{ and so } y = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

The reduced costs of the nonbasic variables are given by $r_{\nu} = c_{\nu} - A_{\nu}^{\top} y$, that is,

$$r_{\nu} = \begin{bmatrix} 4\\1 \end{bmatrix} - \begin{bmatrix} 3 & 6\\-3 & -2 \end{bmatrix} \begin{bmatrix} -1\\2 \end{bmatrix} = \begin{bmatrix} 4\\1 \end{bmatrix} - \begin{bmatrix} 9\\-1 \end{bmatrix} = \begin{bmatrix} -5\\2 \end{bmatrix}.$$

Since $r_{\nu_1} = r_1 = -5 < 0$ and it is the smallest, we make x_1 a new basic variable. We compute \overline{a}_1 using $A_{\beta}\overline{a}_1 = a_1$, that is,

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \overline{a}_1 = \begin{bmatrix} 3 \\ 6 \end{bmatrix}, \text{ and so } \overline{a}_1 = \begin{bmatrix} 3 \\ 6 \end{bmatrix}.$$

Then the new basic variable x_1 can increase up to

$$t_{max} = \min\left\{\frac{\overline{b}_k}{\overline{a}_{1,k}} : \overline{a}_{1,k} > 0\right\} = \min\left\{\frac{3}{3}, \frac{2}{6}\right\} = \frac{1}{3} = \frac{\overline{b}_2}{\overline{a}_{1,2}}.$$

The minimizing index is k = 2, and hence $x_{\beta_2} = x_4$ leaves the set of basic variables, and x_1 takes its place. So $\beta = (3, 1)$ and $\nu = (4, 2)$. Hence

$$A_{\beta} = \begin{bmatrix} 1 & 3\\ 0 & 6 \end{bmatrix} \text{ and } A_{\nu} = \begin{bmatrix} 0 & -3\\ 1 & -2 \end{bmatrix}.$$

We calculate \overline{b} using $A_{\beta}\overline{b} = b$, that is,

$$\begin{bmatrix} 1 & 3 \\ 0 & 6 \end{bmatrix} \overline{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \text{ and so } \overline{b} = \begin{bmatrix} 2 \\ \frac{1}{3} \end{bmatrix}.$$

The simplex multipliers vector y is obtained by solving $A_{\beta}^{\top}y = c_{\beta}$, that is,

$$\begin{bmatrix} 1 & 0 \\ 3 & 6 \end{bmatrix} y = \begin{bmatrix} -1 \\ 4 \end{bmatrix}, \text{ and so } y = \begin{bmatrix} -1 \\ \frac{7}{6} \end{bmatrix}.$$

The reduced costs of the nonbasic variables are given by $r_{\nu} = c_{\nu} - A_{\nu}^{\top} y$, that is,

$$r_{\nu} = \begin{bmatrix} 2\\1 \end{bmatrix} - \begin{bmatrix} 0&1\\-3&-2 \end{bmatrix} \begin{bmatrix} -1\\\frac{7}{6} \end{bmatrix} = \begin{bmatrix} 2-\frac{7}{6}\\1-3+\frac{7}{3} \end{bmatrix} = \begin{bmatrix} \frac{5}{6}\\\frac{1}{3} \end{bmatrix}.$$

Since $r_{\nu} \ge 0$, the current basic feasible solution is optimal. So

$$\widehat{x} = \begin{bmatrix} \frac{1}{3} \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

is optimal for (LP).

(2) The dual problem is

$$(D): \begin{cases} \text{maximize} & -c^{\top}y\\ \text{subject to} & A^{\top}y \leq c,\\ & y \geq 0. \end{cases}$$

But since $A^{\top} = -A$, the dual problem becomes

$$(D): \begin{cases} \text{maximize} & -c^{\top}y\\ \text{subject to} & -Ay \le c,\\ & y \ge 0. \end{cases}$$

This can be rewritten as

$$(D): \begin{cases} \text{minimize} & c^\top y \\ \text{subject to} & Ay \ge -c, \\ & y \ge 0, \end{cases}$$

which is the same as the primal problem. Since $\mathcal{F}_P \neq \emptyset$ (given), from the above we obtain $\mathcal{F}_D = \mathcal{F}_P \neq \emptyset$ as well. So by the Duality Theorem, both the primal problem (P) as well as the dual problem (D) have optimal solutions. Also since (P)=(D), the set of their optimal solutions is the same. Hence if \hat{x} is optimal for (P), then it is optimal for (D). From the Duality Theorem, we then obtain that $c^{\top}\hat{x} = -c^{\top}\hat{x}$ and so $c^{\top}\hat{x} = 0$. So the optimal value of (P) is zero.

(3)(a) Call F1 source 1, F2 as source 2 and F3 as source 3. Call A, B, C, D as destination 1, 2, 3, 4, respectively. For i = 1, 2, 3 and j = 1, 2, 3, 4, let

 $x_{ij} =$ amount in tonnes that F transports from source *i* to destination *j*,

 $d_j =$ capacity in tonnes of destination j,

 $s_i =$ amount in tonnes of product P produced at source *i*,

 $c_{ij} = \text{cost of transportation in units of 1000 SEK/tonnes of product}$ from source i to destination j.

Then

$$\begin{array}{l} s_1 = 250 \\ s_2 = 250 \\ s_3 = 500 \end{array} \text{ and } \begin{array}{l} d_1 = 150 \\ d_2 = 200 \\ d_3 = 300 \\ d_4 = 350, \end{array}$$

7

while the c_{ij} are given by

c_{ij}	j = 1	j = 2	j = 3	j = 4
i = 1	10	5	11	11
i = 2	10	2	7	12
i = 3	9	1	4	8

We note that

$$s_1 + s_2 + s_3 = 250 + 250 + 500 = 1000,$$

and

$$d_1 + d_2 + d_3 + d_4 = 150 + 200 + 300 + 350 = 1000$$

as well. So the problem can be formulated as the following balanced transportation problem:

$$(TP): \begin{cases} \text{minimize} & \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \\ \text{subject to} & \sum_{j=1}^{4} x_{ij} = s_i \text{ for } i = 1, 2, 3, \\ & -\sum_{i=1}^{3} x_{ij} = -d_j \text{ for } j = 1, 2, 3, 4, \\ & x_{ij} \ge 0 \text{ for all } i, j. \end{cases}$$

(3)(b) We find the following basic feasible solution using the northwest corner method:

x_{ij}	j = 1	j = 2	j = 3	j = 4	s_i
i = 1	150	100	—	—	250
i = 2	_	100	150	—	250
i = 3	—	-	150	350	500
d_j	150	200	300	350	

(3)(c) The simplex multipliers u_i and v_j corresponding to the above basic feasible solution can be found using the relation $c_{ij} = u_i - v_j$ for basic variable indices and with $v_4 = 0$:

c_{ij}	j = 1	j = 2	j = 3	j = 4	u_i
i = 1	10	5			14
i = 2		2	7		11
i = 3			4	8	8
v_j	4	9	4	0	

The reduced costs r_{ij} for the nonbasic variables can be found out using $r_{ij} = c_{ij} - u_i + v_j$:

r_{ij} (c_{ij})	j = 1	j = 2	j = 3	j = 4	u_i
i = 1	—	_	1(11)	-3(11)	14
i=2	3(10)	_	_	1(12)	11
i = 3	5(9)	2(1)		—	8
v_j	4	9	4	0	

Since $r_{14} = -3 < 0$, this basic feasible solution is not optimal. Let x_{14} be a new basic variable. Set $x_{14} = t$ and let t increase from 0, while the other nonbasic variables stay at 0. Then we have:

$x_{ij}(t)$	j = 1	j = 2	j = 3	j = 4	s_i
i = 1	150	100 - t	—	t	250
i=2	_	100 + t	150 - t	—	250
i = 3	—	-	150 + t	350 - t	500
d_j	150	200	300	350	

We see that t can increase up to 100, and $x_{12}(t)|_{t=100} = 0$. So the new basic feasible solution is:

x_{ij}	j = 1	j = 2	j = 3	j = 4	s_i
i = 1	150	_	_	100	250
i = 2	_	200	50	—	250
i = 3	—		250	250	500
d_j	150	200	300	350	

The new simplex multipliers are:

c_{ij}	j = 1	j = 2	j = 3	j = 4	u_i
i = 1	10			11	11
i = 2		2	7		11
i = 3			4	8	8
v_j	1	9	4	0	

The reduced costs are:

$r_{ij}\left(c_{ij}\right)$	j = 1	j = 2	j = 3	j = 4	u_i
i = 1	—	3(5)	4(11)	—	11
i=2	0(10)		_	1(12)	11
i = 3	2(9)	2(1)	_	—	8
v_j	1	9	4	0	

Since all the $r_{ij} \ge 0$, this solution is optimal.

(3)(d) If $\tilde{c}_{i1} = c_{i1} + 2$, then we note that the feasible set is the same, while the cost corresponding to a feasible solution is now given by

$$\sum_{i=1}^{3} \sum_{j=2}^{4} c_{ij} x_{ij} + \sum_{i=1}^{3} \widetilde{c}_{i1} x_{i1} = \sum_{i=1}^{3} \sum_{j=2}^{4} c_{ij} x_{ij} + \sum_{i=1}^{3} (c_{i1}+2) x_{i1}$$
$$= \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} + 2 \sum_{i=1}^{3} x_{i1} = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} + 2d_1$$
$$= \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} + 2 \cdot 150.$$

Hence the optimal solution is the same.

(4) Let h_1 , h_2 , h_3 be the true heights of the hills above sea level. The errors e_1, \ldots, e_6 in the six measurements are then given as follows:

$$e_{1} = h_{1} - 1236$$

$$e_{2} = h_{2} - 1941$$

$$e_{3} = h_{3} - 2417$$

$$e_{4} = h_{2} - h_{1} - 711$$

$$e_{5} = h_{3} - h_{1} - 1177$$

$$e_{6} = h_{3} - h_{2} - 474.$$

The problem is to minimize $e_1^2 + e_2^2 + e_3^2 + e_4^2 + e_5^2 + e_6^2$, that is,

$$\begin{cases} \text{minimize} & \|Ax - b\|^2\\ \text{subject to} & x \in \mathbb{R}^3, \end{cases}$$

where

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \hline -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1236 \\ 1941 \\ 2417 \\ 711 \\ 1177 \\ 474 \end{bmatrix} \text{ and } x = \begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix}.$$

 \hat{x} is optimal iff it satisfies the normal equation $A^{\top}A\hat{x} = A^{\top}b$. We have

$$A^{\top}A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix} \text{ and } A^{\top}b = \begin{bmatrix} -652 \\ 2178 \\ 4068 \end{bmatrix}$$

Thus adding all equations in the system $A^{\top}A\hat{x} = A^{\top}b$ gives us that

$$\widehat{x}_1 + \widehat{x}_2 + \widehat{x}_3 = 4068 + 2178 - 652 = 5594$$

Now adding the equation $\hat{x}_1 + \hat{x}_2 + \hat{x}_3 = 5594$ to each of the equations in the system $A^{\top}A\hat{x} = A^{\top}b$ yields

$$\widehat{x_1} = \frac{-652 + 5594}{4} = 1235.5,$$

$$\widehat{x_2} = \frac{2178 + 5594}{4} = 1943,$$

$$\widehat{x_3} = \frac{4068 + 5594}{4} = 2415.5.$$

So upon minimizing the least squares error associated with the measurements, the estimated heights of the hills H_1 , H_2 , H_3 are 1235.5, 1943, 2415.5 meters, respectively.

(5) The problem can be rewritten as follows:

minimize
$$f(x) := -x_5$$

subject to $h_1(x) := x_1 + x_2 + x_3 + x_4 + x_5 - 8 = 0,$
 $h_2(x) := x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 - 16 = 0,$
 $x_1, x_2, x_3, x_4, x_5 \in \mathbb{R}.$

We have

$$\nabla h_1(x) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}, \nabla h_2(x) = \begin{bmatrix} 2x_1 & 2x_2 & 2x_3 & 2x_4 & 2x_5 \end{bmatrix}.$$

Suppose α and β are scalars, not both zeros, such that

$$\alpha \nabla h_1(x) + \beta \nabla h_2(x) = 0$$

Since $\nabla h_1(x) \neq 0$, it follows that $\beta \neq 0$, and so $\nabla h_2(x) = k \nabla h_1(x)$ for some scalar k. Hence $x_1 = \cdots = x_5$. But then $h_1(x) = 0$ gives

$$x_1 = \dots = x_5 = \frac{8}{5},$$

and then $h_2(x) = 5 \cdot \frac{64}{25} - 16 \neq 0$. So $\nabla h_1(x)$ and $\nabla h_2(x)$ are independent for every feasible x, and so every feasible x is a regular point.

Thus if x is a local optimal solution, then there exists a

$$u = \left[\begin{array}{c} \lambda \\ \mu \end{array} \right] \in \mathbb{R}^2$$

such that $\nabla f(x) + u^{\top} \nabla h(x) = 0$, that is,

$$\begin{bmatrix} 0 & 0 & 0 & -1 \end{bmatrix} + \begin{bmatrix} \lambda & \mu \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2x_1 & 2x_2 & 2x_3 & 2x_4 & 2x_5 \end{bmatrix} = 0.$$

Hence

$$\lambda + 2\mu x_1 = 0, \tag{1}$$

$$\lambda + 2\mu x_2 = 0, \qquad (2)$$

$$\lambda + 2\mu x_3 = 0, \qquad (3)$$

$$\lambda + 2\mu x_3 = 0, \tag{3}$$

$$\lambda + 2\mu x_4 = 0, \tag{4}$$

$$-1 + \lambda + 2\mu x_5 = 0. (5)$$

We consider the two cases $\lambda = 0$ and $\lambda \neq 0$ separately.

1° If $\lambda = 0$, then (5) gives $2\mu x_5 = 1$ and so $\mu \neq 0$. But then (1)-(4) give $x_1 = x_2 = x_3 = x_4 = 0$. So $h_1(x) = 0$ now gives $x_5 = 8$. But then $h_2(x) = 64 - 16 \neq 0$. So this case gives no feasible x.

2° Suppose $\lambda \neq 0$. The (1) gives $2\mu x_1 = -\lambda$ and so $\mu \neq 0$. Then (1)-(4) give $x_1 = x_2 = x_3 = x_4 = -\frac{\lambda}{2\mu} = k$ (say). Then $h_1(x) = 0$ gives $4k + x_5 - 8 = 0$, while $h_2(x) = 0$ gives $4k^2 + x_5^2 - 16 = 0$. Eliminating k, we obtain

$$x_5^2 + 4\left(\frac{8-x_5}{4}\right)^2 - 16 = 0,$$

and upon simplifying, we obtain $x_5(\frac{5}{4}x_5-4)=0$. Thus $x_5=\frac{16}{5}$ or $x_5=0$. Hence $x = (\frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \frac{16}{5})$ or x = (2, 2, 2, 2, 0). Both of these are feasible, and since $\frac{16}{5} > 0$, we conclude that if there is an optimal solution, it must be $x = (\frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \frac{16}{5})$. The feasible set \mathcal{F} , namely

$$\{x \in \mathbb{R}^5 : x_1 + x_2 + x_3 + x_4 + x_5 = 8\} \cap \{x \in \mathbb{R}^5 : x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = 16\}$$

is bounded (indeed, \mathcal{F} is contained in the ball with center 0 and radius 4), and it is also closed (since it is the intersection of two closed sets). So \mathcal{F} is compact. The map $x \mapsto -x_5$ is continuous. So we know that $f : \mathcal{F} \to \mathbb{R}$ has a global minimum on \mathcal{F} . Consequently, $x = (\frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \frac{16}{5})$ is a global minimizer.

So the largest value of x_5 is $\frac{16}{5}$.

(6)(a) $x \stackrel{\varphi}{\mapsto} -(x_1 + x_2)$ is convex. The map $y \stackrel{\psi}{\mapsto} e^y$ is increasing. Thus $x \stackrel{\psi \circ \varphi}{\mapsto} e^{-(x_1+x_2)}$ is convex. Also since $x \mapsto e^{x_1}$ and $x \mapsto e^{x_2}$ are convex, so is $x \mapsto e^{x_1} + e^{x_2} - 20$. Finally, $x \mapsto -x_1$ is convex. Thus f, g_1, g_2 defined by

$$f(x) = e^{-(x_1+x_2)},$$

$$g_1(x) = e^{x_1} + e^{x_2} - 20,$$

$$g_2(x) = -x_1,$$

are all convex. Hence the given problem

$$\begin{cases} \text{minimize} \quad f(x)\\ \text{subject to} \quad g_1(x) \le 0,\\ \quad g_2(x) \le 0 \end{cases}$$

is a convex optimization problem. Also $g_1(1,0) = e^1 + 1 - 20 < 0$ and $g_2(1,0) = -1 < 0$. So the problem is regular as well.

(6)(b) For a regular convex problem, x is optimal iff the KKT-conditions hold, that is, that there exists a $y \in \mathbb{R}^2$ such that the following hold:

(KKT-1) $\nabla f(x) + y^{\top}g(x) = 0$ that is,

$$\begin{bmatrix} -e^{-(x_1+x_2)} & -e^{-(x_1+x_2)} \end{bmatrix} + \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} e^{x_1} & e^{x_2} \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}.$$

So $e^{-(x_1+x_2)} - y_1e^{x_1} + y_2 = 0$ and $e^{-(x_1+x_2)} - y_1e^{x_2} = 0$.

(KKT-2) $g_i(x) \leq 0$ for all *i*, that is, $x_1 \geq 0$ and $e^{x_1} + e^{x_2} \leq 20$.

(KKT-3) $y \ge 0$, that is, $y_1 \ge 0$ and $y_2 \ge 0$.

(KKT-4) $y_i g_i(x) = 0$ for all *i*, that is, $y_1(e^{x_1} + e^{x_2} - 20) = 0$ and $y_2 x_1 = 0$.

If $x_1 = 0$, then (KKT-1) gives $y_1 = e^{-2x_2} \neq 0$. (KKT-4) then gives that $e^{x_1} + e^{x_2} - 20$ must be 0, and since $x_1 = 0$, we further obtain that $e^{x_2} = 19$. (KKT-1) gives $y_2 = e^{-2x_2} - e^{-x_2} = \frac{1}{19}(\frac{1}{19} - 1) < 0$, contradicting (KKT-3). So it cannot be the case that $x_1 = 0$.

If $x_1 \neq 0$, then (KKT-4) gives $y_2 = 0$. (KKT-1) then gives first of all that $y_1 = e^{-x_1 - 2x_2} > 0$. Also, $y_1(e^{x_1} - e^{x_2}) = 0$ and since $y_1 > 0$, we obtain $e^{x_1} = e^{x_2}$, which implies that $x_1 = x_2$. (KKT-4) together with $y_1 > 0$ gives $e^{x_1} + e^{x_2} - 20 = 0$. Since $x_1 = x_2$ we now obtain that $e^{x_1} = e^{x_2} = 10$, so that $x_1 = x_2 = \log_e 10$. Then it is easily verified that (KKT-1) to (KKT-4) hold with $x_1 = x_2 = \log_e 10$, $y_1 = e^{-x_1 - 2x_2} = e^{-3\log_e 10} = \frac{1}{1000}$ and $y_2 = 0$. So the global optimal solution is given by $x_1 = x_2 = \log_e 10$.

(7) Let $X = \{x \in \mathbb{R}^2 : x_1 > 0 \text{ and } x_2 > 0\}$. Define $L : X \times \mathbb{R} \to \mathbb{R}$ by

$$L(x,y) = x_1 + x_2 + y\left(\frac{1}{x_1} + \frac{1}{x_2} - 1\right) \quad (x \in X, \ y \in \mathbb{R}).$$

The relaxed Lagrange problem (PR_u) is the following:

Given $y \ge 0$, minimize $x \mapsto L(x, y)$ on X, that is,

$$(PR_y): \begin{cases} \text{minimize} & x_1 + x_2 + y\left(\frac{1}{x_1} + \frac{1}{x_2} - 1\right) \\ \text{subject to} & x_1 > 0 \text{ and } x_2 > 0. \end{cases}$$

For nonnegative a, b, we have $\frac{a+b}{2} \ge \sqrt{ab}$ with equality iff a = b. Hence

$$\begin{aligned} x_1 + x_2 + y \left(\frac{1}{x_1} + \frac{1}{x_2} - 1\right) &= x_1 + \frac{y}{x_1} + x_2 + \frac{y}{x_2} \ge 2\sqrt{x_1 \frac{y}{x_1}} + 2\sqrt{x_2 \frac{y}{x_2}} \\ &= 2\sqrt{y} + 2\sqrt{y} = 4\sqrt{y}, \end{aligned}$$

with equality iff $x_1 = \frac{y}{x_1}$ and $x_2 = \frac{y}{x_2}$, that is, iff $x_1 = \sqrt{y}$ and $x_2 = \sqrt{y}$. So $x_1 = \hat{x}_1(y) = \sqrt{y}$ and $x_2 = \hat{x}_2(y) = \sqrt{y}$. The dual objective function is

$$\varphi(y) = L(\widehat{x}(y), y) = \sqrt{y} + \sqrt{y} + y\left(\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{y}} - 1\right) = 4\sqrt{y} - y$$

We seek a maximum over $y \ge 0$. We have $\varphi'(y) = \frac{4}{2\sqrt{y}} - 1 = 0$ iff y = 4. We see that $\varphi(y) = \sqrt{y}(4 - \sqrt{y}) < 0$ for y > 16. On the compact interval $[0, 16], \varphi$ has a maximum. $\varphi(0) = \varphi(16) = 0$ and $\varphi(4) = 4, \varphi'(4) = 0$ show that $\widehat{y} = 4 \ge 0$ is indeed a maximizer.

Set $\hat{x}_1 := \hat{x}_1(\hat{y}) = 2$ and $\hat{x}_2 := \hat{x}_2(\hat{y}) = 2$. Then (\hat{x}_1, \hat{x}_2) is feasible for the original problem since $\frac{1}{\hat{x}_1} + \frac{1}{\hat{x}_2} = \frac{1}{2} + \frac{1}{2} = 1$, $\hat{x}_1 = 2 > 0$, $\hat{x}_2 = 2 > 0$. $\hat{y} = 4 \ge 0$ and $\hat{y} \left(\frac{1}{\hat{x}_1} + \frac{1}{\hat{x}_2} - 1\right) = \hat{y} \cdot 0 = 0$. Thus (\hat{x}, \hat{y}) satisfy the global optimality conditions associated with the problem and so $\hat{x} = (2, 2)$ is an optimal solution.