
Solutions for the exam in SF1811/SF1831/SF1841 Optimization for F.
monday June 8, 2009, time. 14.00–19.00

Instructor: Per Enqvist, tel. 790 62 98
There may be alternative solutions to the problem.

1. (a) The problem (P ) can be written on standard form

(Ps)

 min
x

cTx

s.t. Ax = b
x ≥ 0


where

A =
[

1 3 1 0
1 −1 0 1

]
, b =

[
3
1

]
, c =

[
−1 −2 0 0

]T
.

We start with x3 and x4 in the basis, giving the solution x = (0, 0, 3, 1) from
(a).
Basic and non-basic variable indices are given by β = {3, 4} and η = {1, 2},
and

B =
[

1 0
0 1

]
, N =

[
1 3
1 −1

]
Then the equations BT y = cB and ĉTN = cTN − yTN gives

y =
[

0
0

]
, ĉTN =

[
−1 −2

]
.

Let x2 enter the basis. Which one should exit ?
From Bâ2 = a2, we get â2 = (3,−1)T , and since the second element is negative,
x3 exits the basis.
Update the basis and nonbasis matrices: Basic and non-basic variable indices
are given by β = {2, 4} and η = {1, 3}, and

B =
[

3 0
−1 1

]
, N =

[
1 1
1 0

]
Then the equations BT y = cB and ĉTN = cTN − yTN gives

y =
[

2/3
1

]
, ĉTN =

[
−8/3 −2/3

]
.

Let x1 enter the basis. Which one should exit ?
From Bâ1 = a1, we get â1 = (1/3, 4/3)T . b̂ = (1, 2)T satisfies Bb̂ = b, and since
b̂1/(â1)1 = 3 > 4/3 = b̂2/(â1)2, x4 exits the basis.
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Update the basis and nonbasis matrices: Basic and non-basic variable indices
are given by β = {2, 1} and η = {4, 3}, and

B =
[

3 1
−1 1

]
, N =

[
0 1
1 0

]
Then the equations BT y = cB and ĉTN = cTN − yTN gives

y =
[
−3/4
−1/4

]
, ĉTN =

[
1/4 3/4

]
.

Since all reduced costs are nonnegative, the current bfs x̂ = (3/2, 1/2, 0, 0)T is
optimal.

(b) The dual linear programing problem is

(D′)

 max
y

−bT y

s.t. −AT y ≤ c
y ≥ 0

 ⇔


max
y

−3y1 − y2

s.t. −y1 − y2 ≤ −1
−3y1 + y2 ≤ −2
y1 ≥ 0, y2 ≥ 0.

 .
Since x(a)

1 and x(a)
2 are both non-zero, it follows by complementarity that −y1−

y2 = −1 and −3y1 + y2 = −2, i.e. y1 = 3/4 and y2 = 1/4. This solution also
satisfies the positivity constraints, so it is feasible for the dual.
The dual solution can also be obtained from the last simplex iteration in (b).

(c) In problem (P2) the constraint that x2 = 1 − 2x1 ≥ 0 has disappeared, but it
still has to be valid for (P1) and (P2) to be equivalent.

2. (a) The problem can be written as minz ‖Az − b‖2 with

A =


x2

1 x1

x2
2 x2
...

...
x2
m xm

 , z =
[
α
β

]
, b =


y1

y2
...
ym

 .
(b) For given data we get

A =

 1 1
4 2
9 3

 , b =

 1
4
2

 .
The equation (ATA)z̄ = AT b is then[

1 4 9
1 2 3

] 1 1
4 2
9 3

 z̄ =
[

1 4 9
1 2 3

] 1
4
2

 ,
i.e.[

98 36
36 14

]
z̄ =

[
35
15

]
, ⇒

[
α
β

]
=

1
98 · 14− 362

[
14 −36
−36 98

] [
35
15

]
.
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3. (a) For the optimization problem to be convex, it is necessary that the feasible
region is convex and that the objective function is convex on the whole feasible
region. The feasible region is convex since it is given by a linear equality
constraint.
The objective function is convex on the feasible region if ZTHZ is positive
semidefinite for some matrix Z whos columns spans the nullspace of A. With

Z =

 1 1
0 1
1 0

 ,
then

ZTHZ =
[

7 5
5 5

]
=
[

1 0
5/7 1

] [
7 0
0 10/7

] [
1 5/7
0 1

]
and from the LDLT -factorization we see that it is positive definite.

(b) Evaluating the gradient at x̄ we get

Hx̄+ c =

 −2
2
2

 = AT (−2),

so Hx̄ + c is in the range space of AT , thus there exists no feasible descent
directions at x̄.
Since the problem is convex and there exists no feasible descent directions we
know that x̄ is a global optimum.
The directional derivative in the direction d = (0,−1, 0)T is negative, so it is a
descent direction. (but the direction d is not feasible.)

(c) Using LDLT -factorization

H+2I =

 4 2 1
2 1 0
1 0 5

 =

 1 0 0
1/2 1 0
1/4 0 1

 4 0 0
0 0 −1/2
0 −1/2 19/4

 1 1/2 1/4
0 1 0
0 0 1


we get a zero diagonal element on a non-zero row, hence the matrix H + 2I is
not positive definite.
Using LDLT -factorization

H+3I =

 5 2 1
2 2 0
1 0 6

 =

 1 0 0
2/5 1 0
1/5 −1/3 1

 5 0 0
0 6/5 0
0 0 17/3

 1 2/5 1/5
0 1 −1/3
0 0 1


and since all diagonal element are positive the matrix H+3I is positive definite.
The first optimization problem has no finite optimal solution, while the second
one has a unique one which is x = (0, 0, 0)T .

4. (a) The gradient of f is given by

∇f(x) =
[

(x2 − 1/3)(x3 − 1/4) (x1 − 1/2)(x3 − 1/4) (x2 − 1/3)(x1 − 1/2)
]
.
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The gradient is zero if two of the three conditions x1 = 1/2, x2 = 1/3 and
x3 = 1/4 holds. This holds true in for example the three points

(1/2, 1/3, ε) (ε, 1/3, 1/4) (1/2, ε, 1/4),

where ε = 1/10, or some other value in (0, 1).

(b) The hessian of f is given by

∇2f(x) =

 0 x3 − 1/4 x2 − 1/3
x3 − 1/4 0 x1 − 1/2
x2 − 1/3 x1 − 1/2 0

 ,
and for the particular x(0) given, the matrix is all zero and therefore positive
semidefinite, hence the point satisfies the second order necessary conditions.
However, the point is not a local minimum. We know that f(x(0)) = 0. Consider
the point xε = (1/2− ε)(1/3− ε)(1/4− ε), then f(xε) = −ε3 < 0 for any ε > 0,
which demonstrates that there is no neighborhood of x(0) such that the minimal
value in that set is zero.

(c) Let
g0(x) = 1− (x2

1 + x2
2 + x2

3)

g1(x) = x1, g2(x) = x2, g3(x) = x3.

Then, the problem can be written min f(x) subject to gi(x) ≥ 0 for i = 0, 1, 2, 3.
At x(1), constraints 0,1 and 2 are active.

∇f(x(1))T =

 −3/12
−3/8
1/6

 ,

∇g0(x(1))T =

 0
0
−2

 , ∇g1(x(1))T =

 1
0
0

 , ∇g2(x)T =

 0
1
0

 .

For the KKT-conditions to be satisfied we need to find non-negative Lagrange
parameters such that −1/4

−3/8
1/6

−
 0

0
−2

λ0 −

 1
0
0

λ1 −

 0
1
0

λ2 =

 0
0
0


Now λ0 = −1/12, λ1 = −1/4, λ2 = −3/8 and λ3 = 0.
So the KKT-conditions are not satisfied.
Then we can say that x(1) is not a local minimum.

(d) At x(2), constraints 1,2 and 3 are active.

∇f(x(2))T =

 1/12
1/8
1/6

 ,
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∇g1(x(1))T =

 1
0
0

 , ∇g2(x)T =

 0
1
0

 , ∇g3(x(2))T =

 0
0
1

 .

For the KKT-conditions to be satisfied we need to find non-negative Lagrange
parameters such that 1/12

1/8
1/6

−
 1

0
0

λ1 −

 0
1
0

λ2 −

 0
0
1

λ3 =

 0
0
0


Now λ0 = 0, λ1 = 1/12, λ2 = 1/8, and λ3 = 1/6.
So the KKT-conditions are satisfied.
But this is not enough to say that x(2) is a local minimum.

5. (a) The tangent at (x(k)
1 , x

(k)
2 ) is given by cos(vk)x1 + sin(vk)x2 = 1.

A linear approximative solution is then given by

minimize −x1 − 2x2

s.t. cos(vk)x1 + sin(vk)x2 + yk = 1, k = 0, 1, · · · , N
x1 ≥ 0, x2 ≥ 0, yk ≥ 0, k = 0, 1, · · · , N.

where yk are slack-variables.

(b) Since the feasible region to the linear approximative problem is larger than the
original nonlinear problem, the optimal value of the linear problem is lower or
equal to the nonlinear one. The optimal point for the nonlinear problem will
always be feasible also for the approximative linear one.

(c) The Lagrange function is

L(x, λ) = −x1 − 2x2 − λ
(
1− x2

1 − x2
2

)
It is well defined for xi ≥ 0, and separates into two independent convex
quadratic minimization problems that are minimized for the xi(λ) such that

∂L

∂x1
(x, λ) = −1 + λ2x1 = 0,

∂L

∂x2
(x, λ) = −2 + λ2x2 = 0,

i.e., x1(λ) = 1/(2λ) and x2(λ) = 1/λ.
The dual function is obtained by inserting this xi in the Lagrange function

J(λ) = −1/(2λ)− 2/λ− λ
(

1− 1
4λ2
− 1
λ2

)
= −λ− 5

4λ

(d) The derivative of the dual objective function is given by f ′(λ) = 5
4λ2 − 1, and

the tangent at λk is given by y = Kλ+m for K = 5
4λ2

k
− 1 and m such that

−λk −
5

4λk
= Kλk +m
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that is m = −5/(2λk).
The tangent to the dual objective function is then given by

y =
(

5
4λ2

k

− 1
)
λ− 5

2λk
,

and the piecewise linear approximation is given by

y(λ) = min
k=0,1,···,N

{
5

4λ2
k

− 1λ− 5
2λk

}
.

Finally, the linear optimization problem

maximize t

s.t. t ≤
(

5
4λ2

k
− 1
)
λ− 5

2λk
, k = 0, 1, · · · , N

approximates the dual optimization problem.

(e) All the tangents of the concave dual objective function lies above the the func-
tion and therefore the optimal value of the linear problem in (d) gives a larger
value than the nonlinear dual optimization problem.


