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(1) The problem is in standard form

(LP ) :





minimize c⊤x
subject to Ax = b,

x ≥ 0,

where

A =

[
3 −3 1 0
6 −2 0 1

]
, b =

[
3
2

]
, c =




4
1
−1
2


 .

We start with x3 and x4 as basic variables. Thus β = (3, 4) and ν = (1, 2).
Then

Aβ =

[
1 0
0 1

]
and Aν =

[
3 −3
6 −2

]
.

The initial basic solution is xβ = b, where Aβb = b, that is,
[
1 0
0 1

]
b =

[
3
2

]
, and so b =

[
3
2

]
.

The simplex multipliers vector y is obtained by solving A⊤
β y = cβ , that is,

[
1 0
0 1

]
y =

[
−1
2

]
, and so y =

[
−1
2

]
.

The reduced costs of the nonbasic variables are given by rν = cν − A⊤
ν y,

that is,

rν =

[
4
1

]
−

[
3 6
−3 −2

] [
−1
2

]
=

[
4
1

]
−

[
9
−1

]
=

[
−5
2

]
.

Since rν1 = r1 = −5 < 0 and it is the smallest, we make x1 a new basic
variable. We compute a1 using Aβa1 = a1, that is,

[
1 0
0 1

]
a1 =

[
3
6

]
, and so a1 =

[
3
6

]
.

Then the new basic variable x1 can increase up to

tmax = min

{
bk

a1,k
: a1,k > 0

}
= min

{
3

3
,
2

6

}
=

1

3
=

b2

a1,2
.

The minimizing index is k = 2, and hence xβ2 = x4 leaves the set of basic
variables, and x1 takes its place. So β = (3, 1) and ν = (4, 2). Hence

Aβ =

[
1 3
0 6

]
and Aν =

[
0 −3
1 −2

]
.
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We calculate b using Aβb = b, that is,
[
1 3
0 6

]
b =

[
3
2

]
, and so b =

[
2
1
3

]
.

The simplex multipliers vector y is obtained by solving A⊤
β y = cβ , that is,

[
1 0
3 6

]
y =

[
−1
4

]
, and so y =

[
−1
7
6

]
.

The reduced costs of the nonbasic variables are given by rν = cν − A⊤
ν y,

that is,

rν =

[
2
1

]
−

[
0 1
−3 −2

] [
−1
7
6

]
=

[
2− 7

6
1− 3 + 7

3

]
=

[
5
6
1
3

]
.

Since rν ≥ 0, the current basic feasible solution is optimal. So

x̂ =




1
3
0
2
0




is optimal for (LP ).

(2) The dual problem is

(D) :





maximize −c⊤y
subject to A⊤y ≤ c,

y ≥ 0.

But since A⊤ = −A, the dual problem becomes

(D) :





maximize −c⊤y
subject to −Ay ≤ c,

y ≥ 0.

This can be rewritten as

(D) :





minimize c⊤y
subject to Ay ≥ −c,

y ≥ 0,

which is the same as the primal problem. Since FP 6= ∅ (given), from the
above we obtain FD = FP 6= ∅ as well. So by the Duality Theorem, both the
primal problem (P ) as well as the dual problem (D) have optimal solutions.
Also since (P )=(D), the set of their optimal solutions is the same. Hence if
x̂ is optimal for (P ), then it is optimal for (D). From the Duality Theorem,
we then obtain that c⊤x̂ = −c⊤x̂ and so c⊤x̂ = 0. So the optimal value of
(P ) is zero.
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(3)(a) Call F1 source 1, F2 as source 2 and F3 as source 3. Call A, B, C, D
as destination 1, 2, 3, 4, respectively. For i =1, 2, 3 and j =1, 2, 3, 4, let

xij = amount in tonnes that F transports from source i to destination j,

dj = capacity in tonnes of destination j,

si = amount in tonnes of product P produced at source i,

cij = cost of transportation in units of 1000 SEK/tonnes of product
from source i to destination j.

Then

s1 = 250
s2 = 250
s3 = 500

and

d1 = 150
d2 = 200
d3 = 300
d4 = 350,

while the cij are given by

cij j = 1 j = 2 j = 3 j = 4

i = 1 10 5 11 11
i = 2 10 2 7 12
i = 3 9 1 4 8

We note that

s1 + s2 + s3 = 250 + 250 + 500 = 1000,

and

d1 + d2 + d3 + d4 = 150 + 200 + 300 + 350 = 1000

as well. So the problem can be formulated as the following balanced trans-
portation problem:

(TP ) :





minimize
3∑

i=1

4∑

j=1

cijxij

subject to

4∑

j=1

xij = si for i = 1, 2, 3,

−
3∑

i=1

xij = −dj for j = 1, 2, 3, 4,

xij ≥ 0 for all i, j.

(3)(b) We find the following basic feasible solution using the northwest cor-
ner method:

xij j = 1 j = 2 j = 3 j = 4 si

i = 1 150 100 − − 250
i = 2 − 100 150 − 250
i = 3 − − 150 350 500

dj 150 200 300 350
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(3)(c) The simplex multipliers ui and vj corresponding to the above basic
feasible solution can be found using the relation cij = ui − vj for basic
variable indices and with v4 = 0:

cij j = 1 j = 2 j = 3 j = 4 ui

i = 1 10 5 14
i = 2 2 7 11
i = 3 4 8 8

vj 4 9 4 0

The reduced costs rij for the nonbasic variables can be found out using
rij = cij − ui + vj:

rij (cij) j = 1 j = 2 j = 3 j = 4 ui

i = 1 − − 1 (11) −3 (11) 14
i = 2 3 (10) − − 1 (12) 11
i = 3 5 (9) 2 (1) − − 8

vj 4 9 4 0

Since r14 = −3 < 0, this basic feasible solution is not optimal. Let x14 be
a new basic variable. Set x14 = t and let t increase from 0, while the other
nonbasic variables stay at 0. Then we have:

xij(t) j = 1 j = 2 j = 3 j = 4 si

i = 1 150 100− t − t 250
i = 2 − 100 + t 150− t − 250
i = 3 − − 150 + t 350 − t 500

dj 150 200 300 350

We see that t can increase up to 100, and x12(t)|t=100 = 0. So the new basic
feasible solution is:

xij j = 1 j = 2 j = 3 j = 4 si

i = 1 150 − − 100 250
i = 2 − 200 50 − 250
i = 3 − − 250 250 500

dj 150 200 300 350

The new simplex multipliers are:

cij j = 1 j = 2 j = 3 j = 4 ui

i = 1 10 11 11
i = 2 2 7 11
i = 3 4 8 8

vj 1 9 4 0

The reduced costs are:
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rij (cij) j = 1 j = 2 j = 3 j = 4 ui

i = 1 − 3 (5) 4 (11) − 11
i = 2 0 (10) − − 1 (12) 11
i = 3 2 (9) 2 (1) − − 8

vj 1 9 4 0

Since all the rij ≥ 0, this solution is optimal.

(3)(d) If c̃i1 = ci1 + 2, then we note that the feasible set is the same, while
the cost corresponding to a feasible solution is now given by

3∑

i=1

4∑

j=2

cijxij +
3∑

i=1

c̃i1xi1 =
3∑

i=1

4∑

j=2

cijxij +
3∑

i=1

(ci1 + 2)xi1

=

3∑

i=1

4∑

j=1

cijxij + 2

3∑

i=1

xi1 =

3∑

i=1

4∑

j=1

cijxij + 2d1

=

3∑

i=1

4∑

j=1

cijxij + 2 · 150.

Hence the optimal solution is the same.

(4) Let h1, h2, h3 be the true heights of the hills above sea level. The errors
e1, . . . , e6 in the six measurements are then given as follows:

e1 = h1 − 1236

e2 = h2 − 1941

e3 = h3 − 2417

e4 = h2 − h1 − 711

e5 = h3 − h1 − 1177

e6 = h3 − h2 − 474.

The problem is to minimize e21 + e22 + e23 + e24 + e25 + e26, that is,
{

minimize ‖Ax− b‖2
subject to x ∈ R

3,

where

A =




1 0 0
0 1 0
0 0 1
−1 1 0
−1 0 1
0 −1 1



, b =




1236
1941
2417
711
1177
474




and x =




h1
h2
h3


 .
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x̂ is optimal iff it satisfies the normal equation A⊤Ax̂ = A⊤b. We have

A⊤A =




3 −1 −1
−1 3 −1
−1 −1 3


 and A⊤b =




−652
2178
4068


 .

Thus adding all equations in the system A⊤Ax̂ = A⊤b gives us that

x̂1 + x̂2 + x̂3 = 4068 + 2178 − 652 = 5594.

Now adding the equation x̂1 + x̂2 + x̂3 = 5594 to each of the equations in
the system A⊤Ax̂ = A⊤b yields

x̂1 =
−652 + 5594

4
= 1235.5,

x̂2 =
2178 + 5594

4
= 1943,

x̂3 =
4068 + 5594

4
= 2415.5.

So upon minimizing the least squares error associated with the measure-
ments, the estimated heights of the hills H1, H2, H3 are 1235.5, 1943, 2415.5
meters, respectively.

(5) The problem can be rewritten as follows:




minimize f(x) := −x5
subject to h1(x) := x1 + x2 + x3 + x4 + x5 − 8 = 0,

h2(x) := x21 + x22 + x23 + x24 + x25 − 16 = 0,
x1, x2, x3, x4, x5 ∈ R.

We have

∇h1(x) =
[
1 1 1 1 1

]
,

∇h2(x) =
[
2x1 2x2 2x3 2x4 2x5

]
.

Suppose α and β are scalars, not both zeros, such that

α∇h1(x) + β∇h2(x) = 0.

Since ∇h1(x) 6= 0, it follows that β 6= 0, and so ∇h2(x) = k∇h1(x) for some
scalar k. Hence x1 = · · · = x5. But then h1(x) = 0 gives

x1 = · · · = x5 =
8

5
,

and then h2(x) = 5 · 64
25 − 16 6= 0. So ∇h1(x) and ∇h2(x) are independent

for every feasible x, and so every feasible x is a regular point.
Thus if x is a local optimal solution, then there exists a

u =

[
λ

µ

]
∈ R

2
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such that ∇f(x) + u⊤∇h(x) = 0, that is,

[
0 0 0 0 −1

]
+

[
λ µ

] [ 1 1 1 1 1
2x1 2x2 2x3 2x4 2x5

]
= 0.

Hence

λ+ 2µx1 = 0, (1)

λ+ 2µx2 = 0, (2)

λ+ 2µx3 = 0, (3)

λ+ 2µx4 = 0, (4)

−1 + λ+ 2µx5 = 0. (5)

We consider the two cases λ = 0 and λ 6= 0 separately.

1◦ If λ = 0, then (5) gives 2µx5 = 1 and so µ 6= 0. But then (1)-(4) give
x1 = x2 = x3 = x4 = 0. So h1(x) = 0 now gives x5 = 8. But then
h2(x) = 64− 16 6= 0. So this case gives no feasible x.

2◦ Suppose λ 6= 0. The (1) gives 2µx1 = −λ and so µ 6= 0. Then (1)-(4) give
x1 = x2 = x3 = x4 = − λ

2µ = k (say). Then h1(x) = 0 gives 4k + x5 − 8 = 0,

while h2(x) = 0 gives 4k2 + x25 − 16 = 0. Eliminating k, we obtain

x25 + 4

(
8− x5

4

)2

− 16 = 0,

and upon simplifying, we obtain x5(
5
4x5 − 4) = 0. Thus x5 = 16

5 or x5 = 0.

Hence x = (65 ,
6
5 ,

6
5 ,

6
5 ,

16
5 ) or x = (2, 2, 2, 2, 0). Both of these are feasible,

and since 16
5 > 0, we conclude that if there is an optimal solution, it must

be x = (65 ,
6
5 ,

6
5 ,

6
5 ,

16
5 ).

The feasible set F , namely

{x ∈ R
5 : x1+x2+x3+x4+x5 = 8}∩{x ∈ R

5 : x21+x22+x23+x24+x25 = 16}
is bounded (indeed, F is contained in the ball with center 0 and radius 4),
and it is also closed (since it is the intersection of two closed sets). So F is
compact. The map x 7→ −x5 is continuous. So we know that f : F → R

has a global minimum on F . Consequently, x = (65 ,
6
5 ,

6
5 ,

6
5 ,

16
5 ) is a global

minimizer.
So the largest value of x5 is 16

5 .

(6)(a) x
ϕ7→ −(x1 + x2) is convex. The map y

ψ7→ ey is increasing. Thus

x
ψ◦ϕ7→ e−(x1+x2) is convex. Also since x 7→ ex1 and x 7→ ex2 are convex, so is

x 7→ ex1 + ex2 − 20. Finally, x 7→ −x1 is convex. Thus f, g1, g2 defined by

f(x) = e−(x1+x2),

g1(x) = ex1 + ex2 − 20,

g2(x) = −x1,
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are all convex. Hence the given problem




minimize f(x)
subject to g1(x) ≤ 0,

g2(x) ≤ 0

is a convex optimization problem. Also g1(1, 0) = e1 + 1 − 20 < 0 and
g2(1, 0) = −1 < 0. So the problem is regular as well.

(6)(b) For a regular convex problem, x is optimal iff the KKT-conditions
hold, that is, that there exists a y ∈ R

2 such that the following hold:

(KKT-1) ∇f(x) + y⊤g(x) = 0 that is,

[
−e−(x1+x2) −e−(x1+x2)

]
+
[
y1 y2

] [ ex1 ex2

−1 0

]
=

[
0 0

]
.

So e−(x1+x2) − y1e
x1 + y2 = 0 and e−(x1+x2) − y1e

x2 = 0.

(KKT-2) gi(x) ≤ 0 for all i, that is, x1 ≥ 0 and ex1 + ex2 ≤ 20.

(KKT-3) y ≥ 0, that is, y1 ≥ 0 and y2 ≥ 0.

(KKT-4) yigi(x) = 0 for all i, that is, y1(e
x1 + ex2 − 20) = 0 and y2x1 = 0.

If x1 = 0, then (KKT-1) gives y1 = e−2x2 6= 0. (KKT-4) then gives that
ex1 + ex2 − 20 must be 0, and since x1 = 0, we further obtain that ex2 = 19.
(KKT-1) gives y2 = e−2x2 − e−x2 = 1

19 (
1
19 − 1) < 0, contradicting (KKT-3).

So it cannot be the case that x1 = 0.
If x1 6= 0, then (KKT-4) gives y2 = 0. (KKT-1) then gives first of all

that y1 = e−x1−2x2 > 0. Also, y1(e
x1 − ex2) = 0 and since y1 > 0, we obtain

ex1 = ex2 , which implies that x1 = x2. (KKT-4) together with y1 > 0 gives
ex1 + ex2 − 20 = 0. Since x1 = x2 we now obtain that ex1 = ex2 = 10, so
that x1 = x2 = loge 10. Then it is easily verified that (KKT-1) to (KKT-4)
hold with x1 = x2 = loge 10, y1 = e−x1−2x2 = e−3 log

e
10 = 1

1000 and y2 = 0.
So the global optimal solution is given by x1 = x2 = loge 10.

(7) Let X = {x ∈ R
2 : x1 > 0 and x2 > 0}. Define L : X × R → R by

L(x, y) = x1 + x2 + y

(
1

x1
+

1

x2
− 1

)
(x ∈ X, y ∈ R).

The relaxed Lagrange problem (PRy) is the following:
Given y ≥ 0, minimize x 7→ L(x, y) on X, that is,

(PRy) :





minimize x1 + x2 + y

(
1

x1
+

1

x2
− 1

)

subject to x1 > 0 and x2 > 0.
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For nonnegative a, b, we have a+b
2 ≥

√
ab with equality iff a = b. Hence

x1 + x2 + y

(
1

x1
+

1

x2
− 1

)
= x1 +

y

x1
+ x2 +

y

x2
≥ 2

√
x1

y

x1
+ 2

√
x2

y

x2

= 2
√
y + 2

√
y = 4

√
y,

with equality iff x1 =
y
x1

and x2 =
y
x2
, that is, iff x1 =

√
y and x2 =

√
y. So

x1 = x̂1(y) =
√
y and x2 = x̂2(y) =

√
y. The dual objective function is

ϕ(y) = L(x̂(y), y) =
√
y +

√
y + y

(
1√
y
+

1√
y
− 1

)
= 4

√
y − y.

We seek a maximum over y ≥ 0. We have ϕ′(y) = 4
2
√
y
− 1 = 0 iff y = 4.

We see that ϕ(y) =
√
y(4 − √

y) < 0 for y > 16. On the compact interval
[0, 16], ϕ has a maximum. ϕ(0) = ϕ(16) = 0 and ϕ(4) = 4, ϕ′(4) = 0 show
that ŷ = 4 ≥ 0 is indeed a maximizer.

Set x̂1 := x̂1(ŷ) = 2 and x̂2 := x̂2(ŷ) = 2. Then (x̂1, x̂2) is feasible for
the original problem since 1

x̂1
+ 1

x̂2
= 1

2 + 1
2 = 1, x̂1 = 2 > 0, x̂2 = 2 > 0.

ŷ = 4 ≥ 0 and ŷ
(

1
x̂1

+ 1
x̂2

− 1
)
= ŷ · 0 = 0. Thus (x̂, ŷ) satisfy the global

optimality conditions associated with the problem and so x̂ = (2, 2) is an
optimal solution.


