Solution to the exam for SF1811/SF1831/SF1841

March 20, 2010

(1) The problem is in standard form

minimize c¢'x

(LP): ¢ subject to Az =b,
x>0,

where
4
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We start with x3 and x4 as basic variables. Thus 5 = (3,4) and v = (1, 2).
Then
1

Agz[o (1)} andAV:[g :g]

The initial basic solution is xg = b, where Agg = b, that is,

HiEHE]

The simplex multipliers vector ¥ is obtained by solving Agy = cg, that is,

4 2o (3] e[ ]

The reduced costs of the nonbasic variables are given by 7, = ¢, — Ay,
that is,

[ S5

Since r,, = r1 = —5 < 0 and it is the smallest, we make z; a new basic
variable. We compute @; using Aga; = ay, that is,

1 0(_ |3 d__3
0 1 |@=|¢ | andsoa =] /.

Then the new basic variable x1 can increase up to

. (b - (32 1 by
= min — . Q = min -, = = - = —.
max al,k 1,k 376 3 6172

The minimizing index is & = 2, and hence xg, = x4 leaves the set of basic
variables, and z; takes its place. So = (3,1) and v = (4,2). Hence

Agz[(l) 2} andAV:[(l) :3]
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We calculate b using Agg = b, that is,

& 2]5-[2] wmms 3]

The simplex multipliers vector ¥ is obtained by solving Agy = cg, that is,

8o (3] e[ 1]

The reduced costs of the nonbasic variables are given by 7, = ¢, — Ay,
that is,

= [21-15 B3 ]-[0%0:

Since r, > 0, the current basic feasible solution is optimal. So
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- 0
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0
is optimal for (LP).
(2) The dual problem is
maximize —c'y
(D) : ¢ subject to ATy <c,
y=>0
But since AT = —A, the dual problem becomes

maximize —c'y
D): subject to —Ay <c¢
( i y<c,
y > 0.

This can be rewritten as
minimize ¢’y
(D) : subject to Ay > —c,
y >0,

which is the same as the primal problem. Since Fp # ) (given), from the
above we obtain Fp = Fp # () as well. So by the Duality Theorem, both the
primal problem (P) as well as the dual problem (D) have optimal solutions.
Also since (P)=(D), the set of their optimal solutions is the same. Hence if
Z is optimal for (P), then it is optimal for (D). From the Duality Theorem,
we then obtain that ¢'Z = —¢'Z and so ¢'Z = 0. So the optimal value of
(P) is zero.
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(3)(a) Call F1 source 1, F2 as source 2 and F3 as source 3. Call A, B, C, D
as destination 1, 2, 3, 4, respectively. For ¢ =1, 2, 3 and j =1, 2, 3, 4, let

x;; = amount in tonnes that F transports from source 7 to destination j,
d; = capacity in tonnes of destination j,
s; = amount in tonnes of product P produced at source 1,
¢ij = cost of transportation in units of 1000 SEK /tonnes of product
from source ¢ to destination j.
Then
=1
51 = 250 di =150
ds = 200
89 = 250 and
o — 500 ds = 300
35— ds = 350,

while the ¢;; are given by

Ley [j=1]j=2[j=3]j=4]
i=1 10 5 11 11
1=21 10 2 7 12
1=3 9 1 4 8

We note that
s1 + s + s3 = 250 + 250 + 500 = 1000,
and
di + do + d3 + dg = 150 4 200 + 300 + 350 = 1000

as well. So the problem can be formulated as the following balanced trans-
portation problem:

3 4
minimize E E CijTij

i=1 j=1
4

subject to Z:Ul'j =g; fort=1,2,3,
(TP): j=1

3
= @iy = —dj for j =1,2,3,4,
=1

x5 > 0 for all 4, 5.

\

(3)(b) We find the following basic feasible solution using the northwest cor-
ner method:

L2y [li=1]j=2[j=3[j=4] s |

1=1| 150 100 — — 250
1=2 — 100 150 — 250
1=3 — - 150 | 350 | 500

| d; | 150 | 200 | 300 [ 350 | |
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(3)(c) The simplex multipliers w; and v; corresponding to the above basic
feasible solution can be found using the relation ¢;; = u; — v; for basic
variable indices and with v4 = 0:

Loy [j=1][j=2[j=3]j=4]u]

i=1] 10 | 5 11
i=2 2 | 7 11
i=3 I | 8 |8

Lo [ 4 ]9 [ 4]0 |

The reduced costs r;; for the nonbasic variables can be found out using
Tij = Cij — Uj + Vj:

[rij(ciy) [1=1]7=2]j=3] j=4 [ u]

1=1 - - 1(11) | =3 (11) || 14
i=2 | 3(10) — — 1(12) | 11
1=3 5(9) | 2(1) — — 8
v [ 4 [ 9 [ 4 ] 0o [ |
Since 114 = —3 < 0, this basic feasible solution is not optimal. Let z14 be

a new basic variable. Set x14 = t and let ¢ increase from 0, while the other
nonbasic variables stay at 0. Then we have:

ey [ j=1]j=2]j=3j=4] s ]

1=1| 150 | 100 —¢ — t 250
1=2 — 100 4+¢ | 150 — ¢ — 250
1=3 - — 150+t | 350 — ¢ || 500

| d; [ 150 [ 200 | 300 | 350 | |

We see that t can increase up to 100, and z12(t)|t=100 = 0. So the new basic
feasible solution is:

L2y [lj=1]j=2[j=3[j=4] s |

1=1| 150 — — 100 || 250
1=2 — 200 50 — 250
1=3 — — 250 | 250 || 500

| d; | 150 | 200 | 300 [ 350 | |

The new simplex multipliers are:

Loy [j=1][j=2[j=3[j=4]u]

i=1] 10 1] 11
=2 5 | 7 11
i=3 I | 8 |8
Lo [t [ 9 [ 4]0 |

The reduced costs are:



rig(ey) [d=1]4=2]4=3]j=4] u|

i=1 — (3B [40an] - 11

i=2 [[0(10)| — — (12|11

i=3 [[20) [2(1) ] - — I3
Lo [t [ 9 [ 4] 0 [ |

Since all the 7;; > 0, this solution is optimal.

(3)(d) If ¢;1 = ¢;1 + 2, then we note that the feasible set is the same, while
the cost corresponding to a feasible solution is now given by

3 4 3
ZZCUSU@']’ + Z@lwil = Z ZCUJE@] + Z ci1 +2)z4
i=1 j=2 i=1 i= 1; 2
S2) DIIRE) IR ») pURREY
= 1] 1 i=1 j=1
_ o . 150.
= chjxw+2 150
i=1 j=1

Hence the optimal solution is the same.

(4) Let hy, ha, hs be the true heights of the hills above sea level. The errors

€1,...,eg in the six measurements are then given as follows:
eg = hy—1236
es = ho— 1941
es = hg— 2417
eq = ho—hy —T11
es = hg—hy — 1177

€ = h3 - h2 —474.
The problem is to minimize €? + €3 + €% + e + €2 + €2, that is,

minimize ||Az — b||?
subject to x € R3,

where
1 0 0] [ 1236 |
0 1 0 1941 h
0 0 1 2417 1
Al =T o YT om | mdes ZQ
-1 0 1 1177 3
0 -1 1| | 474 |
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7 is optimal iff it satisfies the normal equation AT AZ = ATb. We have

3 -1 -1 —652
ATA=] -1 3 -1 | andA"b=| 2178
-1 -1 3 4068

Thus adding all equations in the system A" AZ = A"b gives us that
1 + T + T3 = 4068 + 2178 — 652 = 5594.

Now adding the equation Zy + 3 + Z3 = 5594 to each of the equations in
the system AT AZ = ATb yields

_ —652 4
T = w:mga&
. 2178 + 5594
T3 = %:1943,
- 4068 + 5594
T3 = %:2415.5.

So upon minimizing the least squares error associated with the measure-
ments, the estimated heights of the hills Hy, Ho, Hs are 1235.5, 1943, 2415.5
meters, respectively.

(5) The problem can be rewritten as follows:

minimize f(x):= —x5

subject to hi(z) =21 + 22+ a3+ 24+ 25 —8=0,
ho(z) := 2% + 23 + 23 + 23+ 22 — 16 =0,
X1, T2, T3, T4, T5 € R.

We have
Vhi) = [1 111 1],
Vhe(z) = [ 2x1 2wy 2x3 2x4 225 |.
Suppose a and 3 are scalars, not both zeros, such that
aVhi(z) 4+ BVh(x) = 0.
Since Vhq(x) # 0, it follows that 5 # 0, and so Vhy(z) = kVh;(x) for some

scalar k. Hence x1 = -+ = 5. But then h;(x) = 0 gives
==z _3
1= — 45 = 5’

and then ha(z) =5- % —16 # 0. So Vhy(z) and Vha(x) are independent
for every feasible x, and so every feasible x is a regular point.
Thus if z is a local optimal solution, then there exists a

u:[A}GRQ
1



such that Vf(z) +u'Vh(z) = 0, that is,

1 1 1 1 1
[0000_1]+[)\M] 2$1 2$2 2$3 2$4 2$5 =0.

Hence
A+ 2uxy 0, (1)
A4 2uxs = 0, (2)
A+ 2px3 = 0, (3)
A 2uxy = 0, (4)
—14+X+2ux5 = 0. (5)

We consider the two cases A = 0 and A # 0 separately.

1° If A = 0, then (5) gives 2uzs = 1 and so u # 0. But then (1)-(4) give
1 = x9 = x3 = x4 = 0. So hi(z) = 0 now gives x5 = 8. But then
ha(z) = 64 — 16 # 0. So this case gives no feasible z.

2° Suppose A # 0. The (1) gives 2ux; = —A and so p # 0. Then (1)-(4) give
T] =Ty =T3 =14 = —ﬁ =k (say). Then hy(z) = 0 gives 4k + x5 — 8 =0,
while ha(z) = 0 gives 4k? + 22 — 16 = 0. Eliminating k, we obtain

8 — x5\ 2
x§+4< 5> —16=0,
4
16

and upon simplifying, we obtain x5(%x5 —4) =0. Thus x5 = 3 or x5 = 0.

Hence z = (g, g, g, g, %) orz = (2,2,2,2,0). Both of these are feasible,
and since % > 0, we conclude that if there is an optimal solution, it must
be 2 = (8,5,8 6 16
=555 5 5/
The feasible set F, namely

{r e R : 3y + 2o+ 23+ 74+ 75 = 8} N{x € R® : 2% + 23 + 23 + 2] + 27 = 16}

is bounded (indeed, F is contained in the ball with center 0 and radius 4),
and it is also closed (since it is the intersection of two closed sets). So F is
compact. The map = — —zj5 is continuous. So we know that f: F — R

has a global minimum on F. Consequently, x = (g, g, g, g, %) is a global
minimizer.
So the largest value of x5 is %.

(6)(a) = = —(x1 + x3) is convex. The map y L ev s increasing. Thus

(o] . . .
T wn—f e~ (#11+22) g convex. Also since z — €®! and x — €*2 are convex, so is
x — el + e%2 — 20. Finally, x — —x7 is convex. Thus f, g1, go defined by

f(z) = e—(m1+m2)7
gi(z) = €t +e"? —20,

92('%') = —T1,
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are all convex. Hence the given problem

minimize f(x
subject to ¢1

is a convex optimization problem. Also g1(1,0) = ¢! +1 —20 < 0 and
92(1,0) = —1 < 0. So the problem is regular as well.

(6)(b) For a regular convex problem, z is optimal iff the KKT-conditions
hold, that is, that there exists a y € R? such that the following hold:

(KKT-1) Vf(z) +y g(z) = 0 that is,

err  er2

[ —erloton) —emlote) [+ [y g | [ -1 0 ] =lool

So e~@1tr2) _yemt Ly =0 and e~ (F1H22) — ge%2 = Q.

(KKT-2) g;(z) <0 for all 4, that is, 1 > 0 and e + e*2 < 20.

(KKT-3) y > 0, that is, y; > 0 and y2 > 0.

(KKT-4) y;9i(x) = 0 for all ¢, that is, y1(e** + e*? —20) = 0 and yo2z1 = 0.

If 21 = 0, then (KKT-1) gives y; = e %2 #£ 0. (KKT-4) then gives that
e’ + e¥2 — 20 must be 0, and since x1 = 0, we further obtain that e*2 = 19.
(KKT-1) gives yp = e 22 — ¢7*2 = (55 — 1) < 0, contradicting (KKT-3).
So it cannot be the case that x; = 0.

If z1 # 0, then (KKT-4) gives yo = 0. (KKT-1) then gives first of all
that y; = e *172%2 > (0, Also, y1(e”! — €*2) = 0 and since y; > 0, we obtain
el = e"2, which implies that 1 = z9. (KKT-4) together with y; > 0 gives
e*t + e — 20 = 0. Since x1 = x3 we now obtain that e® = ¢*2 = 10, so
that x; = x9 = log, 10. Then it is easily verified that (KKT-1) to (KKT-4)
hold with z1 = 29 = log, 10, y; = e~ 17282 = =3logc 10 — ﬁ and yo = 0.
So the global optimal solution is given by x; = 3 = log, 10.

(7) Let X = {x € R? : 21 > 0 and 29 > 0}. Define L: X x R — R by

1 1
L(x,y):ﬂ:1+x2+y<—+——1> (x € X, y € R).
I i)

The relaxed Lagrange problem (PR,) is the following:
Given y > 0, minimize x — L(x,y) on X, that is,

1 1
minimize =1+ x2+y <— + — — 1)
(PRy) : 1
subject to x1 > 0 and xo > 0.



For nonnegative a, b, we have “T*'b > v ab with equality iff a = b. Hence

1 1
x1+x2+y< +——1> = x1+£+x2+£221/x1£+2,/x2£
X9 1 T2 Ty X2
= 2Vt 2y =4vy,

with equality iff 21 = L and 2 = 2, that is, iff 1 = \/y and 72 = /y. So
r1 = T1(y) = /¥ and 22 = T3(y) = /y. The dual objective function is

o) :L<f<y>,y>:@+ﬂ+y(7+7—1) — 4y

We seek a maximum over y > 0. We have ¢/'(y) = 2f —1=0iff y = 4.

We see that ¢(y) = /y(4 — /y) < 0 for y > 16. On the compact interval
[0,16], ¢ has a maximum. ¢(0) = ¢(16) = 0 and ¢(4) = 4, ¢'(4) = 0 show
that y =4 > 0 is indeed a maximizer.

Set 71 := 71(y) = 2 and Ty := Z2(y) = 2. Then (71,72) is feasible for
the original problem since E_ll + %2 = % —1—% =1,71=2>0,2=2>0.

y=42>0and y( + = - 1) =y-0=0. Thus (z,y) satisfy the global

optimality conditions assomated with the problem and so 7 = (2,2) is an
optimal solution.



